高考数学 理科 模拟试卷
- 格式:docx
- 大小:186.81 KB
- 文档页数:18
2024年陕西省安康市高新中学、安康中学高新分校高考数学模拟试卷(理科)(三)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合U={1,2,3,4,5,6},A={x∈Z||x﹣2|≤3}x≥8},则∁U(A∩B)=()A.{1,2}B.{2,3,4}C.{1,2,6}D.{﹣1,0,1,2}2.(5分)已知z=a+bi(a,b∈R),若,则b a=()A.32B.25C.16D.93.(5分)若a,b,c满足2a>2b,log3c<0,则()A.B.a c>b c C.ac>bc D.a+c>bc4.(5分)“孙子定理”又称“中国剩余定理”,最早可见于我国南北朝时期的数学著作《孙子算经》,该定理是中国古代求解一次同余式组的方法,在加密、秘密共享等方面有着重要的应用.已知数列单调递增,且由被2除余数为1的所有正整数构成6,a9,a11,a13的末位数按从小到大排序作为加密编号,则该加密编号为()A.1157B.1177C.1155D.11225.(5分)已知椭圆,过点M(x0,y0)作倾斜角为的直线与C交于A,B两点,直线OM(O为坐标原点)的斜率为()A.B.C.D.6.(5分)已知直线x﹣2y+2=0与x,y轴分别交于点A,B,以线段OB(O为坐标原点),若在线段AB 上任取一点,则该点取自圆外的概率为()A.B.C.D.7.(5分)如图的程序框图表示求22×32×52×92×172×332的值,则判断框内可以填的条件为()A.i≤30B.i≤35C.i≤66D.i≤1368.(5分)如图,在平面四边形ABCD中,△ABD为等边三角形,当点E在对角线AC上运动时,的最小值为()A.B.C.D.9.(5分)将函数f(x)=sin x的图象向左平移个单位长度倍,纵坐标不变,得到函数g(x),若函数在(﹣∞,则ω的取值范围是()A.B.C.D.10.(5分)在四棱锥P﹣ABCD中,底面四边形ABCD为正方形,四棱锥P﹣ABCD外接球的表面积为16π,AB=()A.B.2C.D.311.(5分)已知抛物线的焦点F到准线的距离为2,圆,点M(3,0),Q分别在C1,C2上运动,则的最小值为()A.B.C.D.12.(5分)若,则()A.c<b<a B.b<c<a C.c<a<b D.a<b<c二、填空题:本题共4小题,每小题5分。
四川省成都外国语学校2024届高三高考模拟(六)理科数学试题一、单选题1.已知集合{}||1|2,N A x x x =-<∈,1|1B y y x ⎧⎫==+⎨⎬⎩⎭,则A B =I ( )A .[]1,3B .[]0,2C .{}0,2D .{}1,22.若复数z满足(1i)i |z +=(其中i 为虚数单位),则z 的虚部是( ) A .iB .1-C .1D .i -3.已知x ,y 满足约束条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =-+的最大值是( )A .1-B .2-C .5-D .14.若曲线2ln y x a x =-在点()1,1P 处的切线与直线2y x =-垂直,则实数a 的值为( ) A .1BC .2D .35.已知角α的终边经过点(1,3)P -,则()cos ππcos cos 2ααα+=⎛⎫+- ⎪⎝⎭( ) A .12B .12- C .14D .14-6.已知向量(2,2),(,3)a b x ==-r r ,则“a r 与b r的夹角为钝角”是“3x <”的( )A .充分不必要条件B .既不充分也不必要条件C .充要条件D .必要不充分条件7.如图,圆O 内接一个圆心角为60°的扇形ABC ,在圆O 内任取一点,则该点落在扇形ABC 内的概率为( )A .14B C .12D 8.地球生命来自外星吗?一篇发布在《生物学快讯》上的文章《基因库的增长是生命起源和演化的时钟》可能给出了一种答案.该论文的作者根据生物功能性基因组里的碱基排列数的大小定义了基因库的复杂度y (单位:1),通过研究各个年代的古代生物化石里基因库的复杂度,提出了一个有趣的观点:生物基因库的复杂度近似是随时间呈指数增长的,只要知道生物基因库的复杂度就可以推测该生物体出现的年代.如图是该论文作者根据生物化石(原核生物,真核生物,蠕虫,鱼类,哺乳动物)中的基因复杂度的常用对数lg y 与时间x (单位:十亿年)的散点图及回归拟合情况(其中回归方程为:lg 0.898.64y x =+,相关指数20.97R =).根据题干与图中的信息,下列说法错误的是( )A .根据信息生物基因库的复杂度近似是随时间呈指数增长的情况,不同于作者采取y 取常用对数的做法,我们也可采用函数模型$10ax y b k =⨯+$来拟合B .根据回归方程可以得到,每过10亿年,生物基因库的复杂度一定增加到原来的0.89107.76≈倍C .虽然拟合相关指数为0.97,但是样本点只有5个,不能很好地阐释其统计规律,所以增加可靠的样本点可以更好地完善回归方程D .根据物理界主流观点:地球的形成始于45亿年前,及拟合信息:地球在诞生之初时生物的复杂度大约为8.6410,可以推断地球生命可能并非诞生于地球 9.在ABC V 中,,,a b c 分别是角,,A B C 的对边,若2222024b c a +=,则()tan tan tan tan tan A B C B C+的值为( ) A .12023B .22023C .11012D .2202510.若函数222e ()2e e xx f x x x =-++,且,,a f b f c f ===⎝⎭⎝⎭⎝⎭,则( ) A .b c a >>B .b a c >>C .c b a >>D .c a b >>11.如图,在直三棱柱111ABC A B C -中,1,AC BC AC BC AA ⊥==,E 、F 、G 、H 分别为11AB BB CC AC 、、、的中点,则下列说法中错误的是( )A .E 、F 、G 、H 四点共面B .1EF GH AA 、、三线共点C .设2BC =,则平面1EFC 截该三棱柱所得截面的周长为1D .AC 与平面EFGH 所成角为45︒12.“肝胆两相照,然诺安能忘.”(《承左虞燕京惠诗却寄却寄》,明•朱察卿)若()1,1A 成中心对称,则称(),A B ,同时把(),A B 和(),B A 视为同一对“然诺点”.已知()()2e ,12,1x x x a x ax x -⎧-<∈=⎨->⎩Z 的图象上有两对“然诺点”,则a 等于( )A .2B .3C .4D .5二、填空题13.抛物线C :()220y px p =->经过点()1,2P -,则点P 到C 的焦点的距离为.14.611(1)x x ⎛⎫+- ⎪⎝⎭展开式中x 2的系数为.15.已知椭圆C :22221x y a b+=(()0a b >>),1F 、2F 为椭圆的左右焦点,A 为椭圆上一点,连接1AF 并延长交椭圆于另一点B ,若212AF AF =,213BF BF =,则椭圆C 的离心率为. 16.已知直线:10l x ay --=与⊙22:2440C x y x y +-+-=交于,A B 两点,设弦AB 的中点为M ,则OM 取值范围为.三、解答题17.已知数列{}n a 的前n 项和为n S ,且满足221n n S a n =+-. (1)求证:数列{}2n a -为等比数列; (2)已知()23n n n a b -=,求数列{}n b 的前n 项和.18.“阳马”是我国古代数学名著《九章算术》中《商功》章节研究的一种几何体,即其底面为矩形,一条侧棱垂直于底面的四棱锥.如图,四边形ABCD 是边长为3的正方形,SA AB ⊥,SA SC ==(1)证明:四棱锥S ABCD -是一个“阳马”;(2)已知点E 在线段AC 上,且AE EC λ=u u u r u u u r ,若二面角A SE D --的余弦值为λ的值.19.甲、乙两人准备进行台球比赛,比赛规定:一局中赢球的一方作为下一局的开球方.若甲开球,则本局甲赢的概率为23,若乙开球,则本局甲赢的概率为13,每局比赛的结果相互独立,且没有平局,经抽签决定,第1局由甲开球.(1)求第3局甲开球的概率;(2)设前4局中,甲开球的次数为X ,求X 的分布列及期望.20.已知双曲线2222:1(0,0)x y C a b a b-=>>的焦距为D 在C 上.(1)求C 的方程;(2)直线:1l x my +=与C 的右支交于,A B 两点,点E 与点A 关于x 轴对称,D 点在x 轴上的投影为G .①求m 的取值范围; ②求证:直线BE 过点G .21.已知函数()()()1x xf x e ae a x a R -=--+∈(其中常数 2.71828e =⋅⋅⋅,是自然对数的底数).(1)求函数()f x 极值点;(2)若对于任意01a <<,关于x 的不等式()()21a f x e a λ-<-⎡⎤⎣⎦在区间()1,a -+∞上存在实数解,求实数λ的取值范围.22.在平面直角坐标系xOy 中,直线l 的方程为21(151t x tt y t ⎧=-⎪⎪+⎨⎪=+⎪+⎩为参数),曲线221x y +=经过伸缩变换x xy '='=⎧⎪⎨⎪⎩后得到曲线C .以O 点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求直线l 的极坐标方程和曲线C 的普通方程;(2)设射线()0,02θαραπ=>≤<与直线l 和曲线C 分别交于点,A B ,求2241OAOB+的最大值.23.已知()|||3|()f x x a x a =--∈+R . (1)若1a =-,解不等式()2f x x ≥;(2)当a t =(0t >)时,()f x 的最小值为3,若正数m 、n 满足m n t +=,证明:6≤.。
2023届陕西省部分名校高三下学期高考仿真模拟理科数学试卷(word版)一、单选题(★★) 1. 已知集合,,则()A.B.C.D.(★) 2. 复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限(★★) 3. 在等差数列中,,则的公差()A.B.3C.D.4(★★★) 4. 若实数满足约束条件,则的取值范围为()A.B.C.D.(★) 5. 已知随机变量X的分布列为:m则()A.2B.C.D.1(★★★) 6. 函数在区间上的图象大致是()A.B.C.D.(★★★) 7. 在正方体中,,,分别为,,的中点,则异面直线与所成角的余弦值为()A.B.C.D.(★★) 8. 已知直线是函数()图象的一条对称轴,则在上的值域为()A.B.C.D.(★★) 9. 等比数列的各项均为正数,且,则()A.8B.6C.4D.3(★★★) 10. 设,,,则()A.B.C.D.(★★★) 11. 已知是坐标原点,是双曲线的左焦点,平面内一点满足是等边三角形,线段与双曲线交于点,且,则双曲线的离心率为()A.B.C.D.(★★★) 12. 在四棱锥P-ABCD中,底面ABCD为梯形,平面P AD⊥底面ABCD,,,,,则四棱锥P-ABCD外接球的表面积为()A.26πB.27πC.28πD.29π二、填空题(★★) 13. 已知向量,,若,则 ______ .(★★) 14. 南宋晚期的龙泉窑粉青釉刻花斗笠盏如图1所示,忽略杯盏的厚度,这只杯盏的轴截面如图2所示,其中光滑的曲线是抛物线的一部分,已知杯盏盛满茶水时茶水的深度为3cm,则该抛物线的焦点到准线的距离为 ______ cm.(★★) 15. 2023年杭州亚运会需招募志愿者,现从某高校的8名志愿者中任意选出3名,分别担任语言服务、人员引导、应急救助工作,其中甲、乙2人不能担任语言服务工作,则不同的选法共有 ___________ 种.(★★★★) 16. 已知函数,若恒成立,则的取值范围为 ______ .三、解答题(★★★) 17. 在中,内角,,所对的边分别为,,,已知,.(1)求的值;(2)若,求的面积.(★★★) 18. 赤霉素在幼芽、幼根、未成熟的种子中合成,其作用是促进细胞的生长,使得植株变高,每粒种子的赤霉素含量(单位:ng/g)直接影响该粒种子后天的生长质量.现通过生物仪器采集了赤霉素含量分别为10,20,30,40,50的种子各20粒,并跟踪每粒种子后天生长的情况,收集种子后天生长的优质数量(单位:粒),得到的数据如下表:赤霉素含量10后天生长的优2质数量(1)求关于的线性回归方程;(2)利用(1)中的回归方程,估计1000粒赤霉素含量为60ng/g的种子后天生长的优质数量. 附:回归直线的斜率和截距的最小二乘估计公式分别为,.(★★★) 19. 如图,在直三棱柱中,,,,D,E分别是棱,的中点.(1)证明:平面;(2)求二面角的余弦值.(★★★) 20. 已知函数.(1)设.①求曲线在点处的切线方程.②试问有极大值还是极小值?并求出该极值.(2)若在上恰有两个零点,求a的取值范围.(★★★) 21. 已知椭圆,斜率为2的直线l与椭圆交于A,B两点.过点B作AB的垂线交椭圆于另一点C,再过点C作斜率为-2的直线交椭圆于另一点D.(1)若坐标原点O到直线l的距离为,求△AOB的面积.(2)试问直线AD的斜率是否为定值?若是定值,求出此定值;若不是定值,说明理由.(★★★) 22. 在直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线与极轴相交于,两点.(1)求曲线的极坐标方程及点的极坐标;(2)若直线的极坐标方程为,曲线与直线相交于,两点,求的面积. (★★) 23. 已知函数.(1)当时,求不等式的解集;(2)若不等式的解集非空,求的取值范围.。
高考数学(理科)模拟试题含答案(一)精编版高考理科数学模拟试题精编(一)注意事项:1.作答选择题时,在答题卡上涂黑对应选项的答案信息点。
如需改动,先擦干净再涂其他答案。
不得在试卷上作答。
2.非选择题用黑色钢笔或签字笔作答,写在答题卡指定区域内。
如需改动,先划掉原答案再写新答案。
不得用铅笔或涂改液。
不按要求作答无效。
3.答题卡需整洁无误。
考试结束后,交回试卷和答题卡。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.设全集Q={x|2x²-5x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数是()A。
3B。
4C。
7D。
82.若复数z=m(m-1)+(m-1)i是纯虚数,其中m是实数,则z=()A。
iB。
-iC。
2iD。
-2i3.已知等差数列{an}的公差为5,前n项和为Sn,且a1,a2,a5成等比数列,则S6=()A。
80B。
85C。
90D。
954.XXX每天上学都需要经过一个有交通信号灯的十字路口。
已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒。
如果XXX每天到路口的时间是随机的,则XXX上学时到十字路口需要等待的时间不少于20秒的概率是()A。
4/5B。
3/4C。
2/3D。
3/56.已知p:a=±1,q:函数f(x)=ln(x+a²+x²)为奇函数,则p 是q成立的()A。
充分不必要条件B。
必要不充分条件C。
充分必要条件D。
既不充分也不必要条件7.(省略了一个选项) 327.(1+x²+4x)²的常数项为()A。
120B。
160C。
200D。
2408.我们可以用随机模拟的方法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为()A。
3.119B。
2023年高中数学理科高考模拟试题(附答案)姓名班级学号得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间90分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)1.如图,已知全集,集合,则图中阴影部分表示的集合的子集个数为()A、5;B、6;C、7;D、82.已知x,y为正数,且xy=1,则的最小值为()A.4;B.6;C.2;D.3.已知为执行如图所示的程序框图输出的结果,则二项式的展开式中含项的系数是()A.48;B.72;C.-120;D.-1924.已知椭圆的离心率为,直线与椭圆交于两点且线段的中点为,则直线的斜率为()A.;B.; C.;D.5.函数的定义域为开区间,导函数在内的图象如下图所示,则函数在开区间内有极小值点()A.1个B.0个C.2个D.3个6.三名同学到五个社区参加社会实践活动,要求每个社区有且只有一名同学,每名同学至多去两个社区,则不同的派法共有()A.90种B.60种C.45种D.30种7.在正三棱柱中,,点E是的中点,点F是上靠近点B的三等分点,则异面直线与所成角的余弦值是()A.B.C.D.8.已知复数,在复平面内对应点分别为,,则()A.1B.C.2D.39.已知是椭圆的两个焦点,P为椭圆上一点,且,则点P到y轴的距离为()A.2B.C.D.110.已知为锐角,若,则()A.B.C.D.第Ⅱ卷(非选择题)评卷人得分二、填空题(每题5分,共25题)11.已知向量满足,且对于任意x,不等式恒成立,设的夹角为,则___________12.已知圆C1:与C2:,若C1与圆C2有且仅有一个公共点,则实数a的值为___________.13.已知函数,其中,若在区间(,)上恰有2个零点,则的取值范围是____________.14.设,使不等式取等号的的取值范围__________.15.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H.且D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________.评卷人得分三、综合题(每题15分,共75分)16.中内角的对边分别为,向量且(Ⅰ)求锐角的大小,(Ⅱ)如果,求的面积的最大值17.如图,在四棱柱中,底面是正方形,侧棱与底面垂直,点是正方形对角线的交点,,点,分别在和上,且.(Ⅰ)求证:∥平面;(Ⅱ)若,求的长;(Ⅲ)在(Ⅱ)的条件下,求二面角的余弦值.18.已知数列的前项和,是等差数列,且(1)求数列的通项公式;(2)令求数列的前项和.19.已知椭圆的离心率,短轴长为.(1)求椭圆方程;(2)若椭圆与轴正半轴、轴正半轴的交点分别为、,经过点且斜率k的直线与椭圆交于不同的两点、.是否存在常数,使得向量20.已知函数(1)讨论当a>0时,函数的单调性;(2)若曲线上两点A、B处的切线都与y轴垂直,且线段AB与x轴有公共点,求实数a的取值范围.参考答案一、选择题第1题第2题第3题第4题第5题D A D AA二、填空题第11题:第12题:6,或-6;第13题:或,第14题:第15题:三、解答题第16题:(1)即:第6题第7题第8题第9题第10题ABBCA为锐角(2)代入上式,得到,(当且仅当a=c=2时成立)(当且仅当a=c=2时成立)第17题:(I)证明:取,连结和,因为,EE1‖BC,BC=AD,BC‖AD,所以EE1=AD,EE1‖AD,所以四边形为平行四边形;所以AE1‖DE,在矩形中,A1F=BE1,所以四边形为平行四边形,所以B1F‖AE1,B1F‖DE,因为DE⊂平面BDE,B1F⊄BDE所以B1F‖平面BDE(2)连接,在四棱柱中,平面,因为,,所以平面,所以,已知得,平面,所以,,在△与△中,,,所以△∽△,所以,即。
2023年高考数学模拟考试卷及答案解析(理科)第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知复数z 满足()()()1i 12i 1z z +=+-,则复数z 的实部与虚部的和为()A .1B .1-C .15D .15-【答案】D【分析】根据复数的运算法则求出复数43i 55z -+=,则得到答案.【详解】(1i)(2i 1)(2i 1)z z +=-+-(2i)2i 1z -=-,2i 1(2i 1)(2i)43i 43i 2i 5555z --+-+====-+-,故实部与虚部的和为431555-+=-,故选:D.2.已知()f x =A ,集合{12}B x ax =∈<<R ∣,若B A ⊆,则实数a 的取值范围是()A .[2,1]-B .[1,1]-C .(,2][1,)-∞-+∞ D .(,1][1,)∞∞--⋃+【答案】B【分析】先根据二次不等式求出集合A ,再分类讨论集合B ,根据集合间包含关系即可求解.【详解】()f x =A ,所以210x -≥,所以1x ≥或1x ≤-,①当0a =时,{102}B x x =∈<<=∅R∣,满足B A ⊆,所以0a =符合题意;②当0a >时,12{}B x x a a=∈<<R∣,所以若B A ⊆,则有11a≥或21a≤-,所以01a <≤或2a ≤-(舍)③当0<a 时,21{}B x x aa=∈<<R ∣,所以若B A ⊆,则有11a≤-或21a≥(舍),10a -≤<,综上所述,[1,1]a ∈-,故选:B.3.在研究急刹车的停车距离问题时,通常假定停车距离等于反应距离(1d ,单位:m )与制动距离(2d ,单位:m )之和.如图为某实验所测得的数据,其中“KPH”表示刹车时汽车的初速度v (单位:km/h ).根据实验数据可以推测,下面四组函数中最适合描述1d ,2d 与v 的函数关系的是()A .1d v α=,2d =B .1d v α=,22d v β=C .1d =,2d v β=D .1d =,22d vβ=【答案】B【分析】设()()1d v f v =,()()2d v g v =,根据图象得到函数图象上的点,作出散点图,即可得到答案.【详解】设()()1d v f v =,()()2d v g v =.由图象知,()()1d v f v =过点()40,8.5,()50,10.3,()60,12.5,()70,14.6,()80,16.7,()90,18.7,()100,20.8,()110,22.9,()120,25,()130,27.1,()140,29.2,()150,31.3,()160,33.3,()170,35.4,()180,37.5.作出散点图,如图1.由图1可得,1d 与v 呈现线性关系,可选择用1d v α=.()()2d v g v =过点()40,8.5,()50,16.2,()60,23.2,()70,31.4,()80,36,()90,52,()100,64.6,()110,78.1,()120,93,()()140,123,()150,144.1,()160,164.3,()170,183.6,()180,208.作出散点图,如图2.由图2可得,2d 与v 呈现非线性关系,比较之下,可选择用22d v β=.故选:B.4.已知函数()ln ,0,e ,0,x xx f x x x x ⎧>⎪=⎨⎪≤⎩则函数()1y f x =-的图象大致是()A .B.C .D .【答案】B【分析】分段求出函数()1y f x =-的解析式,利用导数判断其单调性,根据单调性可得答案.【详解】当10x ->,即1x <时,ln(1)(1)1x y f x x-=-=-,221(1)ln(1)1ln(1)1(1)(1)x x x x y x x -⋅-+--+--'==--,令0'>y ,得1e x <-,令0'<y ,得1e 1x -<<,所以函数()1y f x =-在(,1e)-∞-上为增函数,在(1e,1)-上为减函数,由此得A 和C 和D 不正确;当10x -≤,即1x ≥时,1(1)(1)e x y f x x -=-=-,()11(1)e (1)e x x y x x --'''=-+-11e (1)e x x x --=---=1e (2)xx ---,令0'>y ,得2x >,令0'<y ,得12x ≤<,所以函数()1y f x =-在(2,)+∞上为增函数,在[1,2)上为减函数,由此得B 正确;故选:B5.若函数()f x 存在一个极大值()1f x 与一个极小值()2f x 满足()()21f x f x >,则()f x 至少有()个单调区间.A .3B .4C .5D .6【答案】B【分析】根据单调性与极值之间的关系分析判断.【详解】若函数()f x 存在一个极大值()1f x 与一个极小值()2f x ,则()f x 至少有3个单调区间,若()f x 有3个单调区间,不妨设()f x 的定义域为(),a b ,若12a x x b <<<,其中a 可以为-∞,b 可以为+∞,则()f x 在()()12,,,a x x b 上单调递增,在()12,x x 上单调递减,(若()f x 定义域为(),a b 内不连续不影响总体单调性),故()()21f x f x <,不合题意,若21a x x b <<<,则()f x 在()()21,,,a x x b 上单调递减,在()21,x x 上单调递增,有()()21f x f x <,不合题意;若()f x 有4个单调区间,例如()1f x x x =+的定义域为{}|0x x ≠,则()221x f x x-'=,令()0f x ¢>,解得1x >或1x <-,则()f x 在()(),1,1,-∞-+∞上单调递增,在()()1,0,0,1-上单调递减,故函数()f x 存在一个极大值()12f -=-与一个极小值()12f =,且()()11f f -<,满足题意,此时()f x 有4个单调区间,综上所述:()f x 至少有4个单调区间.故选:B.6.已知实数x 、y 满足10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,则918222y x z x y --=+--的最小值为()A .132B .372C .12D .2【答案】A【分析】由约束条件作出可行域,求出22y t x -=-的范围,再由91821922y x z t x y t --=+=+--结合函数的单调性求得答案.【详解】解:令22y t x -=-,则91821922y x z t x y t --=+=+--,由10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩作出可行域如图,则()()()2,12,1,0,1A B C ---,设点()(),2,2P x y D ,,其中P 在可行域内,2=2PD y t k x -∴-=,由图可知当P 在C 点时,直线PD 斜率最小,min 121=022CD t k -==-∴当P 在B 点时,直线PD 斜率不存在,∴1,2t ⎡⎫∈+∞⎪⎢⎣⎭∵19z t t =+在1,2t ⎡⎫∈+∞⎪⎢⎣⎭上为增函数,∴当12t =时min 132z =.故选:A .7.在正方体1111ABCD A B C D -中,点P 在正方形11BCC B 内,且不在棱上,则()A .在正方形11DCC D 内一定存在一点Q ,使得PQ AC ∥B .在正方形11DCCD 内一定存在一点Q ,使得PQ AC⊥C .在正方形11DCC D 内一定存在一点Q ,使得平面1PQC ∥平面ABC D .在正方形11DCC D 内一定存在一点Q ,使得AC ⊥平面1PQC 【答案】B【分析】对于A ,通过作辅助线,利用平行的性质,推出矛盾,可判断A;对于B ,找到特殊点,说明在正方形11DCC D 内一定存在一点Q ,使得PQ AC ⊥,判断B;利用面面平行的性质推出矛盾,判断C;利用线面垂直的性质定理推出矛盾,判断D.【详解】A 、假设在正方形11DCC D 内一定存在一点Q ,使得PQ AC ∥,作,PE BC QF CD ⊥⊥,垂足分别为,E F ,连接,E F ,则PEFQ 为矩形,且EF 与AC 相交,故PQ EF ∥,由于PQ AC ∥,则AC EF ∥,这与,AC EF 相交矛盾,故A 错误;B 、假设P 为正方形11BCC B 的中心,Q 为正方形11DCC D 的中心,作,PH BC QG CD ⊥⊥,垂足分别为,H G ,连接,H G ,则PHGQ 为矩形,则PQ HG ∥,且,H G 为,BC CD 的中点,连接,GH BD ,则GH BD ∥,因为AC BD ⊥,所以GH AC ⊥,即PQ AC ⊥,故B 正确;C 、在正方形11DCC D 内一定存在一点Q ,使得平面1PQC ∥平面ABC ,由于平面ABC ⋂平面11DCC D CD =,平面1PQC 平面111DCC D C Q =,故1CD C Q ∥,而11C D CD ∥,则Q 在11C D 上,这与题意矛盾,C 错误;D 、假设在正方形11DCC D 内一定存在一点Q ,使得AC ⊥平面1PQC ,1C Q ⊂平面1PQC ,则1AC C Q ⊥,又1CC ⊥平面,ABCD AC Ì平面ABCD ,故1C C AC ⊥,而11111,C C C Q C C C C Q =⊂ ,平面11DCC D ,故AC ⊥平面11DCC D ,由于AD ⊥平面11DCC D ,故,C D 重合,与题意不符,故D 错误,故选∶B8.对于平面上点P 和曲线C ,任取C 上一点Q ,若线段PQ 的长度存在最小值,则称该值为点P 到曲线C 的距离,记作(,)d P C .若曲线C 是边长为6的等边三角形,则点集{(,)1}D Pd P C =≤∣所表示的图形的面积为()A .36B .36-C .362π-D .36π-【答案】D【分析】根据题意画出到曲线C 的距离为1的边界,即可得到点集的区域,即可求解.【详解】根据题意作出点集(){}|1D P d P C =≤,的区域如图阴影所示,其中四边形ADEC ,ABKM ,BCFG 为矩形且边长分别为1,6,圆都是以1为半径的,过点I 作IN AC ⊥于N ,连接A I ,则1NI =,30NAI ∠= ,所以AN =则HIJ 是以6-为边长的等边三角形,矩形ABKM 的面积1166S =⨯=,2π3DAM ∠=,扇形ADM 的面积为212ππ1233S =⨯⨯=,21sin 602ABC S AB =⨯⋅ 21622=⨯⨯,21sin 602HIJ S HI =⨯⋅ (21622=⨯-18=-,所以()1233ABC HIJ S S S S S =++- ()π363183=⨯+⨯+--36π=-.故选:D.9.一个宿舍的6名同学被邀请参加一个节目,要求必须有人去,但去几个人自行决定.其中甲和乙两名同学要么都去,要么都不去,则该宿舍同学的去法共有()A .15种B .28种C .31种D .63种【答案】C【分析】满足条件的去法可分为两类,第一类甲乙都去,第二类甲乙都不去,再进一步通过分类加法原理求出各类的方法数,将两类方法数相加即可.【详解】若甲和乙两名同学都去,则去的人数可能是2人,3人,4人,5人,6人,所以满足条件的去法数为0123444444C +C C +C C 16++=种;若甲和乙两名同学都不去,则去的人数可能是1人,2人,3人,4人,则满足条件去法有12344444C C +C C 15++=种;故该宿舍同学的去法共有16+15=31种.故选:C.10.已知椭圆C 的焦点为12(0,1),(0,1)F F -,过2F 的直线与C 交于P ,Q 两点,若22143,||5PF F Q PQ QF ==,则椭圆C 的标准方程为()A .2255123x y +=B .2212y x +=C .22123x y +=D .22145x y +=【答案】B【分析】由已知可设22,3F Q m PF m ==可求出所有线段用m 表示,在12PF F △中由余弦定理得1290F PF ︒∠=从而可求.【详解】如图,由已知可设22,3F Q m PF m ==,又因为114||55PQ QF QF m =∴=根据椭圆的定义212,62,3QF QF a m a a m +=∴=∴=,12223PF a PF a a a m=-=-==在12PF F △中由余弦定理得222222111116925cos 02243PQ PF QF m m m F PQ PQ PF m m+-+-∠===⋅⋅⋅⋅,所以190F PQ ︒∠=22222211229943213PF PF F F m m m a m b ∴+=⇒+=∴===⇒=故椭圆方程为:2212y x +=故选:B11.已知函数()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,对于任意的)3,1a ⎡∈-⎣,方程()()0f x a x m =<≤恰有一个实数根,则m 的取值范围为()A .7π3π,124⎛⎤⎥⎝⎦B .π5π,26⎡⎫⎪⎢⎣⎭C .π5π,26⎛⎤⎥⎝⎦D .7π3π,124⎡⎫⎪⎢⎣⎭【答案】D【分析】将方程的根的问题转化为函数()y f x =的图象与直线y a =有且仅有1个交点,画出图象,数形结合得到不等式组,求出m 的取值范围.【详解】方程()()0f x a x m =<≤恰有一个实数根,等价于函数()y f x =的图象与直线y a =有且仅有1个交点.当0x m <≤得:πππ22666x m ⎛⎤+∈+ ⎥⎝⎦,结合函数()y f x =的图象可知,π4π5π2633m ⎡⎫+∈⎪⎢⎣⎭,解得:7π3π,124m ⎡⎫∈⎪⎢⎣⎭.故选:D12.已知0.40.7e ,eln1.4,0.98a b c ===,则,,a b c 的大小关系是()A .a c b >>B .b a c >>C .b c a >>D .c a b>>【答案】A【分析】构造函数()1=ln ef x x x -,0x >,利用导函数得到其单调性,从而得到ln 1ex x ≤,当且仅当e x =时等号成立,变形后得到22ln2ex x ≤,当x =0.7x =后得到b c <;再构造()1=e x g x x --,利用导函数得到其单调性,得到1e x x -≥,当且仅当1x =时,等号成立,变形后得到21e 2x x ->,当0.5x =时,等号成立,令0.7x =得到a c >,从而得到a cb >>.【详解】构造()1=ln ef x x x -,0x >,则()11=ef x x '-,当0e x <<时,()0f x ¢>,当e x >时,()0f x '<,所以()1=ln ef x x x -在0e x <<上单调递增,在e x >上单调递减,所以()()e =lne 10f x f ≤-=,故ln 1ex x ≤,当且仅当e x =时等号成立,因为20x >,所以222222(2)2ln 2ln ln ln2e e 2e 2e ex x x x x x x x x ≤⇒≤⇒≤⇒≤=,当x =当0.7x =时,220.98ln1.4(0.7)eln1.40.98ee<⨯=⇒<,所以b c <构造()1=e x g x x --,则()1e 1=x g x -'-,当1x >时,()0g x '>,当1x <时,()0g x '<,所以()1=ex g x x --在1x >单调递增,在1x <上单调递减,故()()10g x g ≥=,所以1e x x -≥,当且仅当1x =时,等号成立,故121e e 2x x x x --≥⇒≥,当且仅当0.5x =时,等号成立,令0.7x =,则0.40.4e 1.40.7e 0.98>⇒>,所以a c >,综上:a c b >>,故选:A【点睛】构造函数比较函数值的大小,关键在于观察所给的式子特点,选择合适的函数进行求解.第Ⅱ卷二、填空题:本题共4小题,每小题5分,共20分.13.设i ,j 是x ,y 轴正方向上的单位向量,23a b i j -=- ,3119a b i j +=+,则向量a,b的夹角为______.【答案】π4【分析】分别求出a ,b 的表达式,利用定义求出a ,b 的夹角即可.【详解】23a b i j -=-①,3119a b i j +=+②,3⨯+①②得714,2a i a i =∴=,2-⨯+②①得72121,33b i j b i j -=--∴=+ ,()22·33666a b i i j i i j ⋅=+=+⋅=2,a b ==cos ,2a b a b a b ⋅∴==⋅π,4a b ∴=14.已知双曲线2222:1(0,0)x y C a b a b -=>>的焦距为2c ,过C 的右焦点F 的直线l 与C 的两条渐近线分别交于,A B 两点,O 为坐标原点,若cos b c AFO =∠且3FB FA =,则C 的渐近线方程为__________.【答案】y =【分析】根据题设条件确定AB OA ⊥,进而可确定OA a FA b ==,,从而在直角△AOB 中,()2tan tan π2bAOB aα∠=-=,结合正切的二倍角公式求解.【详解】因为3FB FA =,画出示意图如图,设AOF α∠=,因为cos b c AFO =∠,则cos b AFO c∠=,所以222sin a AFO c∠=,则sin a AFO c ∠=,所以tan aAFO b ∠=.又tan b a α=,所以π2AFO α∠+=,所以AB OA ⊥,根据sin ,cos OA FA a bAFO AFO c c c c ∠==∠==,所以OA a FA b ==,.又因为3FB FA,所以2AB b =.在直角△AOB 中,()2tan tan π2bAOB aα∠=-=,所以222222tan tan21tan 1bb a b a aααα=-==--,化简得:222b a =,所以b a =则渐近线方程为:y =,故答案为:y =.15.已知数列{}n a 满足首项11a =,123n n na n a a n ++⎧=⎨⎩,为奇数,为偶数,则数列{}n a 的前2n 项的和为_____________.【答案】4344n n ⨯--【分析】当n 为奇数时,由递推关系得()21332n n n a a a ++==+,构造{}3n a +为等比数列,可求出通项,结合12n n a a +=+即可分组求和.【详解】当n 为奇数时,()21332n n n a a a ++==+,即()2333n n a a ++=+,此时{}3n a +为以134a +=为首项,公比为3的等比数列,故()123212413333343333n nn n n n a a a a a a a a ----++++=创创+=+++,即12433n n a -=´-.()()()2123421211332121222n n n n n S a a a a a a a a a a a a ---=++++++=+++++++++ ()()01113212224334334332n n a a a n n--=++++=´-+´-++´-+ ()03132432434413nnn n n 骣-琪=´-+=´--琪琪-桫.故答案为:4344n n ⨯--【点睛】本题解题关键是根据题意找到相邻奇数项或偶数项之间的递推关系,从而求出当n 为奇数或n 为偶数时的通项公式,再通过相邻两项的关系求出前2n 项的和.16.在三角形ABC 中,2BC =,2AB AC =,D 为BC 的中点,则tan ADC ∠的最大值为___________.【答案】43##113【分析】设出AC x =,则2AB x =,由πADB ADC ∠+∠=得到cos cos 0ADB ADC ∠+∠=,结合余弦定理得到22512AD x =-,从而得到cos ADC ∠关系得到223x <<,换元后得到cos ADC ∠,由基本不等式求出最小值,结合()cos f x x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,()tan g x x =在π0,2⎛⎫ ⎪⎝⎭单调递增,可求出tan ADC ∠的最大值.【详解】设AC x =,则2AB x =,因为D 为BC 的中点,2BC =,所以1BD DC ==,由三角形三边关系可知:22x x +>且22x x -<,解得:223x <<,在三角形ABD 中,由余弦定理得:()2212cos 2AD x ADB AD+-∠=,在三角形ACD 中,由余弦定理得:221cos 2AD x ADC AD+-∠=,因为πADB ADC ∠+∠=,所以()2222121cos cos 022AD x AD x ADB ADC ADAD+-+-∠+∠=+=,解得:22512AD x =-,由余弦定理得:225112cos x x ADC -+-∠=223x <<,令2511,929x t ⎛⎫-=∈ ⎪⎝⎭,则3cos 5ADC ∠=,当且仅当1t t=,即1t =时,等号成立,此时25112x -=,解得:x =因为3cos 05ADC ∠≥>,故π0,2ADC ⎛⎫∠∈ ⎪⎝⎭,由于()cos f x x =在π0,2⎛⎫ ⎪⎝⎭上单调递减,()tan g x x =在π0,2⎛⎫ ⎪⎝⎭单调递增,故当cos ADC ∠取得最小值时,tan ADC ∠取得最大值,此时4sin 5ADC ∠=,4tan 3ADC ∠=.故答案为:43.【点睛】三角形中常用结论,()sin sin A B C +=,()cos cos A B C +=-,()tan tan A B C +=-,本题中突破口为由πADB ADC ∠+∠=得到cos cos 0ADB ADC ∠+∠=,结合余弦定理得到22512AD x =-,进而利用基本不等式求最值.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)数列{}n a 满足35a =,点()1,n n P a a +在直线20x y -+=上,设数列{}n b 的前n 项和为n S ,且满足233n n S b =-,*n ∈N .(1)求数列{}n a 和{}n b 的通项公式;(2)是否存在*k ∈N ,使得对任意的*n ∈N ,都有n kn ka ab b ≤.【答案】(1)21n a n =-;3nn b =(2)存在1k =,2,使得对任意的*n ∈N ,都有n k n ka ab b ≤【分析】(1)根据等差数列的定义可得{}n a 为等差数列,由,n n S b 的关系可得{}n b 为等比数列,进而可求其通项,(2)根据数列的单调性求解最值即可求解.【详解】(1)点()1,n n P a a +在直线20x y -+=上,所以12n n a a +-=又35a =,∴11a =,则数列{}n a 是首项为1,公差为2的等差数列.∴21n a n =-又当1n =时,11233S b =-得13b =,当2n ≥,由233n n S b =-①,得11233n n S b --=-②由①-②整理得:13n n b b -=,∵130b =≠,∴10n b -≠∴13nn b b -=,∴数列{}n b 是首项为3,公比为3的等比数列,故3nn b =(2)设213nn n na n cb -==,由111121212163443333+++++-+-+--=-==n n n n n n n n n n nc c当1n =时,12c c =,当2n ≥时,1n n c c +<,所以当1n =或2时,n c 取得最大值,即nna b 取得最大所以存在1k =,2,使得对任意的*n ∈N ,都有n kn ka ab b≤18.(12分)如图,将等边ABC 绕BC 边旋转90︒到等边DBC △的位置,连接AD.(1)求证:AD BC ⊥;(2)若M 是棱DA 上一点,且两三角形的面积满足2BMD BMA S S = ,求直线BM 与平面ACD 所成角的正弦值.【答案】(1)证明见解析(2)10【分析】(1)取BC 中点为O ,证明BC ⊥平面AOD 即可;(2)建立空间直角坐标系,利用向量法求得直线BM 与平面ACD 所成角的正弦值.【详解】(1)设O 是BC 的中点,连接AO ,DO ,由题知:AB AC =,DB DC =,则BC AO ⊥,BC DO ⊥,又AO DO O ⋂=,,AO DO ⊂平面AOD ,所以BC ⊥平面AOD ,又AD ⊂平面AOD ,所以AD BC ⊥.(2)由题知,OA 、BC 、OD 两两垂直,以O 为原点,,,OA OB OD方向分别为x ,y ,z 轴的正方向建立空间直角坐标系,如图所示,因为2BMD BMA S S = ,所以13AM AD =,设2AB a =,则OA OD ==,则),0,0A,()0,,0B a ,()0,,0C a -,()D,33M ⎛⎫⎪ ⎪⎝⎭.所以),,0CA a =,),0,DA =,,BM a ⎫=-⎪⎪⎝⎭,设平面ACD 的法向量为(),,n x y z =r,则00n CA ay n DA ⎧⋅=+=⎪⎨⋅=-=⎪⎩ ,取1x =,可得()1,n = ,设直线BM 与平面ACD 所成的角为θ,则sin cos ,BM n θ=BM n BM n⋅==⋅所以直线BM 与平面ACD.19.(12分)甲、乙两位选手参加一项射击比赛,每位选手各有n 个射击目标,他们击中每一个目标的概率均为12,且相互独立.甲选手依次对所有n 个目标进行射击,且每击中一个目标可获得1颗星;乙选手按规定的顺序依次对目标进行射击,击中一个目标后可继续对下一个目标进行射击直至有目标未被击中时为止,且每击中一个目标可获得2颗星.(1)当5n =时,分别求甲、乙两位选手各击中3个目标的概率;(2)若累计获得星数多的选手获胜,讨论甲、乙两位选手谁更可能获胜.【答案】(1)516,116;(2)当1,2,3n =时,乙更可能获胜;当4n ≥时,甲更可能获胜.【分析】(1)根据独立重复试验可计算甲击中3个目标的概率,由相互独立事件的概率计算公式可得乙击中3个目标的概率;(2)设X 为甲累计获得的星数,Y 为乙累计获得的星数,分别计算期望,分别讨论1,2,3n =及4n ≥的(),()E X E Y ,得出结论.【详解】(1)当5n =时,甲击中3个目标的概率为33215115C ()()2216P =⨯⨯=,乙击中3个目标,则前3个目标被击中,第4个目标未被击中,其概率为32111()2216P =⨯=.(2)设X 为甲累计获得的星数,则0,1,2,,X n = ,设Y 为乙累计获得的星数,则0,2,4,,2Y n = ,设击中了m 个目标,其中0m n ≤≤,则甲获得星数为m 的概率为C 11()C ()()222m m m n m nnn P X m -===,所以甲累计获得星数为0120C 1C 2C C ()2nn n n nnn E X ⋅+⋅+⋅++⋅= ;记01010C 1C C C (1)C 0C n n n n n n n n n S n n n =⋅+⋅++⋅=⋅+-⋅++⋅ ,所以0112(C C C )2,2n n n n n n n n S n n S n -=+++=⋅=⋅ ,所以12()22n n n nE X -⋅==,乙获得星数为2(01)m m n ≤≤-的概率为1111(2)()222m m P Y m +==⋅=,当m n =时,1(2)2nP Y m ==,所以乙累计获得星数为230242(1)2()22222n n n n E Y -=+++++ ,记230242(1)2222n n n T -=++++ ,则121242(1)20222n n n T --=++++ ,所以12111112(1)122()222222n n n n n n n n T T T ---+=-=+++-=- ,11()22n E Y -=-,当1n =时,1()()12E X E Y =<=,当2n =时,3()1()2E X E Y =<=,当3n =时,37()()24E X E Y =<=,当4n ≥时,()2()E X E Y ≥>所以当1,2,3n =时,乙更可能获胜;当4n ≥时,甲更可能获胜.20.(12分)已知抛物线2y =的焦点与椭圆()2222:10x y a b a bΩ+=>>的右焦点重合,直线1:1x y l a b+=与圆222x y +=相切.(1)求椭圆Ω的方程;(2)设不过原点的直线2l 与椭圆Ω相交于不同的两点A ,B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆Ω相交于点P ,且O 点在以AB 为直径的圆上,记AOM ,BOP △的面积分别为1S ,2S ,求12S S 的取值范围.【答案】(1)22163x y +=(2)⎣⎦【分析】(1)根据条件建立关于,a b 的方程组,即可求解椭圆方程;(2)根据数形结合可知12AOM BOP OMS S S S OP==△△,分直线斜率不存在,或斜率为0,以及斜率不为0,三种情况讨论12S S 的值或范围.【详解】(1)∵抛物线2y =的焦点为),∴c =从而223a b =+①,∵直线1:1x yl a b+=与圆222x y +==②,由①②得:ab ,∴椭圆Ω的方程为:22163x y +=(2)∵M 为线段AB 的中点,∴12AOM BOP OMS S S S OP==△△,(1)当直线2l 的斜率不存在时,2l x ⊥轴,由题意知OA OB ⊥,结合椭圆的对称性,不妨设OA 所在直线的方程为y x =,得22Ax =,从而22Mx =,26P x =,123M P OM x S S OP x ∴===(2)当直线2l 的斜率存在时,设直线()2:0l y kx m m =+≠,()11,A x y ,()22,B x y 由22163y kx mx y =+⎧⎪⎨+=⎪⎩可得:()222214260k x kmx m +++-=,由()()222216421260k m k m ∆=-+->可得:22630k m -+>(*)∴122421km x x k +=-+,21222621m x x k -=+,∵O 点在以AB 为直径的圆上,∴0OA OB ⋅=,即12120x x y y +=,∴()()221212121210x x y y k x x km x x m +=++++=,即()22222264102121m km k km m k k -⎛⎫+⨯+-+= ⎪++⎝⎭,2222,m k ⇒=+(**)满足(*)式.∴线段AB 的中点222,2121kmm M k k ⎛⎫- ⎪++⎝⎭,若0k =时,由(**)可得:22m =,此时123OM S S OP ∴===,若0k ≠时,射线OM 所在的直线方程为12y x k=-,由2212163y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩可得:2221221P k x k =+,12M POM x S S OP x ∴===随着2k 的增大而减小,∵0k ≠,∴20k >,∴1233S S ⎛∈ ⎝⎭综上,1233S S ∈⎣⎦【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.21.(12分)已知函数()e xf x ax a=--(1)当1a =时,证明:()0f x ≥.(2)若()f x 有两个零点()1212,x x x x <且22112,e 1x x +⎡⎤∈⎣⎦+,求12x x +的取值范围.【答案】(1)见解析;(2)243ln 22,e 1⎡⎤-⎢⎥-⎣⎦【分析】(1)()e 1x f x x =--,求导得min ()(0)0f x f ==,则()0f x ;(2)由题得11e x ax a =+,22e xax a =+,则21211e1x x x x -+=+,()1212e e 2x x a x x +=++,()2121e e x x a x x -=-,则()()212121121e 2e1x x x x x x x x ---+++=-,从而设21[ln 2,2]t x x =-∈,得到()121e 2e 1t tt x x +++=-,利用导数研究函数()1e ()e 1ttt g t +=-的值域,则得到12x x+的范围.【详解】(1)证明:当1a =时,()e 1x f x x =--,则()e 1x f x '=-.当(,0)x ∈-∞时,()0f x '<,当,()0x ∈+∞时,()0f x '>,所以()f x 在(,0)-∞上单调递减,在()0,∞+上单调递增,则min ()(0)0f x f ==,故()0f x .(2)由题意得1212e e 0x xax a ax a --=--=,则11e x ax a =+,22e xax a =+,从而21211e 1x xx x -+=+,()1212e e 2x x a x x +=++,()2121e e x x a x x -=-,故()()()()12212121212112e e 1e 2e ee1xx x x x x x x x x x x x x ---+-+++==--,因为22112,e 1x x +⎡⎤∈⎣⎦+,所以212e 2,e x x -⎡⎤∈⎣⎦,即[]21ln 2,2x x -∈,设21[ln 2,2]t x x =-∈,则()121e 2e 1t t t x x +++=-.设()1e ()e 1t tt g t +=-,则()22e 2e 1()e1t t tt g t --'=-.设2()e 2e 1t t h t t =--,则()()2e e 1t th t t '=--,由(1)可知()()2e e 10t th t t '=--在R 上恒成立,从而2()e 2e 1t t h t t =--在[ln 2,2]上单调递增,故min ()(ln 2)44ln 210h t h ==-->,即()0g t '>在[]ln 2,2上恒成立,所以()g t 在[ln 2,2]上单调递增,所以()212221e 23ln 2,e 1x x ⎡⎤+⎢⎥++∈-⎢⎥⎣⎦,即12243ln 22e 1,x x ⎡⎤+∈-⎢⎣-⎥⎦,即12x x +的取值范围为243ln 22,e 1⎡⎤-⎢⎥-⎣⎦.【点睛】关键点睛:本题的关键是通过变形用含21x x -的式子表示出122x x ++,即()()212121121e 2e1x x x x x x x x ---+++=-,然后整体换元设21[ln 2,2]t x x =-∈,则得到()121e 2e 1t t t x x +++=-,最后只需求出函数()1e ()e 1tt t g t +=-在[ln 2,2]t ∈上值域即可.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l的参数方程为cos sin x t y t αα⎧=+⎪⎨=⎪⎩(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C 的极坐标方程为2853cos 2ρθ=-,直线l 与曲线C 相交于A ,B两点,)M.(1)求曲线C 的直角坐标方程;(2)若2AM MB =,求直线l 的斜率.【答案】(1)2214x y +=(2)2±【分析】(1)根据极坐标与直角坐标直角的转化222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪=+⎩,运算求解;(2)联立直线l 的参数方程和曲线C 的直角坐标方程,根据参数的几何意义结合韦达定理运算求解.【详解】(1)∵()()222222288453cos 2cos 4sin 5cos sin 3cos sin ρθθθθθθθ===-++--,则2222cos 4sin 4ρθρθ+=,∴2244x y +=,即2214x y +=,故曲线C 的直角坐标方程为2214x y +=.(2)将直线l的参数方程为cos sin x t y t αα⎧=+⎪⎨=⎪⎩(t 为参数)代入曲线C 的直角坐标方程为2214x y +=,得)()22cos sin 14t t αα+=,整理得()()222cos 4sin 10t t ααα++-=,设A ,B 两点所对应的参数为12,t t ,则1212221cos 4sin t t t t αα+==-+,∵2AM MB =,则122t t =-,联立1212222cos 4sin t t t t ααα=-⎧⎪⎨+=-⎪+⎩,解得122222cos 4sin cos 4sin t t αααααα⎧=-⎪⎪+⎨⎪=⎪+⎩,将12,t t 代入12221cos 4sin t t αα=-+得2222221cos 4sin cos 4sin cos 4sin αααααααα⎛⎫⎛⎫-=- ⎪⎪ ⎪⎪+++⎝⎭⎝⎭,解得2223tan 4k α==,故直线l的斜率为2±.23.[选修4-5:不等式选讲](10分)设a 、b 、c 为正数,且b c c a a ba b c+++≤≤.证明:(1)a b c ≥≥;(2)()()()2324a b b c c a abc +++≥.【答案】(1)证明见解析(2)证明见解析【分析】(1)由不等式的基本性质可得出111abc≤≤,利用反比例函数在()0,∞+上的单调性可证得结论成立;(2)利用基本不等式可得出a b +≥,2b c +≥3c a +≥等式的基本性质可证得结论成立.【详解】(1)证明:因为a 、b 、c 为正数,由b c c a a ba b c +++≤≤可得a b c a b c a b ca b c++++++≤≤,所以,111a b c≤≤,因为函数1y x =在()0,∞+上为增函数,故a b c ≥≥.(2)证明:由基本不等式可得a b +≥,2b c b b c +=++≥()322c a c a a a +=++≥+≥=由不等式的基本性质可得()()()2171131573362244412232424a b b c c a a b b c a c a b c+++≥=11764122424ab a b c abc ⎛⎫=≥ ⎪⎝⎭,当且仅当a b c ==时,等号成立,故()()()2324a b b c c a abc +++≥.。
2023年陕西省宝鸡市高考数学模拟试卷(理科)(一)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.A .{-2,-1,0,1,2}B .{0,1,2}C .{-2,-1,1,2}D .{1,2}1.(5分)已知集合A ={x |y =lgx },B ={-2,-1,0,1,2},那么A ∩B 等于( )A .1B .2C .2D .42.(5分)已知复数z =1−i 1+i,则|z |=( )√A .y =±12x B .y =±2x C .y =±22x D .y =±2x3.(5分)双曲线2x 2-y 2=1的渐近线方程是( )√√A .甲检测点的平均检测人数多于乙检测点的平均检测人数B .甲检测点的数据极差大于乙检测点的数据极差C .甲检测点数据的中位数大于乙检测点数据的中位数D .甲检测点数据的方差大于乙检测点数据的方差4.(5分)最早发现于2019年7月的某种流行疾病给世界各国人民的生命财产带来了巨大的损失.近期某市由于人员流动出现了这种疾病,市政府积极应对,通过3天的全民核酸检测,有效控制了疫情的发展,决定后面7天只针对41类重点人群进行核酸检测,下面是某部门统计的甲、乙两个检测点7天的检测人数统计图,则下列结论不正确的是( )A .25B .32C .3D .55.(5分)已知正四棱柱ABCD -A 1B 1C 1D 1的底面边长为2,侧棱长为4,则异面直线AC 与DC 1所成角的正切值为( )√√√A .π6B .π3C .2π3D .5π66.(5分)已知向量m ,n 满足(2m −3n )⊥n ,且|m |=3|n |,则m ,n 夹角为( )→→→→→→√→→→A .−43B .43C .−247D .2477.(5分)已知α∈(0,π),sinα−cosα=15,则tan 2α=( )二、填空题,本题共4小题,每小题5分,共20分.A .[12,34]B .[34,32]C .[1,2]D .[32,2]8.(5分)椭圆C :x 24+y 23=1的左、右顶点分别为A 1,A 2,点P 在C 上,且直线PA 2斜率取值范围是[−1,−12],那么直线PA 1斜率取值范围是( )A .①②B .①③C .①④D .①②③9.(5分)已知等差数列{a n }满足a 4+a 7=0,a 5+a 8=-4,则下列命题:①{a n }是递减数列;②使S n >0成立的n 的最大值是9;③当n =5时,S n 取得最大值;④a 6=0,其中正确的是( )A .(0,2]B .(0,4]C .[2,+∞)D .[4,+∞)10.(5分)已知直线y =mx +n (m ≥0,n >0)与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .3B .4C .5D .611.(5分)11+2+13+4+15+6+⋯+199+100的整数部分是( )√√√√√√√√A .2B .4C .6D .812.(5分)已知函数f (x )=ax 3+bx 2+cx +d (a ≠0)满足f (x )+f (2−x )=2,g (x )=x x −1,若函数y =f (x )与y =g (x )的图像恰有四个交点,则这四个交点的横坐标之和为( )13.(5分)若(x 2-1x )6的展开式中的常数项是 .√14.(5分)命题“∃x ∈R ,ax 2-2ax +1≤0”为假命题,则实数a 的取值范围是 .15.(5分)七巧板是古代劳动人民智慧的结晶.如图是某同学用木板制作的七巧板,它包括5个等腰直角三角形、一个正方形和一个平行四边形.若用四种颜色给各板块涂色,要求正方形板块单独一色,其余板块两块一种颜色,而且有公共边的板块不同色,则不同的涂色方案有 种.16.(5分)在棱长为1的正方体ABCD -B 1C 1D 1中,M 是侧面BB 1C 1C 内一点(含边界)则下列命题中正确的是(把所有正确命题的序号填写在横线上) .①使AM =2的点M 有且只有2个;②满足AM ⊥B 1C 的点M 的轨迹是一条线段;√三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分,作答时请先涂题号.[选修4-4:坐标系与参数方程][选修4-5:不等式选讲](本小题满分0分)③满足AM ∥平面A 1C 1D 的点M 有无穷多个;④不存在点M 使四面体MAA 1D 是鳖臑(四个面都是直角三角形的四面体).17.(12分)已知向量m =(3sinx ,cosx ),n =(cosx ,−cosx ),定义函数f (x )=m ⋅n −12.(1)求函数f (x )的最小正周期;(2)在△ABC 中,若f (C )=0,且AB =3,CD 是△ABC 的边AB 上的高,求CD 长的最大值.√18.(12分)如图在四棱锥P -ABCD 中,PA ⊥底面ABCD ,且底面ABCD 是平行四边形.已知PA =AB =2,AD =5,AC =1,E 是PB 中点.(1)求证:平面PBC ⊥平面ACE ;(2)求平面PAD 与平面ACE 所成锐二面角的余弦值.√19.(12分)已知点A (x 0,-2)在抛物线C :y 2=2px (p >0)上,且A 到C 的焦点F 的距离与到x 轴的距离之差为12.(1)求C 的方程;(2)当p <2时,M ,N 是C 上不同于点A 的两个动点,且直线AM ,AN 的斜率之积为-2,AD ⊥MN ,D 为垂足.证明:存在定点E ,使得|DE |为定值.20.(12分)甲、乙两个代表队各有3名选手参加对抗赛.比赛规定:甲队的1,2,3号选手与乙队的1,2,3号选手按编号顺序各比赛一场,某队连赢3场,则获胜,否则由甲队的1号对乙队的2号,甲队的2号对乙队的1号加赛两场,胜场多者最后获胜(每场比赛只有胜或负两种结果),已知甲队的1号对乙队的1,2号选手的胜率分别是0.5,0.6,甲队的2号对乙队的1,2号选手的胜率都是0.5,甲队的3号对乙队的3号选手的胜率也是0.5,假设每场比赛结果相互独立.(1)求甲队仅比赛3场获胜的概率;(2)已知每场比赛胜者可获得200个积分,求甲队队员获得的积分数之和X 的分布列及期望.21.(12分)已知函数f (x )=m (x +1)e x (m >0),g (x )=2lnx +x +1.(1)求曲线y =g (x )在点(1,g (1))处的切线方程;(2)若函数y =f (x )的图像与y =g (x )的图像最多有一个公共点,求实数m 的取值范围.22.(10分)在直角坐标系xOy 中,曲线C 1的参数方程为V Y Y Y W Y Y Y X x =t +2t ,y =t −2t(t 为参数).以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为θ=π3(ρ∈R ).(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)求曲线C 1的任意一点到曲线C 2距离的最小值.23.已知a>b>c>0,求证:(1)1a−b +1b−c≥4a−c;(2)a2a b2b c2c>a b+c b c+a c a+b.。
高考理科数学模拟试卷(含答案)高考理科数学模拟试卷(含答案)本试卷共分为选择题和非选择题两部分,第Ⅰ卷(选择题)在1至2页,第Ⅱ卷(非选择题)在3至4页,共4页,满分150分,考试时间为120分钟。
注意事项:1.答题前,请务必填写自己的姓名和考籍号。
2.答选择题时,请使用2B铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,请使用橡皮擦擦干净后再选涂其他答案标号。
3.答非选择题时,请使用0.5毫米黑色签字笔,在答题卡规定位置上书写答案。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,请只将答题卡交回。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={-1.0.1.2.3.4},B={y|y=x,x∈A},则A2B=A){0.1.2}B){0.1.4}C){-1.0.1.2}D){-1.0.1.4}2.已知复数z=1/(1+i),则|z|=A)2B)1C)2D)23.设函数f(x)为奇函数,当x>0时,f(x)=x-2,则f(f(1))=A)-1B)-2C)1D)24.已知单位向量e1,e2的夹角为π/2,则e1-2e2=A)3B)7C)3D)75.已知双曲线2x^2-y^2=1(a>0,b>0)的渐近线方程为y=±3x,则双曲线的离心率是A)10B)10/10C)10D)3/96.在等比数列{an}中,a1>0,则“a1<a4”是“a3<a5”的A)充分不必要条件B)必要不充分条件C)充要条件D)既不充分也不必要条件7.如图所示的程序框图,当其运行结果为31时,则图中判断框①处应填入的是A)i≤6?B)i≤5?C)i≤4?D)i≤3?8.已知a、b为两条不同直线,α、β、γ为三个不同平面,则下列命题中正确的是①若α//β,α//γ,则β//γ;②若a//α,a//β,则α//β;③若α⊥γ,β⊥γ,则α⊥β;④若a⊥α,XXXα,则a//b。
某重点中学高考数学(理科)模拟试卷(含标准答案)满分:150 时间:120分钟一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z =a +b i(a ,b ∈R)的虚部记作Im(z )=b ,则Im(12+i)=( )A -15B.25 C .-13D ..132. 已知锐角A ,B 满足)tan(tan 2B A A +=,则B tan 的最大值为( )A.22B.2C.22 D.42 3.已知等比数列}{n a 的前n 项和为n S ,且满足8417SS =,则公比q =( )A.12B. 12±C. 2D. 2± 4.执行右边的框图,若输出的结果为21,则输入的实数x 的值是( )A .22 B .2 C .41D .235. 已知两双曲线12222=-b y a x (0,0)a b >>、双曲线22221y x a b -=(0,0)a b >>的渐近线将第一象限三等分,则双曲线12222=-by a x 的离心率为( )A. 2或332 B.6或332 C. 2或3 D.3或66. 已知数列﹛n a ﹜为等差数列,且17134a a a π++=,则212tan()a a +的值为( )A .3B .3-C .3±D .33-7.如图,正△ABC 的中线AF 与中位线DE 相交于G ,已知△A ′ED 是△AED 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A ′在平面ABC 上的射影在线段AF 上B .恒有平面A ′GF ⊥平面BCEDC .三棱锥A ′—FED 的体积有最大值 D .异面直线A ′E 与BD 不可能垂直8.下列函数中,在)2,0(π上有零点的函数是( )A .x x x f -=sin )(B .x x x f π2sin )(-= C .x x x f -=2sin )( D .x x x f π2sin )(2-=9.若数列{}n a 满足规律: <><><>-n n a a a a a 212321,则称数列{}n a 为余弦数列,现将1,2,3,4,5排列成一个余弦数列的排法种数为( ) A. 12B. 14C. 16D. 1810.对于定义域为[0,1]的函数()f x ,如果同时满足以下三个条件: ①对任意的]1,0[∈x ,总有0)(≥x f ②1)1(=f③若0,021≥≥x x ,121≤+x x ,都有)()()(2121x f x f x x f +≥+ 成立; 则称函数)(x f 为理想函数. 下面有三个命题:● 若函数)(x f 为理想函数,则0)0(=f ; ● 函数])1,0[(12)(∈-=x x f x 是理想函数;● 若函数)(x f 是理想函数,假定存在]1,0[0∈x ,使得]1,0[)(0∈x f ,且00)]([x x f f =, 则00)(x x f =; 其中正确的命题个数有( )A. 0个B.1个C.2个D.3个 二.填空题:本大题共5小题,每小题4分,共20分.11.设单位向量1212121,,22e e e e e e ⋅=-+= 满足则 .12.函数y x =-的图像和其在点(1,1)-处的切线与x 轴所围成区域的面积为________.13.设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-+≤≥020a y x x y y ,若目标函数y x +3的最大值为6,则a =______.14.如图,已知球O 是棱长为1的正方体1111D C B A ABCD -的内切球,则以1B 为顶点,以球被平面1ACD 截得的圆为 底面的圆锥的全面积为 。
俯视图侧视图正视图2023届高考理科数学模拟试卷四(含参考答案)一、选择题:(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设全集U = R ,A =10xx ⎧⎫<⎨⎬⎩⎭,则U C A =( ) A .{x | x ≥0} B.{x | x > 0} C. 10x x ⎧⎫>⎨⎬⎩⎭ D.1x x ⎧⎨⎩≥0⎭⎬⎫2."1''=a 是“函数ax ax y 22sin cos -=的最小正周期为π”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.设0x 是方程ln 4x x +=的解,则0x 属于区间A. (0,1)B. (1,2)C. (2,3)D.(3,4) 4.按向量)2,6(π=a 平移函数()2sin()3f x x π=-的图象,得到函数()y g x =的图象,则 A. ()2cos 2g x x =-+ B. ()2cos 2g x x =-- C. ()2sin 2g x x =-+ D. ()2sin 2g x x =--5.已知实数x 、y 满足约束条件⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则y x z 42+=的最大值为 ( )A. 24B. 20C. 16D. 126..若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为A.B. C.2 D. 67.一水池有2个进水口,1 个出水口,进出水速度如图甲、乙所示. 某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)(第15小题)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③ 4点到6点不进水不出水.则一定能确定正确的论断是A .①②③B .①② C.②③ D.①③ 8.定义在(-∞,+∞)上的偶函数f(x)满足f(x +1)=-f(x), 且f(x)在[-1,0]上是增函数, 下面五个关于f(x)的命题中: ① f(x)是周期函数 ② f(x) 的图象关于x=1对称 ③ f(x)在[0,1]上是增函数, ④f(x)在[1,2]上为减函数 ⑤ f(2)=f(0) 正确命题的个数是( ) A. 1个 B. 2个 C.3个 D.4个二、填空题:(本大题共6个小题,每小题5分,共30分,其中9-12题必做,在13,14,15题中选做两题,多选以前两题计分,把答案写在答题卷上). 9.已知0t >,若()021d 6tx x -=⎰,则t =10.sin168sin 72sin102sin198︒︒︒︒+= . 11.函数2234log ()y x x =--的单调增区间是______________;12.符号[]x 表示不超过x 的最大整数,如[][]208.1,3-=-=π,定义函数()[]f x x x =-, 那么下列命题中正确的序号是 .(1)函数()f x 的定义域为R ,值域为[]1,0; (2)方程()12f x =,有无数解; (3)函数()f x 是周期函数; (4)函数()f x 是增函数. 13、极坐标方程sin 2cos ρθθ=+所表示的曲线的直角坐标方程是 . 14、已知c b a ,,都是正数,且,12=++c b a 则cb a 111++15.已知圆O 的半径为3,从圆O 外一点A 引切线AD 和割线ABC ,圆心O 到AC 的距离为22,3AB =,则切线AD 的长为 _______.三、解答题:本大题共6小题,满分80分,解答应写出文字说明,证明过程或演算步骤. 16.(本题满分12分)已知02cos 22sin =-xx , (Ⅰ)求x tan 的值;(Ⅱ)求xx xsin )4cos(22cos ⋅+π的值.17.(本题满分12分)已知函数()f x 是定义在[]1,1-上的奇函数,在[0,1]上()()2ln 11xf x x =++-(Ⅰ)求函数()f x 的解析式;并判断()f x 在[]1,1-上的单调性(不要求证明) (Ⅱ)解不等式()()22110f x f x ++-≥.18.(本题满分14分)某“帆板”集训队在一海滨区域进行集训,该海滨区域的海浪高度y (米)随着时间(024,)t t ≤≤单位小时而周期性变化,每天各时刻t 的浪高数据的平均值如下表:(Ⅰ)试画出散点图;(Ⅱ)观察散点图,从,sin(),cos()y ax b y A t b y A t ωϕωϕ=+=++=+中选择一个合适的函数模型,并求出该拟合模型的解析式;(Ⅲ)如果确定在白天7时~19时当浪高不低于0.8米时才进行训练,试安排恰当的训练时间。
模拟高考理科数学真题高考理科数学真题模拟一、选择题1. 已知函数$f(x)=\frac{3x+2}{x-4}$,则$f(2)=$A. 1B. 2C. 3D. 42. 方程$x^2-4x+3=0$的根为A. $x=1$和$x=3$B. $x=1$和$x=2$C. $x=1$和$x=4$D. $x=2$和$x=3$3. 等比数列$\{a_n\}$的首项为2,公比为$\frac{1}{3}$,如果$a_1+a_2+...+a_6=37\frac{1}{9}$,则$a_6=$A. $\frac{61}{27}$B. $\frac{69}{27}$C. $\frac{73}{27}$D. $\frac{81}{27}$4. 函数$f(x)=ax^2+bx+c$的图象与$x$轴交于两点$A(1,0)$和$B(3,0)$,则$f(x)$的值域为A. $[0, +\infty)$B. $[c, +\infty)$C. $(-\infty, c]$D. $(-\infty, 0]$5. 设$x=y^2$,$y\neq 0$,则$\frac{dy}{dx}=$A. $\frac{1}{2y}$B. $\frac{1}{2x}$C. $\frac{2}{y}$D. $\frac{y}{2}$二、填空题1. 设$AB=3$,$BC=4$,$CD=2$,$\angle{ABC}=60^\circ$,$\angle{BCD}=45^\circ$,则$AD=$_____2. 如果$\log_2{x}+\log_2{(1-x)}=0$,则$x=$_____3. 函数$f(x)=\sin(2x+\frac{\pi}{4})$的表达式化简为_____4. 已知二次函数$y=ax^2+bx+c$的图象经过点$(1,2)$和$(-1,-2)$,则$a+b+c=$_____5. 圆心在直线$2x-y=3$上,并且与直线$x-y-2=0$相切的圆的方程为_____三、解答题1. 某校学生中,男生和女生的比例为$3:2$,如果男生少20人,则男生和女生人数的比例为$1:2$,请问这个学校共有多少名学生?2. 已知矩形的长为$x-1$,宽为$x+2$,且矩形的面积等于其周长,求矩形的长和宽。
联考数学(理)试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间120分钟第Ⅰ卷(选择题,共60分)一、选择题:1、复数2(2)(1)12i i i+--的值是 ( )A .2B .2-C .2iD .2i - 2、若log a (3a -1)>0,则a 的取值范围是( ) A .a<31 B .31<a<32 C .a>1 D .31<a<32或a>1 3.设α、β、γ是三个互不重合的平面,l 是直线,给出下列命题①若α⊥β,β⊥γ,则α∥γ ②若l 上两点到α的距离相等,则l ∥α ③若l ⊥α,l ∥β,则α⊥β ④若α∥β,l ∥α,l ⊄β,则l ∥β 其中正确的命题是( ) A .①② B .②③ C .②④ D .③④4.已知一个半径为7的球中有一个各条棱长都相等的内接正三棱柱,则这正三棱柱的体积是( ) A .18B .16C .12D .85.已知函数)(x f y =图象如图甲,则x x f y sin )2(-=π在区间[0,π]上大致图象是( )6.两个向量集合A={a /a =(cos α,4-cos 2α),α∈R},B={b /b =(cos β,λ+sin β), β∈R},若A ∩B ≠φ,则实数λ的取值范围为( )A 、[2,5]B 、[411,5]C 、[411,+∞) D 、(-∞,5]7.设0,1a a >≠,函数()2log a f x ax x =-在[]3,4上是增函数,则a 的取值范围是( )A.1164a ≤<或1a > B. 1184a ≤≤或1a > C. 1a >. D.1154a ≤≤或1a > 8.设函数y=f(x)在x 0处可导,f '(x 0)=a ,若点(x 0,0)即为y=f(x)的图象与x 轴的交点,则lim ∞→n [nf(x 0-n1)]等于( ) A 、+∞ B 、a C 、-a D 、以上都不对9.已知椭圆E 的离心率为e ,两焦点分别为F 1,F 2,抛物线C 以F 1为顶点,F 2为焦点,点P 为这两条曲线的一个交点,若e|2pF |=|1|,则e 的值为( ) A 、22 B 、21 C 、33D 、不能确定10.已知抛物线22,y px O =是坐标原点,F 是焦点,P 是抛物线上的点,使得POF ∆是直角三角形,则这样的点P 共有( )A 、0个B 、2个C 、4个D 、6个 11.掷一个骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于4的点数出现”,则一次试验中,事件A +B -发生的概率为( )A .13B .12C .23D .5612.三个学校分别有1名、2名、3名学生获奖,这6人排成一排合影,要求同校任两名学生不能相邻,那么不同的排法有( ) A 、36种 B 、72种 C 、108种 D 、120种 二、填空题(本大题共4小题,每小题4分,共16分。
2023年高考模拟卷(一)理科数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}2|230A x x x =∈--≤N ,2023{R |log 0}B x x =∈≤,则A B = ()A .](0,1B .[0,1]C .{1}D .∅2.a b >的一个充要条件是()A .11a b <B .22ac bc >C .22log log a b>D .1.7 1.7a b>3.已知向量()1,a m =,()1,0b =- ,且6-=⋅+ a b a b ,则a =r ()A B .CD .4.将顶点在原点,始边为x 轴非负半轴的锐角α的终边绕原点逆时针转过π4后,交单位圆于点3,5P y ⎛⎫- ⎪⎝⎭,那么cos α的值为()A .210B .25C .7210D .92105.中国古代数学著作《九章算术》是人类科学史上应用数学的最早巅峰.书里记载了这样一个问题“今有女子善织,日自倍,五日织五尺.问日织几何?”译文是“今有一女子很会织布,每日加倍增长,5天共织5尺,问每日各织布多少尺?”,则该女子第二天织布()A .531尺B .1031尺C .1516尺D .516尺6.立德学校于三月份开展学雷锋主题活动,某班级5名女生和2名男生,分成两个小组去两地参加志愿者活动,每小组均要求既要有女生又要有男生,则不同的分配方案有()种.A .20B .4C .60D .807.法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆()2222:10x y C a b a b +=>>的蒙日圆方程为2222x y a b +=+,现有椭圆222:116x y C a +=的蒙日圆上一个动点M ,过点M 作椭圆C 的两条切线,与该蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为41,则椭圆C 的长轴长为()A .5B .10C .6D .128.已知函数()sin()(0)f x x ωϕω=+>是在区间π5π,1836⎛⎫⎪⎝⎭上的单调减函数,其图象关于直线π36x =-对称,且f (x )的一个零点是7π72x =,则ω的最小值为()A .2B .12C .4D .89.在“2,3,5,7,11,13,17,19”这8个素数中,任取2个不同的数,则这两个数之和仍为素数的概率是()A .328B .528C .17D .31410.已知函数()()31bx f x a x x =-++的图象过点()0,1与93,4⎛⎫⎪⎝⎭,则函数()f x 在区间[]1,4上的最大值为()A .32B .73C .54D .8511.已知三棱锥-P ABC 的所有顶点都在球O 的表面上,ABC 是边长为若三棱锥-P ABC 体积的最大值是O 的表面积是()A .100πB .160πC .200πD .320π12.若存在[)1,x ∞∈+,使得关于x 的不等式11e x ax +⎛⎫+≥ ⎪⎝⎭成立,则实数a 的最小值为()A .2B .1ln2C .ln21-D .11ln2-第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.()22051001i 1i 12i i 1i 2⎡⎤-+⎛⎫⎛⎫+⋅+-=⎢⎥ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦____________14.已知,x y 都是正数,且2x y +=,则4121x y +++的最小值为__________.15.()()321x x +-展开式中2x 的系数为___________.16.已知圆224x y +=上有且仅有四个点到直线1250x y c -+=的距离为1,则实数c 的取值范围是__________三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知正项数列{}n a 的前n 项和为n S ,11a =,数列{}n S 是公差为1的等差数列.(1)求数列{}n a 的通项公式;(2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若存在*N n ∈,使得223n T λλ<-成立,求λ的取值范围.18.如图,在三棱台111ABC A B C -中,面11AAC C ABC ⊥面,145ACA ACB ∠=∠=,124AC BC ==(1)证明:111B C A B ⊥;(2)792,72AC =1AC ,求二面角11A BC B --的余弦值.19.安全教育越来越受到社会的关注和重视.为了普及安全教育,学校组织了一次学生安全知识竞赛,学校设置项目A “地震逃生知识问答”和项目B “火灾逃生知识问答”.甲、乙两班每班分成两组,每组参加一个项目,进行班级对抗赛.每一个比赛项目均采取五局三胜制(即有一方先胜3局即获胜,比赛结束),假设在项目A 中甲班每一局获胜的概率为23,在项目B 中甲班每一局获胜的概率为12,且每一局之间没有影响.(1)求乙班在项目A 中获胜的概率;(2)设乙班获胜的项目个数为X .求X 的分布列及数学期望.20.已知对称轴都在坐标轴上的椭圆C 过点12A ⎛ ⎝⎭与点()2,0B ,过点()1,0的直线l 与椭圆C 交于P ,Q 两点,直线BP ,BQ 分别交直线3x =于E ,F 两点.(1)求椭圆C 的标准方程;(2)PE QF ⋅是否存在最小值?若存在,求出最小值;若不存在,请说明理由.21.已知函数2()2(1)2ln f x x m x m x =-++-,()0,x ∈+∞.(1)讨论()f x 的单调区间;(2)当0m ≥时,试判断函数()f x 的零点个数解:请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.在平面直角坐标系xOy 中,曲线C 的参数方程为cos sin cos sin x y αααα=-⎧⎨=+⎩(α为参数),以O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为πcos 6ρθ⎛⎫+= ⎪⎝⎭.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)P 为l 上一点,过P 作曲线C 的两条切线,切点分别为A ,B ,若3APB π∠≥,求点P 横坐标的取值范围.23.已知()3f x x a x =-+-()R a ∈.(1)若1a =,解不等式()9f x ≥;(2)当()0a t t =>时,()f x的最小值为3,若正数m ,n 满足m n t +=,证明:6≤.。
2023届高考理科数学模拟试卷六十(含参考答案)考生须知:1. 全卷分试卷和答卷。
试卷2页,答卷4页。
考试时间120分钟,满分150分。
2. 本卷的答案必须做在答卷的相应位置上,做在试卷上无效。
3. 请用钢笔或圆珠笔将班级、准考证号、姓名、座位号分别填写在答卷的相应位置上。
一、选择题:本大题共10小题,每小题5分,共50分. 1.全集{0,1,2,3}U =,{2}U C M =,则集合M =( )A .{0,1,3}B .{1,3}C .{0,3}D .{2}2.若函数()f x (x R ∈)是奇函数,函数()g x (x R ∈)是偶函数,则( )A .函数()()f x g x +是奇函数B .函数()()f x g x ⋅是奇函数C .函数[()]f g x 是奇函数D . 函数[()]g f x 是奇函数 3. 下列函数中,图像的一部分如右图所示的是( ) A .sin()6y x π=+B .sin(2)6y x π=-C .cos(2)6y x π=-D .cos(4)3y x π=-4.等比数列{a n }的前n 项和为S n ,若S 2n =3(a 1+a 3+…+a 2n -1),a 1a 2a 3=8,则a 10等于( )A .-1024B .1024C .-512D .5125.已知函数2()f x x bx =+的图象在点A (1,f (1))处的切线的斜率为3,数列1()f n ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则2013S 的值为( )A .20102011B .20112012 C .20122013D .201320146.若实数x ,y 满足不等式组2402300x y x y x y +-≥--≥-≥⎧⎪⎨⎪⎩, 则x +y 的最小值是( )A .4B.3 C . 4 D . 6第3题图8.命题p :“1≠x 或3y ≠”是命题q :“4≠+y x ”的( )条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要9.如图,半圆的直径6AB =,O 为圆心,C 为半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,则()PA PB PC +的最小值为( ) A .92 B .9 C .92- D .-910.若函数32()f x x ax bx c =+++有两个极值点12,x x ,且11()f x x =,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数是( )A .3B .4C .5D .6二、填空题:本大题共7小题,每小题4分,共28分. 11. 不等式2(2)211x x -≤+的解集为 ____.12. 已知数列{}n a 满足11a =,12n n n a a +=+,则10a =_________. 13.在ABC ∆中,,,a b c 分别是内角,,A B C 的对边,已知16,4,cos 3a c B ===,则____b =.14. 已知, ,则的值为________.15. 若是偶函数,则 .16. 函数21()2ln 2f x x x x a =+-+在区间(0,2)上恰有一个零点,则实数a 的取值范围是_____.17. 已知函数2()|21|f x x x =+-,若1a b <<-且()()f a f b =,则a b a b ++的取值范围_____.41)4sin(=+πθ),23(ππθ--∈)127cos(πθ+)4sin(3)4sin()(ππ-++=x x a x f =a OP CBA三、解答题:第18、19、20题每题14分,第21、22每题15分,共72分.18.已知 且; :q 集合{}2(2)10,A x x a x x R =+++=∈,{}0B x x =>且A B =∅.若∨为真命题,∧为假命题,求实数a 的取值范围.19.已知函数. (1)写出如何由函数sin y x =的图像变换得到的图像;(2)在中,角所对的边分别是,若,求的取值范围.20.已知函数R ,, (1)求函数f (x )的值域;1:(),3xp f x -=|()|2f a <p q p q 2()sin2cos 24x x f x =+()f x ABC ∆AB C 、、a b c 、、C b B c a cos cos )2(=-)(A f 2()(xxf x a x a =+∈1)a >(2)记函数()(),[2,)g x f x x =-∈-+∞,若的最小值与无关,求的取值范围; (3)若,直接写出(不需给出演算步骤)关于的方程的解集.21.已知数列的前n 项和(n 为正整数).(1)令,求证数列是等差数列,并求数列的通项公式; (2)令,12n n T c c c =+++,试比较与的大小,并予以证明.()g x aa m >x ()f x m ={}n a 11()22n n n S a -=--+2nn n b a ={}n b {}n a 1n n n c a n+=n T 521nn +22.已知实数a 满足02a <≤,1a ≠,设函数3211()32a f x x x ax +=-+. (1)当2a =时,求()f x 的极小值;(2)若函数32()(24)ln g x x bx b x x =+-++(b R ∈)的极小值点与()f x 的极小值点相同.求证:()g x 的极大值小于等于54.参考答案一、选择题:本大题共10小题,每小题5分,共50分.二、填空题:本大题共7小题,每小题4分,共28分.11___[1,7]-_______ 12____1023______ 13___________6_____14___8-____ 15____3-_____ 16____2ln 24a ≤-或32a =-__17_______(1,1)-____三、解答题:第18、19、20题每题14分,第21、22每题15分,共72分.18.已知 且; :q 集合{}2(2)10,A x x a x x R =+++=∈,{}0B x x =>且A B =∅.若∨为真命题,∧为假命题,求实数a 的取值范围. 解:对p :所以.若命题p 为真,则有;...........2分 对q :∵且∴若命题q 为真,则方程无解或只有非正根.∴或, ∴...........................5分∵p, q 中有且只有一个为真命题∴ (1) p 真,q 假:则有;......................8分 (2) p 假,q 真:则有; ∴或. ........................14分19.已知函数. (1)写出如何由函数sin y x =的图像变换得到的图像;1:(),3xp f x -=|()|2f a <p q p q 1|()| ||23af a -=<75<<-a }0x |x {B >=∅=⋂B A 01x )2a (x )x (g 2=+++=04)2a (2<-+=∆0(0)0202g a ⎧⎪∆≥⎪≥⎨⎪+⎪-<⎩4a ->4a 54a 7a 5-≤<-⎩⎨⎧-≤<<-,即有7a 4a 5a 7a ≥⎩⎨⎧->-≤≥,即有或4a 5-≤<-7a ≥2()sin2cos 24x x f x =+()f x(2)在中,角所对的边分别是,若,求的取值范围. 解:……………………3分 (Ⅰ) 24sin sin()sin()424x y x y x y πππ=−−−−→=+−−−−−→=+左移横坐标伸长为原来的倍个单位1sin()sin()12424x x y y ππ→=+−−−→=++上移个单位 ……7分 (Ⅱ)由,利用三角形中的正弦定理知: ∵,∴……………………10分,∵,∴,……………………12分 ∴……………………14分20.已知函数R ,, (1)求函数f (x )的值域;(2)记函数()(),[2,)g x f x x =-∈-+∞,若的最小值与无关,求的取值范围; (3)若,直接写出(不需给出演算步骤)关于的方程的解集.解:(1)①时,, ABC ∆AB C 、、a b c 、、C b B c a cos cos )2(=-)(A f ()142sin 212cos 2sin+⎪⎭⎫⎝⎛+=++=πx x x x f ()C b B c a cos cos 2=-1cos 2=B π<<B 03π=B ()142sin 2+⎪⎭⎫⎝⎛+=πA A f 320π<<A 127424πππ<+<A 142sin 22≤⎪⎭⎫⎝⎛+<πA ()122+≤<A f 2()(xx f x a x a=+∈1)a >()g x aa m >x ()f x m =0x≥221,()x xxx x a f x a a a a≥=+=+≥·········································· ·········································· 试场·········································· ·········································· --------------------线-------------------当且仅当,即时等号成立; ②,,由①②知函数的值域为.(2),①,,②时,,令,则,记,,时等号成立,(i),即时,结合①知与无关; (ii),即时,, 在上是增函数,,结合①知与有关;综上,若的最小值与无关,则实数的取值范围是.(3)①时,关于的方程的解集为;②m >3时,关于x 的方程的解集为或.21.已知数列的前n项和(n 为正整数).(1)令,求证数列是等差数列,并求数列的通项公式; (2)令,12n n T c c c=+++,试比较与的大小,并予以证明. 解(I )在中,令n=1,可得,即 当时,,2xx a a=1x a =>0x <31,01,()3xx a a f x a>∴<<∴=>()f x )+∞()()2,[2,)x xg x f x a a x =-=+∈-+∞0x ≥1,1,()3,()3x xa a g x a g x >∴≥=∴≥20x -≤<211,1,()2x x xa a gx a a a->≤<=+xt a =1()2g x t t=+1()2.h t t t =+21(1)t a ≤<1()2h t t t =+≥12t t=2t =21a ≤a ≥min ()g x =a 212a >1a <<421()220h t a t'=-≥->()h t ∴21[,1)a 2min min 2212()()()3g x h t h a a a===+<2min 22()g x a a=+a ()g x a a a ≥3m <≤x ()f x m =|log 2a m x x ⎧⎪=⎨⎪⎪⎩⎭()f x m =|log 2a m x x ⎧+⎪=⎨⎪⎩3log a x m ⎫=⎬⎭{}n a 11()22n n n S a -=--+2nn n b a ={}n b {}n a 1n n n c a n+=n T 521nn +11()22n n nS a -=--+1112n S a a =--+=112a =2n ≥21111111()2()22n n n n n n n n n S a a S S a a ------=--+∴=-=-++,..又数列是首项和公差均为1的等差数列. 于是. (II)由(I )得,所以由①-②得于是确定的大小关系等价于比较的大小 由可猜想当证明如下: 证法1:(1)当n=3时,由上验算显示成立。
2023届高考理科数学模拟试卷五十三(含参考答案)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}{}|1,|20,A x x B x x =>-=-≤≤则AB = ( )A.{}|0x x ≥B. {}|2x x ≥-C. {}|10x x -<≤D. {}|10x x -≤< 2.下列各式中值为的是 ( )A .B .C .D .3.已知1a >,22()x xf x a +=,则()1f x <成立的充要条件是 ( )A . 0<x <1B . ﹣1<x <0C . ﹣2<x <0D . ﹣2<x <14.下列结论错误的...是 ( )A .命题“若,则”与命题“若则”互为逆否命题;B .命题,命题则为真;C .若为假命题,则、均为假命题.D .“若则”的逆命题为真命题;5.若11(2)ax x+⎰d x = 3 + ln 2,则 a 的值为 ( ) A .6B .4C .3D .26.设函数22()sin ()cos ()44f x x x ππ=+-+(x ∈R ),则函数()f x 是 ( ). 最小正周期为的奇函数D . 最小正周期为的偶函数函数()f x 在定义域R 内可导,若()(2)f x f x =-,且(x ﹣1)f ′(x )<0,若(0)a f =,1()2b f =,(3)c f =,则,,a b c 的大小关系是 ( )A .B .C .D . 9.设函数,则下列结论正确的是 ( )A .的图像关于直线对称B .的图像关于点对称23o o 15cos 15sin 2o2o 215sin 15cos -115sin 2o2-o2o 215cos 15sin +p q ,q ⌝p ⌝:[0,1],1x p x e ∀∈≥2:,10,q x R x x ∃∈++<p q ∨q p ∨p q 22,am bm <a b <()sin(2)3f x x π=+()f x 3x π=()f x (,0)4πC .的最小正周期为,且在上为增函数D .把的图像向左平移个单位,得到一个偶函数的图像10.若α是锐角,且cos ()=﹣,则sin α的值等于 ( )A .B .C .D ..()f x 是定义在R 上的以3为周期的奇函数,(2)f =0,则方程()f x =0在区间(0,6)内解的个数 ( ) 12. 已知函数()y f x =是定义在R 上的奇函数,且当x ∈(﹣∞,0)时不等式()f x +x f ′(x )<0成立,若0.30.33(3)a f =⋅,(log 3)(log 3)b f ππ=⋅,3311(log )(log )99c f =.则,,a b c 的大小关系是 ( )A. a b c >>B. c a b >>C. a b c >>D. a c b >> 二、填空题(本大题共4小题,每小题5分,共20分). 13. 函数的定义域是___ ___ .14.曲线34y x x =-在点()1,3--处的切线方程是 . 15.已知函数()f x =,若函数g (x )=f (x )﹣m 有3个零点,则实数m 的取值范围是 . 16. 给出下列四个命题:①函教()f x =lnx -2+x 在区间(1,e )上存在零点: ②若=0,则函数y =f (x )在处取得极值: ③若m≥一1,则函数.的值城为R;④‘“a=1”是“函数()f x =在定义域上是奇函数”的充分不必要条件。
高三年级第一次模拟考试数 学 试 题(理)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟。
第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将答案涂在答题卡上.........。
1.复数23()1i i +-= ( )A .-3-4iB .-3+4iC .3-4iD .3+4i2.已知条件:|1|2,:,p x q x a +>>⌝⌝条件且p 是q 的充分不必要条件,则实数a 的取值范围是( ) A .1a ≥ B .1a ≤ C .1a ≥- D .3a ≤-3.函数()|2|ln f x x x =--在定义域内零点可能落在下列哪个区间内( )A .(0,1)B .(2,3)C .(3,4)D .(4,5) 4.如右图,是一程序框图,则输出结果为( )A .49B .511 C .712 D .613 5.已知n S 为等差数列{}n a 的前n 项和,若641241,4,S S S S S ==则 的值为( )A .94B .32C .54D .46.要得到函数()sin(2)3f x x π=+的导函数'()f x 的图象,只需将()f x 的图象( )A .向左平移2π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变)B .向左平移2π个单位,再把各点的纵坐标缩短到原来的12倍(横坐标不变)C .向右平移4π个单位,再把各点的纵坐标伸长到原来的12倍(横坐标不变)D .向右平移4π个单位,再把各点的纵坐标伸长到原来的2倍(横坐标不变) 7.过双曲线22221(0,0)x y a b a b-=>>的一个焦点F 引它的渐近线的垂线,垂足为M ,延长FM 交y 轴于E ,若|FM|=2|ME|,则该双曲线的离心率为( )A .3B .2C .3D .28.如图所示的每个开关都有闭合与不闭合两种可能,因此5个开关共有25种可能,在这25种可能中电路从P 到Q 接通的情况有( )A .30种B .10种C .24种D .16种第Ⅱ卷(非选择题,共110分)二、填空题:本大题共6小题,每小题5分,共30分,将答案填写在答题纸上。
2018年高考数学(理科)模拟试卷(四)(本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟)第Ⅰ卷(选择题 满分60分)一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个选项符合题意) 1.[2016·成都诊断考试]已知集合A ={x |y =4x -x 2},B ={x ||x |≤2},则A ∪B =( ) A .[-2,2] B .[-2,4] C .[0,2] D .[0,4]2.[2016·茂名市二模]“a =1”是“复数z =(a 2-1)+2(a +1)i(a ∈R )为纯虚数”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件3.[2017·呼和浩特调研]设直线y =kx 与椭圆x 24+y 23=1相交于A ,B 两点,分别过A ,B向x 轴作垂线,若垂足恰好为椭圆的两个焦点,则k 等于( )B .±32C .±124.[2016·洛阳第一次联考]如果圆x 2+y 2=n 2至少覆盖曲线f (x )=3sin πxn (x ∈R )的一个最高点和一个最低点,则正整数n 的最小值为( )A .1B .2C .3D .45.[2016·长春质量检测]运行如图所示的程序框图,则输出的S 值为( )6.[2016·贵阳一中质检]函数g (x )=2e x +x -3⎠⎛12t 2d t 的零点所在的区间是( )A .(-3,-1)B .(-1,1)C .(1,2)D .(2,3)7.[2016·浙江高考]在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( )A .2 2B .4C .3 2D .68.[2017·广西质检]某几何体的三视图如图所示,则该几何体的表面积为( )A .24+6πB .12πC .24+12πD .16π9.[2016·南京模拟]已知四面体P -ABC 中,P A =4,AC =27,PB =BC =23,P A ⊥平面PBC ,则四面体P -ABC 的外接球半径为( )A .2 2B .2 3C .4 2D .4 310.[2016·四川高考]在平面内,定点A ,B ,C ,D 满足|DA →|=|DB →|=|DC →|,DA →·DB →=DB →·DC →=DC →·DA →=-2,动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是( )11.[2016·山西质检]记S n 为正项等比数列{a n }的前n 项和,若S 12-S 6S 6-7·S 6-S 3S 3-8=0,且正整数m ,n 满足a 1a m a 2n =2a 35,则1m +8n的最小值是( )12.[2016·海口调研]已知曲线f (x )=k e-2x在点x =0处的切线与直线x -y -1=0垂直,若x 1,x 2是函数g (x )=f (x )-|ln x |的两个零点,则( )A .1<x 1x 2< e <x 1x 2<1 C .2<x 1x 2<2 e<x 1x 2<2第Ⅱ卷(非选择题 满分90分)二、填空题(本大题共4小题,每小题5分,共20分)13.[2017·安徽合肥统考]一个煤气站有5个阀门控制对外输送煤气,使用这些阀门必须遵守以下操作规则:(ⅰ)如果开启1号阀门,那么必须同时开启2号阀门并且关闭5号阀门;(ⅱ)如果开启2号阀门或者5号阀门,那么要关闭4号阀门;(ⅲ)不能同时关闭3号阀门和4号阀门,现在要开启1号阀门,则同时开启的2个阀门是________.14.[2017·云南检测]若函数f (x )=4sin5ax -43cos5ax 的图象的相邻两条对称轴之间的距离为π3,则实数a 的值为________.15.[2017·山西怀仁期末]已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,焦距为2c ,直线y =33(x +c )与双曲线的一个交点P 满足∠PF 2F 1=2∠PF 1F 2,则双曲线的离心率e 为________.16.[2016·广州综合测试]已知函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x <1,x 2-4x +2,x ≥1,则函数g (x )=2|x |f (x )-2的零点个数为________个.三、解答题(共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.[2016·河南六市联考](本小题满分12分)如图,在一条海防警戒线上的点A、B、C 处各有一个水声监测点,B、C两点到A的距离分别为20千米和50千米,某时刻,B收到发自静止目标P的一个声波信号,8秒后A、C同时接收到该声波信号,已知声波在水中的传播速度是千米/秒.(1)设A到P的距离为x千米,用x表示B、C到P的距离,并求x的值;(2)求P到海防警戒线AC的距离.18.[2016·重庆市一模](本小题满分12分)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种.方案一:每满200元减50元;方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、1个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)(1)(2)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算?19.[2016·贵州四校联考](本小题满分12分)已知长方形ABCD中,AB=1,AD= 2.现将长方形沿对角线BD折起,使AC=a,得到一个四面体A-BCD,如图所示.(1)试问:在折叠的过程中,异面直线AB与CD,AD与BC能否垂直?若能垂直,求出相应的a值;若不垂直,请说明理由.(2)当四面体A-BCD体积最大时,求二面角A-CD-B的余弦值.20.[2016·全国卷Ⅲ](本小题满分12分)已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点,交C的准线于P,Q两点.(1)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.21.[2016·湖北八校联考](本小题满分12分)已知函数f(x)=ax-ln x-4(a∈R).(1)讨论f(x)的单调性;(2)当a =2时,若存在区间[m ,n ]?⎣⎡⎭⎫12,+∞,使f (x )在[m ,n ]上的值域是⎣⎡⎦⎤k m +1,k n +1,求k 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.[2016·陕西八校联考](本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C 1的方程为x 2+y 2=1,以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,且取相同的单位长度建立极坐标系,已知直线l 的极坐标方程为ρ(2cos θ-sin θ)=6.(1)将曲线C 1上的所有点的横坐标伸长为原来的3倍,纵坐标伸长为原来的2倍后得到曲线C 2,试写出直线l 的直角坐标方程和曲线C 2的参数方程;(2)设P 为曲线C 2上任意一点,求点P 到直线l 的最大距离.23.[2016·南昌一模](本小题满分10分)选修4-5:不等式选讲 设函数f (x )=x -2+11-x 的最大值为M . (1)求实数M 的值;(2)求关于x 的不等式|x -2|+|x +22|≤M 的解集.参考答案(四)一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个选项符合题意) 1.[2016·成都诊断考试]已知集合A ={x |y =4x -x 2},B ={x ||x |≤2},则A ∪B =( ) A .[-2,2] B .[-2,4] C .[0,2] D .[0,4] 答案 B解析 A ={x |0≤x ≤4},B ={x |-2≤x ≤2},故A ∪B ={x |-2≤x ≤4},故选B. 2.[2016·茂名市二模]“a =1”是“复数z =(a 2-1)+2(a +1)i(a ∈R )为纯虚数”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件答案 A解析 a 2-1+2(a +1)i 为纯虚数,则a 2-1=0,a +1≠0,所以a =1,反之也成立.故选A.3.[2017·呼和浩特调研]设直线y =kx 与椭圆x 24+y 23=1相交于A ,B 两点,分别过A ,B向x 轴作垂线,若垂足恰好为椭圆的两个焦点,则k 等于( )B .±32C .±12答案 B解析 由题意可得c =1,a =2,b =3,不妨取A 点坐标为⎝⎛⎭⎫1,±32,则直线的斜率k =±32. 4.[2016·洛阳第一次联考]如果圆x 2+y 2=n 2至少覆盖曲线f (x )=3sin πxn (x ∈R )的一个最高点和一个最低点,则正整数n 的最小值为( )A .1B .2C .3D .4 答案 B解析 最小范围内的至高点坐标为⎝⎛⎭⎫n 2,3,原点到至高点距离为半径,即n 2=n24+3?n =2,故选B.5.[2016·长春质量检测]运行如图所示的程序框图,则输出的S 值为( )答案 A解析 由程序框图可知,输出的结果是首项为12,公比也为12的等比数列的前9项和,即29-129,故选A. 6.[2016·贵阳一中质检]函数g (x )=2e x +x -3⎠⎛12t 2d t 的零点所在的区间是( )A .(-3,-1)B .(-1,1)C .(1,2)D .(2,3)答案 C解析 因为3⎠⎛12t 2d t =t 3⎪⎪⎪21=8-1=7,∴g(x)=2e x +x -7,g ′(x)=2e x +1>0,g(x)在R上单调递增,g (-3)=2e -3-10<0,g (-1)=2e -1-8<0,g (1)=2e -6<0,g (2)=2e 2-5>0,g (3)=2e 3-4>0,故选C.7.[2016·浙江高考]在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( )A .2 2B .4C .3 2D .6 答案 C解析作出不等式组所表示的平面区域如图中阴影部分所示,过点C,D分别作直线x +y-2=0的垂线,垂足分别为A,B,则四边形ABDC为矩形,又C(2,-2),D(-1,1),所以|AB|=|CD|=?2+1?2+?-2-1?2=3 2.故选C.8.[2017·广西质检]某几何体的三视图如图所示,则该几何体的表面积为()A.24+6π B.12π C.24+12π D.16π答案 A解析由三视图可知,该几何体是由一个棱长为2的正方体与6个半径为1的半球构成的组合体,该组合体的表面由6个半球的表面(除去半球底面圆)、正方体的6个表面正方形挖去半球底面圆构成,所以6个半球的表面(除去半球底面圆)的面积之和S1等于3个球的表面积,即S1=3×4π×12=12π;正方体的6个表面正方形挖去半球底面圆的面积之和为S2=6(22-π×12)=24-6π.所以该组合体的表面积为S=S1+S2=12π+(24-6π)=24+6π.9.[2016·南京模拟]已知四面体P-ABC中,P A=4,AC=27,PB=BC=23,P A⊥平面PBC,则四面体P-ABC的外接球半径为()A.2 2 B.2 3 C.4 2 D.4 3答案 A解析 P A ⊥平面PBC ,AC =27,P A =4,∴PC =23,∴△PBC 为等边三角形,设其外接圆半径为r ,则r =2,∴外接球半径为2 2.故选A.10.[2016·四川高考]在平面内,定点A ,B ,C ,D 满足|DA →|=|DB →|=|DC →|,DA →·DB →=DB →·DC →=DC →·DA →=-2,动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是( )答案 B解析 由|DA →|=|DB →|=|DC →|知,D 为△ABC 的外心.由DA →·DB →=DB →·DC →=DC →·DA →知,D 为△ABC 的内心,所以△ABC 为正三角形,易知其边长为2 3.取AC 的中点E ,因为M 是PC 的中点,所以EM =12AP =12,所以|BM →|max =|BE |+12=72,则|BM →|2max =494,选B. 11.[2016·山西质检]记S n 为正项等比数列{a n }的前n 项和,若S 12-S 6S 6-7·S 6-S 3S 3-8=0,且正整数m ,n 满足a 1a m a 2n =2a 35,则1m +8n的最小值是( ) 答案 C解析 ∵{a n }是正项等比数列,设{a n }的公比为q (q >0),∴S 12-S 6S 6=q 6,S 6-S 3S 3=q 3,∴q 6-7q 3-8=0,解得q =2,又a 1a m a 2n =2a 35,∴a 31·2m+2n -2=2(a 124)3=a 31213,∴m +2n =15,∴1m +8n =115⎝⎛⎭⎫1m +8n (m +2n )=17+2n m +8m n 15≥17+22n m ×8mn 15=53,当且仅当2n m =8mn ,n =2m ,即m =3,n =6时等号成立,∴1m +8n 的最小值是53,故选C.12.[2016·海口调研]已知曲线f (x )=k e-2x在点x =0处的切线与直线x -y -1=0垂直,若x 1,x 2是函数g (x )=f (x )-|ln x |的两个零点,则( )A .1<x 1x 2< e <x 1x 2<1 C .2<x 1x 2<2 e <x 1x 2<2答案 B解析 依题意得f ′(x )=-2k e-2x,f ′(0)=-2k =-1,k =12.在同一坐标系下画出函数y=f (x )=12e -2x 与y =|ln x |的大致图象,结合图象不难看出,这两条曲线的两个交点中,其中一个交点横坐标属于区间(0,1),另一个交点横坐标属于区间(1,+∞),不妨设x 1∈(0,1),x 2∈(1,+∞),则有12e -2x 1=|ln x 1|=-ln x 1∈⎝⎛⎭⎫12e -2,12,12e -2x 2=|ln x 2|=ln x 2∈⎝⎛⎭⎫0,12e -2,12e -2x 2-12e -2x 1=ln x 2+ln x 1=ln (x 1x 2)∈⎝⎛⎭⎫-12,0,于是有e -12 <x 1x 2<e 0,即1e<x 1x 2<1,选B.第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.[2017·安徽合肥统考]一个煤气站有5个阀门控制对外输送煤气,使用这些阀门必须遵守以下操作规则:(ⅰ)如果开启1号阀门,那么必须同时开启2号阀门并且关闭5号阀门;(ⅱ)如果开启2号阀门或者5号阀门,那么要关闭4号阀门;(ⅲ)不能同时关闭3号阀门和4号阀门,现在要开启1号阀门,则同时开启的2个阀门是________.答案 2或3解析 若要开启1号阀门,由(ⅰ)知,必须开启2号阀门,关闭5号阀门,由(ⅱ)知,关闭4号阀门,由(ⅲ)知,开启3号阀门,所以同时开启2号阀门和3号阀门.14.[2017·云南检测]若函数f (x )=4sin5ax -43cos5ax 的图象的相邻两条对称轴之间的距离为π3,则实数a 的值为________.答案 ±35解析 因为f (x )=8sin ⎝⎛⎭⎫5ax -π3,依题意有,T 2=π3,所以T =2π3,又因为T =2π5|a |,所以2π5|a |=2π3,解得a =±35. 15.[2017·山西怀仁期末]已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,焦距为2c ,直线y =33(x +c )与双曲线的一个交点P 满足∠PF 2F 1=2∠PF 1F 2,则双曲线的离心率e 为________.答案3+1解析 ∵直线y =33(x +c )过左焦点F 1,且其倾斜角为30°,∴∠PF 1F 2=30°,∠PF 2F 1=60°,∴∠F 2PF 1=90°,即F 1P ⊥F 2P .∴|PF 2|=12|F 1F 2|=c ,|PF 1|=|F 1F 2|·sin60°=3c ,由双曲线的定义得2a =|PF 1|-|PF 2|=3c -c ,∴双曲线C 的离心率e =c a =c3c -c2=3+1.16.[2016·广州综合测试]已知函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x <1,x 2-4x +2,x ≥1,则函数g (x )=2|x |f (x )-2的零点个数为________个. 答案 2解析 由g (x )=2|x |f (x )-2=0,得f (x )=21-|x |,画出y =⎩⎪⎨⎪⎧1-|x +1|,x <1,x 2-4x +2,x ≥1与y =21-|x |的图象,可知,它们有2个交点,所以零点个数为2.三、解答题(共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.[2016·河南六市联考](本小题满分12分)如图,在一条海防警戒线上的点A 、B 、C 处各有一个水声监测点,B 、C 两点到A 的距离分别为20千米和50千米,某时刻,B 收到发自静止目标P 的一个声波信号,8秒后A 、C 同时接收到该声波信号,已知声波在水中的传播速度是千米/秒.(1)设A 到P 的距离为x 千米,用x 表示B 、C 到P 的距离,并求x 的值; (2)求P 到海防警戒线AC 的距离.解 (1)依题意,有P A =PC =x ,PB =x -×8=x -12.(2分)在△P AB 中,AB =20,cos ∠P AB =P A 2+AB 2-PB 22P A ·AB =x 2+202-?x -12?22x ·20=3x +325x ,同理,在△P AC 中,AC =50,cos ∠P AC =P A 2+AC 2-PC 22P A ·AC =x 2+502-x 22x ·50=25x .(4分)∵cos ∠P AB =cos ∠P AC ,∴3x +325x =25x, 解得x =31.(6分)(2)作PD ⊥AC 于点D ,在△ADP 中, 由cos ∠P AD =2531,得sin ∠P AD =1-cos 2∠P AD =42131,(9分) ∴PD =P A sin ∠P AD =31×42131=421.故静止目标P 到海防警戒线AC 的距离为421千米.(12分)18.[2016·重庆市一模](本小题满分12分)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种.方案一:每满200元减50元;方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、1个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)(1) (2)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算? 解 (1)记顾客获得半价优惠为事件A ,则P (A )=3×2×14×4×4=332,(2分)两个顾客至少一个人获得半价优惠的概率P =1-P (A )P (A )=1-⎝⎛⎭⎫1-3322=1831024.(4分)(2)若选择方案一,则付款金额为320-50=270元.(6分) 若选择方案二,记付款金额为X 元,则X 可取160,224,256,320. P (X =160)=332,P (X =224)=3×2×3+3×2×1+1×2×14×4×4=1332,P (X =256)=3×2×3+1×2×3+1×2×14×4×4=1332,P (X =320)=1×2×34×4×4=332,(9分)则E (X )=160×332+224×1332+256×1332+320×332=240.∵270>240,∴第二种方案比较划算.(12分)19.[2016·贵州四校联考](本小题满分12分)已知长方形ABCD 中,AB =1,AD = 2.现将长方形沿对角线BD 折起,使AC =a ,得到一个四面体A -BCD ,如图所示.(1)试问:在折叠的过程中,异面直线AB 与CD ,AD 与BC 能否垂直?若能垂直,求出相应的a 值;若不垂直,请说明理由.(2)当四面体A -BCD 体积最大时,求二面角A -CD -B 的余弦值. 解 (1)若AB ⊥CD ,因为AB ⊥AD ,AD ∩CD =D , 所以AB ⊥面ACD ?AB ⊥AC .即AB 2+a 2=BC 2?12+a 2=(2)2?a =1.(2分) 若AD ⊥BC ,因为AD ⊥AB ,AB ∩BC =B , 所以AD ⊥面ABC ?AD ⊥AC ,即AD 2+a 2=CD 2?(2)2+a 2=12?a 2=-1,无解, 故AD ⊥BC 不成立.(4分)(2)要使四面体A -BCD 体积最大,因为△BCD 面积为定值22,所以只需三棱锥A -BCD 的高最大即可,此时面ABD ⊥面BCD .(6分)过A 作AO ⊥BD 于O ,则AO ⊥面BCD , 以O 为原点建立空间直角坐标系Oxyz (如图),则易知A ⎝⎛⎭⎫0,0,63,C ⎝⎛⎭⎫63,33,0,D ⎝⎛⎭⎫0,233,0, 显然,面BCD 的法向量为OA →=⎝⎛⎭⎫0,0,63.(8分)设面ACD 的法向量为n =(x ,y ,z ).因为CD →=⎝⎛⎭⎫-63,33,0,DA →=⎝⎛⎭⎫0,-233,63, 所以⎩⎨⎧6x =3y ,23y =6z .令y =2,得n =(1,2,2),(10分) 故二面角A -CD -B 的余弦值即为 |cos 〈OA →,n 〉|=26363·1+2+4=277.(12分)20.[2016·全国卷Ⅲ](本小题满分12分)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 解 由题知F ⎝⎛⎭⎫12,0.设l 1:y =a ,l 2:y =b ,则ab ≠0, 且A ⎝⎛⎭⎫a 22,a ,B ⎝⎛⎭⎫b 22,b ,P ⎝⎛⎭⎫-12,a ,Q ⎝⎛⎭⎫-12,b , R ⎝⎛ -12,⎭⎫a +b 2. 记过A ,B 两点的直线为l ,则l 的方程为2x -(a +b )y +ab =0.(3分) (1)证明:由于F 在线段AB 上,故1+ab =0. 记AR 的斜率为k 1,FQ 的斜率为k 2,则 k 1=a -b 1+a 2=a -b a 2-ab =1a =-ab a =-b =k 2,所以AR ∥FQ .(5分)(2)设l 与x 轴的交点为D (x 1,0),则S △ABF =12|b -a |·|FD |=12|b -a |⎪⎪⎪⎪x 1-12,S △PQF =|a -b |2. 则题设可得|b -a |⎪⎪⎪⎪x 1-12=|a -b |2,所以x 1=0(舍去)或x 1=1. 设满足条件的AB 的中点为E (x ,y ).当AB 与x 轴不垂直时,由k AB =k DE 可得2a +b =yx -1(x ≠1),而a +b 2=y ,所以y 2=x -1(x ≠1).当AB 与x 轴垂直时,E 与D 重合,此时E 点坐标为(1,0),满足方程y 2=x -1. 所以,所求轨迹方程为y 2=x -1.(12分)21.[2016·湖北八校联考](本小题满分12分)已知函数f (x )=ax -ln x -4(a ∈R ). (1)讨论f (x )的单调性;(2)当a =2时,若存在区间[m ,n ]?⎣⎡⎭⎫12,+∞,使f (x )在[m ,n ]上的值域是⎣⎡⎦⎤k m +1,k n +1,求k 的取值范围.解 (1)函数f (x )的定义域是(0,+∞),f ′(x )=ax -1x ,当a ≤0时,f ′(x )≤0,所以f (x )在(0,+∞)上为减函数,当a >0时,令f ′(x )=0,则x =1a ,当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )<0,f (x )为减函数, 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )>0,f (x )为增函数,(3分)∴当a ≤0时,f (x )在(0,+∞)上为减函数;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上为减函数,在⎝⎛⎭⎫1a ,+∞上为增函数.(4分)(2)当a =2时,f (x )=2x -ln x -4,由(1)知:f (x )在⎝⎛⎭⎫12,+∞上为增函数,而[m ,n ]?⎣⎡⎭⎫12,+∞, ∴f (x )在[m ,n ]上为增函数,结合f (x )在[m ,n ]上的值域是⎣⎡⎦⎤k m +1,k n +1知:f (m )=k m +1,f (n )=k n +1,其中12≤m <n ,则f (x )=kx +1在⎣⎡⎭⎫12,+∞上至少有两个不同的实数根,(6分) 由f (x )=kx +1,得k =2x 2-2x -(x +1)ln x -4,记φ(x )=2x 2-2x -(x +1)ln x -4,x ∈⎣⎡⎭⎫12,+∞,则φ′(x )=4x -1x -ln x -3, 记F (x )=φ′(x )=4x -1x -ln x -3,则F ′(x )=4x 2-x +1x 2=?2x -1?2+3x x 2>0,∴F (x )在⎣⎡⎭⎫12,+∞上为增函数,即φ′(x )在⎣⎡⎭⎫12,+∞上为增函数,而φ′(1)=0, ∴当x ∈⎝⎛⎭⎫12,1时,φ′(x )<0,当x ∈(1,+∞)时,φ′(x )>0, ∴φ(x )在⎝⎛⎭⎫12,1上为减函数,在(1,+∞)上为增函数,(10分)而φ⎝⎛⎭⎫12=3ln 2-92,φ(1)=-4,当x →+∞时,φ(x )→+∞,故结合图象得: φ(1)<k ≤φ⎝⎛⎭⎫12?-4<k ≤3ln 2-92,∴k 的取值范围是⎝⎛⎦⎤-4,3ln 2-92.(12分) 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.[2016·陕西八校联考](本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,已知曲线C 1的方程为x 2+y 2=1,以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,且取相同的单位长度建立极坐标系,已知直线l 的极坐标方程为ρ(2cos θ-sin θ)=6.(1)将曲线C 1上的所有点的横坐标伸长为原来的3倍,纵坐标伸长为原来的2倍后得到曲线C 2,试写出直线l 的直角坐标方程和曲线C 2的参数方程;(2)设P 为曲线C 2上任意一点,求点P 到直线l 的最大距离. 解 (1)由题意知,直线l 的直角坐标方程为2x -y -6=0.(2分) ∵曲线C 2的直角坐标方程为:⎝⎛⎭⎫x 32+⎝⎛⎭⎫y 22=1,即x 23+y 24=1,(4分) ∴曲线C 2的参数方程为⎩⎨⎧x =3cos θ,y =2sin θ(θ为参数).(5分)(2)设点P 的坐标(3cos θ,2sin θ),则点P 到直线l 的距离为d =|23cos θ-2sin θ-6|5=⎪⎪⎪⎪4cos ⎝⎛⎭⎫θ+π6-65,∴当cos ⎝⎛⎭⎫θ+π6=-1时,d max =|4+6|5=2 5.(10分) 23.[2016·南昌一模](本小题满分10分)选修4-5:不等式选讲 设函数f (x )=x -2+11-x 的最大值为M . (1)求实数M 的值;(2)求关于x 的不等式|x -2|+|x +22|≤M 的解集. 解 (1)f (x )=x -2+11-x ≤2?x -2?+?11-x ?2=32,当且仅当x =132时等号成立.故函数f (x )的最大值M =3 2.(5分)(2)由(1)知M =3 2.由绝对值三角不等式可得|x -2|+|x +22|≥|(x -2)-(x +22)|=3 2.所以不等式|x -2|+|x +22|≤32的解集就是方程|x -2|+|x +22|=32的解.(7分) 由绝对值的几何意义,得当且仅当-22≤x ≤2时,|x -2|+|x +22|=32, 所以不等式|x -2|+|x +22|≤M 的解集为 {x |-22≤x ≤2}.(10分)。