《工程电磁场导论》课后习题附答案
- 格式:doc
- 大小:1.18 MB
- 文档页数:18
E2-9 在中心点位于原点,边长为L的媒质立方体内的极化强度矢量为()0e x y z P P e x e y e z =++,(a) 计算面和体束缚电荷密度; (b) 证明总束缚电荷为零。
解:据题,体束缚电荷密度为:03v e P P ρ=-∇⋅=- (公式y x zE E E E x y z∂∂∂∇⋅=++∂∂∂) 在2L x =的面002s x e L e P P x P ρ=⋅== 在2L x =-的面00()2s x e Le P P x P ρ=-⋅=-= 同理,在2Ly =和2L y =-的面,02s L P ρ=在2L z =和2L z =-的面,02s LP ρ=∴(a )六个面上的面束缚电荷密度均为:0/2P L ρ=s体束缚电荷密度为:03v P ρ=-∴ (b) 总束缚电荷为:23006()302s v LQ Q Q L P P L =+=-=E2-13 半径为a 的球内充满体电荷密度为f ρ的电荷。
已知球内外的电场强度是⎪⎩⎪⎨⎧≥+≤+=-)()()(24523a r rAa a a r Ar r E r求体电荷密度(全部空间的介电常数均为0ε)。
解:0f E ρε∇⋅=(1)在r a ≤的区域内:23221[()]E r r Ar r r∂∇⋅=⋅+∂ 254r Ar =+ 20(54)f r Ar ρε∴=+(2)在r a ≥的区域内:254221[()]E r a Aa r r r-∂∇⋅=⋅⋅+∂ = 0 0f ρ∴=∴体电荷密度为:20(54),(),()f r Ar r a r a ερ⎧+≤=⎨≥⎩E2-17 两媒质分界面为z=0面,已知1223r r εε==和,如果已知区域1中的123(5)x y z E e y e x e z =-++我们能求出区域2中哪些地方的2E 和2D 呢?能求出区域2中任意点的2E 和2D 吗? 解:(1)在两种媒质的分解面z=0上,由于没有电荷的存在,电位移矢量的法线方向连续。
《工程电磁场导论》练习题一、填空题(每空*2*分,共30分)1.根据物质的静电表现,可以把它们分成两大类:导电体和绝缘体。
2.在导电介质中(如导体、电解液等)中,电荷的运动形成的电流成为传导电流。
3.在自由空间(如真空中)电荷运动形成的电流成为运流电流。
4.电磁能量的储存者和传递者都是电磁场,导体仅起着定向导引电磁能流的作用,故通常称为导波系统。
5.天线的种类很多,在通讯、广播、雷达等领域,选用电磁辐射能力较强的细天线。
6.电源是一种把其它形式的能量转换成电能的装置,它能把电源内导电原子或分子的正负电荷分开。
7.实际上直接危及生命的不是电压,而是通过人体的电流,当通过人体的工频电流超过8mA 时,有可能发生危险,超过30mA 时将危及生命。
8.静电场中导体的特点是:在导体表面形成一定面积的电荷分布,是导体内的电场为0,每个导体都成等位体,其表面为等位面。
9.恒定电场中传导电流连续性方程∮S J.dS=0 。
10.电导是流经导电媒质的电流与导电媒质两端电压之比。
11.在理想导体表面外侧的附近介质中,磁力线平行于其表面,电力线则与其表面相垂直。
12.如果是以大地为导线或为消除电气设备的导电部分对地电压的升高而接地,称为工作接地。
13. 电荷的周围,存在的一种特殊形式的物质,称电场。
14.工程上常将电气设备的一部分和大地联接,这就叫接地。
如果是为保护工作人员及电气设备的安全而接地,成为保护接地。
二、回答下列问题1.库伦定律:答:在无限大真空中,当两个静止的小带电体之间的距离远远大于它们本身的几何尺寸时,该两带电体之间的作用力可以表示为:这一规律成为库仑定律。
2.有限差分法的基本思想是什么?答:把场域用网格进行分割,再把拉普拉斯方程用以各网格节点处的电位作为未知数的差分方程式来进行代换,将求拉普拉斯方程解的问题变为求联立差分方程组的解的问题。
3.静电场在导体中有什么特点?答:在导体表面形成一定的面积电荷分布,使导体内的电场为零,每个导体都成为等位体,其表面为等位面。
⼯程电磁场部分课后习题答案12-1 ⼀点电荷q放在⽆界均匀介质中的⼀个球形空腔中⼼■设介质的介电常数为⼀空腔的半径为S求空腔表⾯的极化电荷⾯密度。
解由⾼斯定律,介质中的电场强度为-P(SM- e r) =KT ⼆——_- E4πer2*r由关系式n = e0E+P,得电极化强度为P-(E - Eo)E = ---- --- -4 Tter因此,空腔表⾯的极化电荷⾯密度为1-3-1从静堪场基本⽅程出发‘证明当电介质均匀时*极化电荷密度P P 存在的条件是⾃由电荷的体密度P不为零,且有关系式P P- - (I-^)P O 解均匀介质的E为常数C t从关系式D= ε0E + P Xr> = εE1得介质中的电极化强度P=D-ε0E-D-E0≤ = (l扱化电荷密度PP =-V -P= - V *[(1 -~)D \=?D灼(1 ⼀“)Tl )V ?!>εε由円?DP和Sl -号)=仇故上式成为P P=-学)⼙1-4-3 IJillF列静电场的边值问题:(0电荷体密度分别为⾓和他,半径分别为G的双层同⼼带电球体(如题1 - 4 - 3 图(a));(2)在两同⼼导体球壳间,左半部和右半部分别填充介电常数为引与∈2 的均匀介质,内球壳带总电荷量为外球売接地(如题1-4-3图(b));(3)半径分别为α与B的两⽆限也空⼼同轴圆柱⾯导体,内圆柱表⾯上单位长度的电量为⼚外圆柱⾯导休接地(如题I -3图(C))O仅供⽤于学习版权所有郑州航院电⽓⼯程及其⾃动化邓燕博倾⼒之作J? t -4- 3 图解(1)选球坐标系,球⼼与原点重合⼨数,故有如下静电场边值问题:由对称性町知,电位护仅为⼚的函y1 d zd7σ豁-EO(0≤r< α)d / 不&豁-(aI Y Ct ( 乔& (XY 8:r = a=?’r ≡αιL严翠f P2F = A =拓I lr = A—⾦⼀e?r =卄L呦=有限值,P-I rf 8-0(2)选球坐标乘*球⼼与原点重介。
工程电磁场导论课后答案【篇一:工程电磁场导论习题课南京理工大学】图示真空中有两个半径分别为r1和r2的同心导体球壳,设内、外导体球壳上分别带有净电荷q1和q2,外球壳的厚度忽略不计,并以无穷远处为电位参考点,试求:(1)导体球壳内、外电场强度e的表达式;(2)内导体球壳(r?r1)的电位?。
2.真空中有一个半径为3cm的无限长圆柱形区域内,有体密度 ??10 mcr?3cm, r?4cm处m均匀分布的电荷。
求:r?2cm,3的电场强度e。
3.内导体半径为2cm和外导体的内半径为4cm的球形电容器,其间充满介电常数??2r的电介质。
设外导体接地,而内导体带电,试求电容器介质内某点电位为内导体电位的一半时,该处的?值。
?afm4.一同轴线内圆柱导体半径为a,外圆柱导体半径为b,其间填充相对介电常数?r?质,当外加电压为u(外导体接地)时,试求:(1)介质中的电通密度(电位移)d和电场强度e的分布; (2)介质中电位?的分布;5. 图示空气中一输电线距地面的高度h?3m,输电线的半径为a?5mm,输电线的的介轴线与地面平行,旦对地的电压为u?3000v,试求地面上感应电荷分布的规律。
(?0?8.85?10?12fm)h6. 已知半径为r的无限长中空半圆柱面,均匀带电,电荷面密度为?0,则在其轴线上产生的电场强度为ey???0??0ey。
一个带有均匀分布的电荷体密度为?0的半圆柱,半径也为r,问它在轴线上产生的电场强度是多少?7. 下图所示空气中一根长直细导线(截面可忽略不计),单位长度所带电荷量为?,平行放置于一块无限大导体平板上方,并与一块半无限大瓷介质(?2?4?0)相邻,且已知长直细导线到导体平板与瓷介质的距离均为d,画出求解空气中电场时,所需镜像电荷的个数、大小和位置(不要求解出电场)。
半无8. 长直圆柱形电容器内外导体的半径分别为r1、r3,其间充满介电常数分别为?1、?2的两种介质,其分界面是半径为r2的圆柱面,若内导体单位长度带电荷量?q,外导体内表面单位长度所带电荷量? q,且外导体接地,如图所示,请写出两种介质区域内电位函数所满足的微分方程和边界条件。
工程电磁场导论课后答案【篇一:工程电磁场导论习题课南京理工大学】图示真空中有两个半径分别为r1和r2的同心导体球壳,设内、外导体球壳上分别带有净电荷q1和q2,外球壳的厚度忽略不计,并以无穷远处为电位参考点,试求:(1)导体球壳内、外电场强度e的表达式;(2)内导体球壳(r?r1)的电位?。
2.真空中有一个半径为3cm的无限长圆柱形区域内,有体密度 ??10 mcr?3cm, r?4cm处m均匀分布的电荷。
求:r?2cm,3的电场强度e。
3.内导体半径为2cm和外导体的内半径为4cm的球形电容器,其间充满介电常数??2r的电介质。
设外导体接地,而内导体带电,试求电容器介质内某点电位为内导体电位的一半时,该处的?值。
?afm4.一同轴线内圆柱导体半径为a,外圆柱导体半径为b,其间填充相对介电常数?r?质,当外加电压为u(外导体接地)时,试求:(1)介质中的电通密度(电位移)d和电场强度e的分布; (2)介质中电位?的分布;5. 图示空气中一输电线距地面的高度h?3m,输电线的半径为a?5mm,输电线的的介轴线与地面平行,旦对地的电压为u?3000v,试求地面上感应电荷分布的规律。
(?0?8.85?10?12fm)h6. 已知半径为r的无限长中空半圆柱面,均匀带电,电荷面密度为?0,则在其轴线上产生的电场强度为ey???0??0ey。
一个带有均匀分布的电荷体密度为?0的半圆柱,半径也为r,问它在轴线上产生的电场强度是多少?7. 下图所示空气中一根长直细导线(截面可忽略不计),单位长度所带电荷量为?,平行放置于一块无限大导体平板上方,并与一块半无限大瓷介质(?2?4?0)相邻,且已知长直细导线到导体平板与瓷介质的距离均为d,画出求解空气中电场时,所需镜像电荷的个数、大小和位置(不要求解出电场)。
半无8. 长直圆柱形电容器内外导体的半径分别为r1、r3,其间充满介电常数分别为?1、?2的两种介质,其分界面是半径为r2的圆柱面,若内导体单位长度带电荷量?q,外导体内表面单位长度所带电荷量? q,且外导体接地,如图所示,请写出两种介质区域内电位函数所满足的微分方程和边界条件。
2-5有两相距为d 的无限大平行平面电荷,电荷面密度分别为σ和σ-。
求由这两个无限大平面分割出的三个空间区域的电场强度。
解:100022E σσσεεε⎛⎫=--= ⎪⎝⎭200300022022E E σσεεσσεε⎛⎫=---= ⎪⎝⎭=-=2-7有一半径为a 的均匀带电无限长圆柱体,其单位长度上带电量为τ,求空间的电场强度。
解:做一同轴单位长度高斯面,半径为r(1)当r ≦a 时,222012112E r r a r E a τπππετπε⋅⋅=⋅⋅⋅=(2)当r>a 时,0022E r E rτπετπε⋅==2-15有一分区均匀电介质电场,区域1(0z <)中的相对介电常数12r ε=,区域2(0z >)中的相对介电常数25r ε=。
已知1234x y z =-+E e e e ,求1D ,2E 和2D 。
解:电场切向连续,电位移矢量法向连续()()11222111122212220202021022020,10,505020,10,201050502010201050x y z r r x r y r z rr x r y r z r x y zrr x r y r z E E D D D E D e e e E e e e D e e e εεεεεεεεεεεεεεεεεε==-===-=∴=-+=-+=-+2-16一半径为a 的金属球位于两种不同电介质的无穷大分界平面处,导体球的电位为0ϕ,求两种电介质中各点的电场强度和电位移矢量。
解:边界电场连续,做半径为r 的高斯面()()()()()()22121221202121212002222222Saar D dS r E E r E QQE r Q QE dr dr r aQ a a E e rπεεπεεπεεϕπεεπεεπεεϕϕ∞∞⋅=+=+=∴=+⋅===++∴=+∴=⎰⎰⎰⎰12102012221020112210201020,,,r r p n p n a a D e D e r rD D aap e p e aaεϕεϕεϕεϕσσεεεεσϕσϕ======--=⋅=-=⋅=-两介质分界面上无极化电荷。
工程电磁场导论测试附答案工程电磁场一、填空题1、电荷的周围,存在着一种特殊形式的物质,称为。
2、实验表明,实体物质的存在必将影响和改变在无限大真空中引起的静电场的分布。
3、在导电媒质(如导体、电解液等)中,电荷的运动形成的电流称为。
4、电导的定义是流经与导电媒质两端电压之比。
5、我们将跨步电压超过达到对生命产生危险程度的范围称为危险区。
6、实验表明磁感应线是,既无始端又无终端。
7、磁通连续性原理和安培环路定律表征了的基本性质。
8、磁路中的对应于电路中的电流。
9、电动势是非保守电场的环路线积分,回路中存在感应电动势说明回路中有。
10、在时变电磁场中,场量和场源除了是的函数,还是时间的函数。
11、各种宏观电磁现象都可用特定条件下的来描述。
12、用磁准静态场的理论计算与应用电路理论计算的结果一致。
13、涡流在导体内流动时,会从而引起导体发热,故它具有热效应。
14、一般的平面电磁波可分解为两种平面电磁波的组合:一种是垂直极化波,即电场方向垂直于入射面;另一种是,即电场方向平行于入射面。
15、在时变电场中,电场和磁场之间存在着耦合,这种耦合以存在于空间中,即在空间有电磁场的传播。
16、多层有损介质在低频交流电压作用下,若位移电流远大于介质中的漏电流,则电场按介电常数分布,属问题。
17、在电磁波的传播过程中,对应于每一时刻t,空间电磁场中具有相同相位的点构成等相位面,或波阵面。
18、当传输线的和特性阻抗Z0确定后,沿线电压波和电流波的传播特性也就基本上得到确定。
19、在双导线传输线中既可传播高频电磁波,也可传播以至稳恒电流。
20、远离单元偶极子处的电磁波在小范围内就可近似地看成电磁波。
二、名词解释(每题5分1、天线阵:2、电导:3、正入射:4、介质波导:5、接地电阻:三、计算题(每题20分1、若恒定电场中有非均匀的导电媒质(其导电率γ=γ(x,y,z)介电常数=ε(x,y,z),求媒质中自由电荷的体密度。
2、今测得在13.56MHz的电磁波照射下,脂肪的相对介电常数εr=20,电阻率ρ=34.4Ω?m。
第一章静电场习题(1F 1)1 1 1直空中有一密度为2芯nC/m 的无限长电荷沿v 轴放置,另有密度 分别为0,lnC/詩和一 O.lnC/m 2的无限大带电平面分别位于黙=3m 和懇= -4m 处°试求F 点(1,7.2)的电场强度瓦'解 * = 3m 和了 = — 4m 的带电平面产生的电场为口孔(-4<x<3)"0 (弁4或金>3)沿3,轴放置的线电荷产生的电场为E =_2^ L 厶TTE °、/丄.2 +一7~~~+ nV/m£O (J -2 + 5?)'"所以,P 点(1,7,2)的电场强度为E =E {l E 2 =-+ ——((-+ 9^ 1H 22.59%+ 33.88% V/m应用叠加原理计算电场强度时,爰注意是矢最的査加。
11-3已知电位函数试求E,并计算在(0,0,2)及(5, 3,2)点处的E 值n(凱旅伝+尸+丹(4 + 2方/3事&) 代入数据,得 “ °£(0,0,2) = (0.156^ + 1.875^) V/m E (5,3,2 )=(0.021。
+0.124% +0.248勺)V/m- gFJ -1-2-2求下列情况下,真空中带电面之间的龟压;(1) 相顧.为】的两无限大平行板,电荷面密度分别为+b 和-(2) 无限长同轴圆柱面,半径分别为a 和b{b>a\每单位长度上电荷:内 柱为r 而外柱为- r;(3)半径分别为&和玲的两同心球面(J R 2>^I )T 带有均匀分布的面积 电荷,内外球面电荷总量分别为g 和 f解(1)因两无限大平行板间电场强度为解 E 二 一* =10所以,电压U= Ea=§uEQ(2) 因两圆柱面间的电场强度为E = E P - 9 r 2共op所以,电压U = —dp = 纟 J a Ensop 丨 Z K £() a(3) 因两球面间的电场强度为E = E 「"所以,电压•叫〈住“四厂 4jreo(/ii R J1-2-3高压同轴线的最佳尺寸设计一一高压同轴圆柱电缆,外导体 的内半径为2 cm,内外导体间电介质的击穿场强为200 kV/cm o 内导体的半径 为°,其值可以自由选定,但有一最佳值,因为若a 太大,内外导体的间隙就变 得很小,以致在给定的电压下,最大的E 会超过电介质的击穿场强。
1—2—2、求下列情况下,真空中带电面之间的电压。
(2)、无限长同轴圆柱面,半径分别为a 和b (a b >),每单位长度上电荷:内柱为τ而外柱为τ-。
解:同轴圆柱面的横截面如图所示,做一长为l 半径为r (b r a <<)且与同轴圆柱面共轴的圆柱体。
对此圆柱体的外表面应用高斯通量定理,得l S D sτ=⋅⎰d考虑到此问题中的电通量均为r e即半径方向,所以电通量对圆柱体前后两个端面的积分为0,并且在圆柱侧面上电通量的大小相等,于是l rD l τπ=2即 re rD πτ2=, r e r E02πετ= 由此可得 a b r e e r r E U ba r rb aln 2d 2d 00⎰⎰επτ=⋅επτ=⋅=1—2—3、高压同轴线的最佳尺寸设计——高压同轴圆柱电缆,外导体的内半径为cm 2,内外导体间电介质的击穿场强为kV/cm 200。
内导体的半径为a ,其值可以自由选定但有一最佳值。
因为a 太大,内外导体的间隙就变得很小,以至在给定的电压下,最大的E 会超过介质的击穿场强。
另一方面,由于E 的最大值m E 总是在内导体的表面上,当a 很小时,其表面的E 必定很大。
试问a 为何值时,该电缆能承受最大电压?并求此最大电压。
(击穿场强:当电场增大达到某一数值时,使得电介质中的束缚电荷能够脱离它的分子 而自由移动,这时电介质就丧失了它的绝缘性能,称为击穿。
某种材料能安全地承受的最大电场强度就称为该材料的击穿强度)。
解:同轴电缆的横截面如图,设同轴电缆内导体每单位长度所带电荷的电量为τ,则内外导体之间及内导表面上的电场强度分别为r E πετ2=, aE πετ2max =而内外导体之间的电压为abr r r E U ba ba ln 2d 2d πετπετ⎰⎰===或 )ln(max ab aE U =0]1)[ln(a d d max =-+=abE U 即 01ln =-a b , cm 736.0e==ba V)(1047.1102736.0ln 55max max ⨯=⨯⨯==ab aE U1—3—3、两种介质分界面为平面,已知014εε=,022εε=,且分界面一侧的电场强度V /m 1001=E ,其方向与分界面的法线成045的角,求分界面另一侧的电场强度2E 的值。