材料科学基础习题第四章答案与翻译
- 格式:docx
- 大小:113.54 KB
- 文档页数:17
作业参考答案第1章1. 结点数:7×2+3=17原子个数=1(底面中心)×0.5×2+6×1/6×2+3=1+2+3=6r=a/2配位数=1274.07401.02()660sin2221/[(6343≈=⨯⨯⨯︒⨯⨯⨯=rrrπ致密度2. α-Fe——BCC每个晶胞中有2个原子,质量=55.847×2/(6.02×1023)=18.554×10-23(g)体积=a3=(0.2866×10-7)=2.3541×10-23(cm3)872.7357.2554.18===体积质量ρ或直接用式(1.5)计算。
3.概念:晶面族、晶向族)101()011()110()101()011()110(}110{+++++={123}=(见教材P23)晶向族用上述同样的方法。
4. 晶面指数的倒数=截距如211)102(1)102(,,的截距∞==(102))211()312( [110] ]021[]213[5.晶向指数:]101[和]011[6.7.8. 9. (略,不要求) 10.设晶格常数为a22100a =)面密度(785.048210022==⨯=ππr r )面致密度( 222110a=)面密度(555.02428211022==⨯=ππrr )面致密度(2234321111a r ==)面密度(906.03232111122==⨯=ππr r )面致密度( 11. (略,不要求)12. (略,不要求) 13. 6/2+12/4=614.立方晶系晶面间距计算公式:)011()110()112(]011[]2[]111[222lk h na d ++=① )nm (143.0286.02100121222100=⨯=++=ad)nm (202.0286.021011222110=⨯=++=a d)nm (0764.0286.0141321222123=⨯=++=a d②)nm (1825.0365.02100121222100=⨯=++=ad)nm (2107.0365.031111222111=⨯=++=a d)nm (09125.0365.042121121222112=⨯=++=ad③(略,不要求)15. (略,不要求) 16. (略,不要求)一、 单项选择题。
材料科学基础习题及答案第一章结晶学基础第二章晶体结构与晶体中的缺陷1名词解释:配位数与配位体,同质多晶、类质同晶与多晶转变,位移性转变与重建性转变,晶体场理论与配位场理论。
晶系、晶胞、晶胞参数、空间点阵、米勒指数(晶面指数)、离子晶体的晶格能、原子半径与离子半径、离子极化、正尖晶石与反正尖晶石、反萤石结构、铁电效应、压电效应.答:配位数:晶体结构中与一个离子直接相邻的异号离子数。
配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。
同质多晶:同一化学组成在不同外界条件下(温度、压力、pH值等),结晶成为两种以上不同结构晶体的现象。
多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象。
位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式。
重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。
晶体场理论:认为在晶体结构中,中心阳离子与配位体之间是离子键,不存在电子轨道的重迭,并将配位体作为点电荷来处理的理论。
配位场理论:除了考虑到由配位体所引起的纯静电效应以外,还考虑了共价成键的效应的理论图2-1MgO晶体中不同晶面的氧离子排布示意图2面排列密度的定义为:在平面上球体所占的面积分数。
(a)画出MgO(NaCl型)晶体(111)、(110)和(100)晶面上的原子排布图;(b)计算这三个晶面的面排列密度。
解:MgO晶体中O2-做紧密堆积,Mg2+填充在八面体空隙中。
(a)(111)、(110)和(100)晶面上的氧离子排布情况如图2-1所示。
(b)在面心立方紧密堆积的单位晶胞中,a022r(111)面:面排列密度=2r2/4r23/2/2/230.907(110)面:面排列密度=2r2/4r22r/420.555 222r/40.785(100)面:面排列密度=2r2/3、已知Mg2+半径为0.072nm,O2-半径为0.140nm,计算MgO晶体结构的堆积系数与密度。
材料科学基础习题参考答案 第一章材料结构的基本知识8.计算下列晶体的离于键与共价键的相对比例。
(1) NaF (2) CaO (3) ZnS解:(1)查表得:X Na =0.93,X F =3.98--(0.93-3.98)2根据鲍林公式可得NaF 中离子键比例为:[1-e 4 ]x 100% = 90.2%共价键比例为:1-90.2%=9.8%--(1.00-3.44 )2(2) 同理,CaO 中离子键比例为:[1-e 4 ]x 100% = 77.4%共价键比例为:1-77.4%=22.6%(3) ZnS 中离子键比例为:Z“S 中离子键含量=[1 -£-1/4'2-58-165)2]x 100% = 19.44% 共价键比例为:1-19.44%=80.56%10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关 系。
答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件; 动力学条件决定转变速度的大小,反映转变过程中阻力的大小。
稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是 稳态或亚稳态,取决于转变过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得 到稳态结构,阻力很大时则得到亚稳态结构。
稳态结构能量最低,热力学上最稳定;亚稳态 结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。
但在一定条件下,亚稳态结构向稳态结构转变。
1.第二章九材料中的騒須勾)与[2廊1)与[112], (110)与[111], (132)与[123], (322)与[236]指数。
题: 系的 (21 在立方晶系的一个晶胞虫画出(111丄和丄112、日面.才晶系的画出同M1)、■'朋两晶面交钱亠 1]晶向。
112) d2. 有一正交点阵的a=b, c=a/2o 某晶面在三个晶轴上的截距分别为6个、2个和4个原子 间距,求该晶面的密勒指数。
《材料科学基础》课后习题(西⼯⼤版)第⼀章1. 作图表⽰⽴⽅晶体的()()()421,210,123晶⾯及[][][]346,112,021晶向。
2. 在六⽅晶体中,绘出以下常见晶向[][][][][]0121,0211,0110,0112,0001等。
3. 写出⽴⽅晶体中晶⾯族{100},{110},{111},{112}等所包括的等价晶⾯。
4. 镁的原⼦堆积密度和所有hcp ⾦属⼀样,为0.74。
试求镁单位晶胞的体积。
已知Mg 的密度3Mg/m 74.1=mg ρ,相对原⼦质量为24.31,原⼦半径r=0.161nm 。
5. 当CN=6时+Na 离⼦半径为0.097nm ,试问:1) 当CN=4时,其半径为多少?2) 当CN=8时,其半径为多少?6. 试问:在铜(fcc,a=0.361nm )的<100>⽅向及铁(bcc,a=0.286nm)的<100>⽅向,原⼦的线密度为多少?7. 镍为⾯⼼⽴⽅结构,其原⼦半径为nm 1246.0=Ni r 。
试确定在镍的(100),(110)及(111)平⾯上12mm 中各有多少个原⼦。
8. ⽯英()2SiO 的密度为2.653Mg/m 。
试问:1) 13m 中有多少个硅原⼦(与氧原⼦)?2) 当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原⼦是球形的)?9. 在800℃时1010个原⼦中有⼀个原⼦具有⾜够能量可在固体内移动,⽽在900℃时910个原⼦中则只有⼀个原⼦,试求其激活能(J/原⼦)。
10. 若将⼀块铁加热⾄850℃,然后快速冷却到20℃。
试计算处理前后空位数应增加多少倍(设铁中形成⼀摩尔空位所需要的能量为104600J )。
11. 设图1-18所⽰的⽴⽅晶体的滑移⾯ABCD 平⾏于晶体的上、下底⾯。
若该滑移⾯上有⼀正⽅形位错环,如果位错环的各段分别与滑移⾯各边平⾏,其柏⽒⽮量b ∥AB 。
《材料科学基础》第四章固体中原子即分子的运动1.名词:扩散扩散互扩散扩散系数互扩散系数扩散激活能扩散通量上坡扩散间隙扩散空位扩散原子迁移界面扩散表面扩散柯肯达尔效应反应扩散稳态扩散2.设有一条内径为30mm的厚壁管道,被厚度为0.1mm的铁膜隔开,通过管子的一端向管内输入氮气,以保持膜片一侧氮气浓度为1200mol/m)而另一侧的I气浓度为100 mol/m3,如在700C下测得通过管道的氮气流量为2.8xl0-8mol/s,求此时氮气在铁中的扩散系数。
解:通过管道中铁膜的氮气通量为J = J* ‘°——=4.4x 10 "mol/(m'・s)jx (0.03)2膜片两侧氮浓度梯度为:一萱二'2()()-l()() = U x]0_7m〃〃秫Ax 0.0001据Fick's First Law : J = -D^- n。
= ------------ -- = 4xl0-,,m2Isox Ac / Ax3.有一-硅单晶片,厚0.5mm,其一端面上每10’个硅原子包含两个像原子,另一个端面经处理后含镣的浓度增高。
试求在该面上每个硅原子须包含儿个像原子,才能使浓度梯度成为2xl°26atoms/m3,硅的点阵常数为0.5407nm。
4. 950°C下对纯铁进行渗碳,并希望在0.1mm的深度得到Wi(C)=0.9%的碳含量。
假设表面碳含量保持在IA/2(C)=1.20%,扩散系数为D -Fe=1010m2/s,计算为达到此要求至少要渗碳多少时间。
5.在-•个富碳的环境中对钢进行渗碳,可以硬化钢的表面。
己知在1000°C下进行这种渗碳热处理,距离钢的表面l-2mm处,碳含量从x= 5%减到x=4%。
估计在近表面区域进入钢的碳原子的流人量J (atoms/m2s)o (y・Fe在1000°C的密度为7.63g/cm',碳在y-Fe • | •的扩散系数D o=2.0xl0'5m2/s,激活能Q= 142kJ/mol)o£> = 2X10-11 折公8.为什么钢铁零件渗碳温度般要选择在Y ・Fe 相区中进行?若不在Y 相区进6.有两种激活能分别为Qi = 83.7kJ/mol 和Q2 = 251kJ/mol 的扩散反应。
4.2 根据本章给出的结构,画出下列链节结构:(1)聚氟乙烯:—CH2—CHF—;(2)聚三氟氯乙烯:—CF2—CFCl—(3)聚乙烯醇:—CH2—CHOH—4.3 计算下列聚合物的链节分子量(1)聚氯乙烯:—CH2—CHCl— : m = 2⨯12.011+2⨯1.008+35.453=61.491g/mol (2)聚对苯二甲酸乙二醇酯:—OCH2-CH2OCOC6H4CO—m = 10⨯12.011+8⨯1.008+4⨯15.999=192.17g/mol(3)聚碳酸酯:m = 16⨯12.011+14⨯1.008+3⨯15.999=254.285g/mol (4)聚二甲硅氧烷:C2H6OSim = 28.086+2⨯12.011+6⨯1.008+3⨯15.999 = 106.153g/mol 4.4 聚丙烯的数均分子量为1,000,000 g/mol,计算其数均聚合度。
答:链节为—CH3CH—CH2—,其分子量:m = 3⨯12.011+6⨯1.008=42.081 g/mol4.5 (a) 计算聚苯乙烯链节的分子量答:链节为-CHC6H5-CH2-,分子量:m = 8⨯12.011+8⨯1.008=104.152(b) 计算重均聚合度为25000的聚苯乙烯的重均分子量答:= 25000⨯104.152 g/mol = 2603800 g/mol4.6 下表列出了聚丙烯的分子量,计算(a) 数均分子量(b) 重均分子量(c) 数均聚合度(d) 重均聚合度分子量分布x i w i(g/mol)8,000-16,000 0.05 0.0216,000-24,000 0.16 0.1024,000-32,000 0.24 0.2032,000-40,000 0.28 0.3040,000-48,000 0.20 0.2748,000-56,000 0.07 0.21答:(a)= 0.05⨯12000+0.16⨯20000+0.24⨯28000+0.28⨯36000+0.20⨯44000+0.07⨯52000 = 600+3200+6720+10080+8800+3640 = 33040 (g/mol)(b)= 0.02⨯12000+0.1⨯20000+0.20⨯28000+0.30⨯36000+0.27⨯44000+0.21⨯52000 = 240+2000+5600+10800+11880+10920 = 41440 (g/mol)(c)聚丙烯链节的分子量:m = 42.081 g/mol(d)4.7 下表列出了某聚合物的分子量分布。
第二章答案2-1略。
2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321);(2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。
2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[]答:2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些?答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么?答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙?答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。
2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。
不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。
2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
答:面心立方格子的单位平行六面体上所有结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1)。
根据本章给出的结构,画出下列链节结构:(1)聚氟乙烯:—CH2—CHF—;(2)聚三氟氯乙烯:—CF2—CFCl—(3)聚乙烯醇:—CH2—CHOH—计算下列聚合物的链节分子量(1)聚氯乙烯:—CH2—CHCl— : m = 2+2+=mol(2)聚对苯二甲酸乙二醇酯:—OCH2-CH2OCOC6H4CO—m = 10+8+4=mol(3)聚碳酸酯:m = 16+14+3=mol(4)聚二甲硅氧烷:C2H6OSim = +2+6+3 = mol聚丙烯的数均分子量为1,000,000 g/mol,计算其数均聚合度。
答:链节为—CH3CH—CH2—,其分子量:m = 3+6= g/mol(a) 计算聚苯乙烯链节的分子量答:链节为CHC6H5CH2,分子量:m = 8+8=(b) 计算重均聚合度为25000的聚苯乙烯的重均分子量答:= 25000 g/mol = 2603800 g/mol下表列出了聚丙烯的分子量,计算(a) 数均分子量(b) 重均分子量(c) 数均聚合度(d) 重均聚合度x i w i 分子量分布(g/mol)8,00016,00016,00024,00024,00032,00032,00040,00040,00048,00048,00056,000答:(a)= 12000+20000+28000+36000+44000+52000 = 600+3200+6720+10080+8800+3640 = 33040 (g/mol)(b)= 12000+20000+28000+36000+44000+52000 = 240+2000+5600+10800+11880+10920 = 41440 (g/mol)(c)聚丙烯链节的分子量:m = g/mol(d)下表列出了某聚合物的分子量分布。
计算(a) 数均分子量(b) 重均分子量(c) 如果已知这一聚合物的重均聚合度为780,指出此聚合物为表所列聚合物中的哪一个为什么(d) 这一材料的数均聚合度为多少分子量分布(g/mol)x i w i15,00030,00030,00045,00045,00060,00060,00075,00075,00090,00090,000105,000105,000120,000120,000135,000答:(a)= 22500+37500+52500+67500+82500+97500+112500+127500 = 900+2625+8400+17550+19800+11700+9000+3825 = 73800 (g/mol)(b)= 22500+37500+52500+67500+82500+97500+112500+127500 = 225+1500+5775+16200+22275+15600+13500+ 6375 = 81450 (g/mol)(c)此聚合物为聚苯乙烯根据下面的分子量分布和重均聚合度为585的条件,判断是否为聚甲基丙烯酸甲酯均聚物分子量分布(g/mol)x i w i8,00020,00020,00032,00032,00044,00044,00056,00056,00068,00068,00080,00080,00092,000答:聚甲基丙烯酸甲酯链节分子式为:C5H8O2(—CH2CH3COOCH3C—);其分子量m = 5+8+2=mol重均分子量为:=14000+26000+38000+50000+62000+74000+86000=140+1300+4560+12500+16740+15540+7740=58520与条件相符,能形成均聚物高密度聚乙烯通过诱导氯原子随机取代氢而被氯化。
第二章思考题与例题1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因?2. 从结构、性能等方面描述晶体与非晶体的区别。
3. 何谓理想晶体?何谓单晶、多晶、晶粒及亚晶?为什么单晶体成各向异性而多晶体一般情况下不显示各向异性?何谓空间点阵、晶体结构及晶胞?晶胞有哪些重要的特征参数?4. 比较三种典型晶体结构的特征。
(Al、α-Fe、Mg三种材料属何种晶体结构?描述它们的晶体结构特征并比较它们塑性的好坏并解释。
)何谓配位数?何谓致密度?金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同?5. 固溶体和中间相的类型、特点和性能。
何谓间隙固溶体?它与间隙相、间隙化合物之间有何区别?(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么?6. 已知Cu的原子直径为 2.56A,求Cu的晶格常数,并计算1mm3Cu的原子数。
7. 已知Al相对原子质量Ar(Al)=26.97,原子半径γ=0.143nm,求Al晶体的密度。
8 bcc铁的单位晶胞体积,在912℃时是0.02464nm3;fcc铁在相同温度时其单位晶胞体积是0.0486nm3。
当铁由bcc转变为fcc时,其密度改变的百分比为多少?9. 何谓金属化合物?常见金属化合物有几类?影响它们形成和结构的主要因素是什么?其性能如何?10. 在面心立方晶胞中画出[012]和[123]晶向。
在面心立方晶胞中画出(012)和(123)晶面。
11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。
反之,求(31)及(2112)的正交坐标的表示。
(练习),上题中均改为相应晶向指数,求12相互转换后结果。
12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。
13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。
第一章1. 作图表示立方晶体的晶面及晶向。
2. 在六方晶体中,绘出以下常见晶向等。
3. 写出立方晶体中晶面族{100},{110},{111},{112}等所包括的等价晶面。
4. 镁的原子堆积密度和所有hcp 金属一样,为0.74。
试求镁单位晶胞的体积。
已知Mg 的密度,相对原子质量为24.31,原子半径r=0.161nm 。
5. 当CN=6时离子半径为0.097nm ,试问:1) 当CN=4时,其半径为多少? 2) 当CN=8时,其半径为多少?6. 试问:在铜(fcc,a=0.361nm )的<100>方向及铁(bcc,a=0.286nm)的<100>方向,原子的线密度为多少? 7. 镍为面心立方结构,其原子半径为。
试确定在镍的(100),(110)及(111)平面上1中各有多少个原子。
8. 石英的密度为2.65。
试问:1) 1中有多少个硅原子(与氧原子)?2) 当硅与氧的半径分别为0.038nm 与0.114nm 时,其堆积密度为多少(假设原子是球形的)?9. 在800℃时个原子中有一个原子具有足够能量可在固体内移动,而在900℃时个原子中则只有一个原子,试求其激活能(J/原子)。
10. 若将一块铁加热至850℃,然后快速冷却到20℃。
试计算处理前后空位数应增加多少倍(设铁中形成一摩尔空位所需要的能量为104600J )。
()()()421,210,123[][][]346,112,021[][][][][]0121,0211,0110,0112,00013Mg/m 74.1=mg ρ+Na nm1246.0=Ni r 2mm ()2SiO 3Mg/m 3m 101091011. 设图1-18所示的立方晶体的滑移面ABCD 平行于晶体的上、下底面。
若该滑移面上有一正方形位错环,如果位错环的各段分别与滑移面各边平行,其柏氏矢量b ∥AB 。
1) 有人认为“此位错环运动移出晶体后,滑移面上产生的滑移台阶应为4个b ,试问这种看法是否正确?为什么?2) 指出位错环上各段位错线的类型,并画出位错运动出晶体后,滑移方向及滑移量。
第一章材料的结构一、解释以下基本概念空间点阵、品格、品胞、配位数、致密度、共价键、离子键、金属键、组元、合金、相、固溶体、中间相、间隙固溶体、置换固溶体、固溶强化、第二相强化。
二、填空题1、材料的键合方式有四类,分别是(),(),(),()。
2、金属原子的特点是最外层电子数(),且与原子核引力(),因此这些电子极容易脱离原子核的束缚而变成()。
3、我们把原子在物质内部呈()排列的固体物质称为品体,品体物质具有以下三个特点,分别是(),(),()。
4、三种常见的金属品格分别为(),()和()。
5、体心立方品格中,品胞原子数为(),原子半径与品格常数的关系为(),配位数是(),致密度是(),密排品向为(),密排品面为(),品胞中八面体间隙个数为(),四面体间隙个数为(),具有体心立方晶格的常见金属有()。
6、面心立方晶格中,品胞原子数为(),原子半径与品格常数的关系为(),配位数是(),致密度是(),密排品向为(),密排品面为(),品胞中八面体间隙个数为(),四面体间隙个数为(),具有面心立方品格的常见金属有()。
7、密排六方品格中,品胞原子数为(),原子半径与品格常数的关系为(),配位数是(),致密度是(),密排品向为(),密排品面为(),具有密排六方品格的常见金属有()。
8、合金的相结构分为两大类,分别是()和()。
9、固溶体按照溶质原子在品格中所占的位置分为()和(),按照固溶度分为()和(),按照溶质原子与溶剂原子相对分布分为()和()。
10、影响固溶体结构形式和溶解度的因素主要有()、()11、金属化合物(中间相)分为以下四类,分别是(),(),(),()。
12、金属化合物(中间相)的性能特点是:熔点()、硬度()、脆性(),因此在合金中不作为()相,而是少量存在起到第二相()作用。
13、C uZn、Cu5Zn8x Cu3Sn 的电子浓度分别为(),(),()。
14、如果H M表示金属,用X表示非金属,间隙相的分子式可以写成如下四种形式,分别是(), (),(),()<,15、F e,C的铁、碳原子比为(),碳的重量百分数为(),它是()的主要强化相。
第一章原子结构与键合1. 主量子数n、轨道角动量量子数l i、磁量子数m i和自旋角动量量子数S i。
2. 能量最低原理、Pauli不相容原理,Hund规则。
3. 同一周期元素具有相同原子核外电子层数,但从左→右,核电荷依次增多,原子半径逐渐减小,电离能增加,失电子能力降低,得电子能力增加,金属性减弱,非金属性增强;同一主族元素核外电子数相同,但从上→下,电子层数增多,原子半径增大,电离能降低,失电子能力增加,得电子能力降低,金属性增加,非金属性降低;4. 在元素周期表中占据同一位置,尽管它们的质量不同,然它们的化学性质相同的物质称为同位素。
由于各同位素的含中子量不同(质子数相同),故具有不同含量同位素的元素总的相对原子质量不为正整数。
5. 52.0576. 73% (Cu63); 27% (Cu65)8. a:高分子材料;b:金属材料;c:离子晶体10.a) Al2O3的相对分子质量为M=26.98×2+16×3=101.961mm3中所含原子数为1.12*1020(个)b) 1g中所含原子数为2.95*1022(个)11. 由于HF分子间结合力是氢键,而HCl分子间结合力是范德化力,氢键的键能高于范德化力的键能,故此HF的沸点要比HCl的高。
第2章固体结构1.每单位晶胞内20个原子2.CsCl型结构系离子晶体结构中最简单一种,属立方晶系,简单立方点阵,Pm3m空间群,离子半径之比为0.167/0.181=0.92265,其晶体结构如图2-13所示。
从图中可知,在<111> 方向离子相接处,<100>方向不接触。
每个晶胞有一个Cs+和一个Cl-,的配位数均为8。
3.金刚石的晶体结构为复杂的面心立方结构,每个晶胞共含有8个碳原子。
金刚石的密度(g/cm3)对于1g碳,当它为金刚石结构时的体积(cm3)当它为石墨结构时的体积(cm3)故由金刚石转变为石墨结构时其体积膨胀4.]101[方向上的线密度为1.6. 晶面族{123}=(123)+(132)+(213)+(231)+(321)+(312)+)231(+)321(+)132(+)312(+)213(+)123(+)321(+)231(+)312(+)132(+)123(+)213(+)312(+)213(+)321(+)123(+)132(+)231(晶向族﹤221﹥=[221]+[212]+[122]+]212[+]122[+]221[+]122[+]212[+]221[+]122[+]221[+]212[7. 晶带轴[uvw]与该晶带的晶面(hkl)之间存在以下关系:hu+kv+lw=0;将晶带轴[001]代入,则h×0+k×0+l×1=0;当l=0时对任何h,k取值均能满足上式,故晶带轴[001]的所有晶带面的晶面指数一般形式为(hk0)。
材料科学基础答案(精⼼整理)第1章晶体结构1.在⽴⽅晶系中,⼀晶⾯在x轴的截距为1,在y轴的截距为1/2,且平⾏于z 轴,⼀晶向上某点坐标为x=1/2,y=0,z=1,求出其晶⾯指数和晶向指数,并绘图⽰之。
2.画出⽴⽅晶系中下列晶⾯和晶向:(010),(011),(111),(231),(321),[010], [011],[111],[231],[321]。
3.纯铝晶体为⾯⼼⽴⽅点阵,已知铝的相对原⼦质量Ar(Al)=27,原⼦半径r=0.143nm,求铝晶体的密度。
4.何谓晶体?晶体与⾮晶体有何区别?5.试举例说明:晶体结构与空间点阵?单位空间格⼦与空间点阵的关系?6.什么叫离⼦极化?极化对晶体结构有什么影响?7.何谓配位数(离⼦晶体/单质)?8.何谓对称操作,对称要素?9.计算⾯⼼⽴⽅结构(111)与(100)晶⾯的⾯间距及原⼦密度(原⼦个数/单位⾯积)。
10.已知室温下α-Fe(体⼼)的点阵常数为0.286nm,分别求(100)、(110)、(123)的晶⾯间距。
11.已知室温下γ-Fe(⾯⼼)的点阵常数为0.365nm,分别求(100)、(110)、(112)的晶⾯间距。
12.已知Cs+半径为0.170nm,Cl-半径为0.181 nm,计算堆积系数。
13.MgO 属NaCl型结构,若rMg 2+=0.078nm,rO2-=0.132nm,(1)试⽤鲍林规则分析氧化镁晶体结构?(2)计算堆积密度?(3)画出氧化镁在(100)、(110)、(111)晶⾯上的结点和离⼦排布图?答案1.答:晶⾯指数为:(120),见图ABCD ⾯;晶向指数为:[102],见图OP 向。
2.答:3. 4. 5.6. 答:离⼦极化:在离⼦紧密堆积时,带电荷的离⼦所产⽣的电场必然要对另⼀离⼦的电⼦云发⽣作⽤(吸引或排斥),因⽽使这个离⼦的⼤⼩和形状发⽣了改变,这种现象叫离⼦极化。
极化会对晶体结构产⽣显著影响,主要表现为极化会导致离⼦间距离缩短,离⼦配位数降低,同时变形的电⼦云相互重叠,使键性由离⼦键向共价键过渡,最终使晶体结构类型发⽣变化。
第四章答案4-1略。
4-2试简述硅酸盐熔体聚合物结构形成的过程和结构特点。
解:聚合物的形成是以硅氧四面体为基础单位,组成大小不同的聚合体。
可分为三个阶段:初期:石英的分化,架状[SiO4]断裂,在熔体中形成了各种聚合程度的聚合物。
中期:缩聚并伴随变形一般链状聚合物易发生围绕Si-O轴转动同时弯曲,层状聚合物使层本身发生褶皱、翘曲、架状聚合物热缺陷增多,同时Si-O-Si键角发生变化。
[SiO4]Na4+[Si2O7]Na6——[Si3O10]Na8+Na2O(短键)3[Si3O10]Na8——[Si6O18]Na12+2Na2O(六节环)后期:在一定时间和温度范围内,聚合和解聚达到平衡。
缩聚释放的Na2O又能进一步侵蚀石英骨架而使其分化出低聚物,如此循环,直到体系达到分化-缩聚平衡为止。
4-3试用实验方法鉴别晶体SiO2、SiO2玻璃、硅胶和SiO2熔体。
它们的结构有什么不同?解:利用X射线检测。
晶体SiO2——质点在三维空间做有规律的排列,各向异性。
SiO2熔体——内部结构为架状,近程有序,远程无序。
SiO2玻璃——各向同性。
硅胶——疏松多孔。
4-4影响熔体粘度的因素有哪些?试分析一价碱金属氧化物降低硅酸盐熔体粘度的原因。
解:(1)影响熔体粘度的主要因素:温度和熔体的组成。
碱性氧化物含量增加,剧烈降低粘度。
随温度降低,熔体粘度按指数关系递增。
(2)通常碱金属氧化物(Li2O、Na2O、K2O、Rb2O、Cs2O)能降低熔体粘度。
这些正离子由于电荷少、半径大、和O2-的作用力较小,提供了系统中的“自由氧”而使O/Si比值增加,导致原来硅氧负离子团解聚成较简单的结构单位,因而使活化能减低、粘度变小。
4-5熔体粘度在727℃时是107Pa·s,在1156℃时是103Pa·s,在什么温度下它是106Pa·s?解:根据727℃时,η=107Pa·s,由公式得:(1)1156℃时,η=103Pa·s,由公式得:(2)联立(1),(2)式解得∴A=-6.32,B=13324当η=106Pa·s时,解得t=808.5℃。
第四章 非晶态结构与性质-习题答案4.2 解:聚合物的形成是以硅氧四面体为基础单位,组成大小不同的聚合体。
可分为三个阶段。
初期:石英的分化;中期:缩聚并伴随变形;后期:在一定时间和一定温度下,聚合和解聚达到平衡。
4.5解:影响熔体粘度的主要因素:温度和熔体的组成。
碱性氧化物含量增加,剧烈降低粘度。
随温度降低,熔体粘度按指数关系递增。
4.6.解:根据弗伦克尔公式lgη=A+B/T ,结合有关数据,即727℃时,η=107Pa ·s ,1156℃时,η=103Pa ·s ,得出:7lg10727273B A =++ 3l g 101156273B A =++∴A=–6.324,B=13324,当η=106Pa ·s 时,613324lg10 6.324273t =-++,则t=808℃。
4.9.解:根据lgη=A+B/(T-T 0),对于1号熔体,带入数据A=1.631,B=4229,T 0=219;对于2号熔体,带入数据A=1.769,B=4690,T 0=216;去下表中的数据点:由上述数据点画出两种熔体的粘性曲线:4567891011l g η1/T(×10-3K -1)4.14 解:(1)影响玻璃形成的动力学因素:析晶过程必须克服一定的势垒,如果这些势垒较大,尤其当熔体的冷却速率很快时,粘度剧烈增加,质点来不及进行有规则排列,晶核形成和晶体长大均难以实现,从而有利于玻璃的形成。
因此,玻璃形成的关键的熔体的冷却速率,影响玻璃形成的动力学因素还有过冷度、粘度、成核速率、晶体生长速率。
(2)影响玻璃形成的结晶化学因素有聚合阴离子团大小与排列方式、键强、键型。
熔体中负离子团的聚合程度越低,越不易形成玻璃,聚合程度越高,特别当具有三维网络或歪扭链状结构时,越易形成玻璃。
氧化物的键强越大,结晶的倾向越小,越容易形成玻璃。
具有离子键或金属键向共价键过度的混合键型才能生成玻璃。
4.16.解:对1#玻璃:2232010110Na O CaO Al O ++=>,Al 3+为网络形成离子 12010103602 2.2510260R ++⨯+⨯==⨯+ Z 1=4 11120.5X R Z =-=11122 3.5Y Z R =-=对2#玻璃:22310120Na O Al O =<,Al 3+为网络变性离子。
第一章 原子排列与晶体结构1. [110], (111), ABCABC…, 0.74 , 12 , 4 ,a r 42=; [111], (110) , 0.68 , 8 , 2 , a r 43= ; ]0211[, (0001) , ABAB , 0.74 , 12 , 6 , 2a r =。
2.0.01659nm 3 , 4 , 8 。
3.FCC , BCC ,减少 ,降低 ,膨胀 ,收缩 。
4. 解答:见图1-1 5. 解答:设所决定的晶面为(hkl ),晶面指数与面上的直线[uvw]之间有hu+kv+lw=0,故有:h+k-l=0,2h-l=0。
可以求得(hkl )=(112)。
6 解答:Pb 为fcc 结构,原子半径R 与点阵常数a 的关系为a r 42=,故可求得a =0.4949×10-6mm 。
则(100)平面的面积S =a 2=0.244926011×0-12mm 2,每个(100)面上的原子个数为2。
所以1 mm 2上的原子个数s n 1==4.08×1012。
第二章 合金相结构一、 填空1) 提高,降低,变差,变大。
2) (1)晶体结构;(2)元素之间电负性差;(3)电子浓度 ;(4)元素之间尺寸差别3) 存在溶质原子偏聚 和短程有序 。
4) 置换固溶体 和间隙固溶体 。
5) 提高 ,降低 ,降低 。
6) 溶质原子溶入点阵原子溶入溶剂点阵间隙中形成的固溶体,非金属原子与金属原子半径的比值大于0.59时形成的复杂结构的化合物。
二、 问答1、 解答: α-Fe 为bcc 结构,致密度虽然较小,但是它的间隙数目多且分散,间隙半径很小,四面体间隙半径为0.291Ra ,即R =0.0361nm ,八面体间隙半径为0.154Ra ,即R =0.0191nm 。
氢,氮,碳,硼由于与α-Fe 的尺寸差别较大,在α-Fe 中形成间隙固溶体,固溶度很小。
材料科学基础课后习题第1-第4章《材料科学基础》课后习题答案第一章材料结构的基本知识4. 简述一次键和二次键区别答:根据结合力的强弱可把结合键分成一次键和二次键两大类。
其中一次键的结合力较强,包括离子键、共价键和金属键。
一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。
二次键的结合力较弱,包括范德瓦耳斯键和氢键。
二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。
6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高?答:材料的密度与结合键类型有关。
一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。
相反,对于离子键或共价键结合的材料,原子排列不可能很致密。
共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。
9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。
答:单相组织,顾名思义是具有单一相的组织。
即所有晶粒的化学组成相同,晶体结构也相同。
两相组织是指具有两相的组织。
单相组织特征的主要有晶粒尺寸及形状。
晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。
单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。
等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。
对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。
如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。
如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。
《材料科学基础》第四章习题-CAL-FENGHAI.-(YICAI)-Company One1《材料科学基础》第四章 固体中原子即分子的运动1.名词:扩散 自扩散 互扩散 扩散系数 互扩散系数 扩散激活能 扩散通量 上坡扩散 间隙扩散 空位扩散 原子迁移 界面扩散 表面扩散 柯肯达尔效应 反应扩散 稳态扩散2. 设有一条内径为30mm 的厚壁管道,被厚度为的铁膜隔开,通过管子的一端向管内输入氮气,以保持膜片一侧氮气浓度为1200mol/m 3,而另一侧的氮气浓度为100 mol/m 3,如在700℃下测得通过管道的氮气流量为×10-8mol/s ,求此时氮气在铁中的扩散系数。
解:通过管道中铁膜的氮气通量为 )/(104.4)03.0(4108.22424s m mol J ⋅⨯=⨯⨯=--π膜片两侧氮浓度梯度为:m mol x c /101.10001.010012007-⨯=-=∆∆- 据Fick ’s First Law : s m xc J D x c D J /104/211-⨯=∆∆-=⇒∂∂-=3. 有一硅单晶片,厚,其一端面上每107个硅原子包含两个镓原子,另一个端面经处理后含镓的浓度增高。
试求在该面上每107个硅原子须包含几个镓原子,才能使浓度梯度成为2×1026 atoms/m 3,硅的点阵常数为。
4. 950℃下对纯铁进行渗碳,并希望在的深度得到w 1(C)=%的碳含量。
假设表面碳含量保持在w 2(C)=%,扩散系数 为D ɤ−Fe=10-10m 2/s ,计算为达到此要求至少要渗碳多少时间。
5. 在一个富碳的环境中对钢进行渗碳,可以硬化钢的表面。
已知在1000℃下进行这种渗碳热处理,距离钢的表面1-2mm 处,碳含量从x = 5%减到x =4%。
估计在近表面区域进入钢的碳原子的流人量J (atoms/m 2s )。
(γ-Fe 在1000℃的密度为cm 3,碳在γ-Fe 中的扩散系数D o =×10-5 m 2/s ,激活能Q =142kJ/mol)。
4.2 根据本章给出的结构,画出下列链节结构:(1)聚氟乙烯:—CH2—CHF—;(2)聚三氟氯乙烯:—CF2—CFCl—(3)聚乙烯醇:—CH2—CHOH—4.3 计算下列聚合物的链节分子量(1)聚氯乙烯:—CH2—CHCl— : m = 2⨯12.011+2⨯1.008+35.453=61.491g/mol (2)聚对苯二甲酸乙二醇酯:—OCH2-CH2OCOC6H4CO—m = 10⨯12.011+8⨯1.008+4⨯15.999=192.17g/mol(3)聚碳酸酯:m = 16⨯12.011+14⨯1.008+3⨯15.999=254.285g/mol (4)聚二甲硅氧烷:C2H6OSim = 28.086+2⨯12.011+6⨯1.008+3⨯15.999 = 106.153g/mol 4.4 聚丙烯的数均分子量为1,000,000 g/mol,计算其数均聚合度。
答:链节为—CH3CH—CH2—,其分子量:m = 3⨯12.011+6⨯1.008=42.081 g/mol4.5 (a) 计算聚苯乙烯链节的分子量答:链节为-CHC6H5-CH2-,分子量:m = 8⨯12.011+8⨯1.008=104.152(b) 计算重均聚合度为25000的聚苯乙烯的重均分子量答:= 25000⨯104.152 g/mol = 2603800 g/mol4.6 下表列出了聚丙烯的分子量,计算(a) 数均分子量(b) 重均分子量(c) 数均聚合度(d) 重均聚合度分子量分布x i w i(g/mol)8,000-16,000 0.05 0.0216,000-24,000 0.16 0.1024,000-32,000 0.24 0.2032,000-40,000 0.28 0.3040,000-48,000 0.20 0.2748,000-56,000 0.07 0.21答:(a)= 0.05⨯12000+0.16⨯20000+0.24⨯28000+0.28⨯36000+0.20⨯44000+0.07⨯52000 = 600+3200+6720+10080+8800+3640 = 33040 (g/mol)(b)= 0.02⨯12000+0.1⨯20000+0.20⨯28000+0.30⨯36000+0.27⨯44000+0.21⨯52000 = 240+2000+5600+10800+11880+10920 = 41440 (g/mol)(c)聚丙烯链节的分子量:m = 42.081 g/mol(d)4.7 下表列出了某聚合物的分子量分布。
计算(a) 数均分子量(b) 重均分子量(c) 如果已知这一聚合物的重均聚合度为780,指出此聚合物为表4.3所列聚合物中的哪一个?为什么?(d) 这一材料的数均聚合度为多少?分子量分布(g/mol) x i w i15,000-30,000 0.04 0.0130,000-45,000 0.07 0.0445,000-60,000 0.16 0.1160,000-75,000 0.26 0.2475,000-90,000 0.24 0.2790,000-105,000 0.12 0.16105,000-120,000 0.08 0.12120,000-135,000 0.03 0.05答:(a)= 0.04⨯22500+0.07⨯37500+0.16⨯52500+0.26⨯67500+0.24⨯82500+0.12⨯97500+0.08⨯112500+0.03⨯127500 = 900+2625+8400+17550+19800+11700+9000+3825 = 73800 (g/mol)(b)= 0.01⨯22500+0.04⨯37500+0.11⨯52500+0.24⨯67500+0.27⨯82500+0.16⨯97500+0.12⨯112500+0.05⨯127500 = 225+1500+5775+16200+22275+15600+13500+ 6375 = 81450 (g/mol)(c)此聚合物为聚苯乙烯4.8 根据下面的分子量分布和重均聚合度为585的条件,判断是否为聚甲基丙烯酸甲酯均聚物分子量分布(g/mol) x i w i8,000-20,000 0.04 0.0120,000-32,000 0.1 0.0532,000-44,000 0.16 0.1244,000-56,000 0.26 0.2556,000-68,000 0.23 0.2768,000-80,000 0.15 0.2180,000-92,000 0.06 0.09答:聚甲基丙烯酸甲酯链节分子式为:C5H8O2(—CH2CH3COOCH3C—);其分子量m = 5⨯12.011+8⨯1.008+2⨯15.999=100.117g/mol重均分子量为:=0.01⨯14000+0.05⨯26000+0.12⨯38000+0.25⨯50000+0.27⨯62000+0.21⨯74000+0.09⨯86000=140+1300+4560+12500+16740+15540+7740=58520与条件相符,能形成均聚物4.9 高密度聚乙烯通过诱导氯原子随机取代氢而被氯化。
(a) 确定取代5%的原始氢原子所需Cl (wt%) 的浓度(b)如何区别于传统的聚氯乙烯的制备过程而得到氯化的聚乙烯?答:(a) 聚乙烯链节为:—CH2CH2—;一个链节含有4个氢,现氯取代其中5%的氢,则被氯取代5%氢的链节的分子量为:m = 2⨯12.011+4⨯0.95⨯1.008+4⨯0.05⨯35.453=24.022+3.8304+7.0906 = 34.943g/mol其中氯占重量百分数为:4⨯0.05⨯35.453/34.943 = 20.3 wt%(b) 聚氯乙烯是聚乙烯的改性产品。
PVC树脂经过氯化后,分子链排列的不规则性增加,极性增加,使树脂的溶解性增大,化学稳定性增加,从而提高了材料的耐热性及耐酸、碱、盐、氧化剂等的腐蚀的性能。
CPVC是一种应用前景广阔的新型工程塑料。
在富含氯的氯仿和四氯化碳为溶剂,溶解PVC后进行氯化反应。
…..4.10 关于聚合物链,configuration(构型)和conformation (构象)间的区别是什么?Conformation is the spatial arrangement of atoms in a molecules that can come about through free rotation of atoms about a single chemical bond. It can be changed without breaking bonds. Example rotation about single bonds produce the cis-trans, and E-Z conformations, especially of organic molecules.由于分子中的某个原子(或原子基团)绕C-C单键自由旋转而形成的不同的暂时性的易变的空间结构形式,不同的构象之间可以相互转变,在各种构象形式中,势能最低,最稳定的构象是优势构象。
On the contrary, configuration is permanent geometry(各个原子特有的固定的空间排列). It refers to spatial arrangement of bonds and can bechanged only by breaking bonds. Example: L- & D and R- &S-configurations of organic molecules can only be changed by breaking one or more bonds connecting the chiral atom.4.11 对于一个线型聚合物分子,其总链长L依赖于链原子间的键长d、分子中的总键数N和骨架链中邻近原子间的键角θ,其关系如下:而且,一系列聚合物分子的平均末端距r为:,线型聚四氟乙烯的数均分子量为500,000g/mol;计算这一材料的平均L和r值。
答:PTFE的链节为:—CF2CF2—,链节的分子量为:m = 2⨯12.011+4⨯18.998 = 100.014 g/mol聚合物的数均聚合度为:每个链节包含有2个C原子,因此有2个C—C单键,聚合物中总键数N = 5000⨯2 = 10000。
C—C单键键长:d = 0.154 nm,键角:θ = 109︒,则聚合物链总长及末端距各为:4.12 利用聚合物链分子总长度L及链平均末端距r的定义,关于线型聚乙烯(a) 确定L=2500 nm时的数均分子量;(b) 确定r = 20 nm 时的数均分子量答:(a) PE的链节为:—CH2CH2—,d=0.154 nm,键角:θ = 109︒由关系式得出:每个链节包含2个C原子,2个C-C单键,∴聚合物的聚合度为:19940/2= 9970聚乙烯链节的分子量m = 2⨯12.011+4⨯1.008 = 28.054 g/mol:数均分子量= 9970⨯28.054 = 279698 g/mol(b) 由关系式得出:对应的聚合度为: 16866/2=8433,数均分子量= 8433⨯28.054 = 236579 g/mol4.13 (a) 根据加热后的力学特性及(b) 可能的分子结构比较热塑性和热固性聚合物答:热塑性聚合物在一定温度范围内,能反复加热软化和冷却硬化的性能,线型或支链型聚合物具有这种性能,很容易进行挤出,注射或吹塑等成型加工。
热固性聚合物加热后产生化学变化,逐渐硬化成型,反应不可逆,再加热也不软化,也不能溶解。
热固性聚合物其分子结构为体型,它包括大部分的缩合树脂,其优点是耐热性高,受压不易变形,其缺点是机械性能较差。
4.14 聚酯有些是热塑性有些是热固性。
指出其中的原因之一。
答:聚酯是由多元醇和多元酸缩聚而得,并在大分子主链的重复单元中含有结构的高聚物的统称。
如果由饱和的直链结构的多元羧酸和多元醇通过缩聚反应可制得线型聚合物,柔韧性好,如果采用苯环的多元酸与多元醇反应,合成得到含有苯环结构的树脂,苯环的刚性特征赋予树脂以硬度,而苯环的稳定的结构特征赋予树脂以耐化学性。
如果由不饱和多元羧酸与多元醇缩聚,则得到的聚合物在加热时可发生交联,成为热固性聚合物。
4.15 (a) 能否粉碎和再利用酚醛树脂?说明相应原因。
(b) 能否粉碎再利用聚丙烯,说明相应原因。