最新高中生物必修一光合作用的知识点
- 格式:doc
- 大小:26.00 KB
- 文档页数:5
高中生物光合作用知识点总结光合作用是生物体中发生的一种重要的生化过程,通过光合作用,植物可以利用光能将二氧化碳和水转化为有机物,同时释放出氧气。
光合作用是维持地球上所有生物生存的关键过程之一,它不仅为植物提供能量和营养物质,还为其他生物提供氧气,并且调节着地球上的气候。
光合作用的主要步骤包括光能捕捉、光化学反应和暗反应三个过程。
下面将对这三个过程进行详细的介绍。
1. 光能捕捉光合作用的第一步是光能捕捉,植物通过叶绿素等色素分子吸收光能。
叶绿素是光合作用中最重要的色素之一,它可以吸收光谱中的红光和蓝光,而绿光则被反射出来,所以植物叶子呈现绿色。
光能捕捉发生在植物叶子的叶绿体中,叶绿体是一种专门用来进行光合作用的细胞器。
2. 光化学反应在光能捕捉后,光化学反应开始进行。
光化学反应发生在叶绿体的脉络膜上,其中包含许多色素分子。
在光化学反应中,吸收到的光能被转化为化学能,同时释放出了氧气。
在光化学反应中,水分子被分解成氧气、氢离子和电子。
氢离子和电子会被用于下一个过程——暗反应。
3. 暗反应暗反应也被称为Calvin循环,它发生在叶绿体的基质中。
在暗反应中,利用光化学反应产生的氢离子和电子,植物将二氧化碳转化为有机物(例如葡萄糖)。
暗反应是光合作用的核心步骤,它需要通过一系列酶的催化作用完成。
暗反应不依赖光能,因此可以在黑暗中进行。
此外,光合作用中还有一些其他重要的知识点:1. 光合作用对环境的影响:光合作用通过吸收二氧化碳和释放氧气,调节了地球上的气候。
光合作用还是地球上所有食物链的起点,提供了所有生物的能量源。
2. 光合作用与呼吸作用的关系:光合作用和呼吸作用是相互依赖的。
光合作用产生的有机物可以被用于呼吸作用产生能量,而呼吸作用产生的二氧化碳则可以被光合作用利用。
3. 光合作用的影响因素:光合作用的速率受到光强度、温度和二氧化碳浓度等因素的影响。
光强度越高、温度适宜以及二氧化碳浓度越高,光合作用的速率也越快。
高一生物光合作用知识点详解光合作用是一系列复杂的代谢反应的总和,是生物界赖以生存的基础,高一的生物会涉及到这方面的内容,下面店铺的小编将为大家带来高一生物关于光合作用知识点的介绍,希望能够帮助到大家。
高一生物光合作用知识点一、光合作用的概念、反应式及其过程1.概念及其反应式光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧的过程。
总反应式:CO2+H2O───(CH2O)+O2反应式的书写应注意以下几点:(1)光合作用有水分解,尽管反应式中生成物一方没有写出水,但实际有水生成;(2)─不能写成=。
对光合作用的概念与反应式应该从光合作用的场所叶绿体、条件光能、原料二氧化碳和水、产物糖类等有机物和氧气来掌握。
2.光合作用的过程①光反应阶段:a、水的光解:2H2O4[H]+O2(为暗反应提供氢);b、ATP的形成:ADP+Pi+光能─ATP(为暗反应提供能量)②暗反应阶段:a、CO2的固定:CO2+C52C3;;b、C3化合物的还原:2 C3+[H]+ATP(CH2O)+ C5复习光合作用过程,应注意:一是光合作用两个阶段的划分依据是否需要光能;二是应理清两个反应阶段在场所、条件、原料、结果、本质上的区别与联系(下表)。
项目光反应暗反应区别条件需要叶绿素、光、酶和水需要酶、ATP、[H](NADPH)、CO2场所在叶绿体类囊体薄膜上在叶绿体基质中物质转化1.水的光解:2H2O4[H]+O2 2.ATP形成:ADP+Pi+能量ATP 1.CO2的固定:CO2+C52 C3 2.C3的还原:C3C5+(CH2O)+H2O能量转化光能电能储存于ATP中的活跃的化学能 ATP中活跃的化学能(CH2O)中稳定的化学能实质光能转变成活跃的化学能,并生成O2 同化CO2形成(CH2O)、储存能量联系⑴光反应为暗反应提供[H]、ATP;暗反应为光反应提供ADP、Pi、NADP+; ⑵光反应为暗反应准备了物质和能量,没有光反应,暗反应无法进行;暗反应是光反应的继续,是形成有机物,并最终储存能量的过程,没有暗反应,有机物不能合成;因此,二者是一个整体,紧密联系、缺一不可。
高一的光合作用知识点归纳光合作用是生物体通过光能将二氧化碳与水转化为有机物质和氧气的过程。
它是地球上最基本也是最重要的生命活动之一,不仅能维持植物的生长和繁殖,还能提供给动物们所需的能量和氧气。
下面将对高一阶段学习的光合作用的知识点进行归纳。
一、光合作用的基本原理光合作用是绿色植物和部分细菌利用光合细胞色素中的叶绿素,将光能转化为化学能的过程。
它发生在叶绿体中,主要包括光能吸收、光合色素的光合作用和细胞色素系的电子传递等步骤。
其中,光合色素吸收不同波长的光能,产生高能电子,进而通过电子传递链逐步释放出能量。
二、光能的吸收和利用叶绿素是光合作用过程中最重要的光合色素之一,它能吸收红光和蓝光,但对绿光的吸收较弱。
叶绿素a是主要的光合色素,在光合作用过程中起着关键的作用。
另外,类胡萝卜素也起到了辅助吸收光能的作用。
植物通过不同类型的光合色素来适应不同光照条件,以提高光合作用的效率。
三、光合色素的光合作用光合色素的光合作用是指光合色素分子激发后,释放出的电子通过电子传递链逐步传递的过程。
通过这一过程,能量逐步释放,产生的ATP和NADPH能提供给暗反应中的化学反应使用。
此外,还会产生氧气。
光合作用的光化学反应主要包括光系统Ⅱ和光系统Ⅰ两个部分。
四、细胞色素系的电子传递细胞色素是光合作用中进行电子传递的关键物质。
光系统Ⅱ和光系统Ⅰ中的色素分子会捕获能量,激发并释放电子。
这些高能电子将通过一系列含铜、铁的蛋白质分子(细胞色素和铁硫蛋白)进行传递,最终产生ATP和NADPH。
五、光合作用的调节光合作用的速率会受到光照强度、二氧化碳浓度和温度等环境因素的影响。
当光强较强时,光合作用速率会提高;当二氧化碳浓度增加时,光合作用速率也会增加。
然而,当温度超过一定范围时,光合作用速率会受到抑制,并可能引发光合作用产物的分解。
六、其他光合作用相关知识点除了上述的基本原理外,还有一些其他与光合作用相关的重要知识点需要了解。
一、光合作用
1. 概念:光合作用是指在生物体内,利用太阳光能,将水分子及二氧化碳分子分解成高能的有机物质(如糖)和氧气的一种物质代谢过程。
2. 作用:光合作用是生物体存在和发展的重要基础,因此被称为生物体的“生命之源”,是植物体内的一种自然反应,也是植物体的重要生命活动,是植物体的“维生素”,是植物体的“呼吸”,是植物体“摄食”的主要途径。
3. 光合作用过程:光合作用分为光反应和呼吸反应,其中光反应是将水分子和二氧化碳分子分解为糖及其他有机物质,而呼吸反应则是将糖等有机物质分解为水和二氧化碳,从而达到光合作用的目的。
二、光合作用的过程
1. 光合反应:光合反应是光合作用的主要过程,是植物体在细胞内利用太阳光能将二氧化碳分子和水分子分解成糖及其他有机物质的过程,是光能转化为化学
能的过程。
2. 呼吸反应:呼吸反应是在生物体内利用氧化糖及其他有机物质产生能量的反应,是光合作用的另一个重要组成部分,呼吸反应是糖类有机物质被氧化分解为水和二氧化碳的过程,是将化学能转化为光能的过程。
光合作用必背知识点一、光合作用的概念。
1. 光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并释放出氧气的过程。
反应式为:6CO_2 + 12H_2O →(光能, 叶绿体) C_6H_12O_6+6O_2 + 6H_2O。
二、光合作用的场所 - 叶绿体。
1. 结构。
- 双层膜结构。
- 内部有许多基粒,基粒由类囊体堆叠而成。
类囊体薄膜上分布着光合色素(叶绿素和类胡萝卜素)和与光反应有关的酶。
- 叶绿体基质中含有与暗反应有关的酶,还有少量的DNA和RNA。
2. 光合色素。
- 叶绿素(叶绿素a和叶绿素b):主要吸收红光和蓝紫光。
叶绿素a呈蓝绿色,叶绿素b呈黄绿色。
- 类胡萝卜素(胡萝卜素和叶黄素):主要吸收蓝紫光。
胡萝卜素呈橙黄色,叶黄素呈黄色。
三、光合作用的过程。
1. 光反应阶段。
- 场所:叶绿体的类囊体薄膜上。
- 条件:光、色素、酶。
- 物质变化。
- 水的光解:2H_2O →(光能) 4[H]+O_2。
- ATP的合成:ADP + Pi+能量 →(酶) ATP(此能量来自光能)。
- 能量变化:光能转变为活跃的化学能(储存在ATP和[H]中)。
2. 暗反应阶段(卡尔文循环)- 场所:叶绿体基质。
- 条件:酶、[H]、ATP、CO_2。
- 物质变化。
- CO_2的固定:CO_2 + C_5 →(酶) 2C_3。
- C_3的还原:2C_3 →([H]、ATP、酶) (CH_2O)+C_5。
- 能量变化:活跃的化学能转变为稳定的化学能(储存在有机物中)。
四、影响光合作用的因素。
1. 光照强度。
- 在一定范围内,光合作用强度随光照强度的增强而增强。
当光照强度达到一定值时,光合作用强度不再随光照强度的增强而增加,此时达到光饱和点。
- 光照强度较低时,植物只进行呼吸作用,随着光照强度增强,光合作用强度与呼吸作用强度相等时的光照强度称为光补偿点。
2. 温度。
- 温度通过影响酶的活性来影响光合作用。
高中生物光合作用知识点总结光合作用是植物、某些细菌和藻类通过光能将无机物转化为有机物的过程,同时释放氧气。
以下是高中生物中光合作用的知识点总结:1. 光合作用的定义:光合作用是植物、藻类和某些细菌利用光能将二氧化碳和水转化为葡萄糖和氧气的过程。
2. 光合作用的重要性:- 是生态系统能量流动的起点。
- 为生物圈提供氧气和有机物。
- 促进了大气中氧气的积累。
3. 光合作用的过程:- 光依赖反应:在叶绿体的类囊体膜上进行,需要光能,产生ATP和NADPH。
- 光合磷酸化:光能转化为化学能,储存在ATP中。
- 光合电子传递链:光能激发叶绿素分子,电子在一系列电子受体间传递。
- 光合色素:主要包括叶绿素a、叶绿素b、类胡萝卜素和叶黄素,其中叶绿素a是主要的光合色素。
4. 光合作用的场所:主要在植物的叶绿体中进行。
5. 光合作用的条件:- 光照:提供必要的光能。
- 二氧化碳:作为原料之一。
- 水:作为原料之一,同时参与光依赖反应。
6. 光合作用的产物:- 葡萄糖:是光合作用的主要产物,用于植物的生长和维持生命活动。
- 氧气:作为副产品释放到大气中。
7. 光合作用的类型:- C3植物:大多数植物,光合作用的主要途径。
- C4植物:如玉米、甘蔗等,具有特殊的二氧化碳固定机制,提高光合效率。
- CAM植物:如仙人掌,通过夜间固定二氧化碳,减少水分蒸发。
8. 光合作用的光反应和暗反应:- 光反应:在光照下进行,产生ATP和NADPH。
- 暗反应(Calvin循环):不依赖光照,利用ATP和NADPH将二氧化碳转化为有机物。
9. 光合作用的调控:- 光强、温度、水分等环境因素都会影响光合作用的效率。
10. 光合作用与呼吸作用的关系:- 呼吸作用是光合作用的逆过程,消耗有机物,释放能量。
11. 光合作用的限制因素:- 光强、二氧化碳浓度、温度、水分等。
12. 光合作用与全球气候变化:- 植物的光合作用对全球碳循环有重要影响,有助于缓解温室效应。
高中生物光合作用知识点总结光合作用是高中生物中的一个重要知识点,对于理解生物的能量转换和物质循环具有关键作用。
以下是对高中生物光合作用知识点的详细总结。
一、光合作用的概念光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧气的过程。
从反应式来看:6CO₂+ 6H₂O → C₆H₁₂O₆+ 6O₂二、光合作用的场所——叶绿体叶绿体是进行光合作用的细胞器。
它具有双层膜结构,内部含有类囊体堆叠形成的基粒,基粒上分布着与光反应有关的色素和酶。
叶绿体基质中含有与暗反应有关的酶。
三、光合作用的过程光合作用包括光反应和暗反应两个阶段。
1、光反应(1)条件:光照、色素、酶。
(2)场所:叶绿体的类囊体薄膜上。
(3)物质变化:水的光解:2H₂O → 4H + O₂ATP 的合成:ADP + Pi +能量→ ATP(4)能量变化:光能转化为活跃的化学能储存在 ATP 和H中。
2、暗反应(1)条件:多种酶。
(2)场所:叶绿体基质。
(3)物质变化:CO₂的固定:CO₂+ C₅ → 2C₃C₃的还原:2C₃+ H +ATP → (CH₂O)+ C₅+ ADP + Pi (4)能量变化:ATP 中活跃的化学能转化为有机物中稳定的化学能。
光反应为暗反应提供H和 ATP,暗反应为光反应提供 ADP 和 Pi,二者相互依存,共同完成光合作用的过程。
四、影响光合作用的因素1、光照强度在一定范围内,光照强度增加,光合作用强度增强;当光照强度达到一定值后,光合作用强度不再增加。
2、二氧化碳浓度二氧化碳是光合作用的原料之一。
在一定范围内,二氧化碳浓度增加,光合作用强度增强。
3、温度温度通过影响酶的活性来影响光合作用。
一般来说,在最适温度之前,随着温度升高,光合作用强度增强;超过最适温度后,光合作用强度减弱。
4、水分水是光合作用的原料之一,同时也是体内各种化学反应的介质。
缺水会导致气孔关闭,影响二氧化碳的吸收,从而影响光合作用。
高中生物必修1第五章重点知识整理(呼吸作用、光合作用)呼吸作用一、呼吸作用过程 1、有氧呼吸总反应式及物质转移: 2、无氧呼吸二、O 2浓度对细胞呼吸的影响★当CO 2释放总量最少时,生物呼吸作用最C 6H 2O+能量O 2浓度CO热能(内能) ATP 中活跃的化学弱,最宜存放。
—1—光与光合作用一、“绿叶中色素的提取和分离”实验中滤纸条上色素分布胡萝卜素:橙黄色叶黄素:黄色叶绿素a:蓝绿色叶绿素b:黄绿色叶绿体中的色素叶绿素类胡萝卜素叶绿素a(蓝绿色)叶绿素b(黄绿色)胡萝卜素(橙黄色)叶黄素(黄色)含量排名︓2主要吸收:主要吸收:二、光合作用过程总反应式:物质转移(以生成葡萄糖为例):三、光照和CO 2浓度变化对植物细胞内C 3、C 5、[H]、ATP 和O 2及(CH 2O)含量的影响CO 2+H 2O光能叶绿体四、专有名词辨析1、实际光合作用速率(强度):真正的光合作用强度。
2、净光合作用速率(强度):表现光合作用速率,可直接测得。
衡量量:O 2释放量、CO 2吸收量、有机物积累量。
3、呼吸作用速率:衡量量:O 2消耗量、CO 2产生量、有机物消耗量。
—2—五、环境因素对光合作用强度的影响 1、光照强度、光质对光合作用强度的影响2、CO 2浓度对光合作用强度的影响3、温度对光合速率的影响呼吸作用和光合作用关系(1)黑暗 (2)光合作用强度=呼吸作用强度—一、高中生物反应式CO 2 吸收 (O 2CO 2 释放 (O 2吸收CO 2放出CO 2O(3)光合作用强度﹥呼吸作用强度 CO 2✧ 光合作用产生的O 2—呼吸作用消1、光合作用2、有氧呼吸3、酒精发酵4、乳酸发酵5、醋酸发酵二、能产生水的细胞器:核糖体、线粒体、叶绿体(暗反应)、高尔基体(形成纤维素:单糖→多糖) 三、肝脏分泌胆汁,胆汁为消化液其中无消化酶,其消化方式为物理消化即:胆汁对脂肪颗粒起乳化作用。
四、寒冷时体温调节主要为 神经调节、体液调节 主要增加产热,减少散热。
高一的光合作用知识点梳理光合作用是生物界中最重要的一种化学反应,是植物和一些微生物用光能将二氧化碳和水转化为有机物质和氧气的过程。
下面将为你梳理高一光合作用的知识点。
1. 光合作用的反应方程式光合作用的反应方程式如下:6CO2 + 6H2O + 光能→ C6H12O6 + 6O22. 光合作用的基本过程光合作用主要包括两个阶段:光能捕捉反应和光合糖生成反应。
- 光能捕捉反应:叶绿素吸收光能,将光能转化为高能电子,同时产生氧气。
- 光合糖生成反应:高能电子经过光合色素系统传递,最终将光能转化为化学能,并用于将二氧化碳还原为光合糖。
3. 光合色素光合色素是吸收光能并转化为化学能的关键分子,其中最重要的是叶绿素。
- 叶绿素a:吸收蓝绿光和红光,反射绿光。
- 叶绿素b:吸收蓝光和红橙光,反射黄绿光。
- 类胡萝卜素:吸收蓝绿光和蓝光,反射黄橙红光。
4. 光合色素系统光合色素系统是光合作用中光能转化的核心部分,包括光合系统Ⅰ和光合系统Ⅱ。
- 光合系统Ⅰ:吸收长波长光,将光能转化为电子能,并将电子传递至光合系统Ⅱ。
- 光合系统Ⅱ:吸收短波长光,将光能转化为高能电子,并用于光合糖生成反应。
5. 光合作用与呼吸的关系光合作用与呼吸是相互依赖的两个过程。
- 光合作用生成的光合糖提供给细胞进行呼吸,产生细胞所需的能量。
- 呼吸产生的二氧化碳为光合作用提供原料,促进光合作用的进行。
6. 光合作用的调节因素光合作用的速率受到多种因素的调节。
- 光照强度:光照强度增加,光合速率也增加,但光强过强时会抑制光合作用。
- 温度:适宜的温度有利于酶的活性,过高或过低的温度都会影响光合作用的进行。
- 二氧化碳浓度:二氧化碳浓度的增加会促进光合作用的进行,但过量的二氧化碳不一定能提高光合速率。
7. 光合作用的意义光合作用在生命系统中具有重要的意义。
- 光合作用为地球上的生物提供了氧气。
- 光合作用产生的光合糖是植物和一些微生物的能量来源。
高中生物光合作用知识点光合作用是植物、某些细菌和藻类在光照条件下,通过叶绿体将二氧化碳和水转化为有机物,并释放氧气的过程。
它是自然界中能量转换和物质循环的重要环节。
以下是高中生物中关于光合作用的知识点:1. 光合作用的定义:光合作用是植物、藻类和某些细菌在光照下,利用叶绿素等色素吸收光能,将二氧化碳和水转化为有机物,并释放氧气的过程。
2. 光合作用的条件:光照是光合作用的必要条件,同时需要适宜的温度和充足的二氧化碳和水。
3. 光合作用的场所:主要在植物的叶绿体中进行,叶绿体是光合作用的主要场所。
4. 光合作用的过程:分为光反应和暗反应两个阶段。
- 光反应:在叶绿体的类囊体膜上进行,通过色素吸收光能,产生ATP和NADPH,同时释放氧气。
- 暗反应(Calvin循环):在叶绿体的基质中进行,利用ATP和NADPH将二氧化碳还原为有机物,如葡萄糖。
5. 光合作用的产物:有机物(主要是葡萄糖)和氧气。
6. 光合作用的意义:- 为植物自身提供能量和物质基础。
- 为其他生物提供食物来源。
- 维持大气中氧气和二氧化碳的平衡。
7. 光合作用的影响因素:- 光照强度:影响光合作用的速率。
- 二氧化碳浓度:二氧化碳是光合作用的原料之一。
- 温度:影响酶的活性,进而影响光合作用的速率。
- 水分:水分不足会影响植物的光合作用。
8. 光合作用的效率:实际光合作用效率较低,大部分光能以热能形式散失。
9. 光合作用与呼吸作用的关系:光合作用产生的有机物是呼吸作用的原料,而呼吸作用释放的能量又可以支持光合作用的进行。
10. 光合作用在生态系统中的作用:光合作用是生态系统能量流动和物质循环的基础,维持生态系统的稳定。
了解这些知识点有助于深入理解光合作用的机制和它在自然界中的重要性。
生物光合知识点总结高中一、光合作用的基本原理光合作用是植物利用光能合成有机物质的过程。
它的基本原理包括光能的吸收、光合色素的作用和化学能的转化。
植物的叶绿素是最主要的光合色素,它具有吸收光能的能力。
当叶绿素吸收到光能后,会激发电子,然后通过光反应和暗反应,将这些光能转化成化学能,最终合成有机物质。
光合作用的化学方程式如下所示:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2在这个方程式中,CO2为二氧化碳,H2O为水,C6H12O6为葡萄糖,O2为氧气。
这个方程式概括了光合作用的基本过程,即植物利用二氧化碳和水,在光能的作用下,合成有机物质和氧气。
二、光合色素光合色素是植物叶绿色素和类囊体中的其他色素的统称。
其中,叶绿素是最主要的光合色素,它吸收不同波长的光能,从而激发电子,并参与光合作用的光反应过程。
叶绿素主要有叶绿素a和叶绿素b两种类型,它们的吸收光谱分别在绿色和黄绿色波段,因此可以更充分地利用太阳光的光谱。
除了叶绿素外,类囊体中还含有类胡萝卜素、类黄酮素和植物黄素等其他色素,它们也能吸收光能,参与光合作用的光反应过程,起到辅助和保护作用。
三、光反应光反应是光合作用中的第一步,它发生在叶绿体的类囊体膜上。
在光反应中,光能被吸收后,激发了类囊体膜上的叶绿素,激发的电子会被传递给电子接受体,然后通过一系列电子传递链,最终将光能转化成化学能。
同时,光反应还会释放氧气作为副产品。
光反应可以分为光系统Ⅰ和光系统Ⅱ两个部分。
光系统Ⅱ先吸收光能,激发了电子,然后经过一系列电子传递的过程,最终将这些光能转化成化学能,生成ATP。
而光系统Ⅰ则继续吸收光能,再次激发了电子,并最终将这些光能转化成化学能,生成NADPH。
总的来说,光反应是光合作用中,通过叶绿体的光系统Ⅱ和光系统Ⅰ,将光能转化成化学能,最终生成了ATP和NADPH,为暗反应提供了能量和电子供体。
四、暗反应暗反应是光合作用的第二步,它发生在叶绿体的基质中。
高中生物必修一光合作用知识点光合作用是高中生物必修一课本中的重点内容,也是高中学生必须掌握的知识点。
下面店铺为大家整理高中生物必修一光合作用知识点,希望对大家有所帮助!高中生物必修一光合作用知识点名词:1、光合作用:发生范围(绿色植物)、场所(叶绿体)、能量来源(光能)、原料(二氧化碳和水)、产物(储存能量的有机物和氧气)。
语句:1、光合作用的发现:①1771年英国科学家普里斯特利发现,将点燃的蜡烛与绿色植物一起放在密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠不容易窒息而死,证明:植物可以更新空气。
②1864年,德国科学家把绿叶放在暗处理的绿色叶片一半暴光,另一半遮光。
过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。
证明:绿色叶片在光合作用中产生了淀粉。
③1880年,德国科学家思吉尔曼用水绵进行光合作用的实验。
证明:叶绿体是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。
④20世纪30年代美国科学家鲁宾卡门采用同位素标记法研究了光合作用。
第一组相植物提供H218O和CO2,释放的是18O2;第二组提供H2O和C18O,释放的是O2。
光合作用释放的氧全部来自来水。
2、叶绿体的色素:①分布:基粒片层结构的薄膜上。
②色素的种类:高等植物叶绿体含有以下四种色素。
A、叶绿素主要吸收红光和蓝紫光,包括叶绿素a(蓝绿色)和叶绿素b(黄绿色);B、类胡萝卜素主要吸收蓝紫光,包括胡萝卜素(橙黄色)和叶黄素(黄色)3、叶绿体的酶:分布在叶绿体基粒片层膜上(光反应阶段的酶)和叶绿体的基质中(暗反应阶段的酶)。
4、光合作用的过程:①光反应阶段a、水的光解:2H2O→4[H]+O2(为暗反应提供氢)b、ATP的形成:ADP+Pi+光能─→ATP(为暗反应提供能量)②暗反应阶段:a、CO2的固定:CO2+C5→2C3b、C3化合物的还原:2C3+[H]+ATP→(CH2O)+C55、光反应与暗反应的区别与联系:①场所:光反应在叶绿体基粒片层膜上,暗反应在叶绿体的基质中。
生物高一光合作用重要知识点光合作用是生物学中一个非常重要的知识点,它是生物体能量转化的基础过程。
下面将从光合作用的定义、过程、光合作用的类型和影响光合作用因素等方面进行详细介绍。
一、光合作用的定义光合作用是指绿色植物和一些蓝藻、藻类等生物利用光能,将二氧化碳和水转化为有机物质,同时释放出氧气的生化过程。
光合作用是所有能量来源的基础,它能够为生物提供能量和有机物质。
二、光合作用的过程光合作用的过程分为光反应和暗反应两个阶段。
1. 光反应:光反应发生在叶绿体中的光合色素分子上,需要阳光的能量来推动。
光反应的过程中,光合色素能够吸收光能并将其转化为化学能,同时释放出氧气。
这个过程可以简单概括为:光能+H2O→氧气+能量富集的化合物。
2. 暗反应:暗反应发生在叶绿体的基质中,不需要阳光的直接参与。
通过暗反应,能量富集的化合物NADPH和ATP被利用,将二氧化碳转化为三碳糖,例如葡萄糖等有机物质。
这个过程可以简单概括为:CO2+能量富集的化合物→有机物。
三、光合作用的类型根据光合作用的机制和生物类型的不同,光合作用可以分为氧化型光合作用和还原型光合作用。
1. 氧化型光合作用:氧化型光合作用是指光合作用过程中,产生氧气作为副产物的类型。
植物中的氧化型光合作用是最常见的光合作用类型。
2. 还原型光合作用:还原型光合作用是指光合作用过程中,没有产生氧气副产物的类型。
通常表现为少氧光合作用的形式,例如蓝藻、紫硅藻等。
四、影响光合作用的因素光合作用的进行受到多种因素的影响,主要包括光照强度、二氧化碳浓度、温度和水分等。
1. 光照强度:光照强度是光合作用进行的重要因素,光照越强,光合作用进行得越快。
然而,当光照强度过大时,光合作用可能会受到光抑制。
2. 二氧化碳浓度:二氧化碳是进行光合作用的重要原料,高浓度的二氧化碳可以促进光合作用速度的提高。
3. 温度:适宜的温度有利于酶的活性,过高或过低的温度都会抑制光合作用的进行。
高一的光合作用知识点总结光合作用是植物通过光能转化为化学能的重要过程。
在高一生物学学习中,光合作用是一个重要的知识点。
本文将对光合作用的基本原理、过程以及相关的重要概念进行总结和归纳。
一、光合作用的基本原理光合作用是指植物利用光能合成有机物质的过程。
其基本原理是通过光合色素吸收光能,将光能转换为化学能,并在光合细胞器(叶绿体)中通过一系列酶促反应将二氧化碳和水合成葡萄糖和氧气。
二、光合作用的过程光合作用主要分为光能和化学能两个过程,即光合作用的光能反应和暗能反应。
1. 光能反应:在叶绿体的叶绿体膜上,光合色素吸收太阳光中的能量,并通过光能捕捉复合物的形式,将光能转化为高能态电子。
这些电子在一系列电子传递过程中释放能量,驱动质子泵将质子转运到叶绿体腔内,形成质子浓度梯度。
最终,光能被转化为化学能,用于驱动暗能反应。
2. 暗能反应:暗能反应是在光照和黑暗条件下进行的,通过一系列酶促反应将二氧化碳还原为葡萄糖。
在这个过程中,利用质子浓度梯度驱动的ATP合成酶和NADPH还原酶转化为化学能,并通过碳酸化作用将二氧化碳固定为有机化合物。
最终生成的葡萄糖可以用于植物的生长和维持生命活动。
三、光合作用的调节机制光合作用的进行受到多种因素的调节,主要包括光照强度、温度和二氧化碳浓度。
1. 光照强度:光照强度对光合作用具有直接影响。
当光照强度适中时,光合作用效率较高。
但如果光照过强,过量的光能会损害光合色素和光合酶,导致光合作用受到抑制。
2. 温度:合适的温度有利于光合作用的进行。
温度过高会导致光合作用受到热损伤,温度过低则会限制光合色素和酶的正常功能。
3. 二氧化碳浓度:二氧化碳是光合作用的底物,二氧化碳浓度较低时会限制光合作用的速率。
在不同环境条件下,植物通过调节气孔的开闭来调节二氧化碳的进入,以保证光合作用的正常进行。
四、光合作用与生态环境光合作用不仅是植物自身的重要生命过程,也对整个生态系统具有重要影响。
生物的光合作用知识点高一光合作用是生物界中一种重要的能量转化过程,通过光合作用,光能转化为化学能,为生物体提供能量和有机物质,维持生物体的生长和发育。
光合作用是高中生物学教学中的重要知识点,下面将对高一生物的光合作用知识点进行详细介绍。
一、光合作用的定义和基本过程光合作用是植物通过叶绿素吸收光能,将二氧化碳和水转化为有机物质(如葡萄糖)的过程。
该过程主要分为光化学反应和暗反应两个阶段。
1. 光化学反应光化学反应发生在叶绿体的胞外基质(叶绿体基质),需要光能的参与。
该反应发生在叶绿体的叶绿素分子上,通过光能的捕获和转化,将水分解为氧气、氢离子和电子。
同时,电子被传递到不同的叶绿素分子中,形成光化学激发态。
2. 暗反应暗反应发生在叶绿体基质或细胞质中,不需要光能的直接参与。
该反应主要通过卡尔文循环(也称为光独立反应),将光能转化的电子和氢离子与二氧化碳反应,将二氧化碳固定成有机物。
暗反应是一个复杂的化学反应序列,通过多个酶的催化作用进行。
二、光合作用的影响因素光合作用受到多种因素的影响,对于高一生物学习者来说,需要了解以下几个主要因素:1. 光照强度光合作用是依赖光能的转化过程,光照强度的增减会直接影响光合作用的速率。
一定范围内的光照强度越高,光合作用的速率越快。
2. 温度光合作用是一个化学反应过程,随着温度的升高,反应速率也会增加。
但是过高或过低的温度都会对光合作用产生不利影响。
3. 二氧化碳浓度二氧化碳是光合作用的初级物质,二氧化碳浓度的增加会促进光合作用的进行。
因此,合适的二氧化碳浓度对保障光合作用的正常进行至关重要。
三、光合作用与全球气候变化全球气候变化对光合作用有着重要的影响。
全球气候变暖导致温度升高,虽然温度对光合作用有一定影响,但是过高的温度会引起植物的光合作用逆反应,导致植物光合作用速率下降。
全球气候变化还会引发降水模式的改变,造成水资源不足或过剩,影响到植物的水分供应。
水的供应不足会导致植物减少光合作用,从而影响其生长和生理功能。
第三单元之—光合作用一、叶绿体的结构与功能(一)叶绿体的结构模型.(二)相关知识1、.叶绿体是真核细胞进行光合作用的场所2、叶绿体由两层膜(内膜和外膜)包围而成,内部有许多基粒,基粒和基粒之间充满了基质。
3、每个基粒都有许多个类囊体构成,类囊体薄膜上含有吸收、传递和转化光能的色素以及光反应所需的酶,是光反应的场所。
4、基质中含有暗反应所需的酶,是进行暗反应的场所。
5、光合色素的相关知识。
(1)叶绿体色素的种类及含量:叶绿素a叶绿素(3/4)叶绿素b叶绿体色素胡萝卜素类胡萝卜素(1/4)叶黄素(2)叶绿体色素的分布:叶绿体类囊体薄膜上。
(3)叶绿体色素的功能:吸收,传递(4种色素),转化光能(只有少量的叶绿素a把光能转为电能)(4)影响叶绿素合成的因素:①光照:光是影响叶绿素合成的主要条件,一般植物在黑暗中不能合成叶绿素,因而叶片发黄。
(例如韭黄,蒜黄)②温度:温度可影响与叶绿素合成有关的酶的活性,进而影响叶绿素的合成。
低温(秋末)时,叶绿素分子易被破坏,而使叶子变黄。
③必需元素:叶绿素中含N、Mg等必需元素,缺乏N、Mg将导致叶绿素无法合成,叶变黄。
另外,Fe是叶绿素合成过程中某些酶的辅助成分,缺Fe也将导致叶绿素合成受阻,叶变黄。
(5)叶绿体色素的吸收光谱:①叶绿体中的色素只吸收可见光,而对红外光和紫外光等不吸收。
②叶绿素a和叶绿素b主要吸收红光和蓝紫光,类胡萝卜素(胡萝卜素和叶黄素)主要吸收蓝紫光。
色素对绿光吸收最少。
对其他波段的光并非不吸收,只是吸收量较少。
经过色素吸收后,光谱出现两条黑带。
说明:叶绿体中的色素主要吸收红光和蓝紫光。
(6)叶绿体色素的性质:易溶于酒精、丙酮和石油醚等有机溶剂,不溶于水,叶绿素的性质不稳定,易被破坏,类胡萝卜素性质相对稳定。
(7)植物叶片的颜色与所含色素的关系:正常绿色正常叶片的叶绿素和类胡萝卜素的比例约为3∶1,且对绿光吸收最少,所以正常叶片总是呈现绿色叶色变黄寒冷时,叶绿素分子易被破坏,类胡萝卜素较稳定,显示出类胡萝卜素的颜色,叶子变黄叶色变红秋天降温时,植物体为适应寒冷,体内积累了较多的可溶性糖,有利于形成红色的花青素,而叶绿素因寒冷逐渐降解,叶子呈现红色6、色素的提取和分离实验。
生物笔记光合作用一、叶绿体色素的提取和分离(材料:菠菜的绿叶)1.提取叶绿体的色素的原理:叶绿体色素易溶于有机溶剂(无水乙醇,丙酮),不溶于水。
2.二氧化硅:使研磨充分3.碳酸钙:防止研磨中色素(酯类)被破坏(液泡中有有机酸会使色素水解)4.叶绿体色素分离的原理:四种色素在层析液中的溶解度不同,从而色素在滤纸上扩散速度不同,溶解度高的随层析液在滤纸上扩散得快,反之则慢。
5.分离色素的方法:(纸)层析法6.分离结果1,收集到滤纸绿色过浅的原因:(1)未加石英砂,研磨不充分(2)使用放置数天的菠菜叶(3)未加入碳酸钙,色素被破坏(4)一次加入大量的无水乙醇,浓度太低(正确操作:分多次,每次加入少量无水乙醇)(5)研磨不充分,色素未能充分提取出来2,叶绿体色素的功能:吸收,传递(4种色素),转化光能(只有少量的叶绿素a把光能转为电)3,影响叶绿素合成的因素:光照,温度,矿物元素(Mg)4,植物叶片颜色的变化植物叶片呈现的颜色是叶片中各种色素的综合表现,主要是绿色的叶绿素和黄色的类胡萝卜素之间的比例决定的。
绿色(叶绿素比类胡萝卜素含量多)黄色(叶绿素分解减少,类胡萝卜素多)红叶(液泡中的花青素决定)二、探究历程1、普利斯特利的实验密封玻璃罩+绿色植物+蜡烛——不易熄灭+小鼠——不易死亡(1)缺少空白对照(不放绿色植物)(2)没有认识到光在植物更新空气中的作用结论:绿色植物可以将空气更新。
(限于当时的科学水平限制,没有明确植物更新气体的成分)2、萨克斯的实验黑暗中饥饿处理的绿叶一半曝光碘蒸气变蓝一半遮光碘蒸气不变蓝在加碘蒸气之前加热酒精对叶片脱绿,使细胞膜,叶绿体膜破坏,另色素溶解在酒精中。
(1)设置了自身对照,自变量为照光和遮光(2)实验关键是饥饿处理(3)本实验证明光合作用的产物是淀粉,还证明了光是光合作用的必要条件。
3、恩格尔曼的实验(1)实验材料:水绵(叶绿体呈带状,易观察)好氧细菌自身对照(光照和黑暗)结论:光合作用的场所是叶绿体,光合作用主要吸收红光和蓝紫光,4、鲁宾和卡门的实验(同位素标记法)H218O+CO2→植物→18O2H2O+C18O2→植物→O2①设置了对照实验,自变量是标记物(H2O和CO2),因变量是O2的放射性结论:光合作用释放的氧气来自水5 、卡尔文(同位素标记法)(用小球藻)14CO2→14C3→(14CH2O)(卡尔文循环)结论:CO2中的碳转化为有机物中的碳三.光合作用的过程(类囊体薄膜)(叶绿体基质)光反应H2O光2[H]+1/2O2 (水的光解)物质转化ADP+Pi+能量酶ATP (ATP的合成)暗反应CO2+C5 酶2C3 (CO2的固定)物质转化2C3+[H] 酶C5+(CH2O) (C3的还原)ATP能量转化:光能→转化为ATP(和NADPH)中活跃的化学能→有机物中稳定的化学能联系:光反应为暗反应提供[H]和ATP暗反应为光反应提供ADP和Pi2.光合作用的反应式CO2+H2O 光能(CH2O)+O2\叶绿体O C6H12O6+6O2+6H)3.光照与CO2 浓度变化对植物细胞内C3、C5、[H]、ATP、ADP、(C H2O)含量的影响。
高中生物必修一光合作用的知识点
一、应牢记知识点
1、追根溯源,绝大多数活细胞所需能量的最终源头是太阳光能.
2、将光能转换成细胞能利用的化学能的是光合作用.
3、叶绿体中的色素及吸收光谱
⑴、叶绿素(含量约占3/4)
①、叶绿素a ——蓝绿色——主要吸收蓝紫光和红光
②、叶绿素b ——黄绿色——主要吸收蓝紫光和红光
⑵、类胡萝卜素(含量约占1/4)
①、胡萝卜素——橙黄色——主要吸收蓝紫光
②、叶黄素——黄色——主要吸收蓝紫光
4、叶绿体中色素的提取和分离
⑴、提取方法:丙酮做溶剂.
⑵、碳酸钙的作用:防止研磨过程中破坏色素.
⑶、二氧化硅作用:使研磨更充分.
⑷、分离方法:纸层析法
⑸、层析液:20份石油醚:2份酒精:1份丙酮混合
⑹、层析结果:从上到下——胡黄ab
⑺、滤液细线要求:细、均匀、直
⑻、层析要求:层析液不能没及滤液细线.
5、叶绿体中光和色素的`分布——叶绿体类囊体薄膜上
6、光合作用场所——叶绿体
叶绿体是光合作用的场所;
叶绿体基粒类囊体膜上,分布着与光化作用有关的色素和酶.
7、光合作用概念:
是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存能量的有机物,并且释放出氧气的过程.
8、光合作用反应式:
光能
CO2 + H2O ——→ (CH2O)+ O2
叶绿体
光能
6CO2 + 12H2O ——→C6H12O6 + 6H2O + 6O2
叶绿体
9、1771年,英国科学家普利斯特利(J .Priestly,1773—1804)实验证实:植物能更新空气.
10、荷兰科学家英格豪斯(J .Ingen – housz)发现:只有在阳光照射下,只有绿叶才能更新空气.
11、1785年明确了:绿叶在光下吸收二氧化碳,释放氧气.
12、1845年,各国科学家梅耶(R .Mayer)指出:植物进行光合作用时,把光能转换成化学能储存起来.
13、1864年,德国科学家萨克斯
(J .von .Sachs,1832——1897)实验证明:光合作用产生淀粉.
⑴、饥饿处理——将绿叶置于暗处数小时,耗尽其营养.
⑵、遮光处理——绿叶一半遮光,一半不遮光.
⑶、光照数小时——将绿叶放在光下,使之能进行光合作用.
⑷、碘蒸汽处理——遮光的一半无颜色变化,暴光的一侧边蓝绿色.
14、1939年,美国科学家鲁宾(S .Ruben)卡门(M .Kamen)同位素标记法实验证明:光合作用释放的
氧气来自水.
⑴、同位素标记法三要点:
①、用途:指用放射性同位素追踪物质的运行和变化规律.
②、方法:放射性同位素能发出射线,可以用仪器检测到.
③、特点:放射性同位素标记的化合物化学性质不改变,不影响细胞的代谢.
⑵、用18O标记H2O和CO2,得到H218O和C18O2.
⑶、将植物分成两组,一组提供H218O,另一组提供C18O2.
⑷、在其他条件都相同的情况下,分别检测植物释放的O2.
⑸、结果,只有提供H218O时,植物释放出18O2.
15、卡尔文循环——卡尔文(M .Calvin,1911——)实验
⑴、用14C标记CO2得14CO2
⑵、向小球藻提供14CO2,追踪光和作用过程中C的运动途径. 14CO2 —→14C3—→14C6H12O6
⑶、结论:
16、光合作用过程
⑴、光合作用包括:光反应、暗反应两个阶段.
⑵、光反应:
①、特点:指光合作用第一阶段,必须有光才能进行.
②、主要反应:色素分子吸收光能;分解水,产生[ H ]和氧气;生成ATP.
③、场所:叶绿体基粒囊状膜上.
④、能量变化:光能转变成ATP中活跃化学能.
⑶、暗反应
①、特点:指光合作用第二阶段,有光无光都能进行.
②、主要反应:固定二氧化碳生成三碳化合物;[ H ]做还原剂,ATP提供能量,
还原三碳化合物,生成有机物和水.
③、场所:叶绿体基质中.
④、能量变化:活跃化学能转变成有机物中稳定化学能.
⑷、过程图(P-103图5-15)
二、应会知识点
1、光合作用中色素的吸收峰(P-99图5-10)
2、叶绿体结构(P-99图5-11)
⑴、具有内外双层膜.
⑵、具有基粒——由类囊体色素.
⑶、二氧化硅作用:使研磨更充分.
3、化能合成作用
⑴、概念:指利用环境中某些无机物氧化时释放的能量,将二氧化碳和水制造成储存能量的有机物的合成作用.
⑵、典型生物:硝化细菌、铁细菌、瘤细菌等.
⑶、硝化细菌:原核生物,能利用环境中氨(NH3)氧化生成亚硝酸(HNO2)或硝酸(HNO3)释放的化学能,
将二氧化碳和水合成为糖类.
⑷、能进行化能合成作用的生物也是自养生物。