现代集成制造系统的技术构成精
- 格式:docx
- 大小:16.21 KB
- 文档页数:12
1.CIM/CIMS概念(包括早期的计算机集成制造和现代集成制造)理解定义,重点掌握CIM的内涵。
早期CIM的定义: CIM是一种组织、管理与运行企业生产的新哲理,它借助计算机硬软件,综合运用与代管理技术、制造技术、信息技术、自动化技术、系统工程技术,将企业生产全部过程中有关人、技术、经营管理三要素及其信息流与物流有机地集成并优化运行,以实现产品高质、低耗、上市快,从而使企业赢得市场竞争。
CIMS定义CIMS(Computer Integrated Manufacturing System)是基于CIM哲理而组成的系统,定义为:“CIMS是通过计算机硬软件,并综合运用现代管理技术、制造技术、信息技术、自动化技术、系统工程技术,将企业生产全部过程有关的人、技术、经营管理三要素及其信息与物流有机集成并优化运行的复杂的大系统。
”CIM的几层含义CIM是一种组织、管理与运动企业生产的哲理,其宗旨是使企业的产品高质量、低成本、上市快,从而使企业赢得竞争企业生产的各个环节,是一个不可分割的有机整体企业生产的要素包括人、技术及经营管理,其中,尤其重视发挥人在现代化企业生产中的主导作用。
企业生产活动中包括信息流(采集、传递和加工处理)用物流两大部分。
现代企业中尤其重视信息流的管理运行及信息流与物流间的集成。
CIM技术是基于现代管理技术、制造技术、信息技术、自动化技术、系统工程技术的一门综合性技术。
它综合MIS、OA、MRPⅡ,CAD、CAE、CAPP、CAM,DNC,CNC,工业机器人,FMC、FMS),网络,数据库,标准化,CASE,AI,计算机辅助建模、仿真、实验技术,计算机辅助质量管理与控制等。
2.掌握早期CIMS的组成以及现代CIMS集成的概念早期CIMS组成框图CIM新定义“CIM是一种组织、管理和运行现代制造类企业的理念。
它将传统的制造技术与现代化信息技术、管理技术、自动化技术、系统工程技术等有机结合,使企业产品全生命周期(从市场需求分析到最终报废处理)各阶段活动中有关的人(组织、管理)、经营管理和技术三要素及其信息流、物流和价值流三流有机集成并优化运行,以达到产品(P)上市快(T)、高质(Q)、低耗(C)、服务好(S)、环境清洁(E),进而提高企业的柔性、健壮性、敏捷性,使企业赢得市场竞争”。
当今世界已进入信息时代,并迈向知识经济时代。
以信息技术为主导的高技术为制造业的发展提供了极大的支持,并推进着制造业的变革与发展,现代集成制造系统(Contemporary Integrated Manufacturing Systems,简称CIMS)技术的应用及其产业化是其中最重要的组成部分。
CIMS—现代集成制造系统,是基于CIM理念的集成优化的制造系统。
将信息技术、现代管理技术和制造技术相结合,并应用于企业产品全生命周期(从市场需求分析到最终报废处理)的各个阶段。
通过信息集成、过程优化及资源优化,实现物流、信息流、价值流的集成和优化运行,达到人(组织、管理)、经营和技术三要素的集成。
以加强企业新产品开发的时间(T)、质量(Q)、成本(C)、服务(S)、环境(E),从而提高企业的市场应变能力和竞争能力。
一、CIMS的总体结构CIMS建设的目标是在统一的数据库和网络支持下,建立生产经营管理分系统和工程技术(CAD/CAM/CAPP/PDM)分系统,实现企业信息的全面集成。
为实现这个总体目标,CIMS 由两个功能分系统和两个支撑分系统组成。
两个功能分系统为生产经营管理分系统和工程技术分系统;两个支撑分系统为计算机网络和数据库分系统。
整个系统将以关系型数据库为核心,并由各应用系统通过INTERNET/INTRANET/EXTRANET访问数据库,这样就使得几个服务器上的数据在逻辑上成为一个整体,以保证整个系统的数据共享和数据的唯一性。
CIMS的总体结构如图1.2-1所示。
图1 CIMS的总体结构二、CIMS的技术构成工程技术分系统:可简称为TIS分系统,即技术信息系统。
通常包括CAD、CAPP、CAM 和PDM等部分。
CAD(计算机辅助设计)包括产品的结构设计、变形设计及模块化产品设计。
可以实现计算机绘图、产品数字建模及真实图形显示、动态分析与仿真、生成材料清单(BOM)。
CAPP(计算机辅助工艺计划)通过计算机进行工艺路线制定、工序设计、加工方法选择、工时定额计算,包括工装、夹具设计、刀具和切削用量选择等,且能生成必要的工艺卡和工艺文件。
计算机集成制造系统一、引言计算机集成制造系统(Computer Integrated Manufacturing,简称CIM)是在计算机技术的支持下,将技术、管理、组织等各个方面的资源进行整合,实现制造整体流程管理和控制的一种技术体系。
CIM从原材料采购到成品出库,实现了全过程的自动化控制和优化管理,极大提高了制造企业的生产效率和质量,是现代制造业的核心竞争力之一。
本文将就CIM的结构、功能和发展趋势等方面进行详细介绍。
二、CIM系统结构CIM系统结构主要由三个层次组成:工厂制造层、计算机集成层和管理决策层。
每个层次的功能不同,但又相互衔接、互为依存,构成了一个完整的CIM体系。
(一)工厂制造层工厂制造层是真正进行物质生产的层次,包括原材料、设备、工人和产品等资源。
在这个层次中,CIM主要是通过物联网技术和自动化设备来实现对生产过程的控制和监控。
物联网技术可以将生产现场的各种设备、传感器和仪器连接起来,实现数据的共享和协同,从而保证生产过程的实时、准确和可控;自动化设备则是通过PLC、传感器和执行机构等模块化组件来实现物质生产自动化。
这些设备可以通过CIM系统的中央控制台来进行程序编排和指令下发,实现生产过程的智能化控制,减少生产过程出错和质量问题的风险。
(二)计算机集成层计算机集成层主要是通过计算机技术来实现对工厂制造层的控制和监控。
在这个层次中,CIM包括了多种计算机技术:计算机辅助设计(Computer Aided Design,简称CAD)、计算机辅助制造(Computer Aided Manufacturing,简称CAM)、计算机辅助生产(Computer Aided Production,简称CAP)和计算机集成管理(Computer Integrated Management,简称CIM)。
这些技术可以在设计、加工、生产和管理过程中,实现数据共享、数字化建模、自动化编程和信息集成等功能,从而加强了制造企业内部不同业务之间的协同和协作。
简述智能制造系统的组成智能制造系统是指一种能够集成多种数字技术的制造系统,它利用计算机、感知技术、大数据和思维技能等多种先进技术,通过智能化的管理和制造流程来实现制造业的高效化。
而智能制造系统的组成则包含了许多方面,是一项复杂而且系统性很强的工程。
本文将从以下几个方面简述智能制造系统的组成。
1. 智能设备:智能设备可以理解为工业4.0最基础的组成部分,它是智能制造系统的核心,包括传感器、执行器、控制器和通信模块等。
智能设备可以感知和控制生产过程,并将数据实时传输到制造执行系统。
2. 智能感知:智能感知作为智能制造系统的重要组成部分,包括传感器、计算机视觉、语音识别和机器人等,主要用于监测制造过程的变化和环境的要求。
智能感知系统可以在制造过程中控制物料的流程、机器的作业状态以及工人的活动。
3. 制造执行系统:制造执行系统是智能制造系统中的关键组成部分之一,它将生产计划转换为生产实践。
制造执行系统是通过计算机、信息技术、控制技术和逻辑控制等多种技术手段来实现制造流程的高效和精准控制。
4. 数据管理与分析:智能制造系统依靠大数据和云计算技术,能够对大量的数据进行收集、存储和分析。
数据管理与分析的作用在于通过数据来源的巩固赢得制造效率和质量的提高。
5. 智能制造平台:智能制造平台是智能制造系统的核心模块,是制造业数字化转型的必要手段。
该平台能够与其他的多种平台进行整合,实现制造流程的全面控制和智能化管理。
智能制造平台的核心思路是利用大数据、人工智能等等技术来完成一个完整制造流程的机器学习、分析和优化。
6. 智能制造标准与规范:智能制造标准与规范是智能制造系统的基础和支撑。
拥有科学的标准和规范有助于提高制造质量、促进产品可靠性和降低成本。
7. 人工智能与机器学习:人工智能和机器学习技术是智能制造系统的核心内容之一,它可以通过学习历史生产过程中的数据,来优化制造流程,提高制造效率。
总的来说,智能制造系统的组成非常复杂且系统性很强,涉及到多个方面,不仅主要包括生产设备、数据管理、智能感知、制造执行系统、智能制造平台等核心部分,还包括了智能制造标准与规范、人工智能与机器学习等。
CIMS的体系构成CIMS 是英语 Computer Integrated Manufacturing System 的缩写,意思是计算机集成制造系统。
它是随着计算机辅助设计与制造的发展而产生的。
它是在信息技术自动化技术与制造的基础上,通过计算机技术把分散在产品设计制造过程中各种孤立的自动化子系统有机地集成起来,形成适用于多品种、小批量生产,实现整体效益的集成化和智能化制造系统。
集成化反映了自动化的广度,它把系统的范围扩展到了市场预测、产品设计、加工制造、检验、销售及售后服务等的全过程。
智能化则体现了自动化的深度,它不仅涉及物资流控制的传统体力劳动自动化,还包括信息流控制的脑力劳动的自动化。
当前,我国的 CIMS 已经改变为“现代集成制造(Contemporary Integrated Manufacturing)与现代集成制造系统(Contemporary Integrated Manufacturing System)”。
它已在广度与深度上拓展了原 CIM/CIMS 的内涵。
其中,“现代”的含义是计算机化、信息化、智能化。
“集成”有更广泛的内容,它包括信息集成、过程集成及企业间集成等三个阶段的集成优化;企业活动中三要素及三流的集成优化;CIMS 有关技术的集成优化及各类人员的集成优化等。
CIMS 不仅仅把技术系统和经营生产系统集成在一起,而且把人(人的思想、理念及智能)也集成在一起,使整个企业的工作流程、物流和信息流都保持通畅和相互有机联系,所以,CIMS 是人、经营和技术三者集成的产物。
CIMS集成的内涵:集成和连接不同,它不是简单地把两个或多个单元连接在一起,它是将原来没有联系或联系不紧密的单元组成为有一定功能的、紧密联系的新系统。
两种或多种功能的集成包含着两种或多种功能之间的相互作用。
集成是属于系统工程中的系统综合、系统优化范畴。
CIMS 的集成,从宏观上看主要是以下5个方面:1)系统运行环境的集成2)信息的集成3)应用功能的集成4)技术的集成5)人和组织的集成CIMS 体系结构CIMS 体系结构是用来描述研究对象整个系统的各个部分和各个方面的相互关系和层次结构,从大系统计算机集成制造系统CIMS 构成框图理论角度研究,将整个研究对象分为几个子系统,各个子系统相对独立自治、分布存在、并发运行和驱动等。
磊攀Ⅵ澎斟-一;现代集成制造系统的技术构成及发展策略研究李七一(黑龙江省轻工建设总公司黑龙江哈尔滨150086)【摘要】近几年新的先进制造技术模式和哲理层出不穷,结合我国国情,通过分析现代集成制造系统与其它先进制造技术的关系,论述了我国现代集成制造系统的技术构成和发展策略及途径,希望为我国制造业的发展做些有益的探索。
[关键词]现代集成制造系统并行工程虚拟制造分布式网络化研究中心中图分类号:TN4文献标识码;A文章编号:1671--7597(2008)0620062"一一01一、引曹信息技术的发展引起的革命使我们进入了信息时代。
信息革命不仅引起人们的思想观念、生活方式的变化,而且导致了生产方式和制造哲理的巨大变化。
多年来,我国的综合国力不断增强。
入关在即,市场竞争十分激烈,国内市场已从卖方市场转化为买方市场,而且正在迅速成为国际市场的一部分,许多大中型企业在竞争中处于不利地位,甚拿破产、倒闭。
本文结合我国国情,通过分析现代集成制造系统与先进制造技术的关系,论述了我国现代集成制造系统的技术构成和发展策略及途径,希望为我国制造业的发展做些有益的探索。
:、现代集成翻遗系统的含义与定位现代集成制造系统(C ont em por ar y I nt egr at ed M an uf ac t ur i ng Syst e m)是计算机集成制造系统新的发展阶段,在继承计算机集成制造系统优秀成果的基础上,它不断吸收先进制造技术中的相关思想的精华,从信息集成、过程集成向企业集成方向迅速发展,在先进制造技术中处于核心地位。
现代集成制造系统的研究范围应该介于国家攀登计划和国家攻关计划之间。
与攀登计划研究项目相比较,它更注重成果的f最用性,尽可能将技术产业化,并推动我国制造业的现代化进程;与国家攻关计划相比较,它更注重解决我国制造业发展中的关键的共性问题、前瞻性问题和示范性问题。
三、现代集成翻造系统的技术构戚先进制造技术(A M T--A dv ance d M anuf ac t ur i ng T e chno l ogy)作为一个专有名词至今还没有一个明确的、一致公认的定义。
制造业是以制造技术为主导技术进行产品制造的企业群体的总称,是工业的主体。
根据我国现行统计划分,工业由制造业、采掘业以及电力、燃气和水的生产供应业构成,制造业系指第二产业中除采掘业、电力和燃气及其生产供应业、建筑业以外的所有行业,包括30个大类、169个中类、482个小类。
可以说制造业是一个国家的立国之本。
制造业发展水平的高低,将直接影响到国家各产品技术水平和经济效益的提高。
没有现代化的制造业就不可能有现代化的工业、农业、国防和科学技术。
从世界各国的工业化发展历程来看,制造业的优先发展是经济腾飞的必要条件。
制造技术的不断创新则是制造业发展的技术基础和动力。
也是一个国家科学技术水平的重要标志之一,它对信息技术、新材料技术、海洋工程、生物工程、能源工程和空间技术等新学科及新技术的发展有着至关重要的作用。
制造(Manufacturing)是利用制造资源(设计方法、工艺、设备和人力等)将材料“转变”为有用的物品的过程。
制造是一个很大的概念,按制造的连续性可分为连续制造(如化工产品的制造)和离散制造(如家电产品的制造);按行业又可分为机械制造、食品制造、化工制造、IT产品制造,等等。
当今,人们对制造的概念又加以扩充,将体系管理和服务等也纳入其中。
制造是人类所有经济活动的基石,是人类历史发展和文明进步的动力。
制造技术(Manufacturing Technology)是制造活动所涉及到的一系列技术的总称,是提高产品竞争力的关键,也是制造业赖以生存和发展的主体技术。
传统的制造技术仅强调工艺方法和加工设备。
现代的制造技术不仅重视工艺方法和设备,还注重设计方法、生产组织模式、制造与环境和谐统一、制造的可持续性以及制造技术与其它科学技术的交叉和融合,甚至还涉及制造技术与制造全球化、贸易自由化、军备竞争等内容。
1.2 制造业的发展历程制造业的发展历程,是一个不断提高产品的质量、不断应用最新科技成果,提高和完善制造过程的自动化水平、信息化水平、应用先进的制造理念和管理理念和不断提高劳动生产率、降低制造成本,实现制造最优化的过程。
智能制造系统架构一、智能制造系统架构智能制造系统架构通过生命周期、系统层级和智能功能三个维度构建完成,主要解决智能制造标准体系结构和框架的建模研究。
1、生命周期生命周期是由设计、生产、物流、销售、服务等一系列相互联系的价值创造活动组成的链式集合。
生命周期中各项活动相互关联、相互影响。
不同行业的生命周期构成不尽相同。
2、系统层级系统层级自下而上共五层,分别为设备层、控制层、车间层、企业层和协同层。
智能制造的系统层级体现了装备的智能化和互联网协议(IP)化,以及网络的扁平化趋势。
(1)设备层级包括传感器、仪器仪表、条码、射频识别、机器、机械和装置等,是企业进行生产活动的物质技术基础;(2)控制层级包括可编程逻辑控制器(PLC)、数据采集与监视控制系统(SCADA)、分布式控制系统(DCS)和现场总线控制系统(FCS)等;(3)车间层级实现面向工厂/车间的生产管理,包括制造执行系统(MES)等;(4)企业层级实现面向企业的经营管理,包括企业资源计划系统(ERP)、产品生命周期管理(PLM)、供应链管理系统(SCM)和客户关系管理系统(CRM)等;(5)协同层级由产业链上不同企业通过互联网络共享信息实现协同研发、智能生产、精准物流和智能服务等。
3、智能功能智能功能包括资源要素、系统集成、互联互通、信息融合和新兴业态等五层。
(1)资源要素包括设计施工图纸、产品工艺文件、原材料、制造设备、生产车间和工厂等物理实体,也包括电力、燃气等能源。
此外,人员也可视为资源的一个组成部分。
(2)系统集成是指通过二维码、射频识别、软件等信息技术集成原材料、零部件、能源、设备等各种制造资源。
由小到大实现从智能装备到智能生产单元、智能生产线、数字化车间、智能工厂,乃至智能制造系统的集成。
(3)互联互通是指通过有线、无线等通信技术,实现机器之间、机器与控制系统之间、企业之间的互联互通。
(4)信息融合是指在系统集成和通信的基础上,利用云计算、大数据等新一代信息技术,在保障信息安全的前提下,实现信息协同共享。
现代集成制造系统的技术构成先进制造技术是传统制造技术不断吸收机械、电子、信息、材料、能源和现代管理等方面的成果,并将其综合应用于产品设计、制造、检测、管理、销售、使用、服务的制造全过程,以实现优质、高效、低耗、清洁、灵活的生产,并取得理想技术经济效果的制造技术的总称。
它具有如下一些特点:从以技术为中心向以人为中心转变,使技术的发展更加符合人类社会的需要;从强调专业化分工向模糊分工、一专多能转变,使劳动者的聪明才智能够得到充分发挥;从金字塔的多层管理结构向扁平的网络化结构转变,减少层次和中间环节;从传统的顺序工作方式向并行工作方式转变,缩短工作周期,提高工作质量;从按照功能划分部门的固定组织形式向动态的自主管理的小组工作方式转变。
在先进制造技术中,现代集成制造系统在吸收计算机集成制造系统的优秀成果的基础上,继续推动并行工程、虚拟制造、敏捷制造和动态联盟的研究工作深入进行,并不断吸收先进制造技术中的成功经验和先进思想,将它们进行推广应用,由此使现代集成制造系统成为先进制造技术的核心,具体说明如下:1、并行工程(C E -C o n c u r r e n t Engineering并行工程是集成地、并行地设计产品及其相关过程(包括制造过程和支持过程的系统方法。
它要求产品开发人员在一开始就考虑产品整个生命周期中从概念形成到产品报废的所有因素,包括质量、成本、进度计划和用户要求。
为了达到并行的目的,必须建立高度集成的主模型,通过它来实现不同部门人员的协同工作;为了达到产品的一次设计成功,减少反复,它在许多部分应用了仿真技术;主模型的建立、局部仿真的应用等都包含在虚拟制造技术中,可以说并行工程的发展为虚拟制造技术的诞生创造了条件,虚拟制造技术将是以并行工程为基础的,并行工程的进一步发展就是虚拟制造技术。
同时,并行工程是在C A D、C A M、C A P P等技术支持下,将原来分别进行的工作在时间和空间上交叉、重叠,充分利用了原有技术,并吸收了当前迅速发展的计算机技术、网络技术的优秀成果,使其成为先进制造技术中的基础。
由于并行工程所处的基础性地位及我国研究工作的不足,就决定了必须将它作为现代集成制造系统的基础现代集成制造系统技术及发展探讨武书彦郑州牧业工程高等专科学校江道节河南中原总机厂石油设备有限公司性研究工作不断深入地进行。
2、虚拟制造(V M -V i r t u a l Manufacturing虚拟制造利用信息技术、仿真技术、计算机技术对现实制造活动中的人、物、信息及制造过程进行全面的仿真,以发现制造中可能出现的问题,在产品实际生产前就采取预防措施,从而达到产品一次性制造成功,来达到降低成本、缩短开发周期,增强产品竞争力的目的。
国内的研究刚刚起步,主要集中在三个方面:(1产品虚拟设计技术主要包括虚拟产品开发平台、虚拟测试、虚拟装配以及机床、模具的虚拟设计实现等。
其中清华大学利用美国国家仪器公司的Labview开发平台实现了锁相电路的虚拟,机械科学研究院采用C语言和OpenGL进行编程初步实现了立体停车库的虚拟现实下的参数化设计,可以直观地进行车库的布局、设计、分析和运动模拟。
(2产品虚拟制造技术主要包括材料热加工工艺模拟、加工过程仿真、板材成型模拟、模具制造仿真等。
北京机床研究所、机械科学研究院、东北大学、上海交大和长沙铁道学院等单位也研制出一些这方面的仿真软件。
(3虚拟制造系统主要包括虚拟制造技术的体系结构、技术支持、开发策略等。
其中提出了比较成熟的思想并可能实现的是由上海同济大学张曙教授提出的分散网络化生产系统和西安交通大学谢友柏院士组建的异地网络化研究中心。
从以上的论述中可以看到国内外研究水平差距是很大的,而且由于虚拟制造技术既是并行工程的发展方向又是敏捷制造的核心,这就决定我们必须以它作为现代集成制造系统的中心技术,以带动相关技术的研究工作的进行,并使它们协同一致顺利地发展。
3、敏捷制造(A M -A g i l eManu facturi ng敏捷制造是以竞争力和信誉度为基础,选择合作者组成虚拟公司,分工合作,为同一目标共同努力来增强整体竞争能力,对用户需求作出快速反应,以满足用户的需要。
为了达到快速应变能力,虚拟企业的建立是关键技术,其核心是虚拟制造技术,即敏捷制造是以虚拟制造技术为基础的。
4、绿色制造(G M -G r e e n Manufacturing绿色制造是一个综合考虑环境影响和资源效率的现代制造模式,其目标是使得产品从设计、制造、包装、运输、使用到报废的整个产品生命周期中,对环境的影响(副作用最小,资源的使用效率最高。
绿色制造的实现可以通过计算机仿真来达到目的,即它是虚拟制造的一部分。
从可持续发展战略的观点看,绿色制造是必然选择它将成为现代集成制造系统的一个重要的组成部分。
从以上的分析中我们可以看到:各种先进制造技术是相互关联、彼此交叉的,在先进制造技术这一大厦下,现代集成制造系统成为它的核心,并随着先进制造技术的不断发展而发展,即现代集成制造系统应该是一个动态的概念。
0(0 W(C+G+CJiPJ*尊文iBhr 11圖寺乩棋掘电于壮爪cm换人民教育册版祉.1腮3; 230-231[2]谢元断电予堪賂瑶础(ML北京丫人民邺电由版社・旧胛[3 ]黄永定.ifi于实脸烷合实训敕程[M ]. Ji:M: MMT AtlilRU- 2004 112[4 ]李中发+电予技术[M].北京冲陽水力水电出版人$18[51S洪润•电于拔路口电于技术[M].北丸潸芈大学出版社.2C0S防壮ft黄削资・1956 )女;肩旗.正i拧普貝人.193 筆申业于北京師电大供.现赳棚交通大学「福期讲師+主耍从李电『绒炜和电的教悄和实龜的硏究.其中:=10uF2=5uF=10uFCel=100uF Ce2=100uF C=6800uFRb11=33 KQ Rb12=24KQRc1=3.3 KQ Rb2 仁24 KQRc2=3.3 KQ Re2=3.9 KQRe1=Re2=3.9K Q hfe1=hfe2=50hie2=1.6K Q RL=1.5K QW1=W2=100KQ2.1.3 上限频率的理论值和测试值及误差分析(1理论计算接入6800pF的上限频率求第一级的上限频率,有关交流等效电路如图2所示。
其中:C 荷频段由分布电容和结电容等效的第一级输出电容,C—高频段由分布电容和结电容等效的第二级输出电容,Ri2——第二级交流输入电阻,RL1——第一级交流负载电阻。
又•••C>> C C>> C'' ,c+C'+ C''~C由于外加电容为6800PF,分布电容影响已无关紧要。
各级上限频率基本上由6800P F电容决定。
求第一级上限频率:求第二级的上限频率fh2 ,有关交流等效电路见图2。
由于6800pF的影响,第一级和第二级放大器的上限频率相同。
根据清华大学童诗白主编《模拟电子技术基础》第三版,230—231页,求总的上限频率fh=fh1/ 1? 1~0 643 fhl••• fh〜1? 02 kHz(2实际测试上限频率为14? 5kHz(3误差分析就测试值与理论值来看,误差不大。
误差的主要原因是理论计算时忽略了分布电容、结电容及三极管交流输出电阻的影响。
2.2 在多级阻容耦合放大器中加入分压电路,提高测试数据的准确度2.2.1 基本思路测试放大器的通频带时必须要给放大器输入信号,由于多级阻容耦合放大器的放大倍数很高,所以,在保证输出波形不失真的前提下,必须要求输入信号幅度很小,正因为如此,如果直接用信号发生器输入这样小的信号,就会发现电子管毫伏表量出的电压不稳定,即表针左右摆动,这是由于信号发生器本身的噪声以及外来噪声干扰所引起的。
这时送入放大器的信噪比很低,甚至信号会被噪声淹没,因而无法准确测试数据,以至测试无法进行。
为此,必须考虑提高放大器的信噪比。
222 具体做法在放大器的输入端增加一个电阻分压器就可提高信噪比,分压器由R1和R2组成,如图3所示。
2.2.3 此方法的好处因为分压器的分压比为100比1,所以若要求放大器输入端送1mV的信号,分压器的输入端就要送100mV的信号,这样由于信号发生器送的信号比无分压器时提高了100倍(真正送到放大器输入端的信仍为1mV,但噪声衰减了100倍,使得送入放大器输入端信号的信噪比比没加分压器时提高了40dB,这样既保证了输入1mV信号的要求,又使放大器输入端噪声小到不足以干扰输入信号的程度,从而使测试数据的准确性和稳定性有一定程度的提高。
3,结束语通过改进多级阻容耦合放大器的测试电路,不仅提高了测试数据的稳定性,而且使学生掌握了测试通频带的全过程。
同时,也使学生对通频带从感性知识上升到理性知识,加深了对通频带的理解和记忆。
我国现代集成制造系统的发展策略在市场竞争的推动下,先进制造技术发展十分迅速,新思想、新概念层出不穷,通过对现代集成制造系统与先进制造技术关系的分析,我们认为在制定我国现代集成制造系统的发展策略时,应该注重以人为本的思想,运用并行工程的哲理,使各种先进制造技术相互衔接、协调发展,并不断吸收先进制造技术的成熟成果,为先进制造技术在我国的广泛应用起到促进的作用。
针对上述实际情况,我们提出下列解决方案(1以企业需求为出发点,以甩图板”工程为契机,大力普及C A D技术, 帮助企业进行人员培训,提高企业人员的素质,不断提高企业的管理水平,在计算机集成制造系统成功示范企业中及时推广并行工程,并适当宣传虚拟制造、敏捷制造等思想和技术,为企业的进一步发展提供坚实的基础。
(2在政府方面,应发挥政府的协调职能,组织企业和科研部门进行多方面、多层次的合作,加强科研成果的应用推广,而且应组织多学科、跨地区的科研力量共同攻关;从宏观上加强对现代集成制造系统的指导,集中大家的智慧制定出符合我国国情的发展计划,并将计划的执行落到实处。
(3在技术的先进性方面,不要过度追求世界领先,应该根据企业实际要求,解决实际问题,力争尽快创造效益,以此取得企业的支持并获得资金上的帮助以便形成良性循环,促进研究工作的进一步开展。
(4针对我国科研力量分散的弱点,仿照分散网络化生产的思想,利用计算机网络,开展合作研究,建立分布式网络化研究中心,协调一致进行科技攻关。
综上所述,发展我国的现代集成制造系统应该以企业的需求为动力,通过政府的政策和计划的协调,继续深入开展并行工程、虚拟制造、敏捷制造和绿色制造的研究与应用,并利用分布式网络化研究中心,组织各地区的科研力量集中突破与现代集成制造系统密切相关的如STE P 标准的应用、CORBA规范的推广、企业过程重构理论的研究等具有重大战略意义的理论研究工作逐步使现代集成制造系统成为我国制造业的灵魂。