基于小波去噪matlab程序示例
- 格式:rtf
- 大小:49.19 KB
- 文档页数:3
小波图像去噪及matlab实例图像去噪图像去噪是信号处理的一个经典问题,传统的去噪方法多采用平均或线性方法进行,常用的是维纳滤波,但是去噪效果不太好(维纳滤波在图像复原中的作用)。
小波去噪随着小波理论的日益完善,其以自身良好的时频特性在图像去噪领域受到越来越多的关注,开辟了用非线性方法去噪的先河。
具体来说,小波能够去噪主要得益于小波变换有如下特点:(1)低熵性。
小波系数的稀疏分布,使图像变换后的熵降低。
意思是对信号(即图像)进行分解后,有更多小波基系数趋于0(噪声),而信号主要部分多集中于某些小波基,采用阈值去噪可以更好的保留原始信号。
(2)多分辨率特性。
由于采用了多分辨方法,所以可以非常好地刻画信号的非平稳性,如突变和断点等(例如0-1突变是傅里叶变化无法合理表示的),可以在不同分辨率下根据信号和噪声的分布来消除噪声。
(3)去相关性。
小波变换可对信号去相关,且噪声在变换后有白化趋势,所以小波域比时域更利于去噪。
(4)基函数选择灵活。
小波变换可灵活选择基函数,也可根据信号特点和去噪要求选择多带小波和小波包等(小波包对高频信号再次分解,可提高时频分辨率),对不同场合,选择不同小波基函数。
根据基于小波系数处理方式的不同,常见去噪方法可分为三类:(1)基于小波变换模极大值去噪(信号与噪声模极大值在小波变换下会呈现不同变化趋势)(2)基于相邻尺度小波系数相关性去噪(噪声在小波变换的各尺度间无明显相关性,信号则相反)(3)基于小波变换阈值去噪小波阈值去噪是一种简单而实用的方法,应用广泛,因此重点介绍。
阈值函数选择阈值处理函数分为软阈值和硬阈值,设w是小波系数的大小,wλ是施加阈值后小波系数大小,λ为阈值。
(1)硬阈值当小波系数的绝对值小于给定阈值时,令其为0,而大于阈值时,保持其不变,即:(2)软阈值当小波系数的绝对值小于给定阈值时,令其为0,大于阈值时,令其都减去阈值,即:如下图,分别是原始信号,硬阈值处理结果,软阈值处理结果。
MATLAB小波变换信号去噪引言小波变换是一种多尺度分析方法,广泛应用于信号处理领域。
由于小波变换具有良好的时频局部性质,可以将信号分解为不同频率和时间分辨率的成分,因此被广泛应用于信号去噪领域。
本文将介绍如何使用MATLAB进行小波变换信号去噪的方法。
MATLAB中的小波变换在MATLAB中,可以使用Wavelet Toolbox中的wavedec函数进行小波分解,使用wrcoef函数进行重构。
具体步骤如下:1.导入待处理的信号数据。
2.选择适当的小波基函数和分解层数。
3.使用wavedec函数对信号进行小波分解,得到分解系数。
4.根据阈值方法对分解系数进行去噪处理。
5.使用wrcoef函数对去噪后的分解系数进行重构,得到去噪后的信号。
6.分析去噪效果并进行评估。
下面将逐步详细介绍这些步骤。
选择小波基函数和分解层数小波基函数的选择在小波分析中非常重要,不同的小波基函数适用于不同类型的信号。
常用的小波基函数有Daubechies小波、Haar小波、db2小波等。
根据信号的特点和分析需求,选择合适的小波基函数是非常重要的。
在MATLAB中,可以使用wname函数查看支持的小波基函数。
可以通过比较不同小波基函数的性能指标来选择合适的小波基函数。
常见的性能指标包括频率局部化、时频局部化和误差能量。
选择分解层数时,需要根据信号的特点和噪声的程度来决定。
一般而言,分解层数越高,分解的细节系数越多,信号的时间分辨率越高,但运算量也会增加。
小波分解使用wavedec函数对信号进行小波分解。
函数的输入参数包括待分解的信号、小波基函数名称和分解层数。
函数输出包括近似系数和细节系数。
[C, L] = wavedec(x, level, wname);其中,x是待分解的信号,level是分解层数,wname是小波基函数名称。
C是包含近似系数和细节系数的向量,L是分解的长度信息。
根据分解层数,可以将分解系数划分为不同频带的系数。
基于小波变换的信号降噪研究2 小波分析基本理论设Ψt ∈L 2 R L 2 R 表示平方可积的实数空间,即能量有限的信号空间 , 其傅立叶变换为Ψt;当Ψt 满足条件4,7:2()Rt dw wCψψ=<∞⎰1时,我们称Ψt 为一个基本小波或母小波,将母小波函数Ψt 经伸缩和平移后,就可以得到一个小波序列:,()()a bt bt aψ-=,,0a b R a ∈≠ 2 其中a 为伸缩因子,b 为平移因子;对于任意的函数ft ∈L 2 R 的连续小波变换为:,(,),()()f a b Rt bW a b f f t dt aψψ-=<>=3 其逆变换为:211()(,)()fR R t b f t W a b dadb C a aψψ+-=⎰⎰ 4 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状;小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低;使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构;3 小波降噪的原理和方法小波降噪原理从信号学的角度看 ,小波去噪是一个信号滤波的问题;尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器;由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示6:小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式:(k)()()S f k e k ε=+* k=…….n-1其中 ,f k 为有用信号,sk 为含噪声信号,ek 为噪声,ε为噪声系数的标准偏差;假设ek 为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 sk 信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的;降噪方法一般来说, 一维信号的降噪过程可以分为 3个步骤进行5,6:1一维信号的小波分解,选择一个小波并确定一个小波分解的层次N,然后对信号进行N 层小波分解计算;2) 小波分解高频系数的阈值量化,对第1层到第N 层的每一层高频系数, 选择一个阈值进行软阈值量化处理.3) 一维小波的重构;根据小波分解的第 N 层的低频系数和经过量化处理后的第1层到第N 层的高频系数,进行一维信号的小波重构;在这 3个步骤中,最核心的就是如何选取阈值并对阈值进行量化,在某种程度上它关系到信号降噪的质量.在小波变换中,对各层系数所需的阈值一般根据原始信号的信号噪声比来选取,也即通过小波各层分解系数的标准差来求取,在得到信号噪声强度后,可以确定各层的阈值;这里着重讨论了信号在两种不同小波恢复后信号质量的不同和对信号中的信号与噪声进行分离;4.仿真实验本文采用Mtalab 本身程序提供的noissin 信号函数及初设原始信号fx 为例进行Matlab 分析1,3,其中:()sin(0.03)f x t =e = noissin + randnsizee1;首先对noissin 函数上叠加上随机噪声信号得到e,分别对比采用db10小波和sym8小波对信号e 进行5层分解,并且细节系数选用minimaxi 阈值模式和尺度噪声db10以及选用sure阈值模式和尺度噪声sym8;在进行噪声消除后,还对原信号进行进一步分析,将原始信号和噪声信号分离开来,仿真结果如图所示:图1图2图3图1-1为原始信号图形,1-2为叠加随机噪声后的图形,而1-3和1-4为利用db10和sym8小波默认阈值降噪后的信号图形;从图1-3和1-4可以看出利用db10和sym8小波降噪后的信号基本上恢复了原始信号,去噪效果明显;但是滤波后的信号与原始信号也有不同,从图中可以很直观地看到采用阈值消噪后信号特征值较少无法准确还原原始信号这是由于为降噪过程中所用的分析小波和细节系数的阈值不恰当所致,如需要更好的恢复信号,还可以采用其它种类小波对其进行分析,通过选取不同的阈值,分析结果,得到一个合适的阈值;从图2和图3中看出,在经过用db10对信号进行5层分解,然后分别对分解的第5层到第1层的低频系数和高频系数进行重构;可以得出其主要基波函数和高频噪声函数的图形,其中小分波分解的细节信号是有白噪声分解得到的,而正弦信号可以在图2中的近似信号a5得到;因为在这一层的影响已经可以忽略了,所以获得的信号就是初始信号的波形,从而把淹没在噪声中的有用信号有效地分离出来;5 总结小波变换对平稳信号的去噪声,要比传统的滤波去噪声得到的效果好.用小波变换进行信号降噪处理, 既降低了噪声同时又提高了信噪比,这说明小波降噪方法是切实可行的方案, 但是由于小波函数很多,采用不同的小波进行分解, 得到的结果可能相差很大, 而变换前并不能预知哪一种小波降噪效果更好,需反复试验比较才能得到良好的效果,这也是小波变换的困难之处之一;另外信号降噪过程中阀值的选取是十分重要的;本文利用两个小波sym8 ,db 10 以及将信号中的信噪分离开来,更加直观可行,通过分别进行信号降噪处理对所得结果与原始信号进行比较可以得出Sym8小波以及默认阈值处理后的重构信号与原始信号最为接近,与分离的结果相同;小波分析是一种信号的视频分析方法,它具有多分辨率分析的特点 ,很适合探测正常信号中夹带的瞬态反常现象并展示其成分,有效区分信号中的突变部分和噪声;通过MATLAB编制程序进行给定信号的噪声抑制和非平稳信号的噪声消除实验表明:基于小波分析的消噪方法是一种提取有用信号、展示噪声和突变信号的优越方法 ,具有广阔的实用价值;在这个越来月信息化的社会中,基于小波分析的应用前景必将越来越广泛;N=10;t=1:10;f=sint.expt+20sint.expt+5sint.expt;plott,f;f=sint.expt+20sint.expt+5sint.expt;输出数据fid=fopen'E:','wt';>> fprintffid,'%f\n',L;C,L=wavedecf,5,'db10';>> fid=fopen'E:','wt';>> fprintffid,'%f\n',L;>> fprintffid,'%f\n',C;>> C,L=wavedecf,1,'db10';>> fid=fopen'E:','wt';>> fprintffid,'%f\n',C;>> C,L=dwtf,'db10';>> fid=fopen'E:','wt';>> fprintffid,'%f\n',C;>> fprintffid,'%f\n',L;参考文献1徐明远,邵玉斌.MATALAB仿真在通信与电子工程中的应用M.西安:西安电子科技大学出版社,2010.2张志涌,杨祖樱等编著.MATLAB教程R2006a-R2007aM.北京:北京航空航天出版社,2006. 3张德丰.详解MATLAB数字信号处理M北京:电子工业出版社,2010.4杨建国.小波分析及其工程应用M北京:机械工业出版社,2005.5冯毅,王香华.小波变换降噪处理及其MATLAB实现J.数字采集与处理,2006,,2112:37-39. 6禹海兰,李天云.基于小波理论的噪声信号分析J.东北电力学院学报.3:36-40.7潘泉,张磊,孟晋丽,张洪才著,小波滤波方法及应用M.北京:清华大学出版社,2005.附仿真源码如下:N=1000;t=1:1000;f=sint;load noissin;e1=noissin;init=66;randn'seed',init;e = e1 + randnsizee1;subplot2,2,1;plott,f;xlabel'1 样本序列'; //x轴标记ylabel'原始信号幅值'; //y轴标记grid ;subplot2,2,2;plote ;xlabel'2 测试样本序列' ;ylabel'含有已加噪声的信号幅值' ;grid ;s1=wdene,'minimaxi','s','one',5,'db12'; subplot2,2,3;plots1;xlabel'3 db10降噪后信号' ;ylabel 'db10小波降噪后的信号幅值';grid;s2=wdene,'heursure','s','one',5,'sym8'; subplot2,2,4;plots2;xlabel'4 sym降噪后信号';ylabel'sym8小波降噪后的信号幅值';grid;figure;subplot6,1,1;plote;ylabel'e';C,L=wavedece,5,'db10';for i=1:5a=wrcoef'a',C,L,'db10',6-i;subplot6,1,i+1; plota;ylabel'a',num2str6-i;endfigure;subplot6,1,1;plote;ylabel'e';for i=1:5d=wrcoef'd',C,L,'db10',6-i;subplot6,1,i+1;plotd;ylabel'd',num2str6-i;end。
matlab去噪程序
clear all
clc
ECG=load('ECG.txt');
t=ECG(:,1);
y=ECG(:,2);
plot(t,y);
title('含噪心电信号');
axis([0 240 7 11 ]);
xlabel('t');
ylabel('y');
%自适应滤波器
% 50Hz工频干扰陷波器
%50Hz陷波器:由一个低通滤波器加上一个高通滤波器组成 %而高通滤波器由一个全通滤波器减去一个低通滤波器构成 M=800; %滤波器阶数
L=800; %窗口长度
beta=8; %衰减系数
Fs=400;
wc1=51/(Fs/2)*pi; %wc1为高通滤波器截止频率,对应51Hz
wc2=49/(Fs/2)*pi ;%wc2为低通滤波器截止频率,对应49Hz h=ideal_lp(pi,M)-ideal_lp(wc1,M)+ideal_lp(wc2,M); %h为陷波器冲击响应
w=kaiser(L,beta);
b=h.*rot90(w); %b为50Hz陷波器冲击响应序列
x=filter(b,1,y); %滤除50Hz工频干扰的心电信号 %其中,具有线性相位的FIR低通滤波器由如下函数实现: %理想低通滤波器
%截止角频率wc,阶数M
function hd=ideal_lp(wc,M)
alpha=(M-1)/2;
n=0:M-1;
m=n-alpha+eps; %eps为很小的数,避免被0除 hd=sin(wc*m)./(pi*m); %用Sinc函数产生冲击响应。
小波阈值去噪matlab程序小波阈值去噪是一种常用的信号处理方法,可以在Matlab中使用Wavelet Toolbox来实现。
下面是一个简单的小波阈值去噪的Matlab程序示例:matlab.% 生成含有噪声的信号。
t = 0:0.001:1;y = sin(2pi100t) + randn(size(t));% 进行小波阈值去噪。
wname = 'db4'; % 选择小波基函数。
level = 5; % 选择分解的层数。
noisySignal = wdenoise(y, 'DenoisingMethod','UniversalThreshold', 'ThresholdRule', 'Soft', 'Wavelet', wname, 'Level', level);% 绘制结果。
figure.subplot(2,1,1)。
plot(t,y)。
title('含噪声信号')。
subplot(2,1,2)。
plot(t,noisySignal)。
title('去噪后信号')。
在这个示例中,首先生成了一个含有噪声的信号,然后使用`wdenoise`函数进行小波阈值去噪。
在`wdenoise`函数中,我们选择了小波基函数为db4,分解的层数为5,DenoisingMethod为UniversalThreshold,ThresholdRule为Soft。
最后绘制了含噪声信号和去噪后的信号。
需要注意的是,小波阈值去噪的具体参数选择和调整需要根据实际情况进行,上述示例仅供参考。
希望这个简单的示例可以帮助你开始在Matlab中实现小波阈值去噪。
《现代信号处理》大作业基于Matlab的小波分解、去噪与重构目录一作业内容及要求 (3)1.1 作业内容 (3)1.2 作业要求 (3)二系统原理 (3)2.1 小波变换原理 (3)2.2 阈值去噪原理 (3)三系统分析及设计 (5)3.1 图像分解 (5)3.2 高频去噪 (5)3.3 图像重构 (6)四程序编写 (7)4.1 main函数 (7)4.2 分解函数 (9)4.2.1 二维分解函数 (9)4.2.2 一维分解函数 (10)4.3 卷积函数 (10)4.4 采样函数 (11)4.4.1 下采样函数 (11)4.4.2 上采样函数 (11)4.5 重构函数 (12)4.5.1 二维重构函数 (12)4.5.2 一维重构函数 (13)五结果分析及检验 (14)5.1 结果分析 (14)5.2 结果检验 (16)六心得体会 (18)参考文献 (19)一作业内容及要求1.1 作业内容用小波对图像进行滤波分解、去噪,然后重构。
1.2 作业要求用小波对图像进行滤波分解、去噪,然后重构。
具体要求:(1) 被处理图像可选择:woman, wbarb, wgatlin, detfingr, tire.;(2) 可以选择db等正交小波、或双正交小波(或用几种小波);(3) 用选用小波的分解滤波器通过定义的卷积函数conv_my( )对图像二维数组进行小波分解,并进行下采样,获取CA、CV、CD、CH等分解子图;(4) 对高频信号子图进行去噪处理,可以采用软阈值、硬阈值等方法;(5) 用选用小波的综合滤波器对去噪的子图进行图像重构。
二系统原理2.1 小波变换原理小波变换的一级分解过程是,先将信号与低通滤波器卷积再下采样可以得到低频部分的小波分解系数再将信号与高通滤波器卷积后下采样得到高频部分的小波分解系数;而多级分解则是对上一级分解得到的低频系数再进行小波分解,是一个递归过程。
二维小波分解重构可以用一系列的一维小波分解重构来实现。
小波去噪是信号处理中常用的一种方法,在MATLAB中也有相应的函数可以实现小波去噪。
下面我们将介绍MATLAB中对1维数据进行小波去噪的具体过程。
1. 准备原始数据我们需要准备一维的原始数据,可以是来自传感器采集的数据,也可以是从文件中读取的数据。
在MATLAB中,可以使用load函数或者从其它数据源导入数据。
2. 选择小波基和分解层数在进行小波去噪之前,需要选择适合的小波基和分解层数。
MATLAB 中提供了丰富的小波基选择,包括Daubechies小波、Symlet小波、Coiflet小波等。
根据信号的特点和需要去除的噪声类型,选择合适的小波基和分解层数。
3. 进行小波分解使用MATLAB中的wavedec函数对原始数据进行小波分解。
该函数的调用形式为[C, L] = wavedec(X, N, wname),其中X为原始数据,N为分解层数,wname为小波基名称。
函数返回小波系数C和长度向量L。
4. 去除小波系数中的噪声根据小波分解得到的小波系数,可以利用MATLAB中的过滤函数对小波系数进行去噪。
常用的去噪方法包括阈值去噪、软硬阈值去噪等。
这些方法可以有效地去除信号中的噪声成分,得到干净的信号。
5. 重构信号经过去噪处理后,可以使用MATLAB中的waverec函数对去噪后的小波系数进行重构,得到去噪后的信号。
该函数的调用形式为X = waverec(C, L, wname),其中C为去噪后的小波系数,L为长度向量,wname为小波基名称。
6. 可视化和分析可以利用MATLAB中丰富的绘图函数对去噪前后的信号进行可视化比较,以及对去噪效果进行分析。
通过比较原始信号和去噪后的信号,可以直观地了解去噪效果,并进行进一步的分析和处理。
通过以上步骤,我们可以在MATLAB中对一维数据进行小波去噪处理,去除信号中的噪声成分,得到干净的信号。
小波去噪是一种简单而有效的信号处理方法,在实际应用中具有广泛的应用前景。
小波去噪matlab代码以下是一段使用小波去噪的 Matlab 示例代码:% 载入待处理的信号,这里将代表信号命名为 Sload signal.mat% 将信号做小波变换,将小波变换结果保存在 A 中[C,L] = wavedec(S,4,'db4');A = wrcoef('a',C,L,'db4',4);% 计算小波图形的阈值,使用一个固定值或自适应阈值thr = 0.15; % 使用一个固定的阈值,可以根据实际情况调整% 定义阈值类型,默认使用定值阈值thresholdType = 's';% 根据阈值将 A 中的小波系数进行阈值处理switch thresholdTypecase 's' % 定值阈值A(abs(A) < thr) = 0;case 'h' % 硬阈值A = wthcoef('h',A,thr);case 's' % 软阈值A = wthcoef('s',A,thr);end% 将处理后的小波系数进行重构,得到去噪效果更好的信号S_denoise = waverec(A,L,'db4');% 显示原始信号和处理后的信号subplot(2,1,1)plot(S)title('Original Signal')subplot(2,1,2)plot(S_denoise)title('Denoised Signal')该代码载入一个信号,执行小波变换,然后使用固定阈值处理小波系数,最后通过逆小波变换方式重构信号。
在具体应用中,可以根据需要调整使用方法和阈值数值,以达到更好的去噪效果。
第4章医学图像小波去噪的MATLAB实现4.1 小波基的确定不同的小波基具有不同的时频特征,用不同的小波基分析同一个问题会产生不同的结果,故小波分析在应用中便存在一个小波基或小波函数的选取和优化问题。
我们在应用中要把握小波函数的特征,根据应用需要,选择合适的小波基。
在小波分析应用中要考查小波函数或小波基的连续性、正交性、对称性、消失矩、线性相位、时频窗口的中心和半径以及时频窗的面积等,这些特征关系到如何选择合适的小波基。
本节选取了一些常见的小波基,首先固定小波分解层数和阈值,然后改变小波基,运行结果。
通过计算峰值信噪比(PSNR)来判定哪个小波基对医学图像去噪效果好。
下表为不同小波基去噪前带噪图像的峰值信噪比(PSNR)和去噪后图像的峰值信噪比(PSNR),通过峰值信噪比对不同小波基的去噪效果进行评价,从而选出对图像去噪效果较好的小波基。
表4-1 不同小波基去噪后图像的峰值信噪比通过去噪效果图4-1和表4-1以及图像评价原则我们可以很容易选出对图像去噪效果好,而又很好的保持图像细节的小波基。
从图4-1中我们可以看出选用sym3小波基去噪后噪声得到了明显的抑制,但是图像的细节被弱化了,读图有所影响。
选用sym5小波基去噪后,噪声没有得到很好的抑制,而且图像细节已明显消损,对读图有所影响。
选用coif2小波基对图像进行去噪后,噪声得到一定的抑制,图像的细节保持的也很好。
选用coif5小波基对图像去噪后,图像细节明显消损,对读图有所影响。
选用db2小波基对图像去噪后图像的噪声虽然得到抑制但细节变得模糊,很难辨别。
选用db6小波基对图像进行去噪后,图像失真比较明显。
从表4-1中可以看出去噪后图像的PSNR ,其中使用coif2小波基去噪后图像的PSNR最大,通常峰值信噪比PSNR愈大愈好。
实验结果如图4-1所示:原始图像 加噪图像图4-1 不同小波基去噪效果图综上所述,coif2小波基去噪效果很好,所以本次课程设计中我选择coif2小波基进行医学图像小波去噪方法研究。
基于小波图像去噪的MATLAB 实现一、 论文背景数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。
数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。
在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。
然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。
如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。
根据研究表明,当一张图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。
通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。
小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。
本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。
二、 课题原理1.小波基本原理在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。
一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成:())(1,ab x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。
当a=2j 和b=ia 的情况下,一维小波基函数序列定义为:()()1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的内积:()dx ab x a x f f x W b a b a )(1)(,,,-ψ=ψ=⎰+∞∞- (3) 与时域函数对应,在频域上则有: ())(,ωωa e a x j b a ψ=ψ- (4)可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。
小波变换去噪matlab源码小波变换是一种广泛应用于信号处理和图像处理的技术。
它通过将信号分解成不同频率的子信号,从而提供了一种有效的降噪方法。
要在MATLAB中进行小波变换去噪,您可以使用MATLAB的信号处理工具箱中提供的函数。
下面是一个示例的MATLAB源代码,用于实现小波变换去噪:```MATLAB% 加载待处理的信号signal = load('input_signal.mat');% 设置小波函数和分解层数wavelet = 'db4'; % 使用 Daubechies 4 小波函数level = 5; % 设置分解层数% 执行小波变换[coefficients, levels] = wavedec(signal, level, wavelet);% 通过阈值处理降噪threshold = wthrmngr('dw2ddenoLVL', coefficients, levels);cleaned_coefficients = wthresh(coefficients, 'h', threshold);denoised_signal = waverec(cleaned_coefficients, levels, wavelet);% 显示和保存降噪后的信号plot(denoised_signal);save('denoised_signal.mat', 'denoised_signal');```这段代码首先加载了待处理的信号,然后定义了所使用的小波函数和分解层数。
接下来,它执行了小波变换,并通过阈值处理来降噪信号。
最后,代码显示了降噪后的信号,并将其保存到文件中。
值得注意的是,该示例中使用了默认的阈值选取方式(dw2ddenoLVL),您可以根据具体的应用场景选择适合的阈值选取方法。
以上是关于在MATLAB中使用小波变换进行信号去噪的简单示例代码。
二维小波阈值去噪matlab-概述说明以及解释1.引言1.1 概述概述:二维小波阈值去噪是一种常用的信号处理技术,用于降低信号中的噪声干扰以及提高信号的质量和清晰度。
通过对信号进行二维小波变换和阈值处理,可以有效地去除信号中的噪声成分,保留信号的重要信息。
在本文中,我们将介绍二维小波变换的原理和小波阈值去噪的方法,以及在MATLAB环境下的实现过程。
通过对实验结果的分析和展望,我们可以看到二维小波阈值去噪在信号处理中的广泛应用前景,帮助读者更好地理解和掌握这一重要技术。
1.2 文章结构本文将分为引言、正文和结论三个部分来展开讨论。
在引言部分,将会对二维小波阈值去噪这一主题进行概述,并介绍文章的结构和目的。
在正文部分,将详细介绍二维小波变换的原理,小波阈值去噪的方法以及在MATLAB中如何实现小波去噪。
最后,在结论部分,将对实验结果进行分析,展望二维小波阈值去噪在未来的应用前景,并对全文进行总结。
通过这样的结构安排,读者将能够全面了解二维小波阈值去噪的相关知识,深入掌握该领域的核心概念和技术方法。
1.3 目的本文旨在介绍二维小波阈值去噪方法在信号处理领域中的应用。
通过对二维小波变换原理和小波阈值去噪方法的介绍,以及在MATLAB中的具体实现,旨在帮助读者深入了解该技术在信号处理中的重要性和实用性。
通过实验结果分析和应用前景展望,希望读者能够对二维小波阈值去噪方法有更深入的理解,并为其在实际应用中提供参考和指导。
最终,通过总结本文的内容,读者将能够对二维小波阈值去噪方法有一个全面的认识,为进一步的研究和应用提供基础和启发。
2.正文2.1 二维小波变换原理在信号处理领域,小波变换是一种用于分析信号频谱和时域特征的强大工具。
与傅里叶变换不同,小波变换具有良好的时频局部化性质,能够在时域和频域上同时提供精确的信息。
在图像处理中,我们通常使用二维小波变换来分析和处理图像信号。
二维小波变换将图像信号分解为不同尺度和方向上的小波系数。
小波去噪[xd,cxd,lxd]=wden(x,tptr,sorh,scal,n,'wname')式中:输入参数x 为需要去噪的信号;1.tptr :阈值选择标准.1)无偏似然估计(rigrsure)原则。
它是一种基于史坦无偏似然估计(二次方程)原理的自适应阈值选择。
对于一个给定的阈值t,得到它的似然估计,再将似然t 最小化,就得到了所选的阈值,它是一种软件阈值估计器。
2)固定阈值(sqtwolog)原则。
固定阈值thr2 的计算公式为:thr 2log(n) 2 = (6)式中,n 为信号x(k)的长度。
3)启发式阈值(heursure)原则。
它是rigrsure原则和sqtwolog 原则的折中。
如果信噪比很小,按rigrsure 原则处理的信号噪声较大,这时采用sqtwolog原则。
4)极值阈值(minimaxi)原则。
它采用极大极小原理选择阈值,产生一个最小均方误差的极值,而不是没有误差。
2.sorh :阈值函数选择方式,即软阈值(s) 或硬阈值(h).3.scal :阈值处理随噪声水平的变化,scal=one 表示不随噪声水平变化,scal=sln 表示根据第一层小波分解的噪声水平估计进行调整,scal=mln 表示根据每一层小波分解的噪声水平估计进行调整.4.n 和wname 表示利用名为wname 的小波对信号进行n 层分解。
输出去噪后的数据xd 及xd 的附加小波分解结构[cxd,lxd].常见的几种小波:haar,db,sym,coif,bior用MATLAB对一语音信号进行小波分解,分别用强阈值,软阈值,默认阈植进行消噪处理。
复制内容到剪贴板代码:%装载采集的信号leleccum.matload leleccum;%=============================%将信号中第2000到第3450个采样点赋给sindx=2000:3450;s=leleccum(indx);%=============================%画出原始信号subplot(2,2,1);plot(s);title('原始信号');%=============================%用db1小波对原始信号进行3层分解并提取系数[c,l]=wavedec(s,3,'db1');a3=appcoef(c,l,'db1',3);d3=detcoef(c,l,3);d2=detcoef(c,l,2);d1=detcoef(c,l,1);%=============================%对信号进行强制性消噪处理并图示结果dd3=zeros(1,length(d3));dd2=zeros(1,length(d2));dd1=zeros(1,length(d1));c1=[a3 dd3 dd2 dd1];s1=waverec(c1,l,'db1');subplot(2,2,2);plot(s1);grid;title('强制消噪后的信号');%=============================%用默认阈值对信号进行消噪处理并图示结果%用ddencmp函数获得信号的默认阈值[thr,sorh,keepapp]=ddencmp('den','wv',s);s2=wdencmp('gbl',c,l,'db1',3,thr,sorh,keepapp); subplot(2,2,3);plot(s2);grid;title('默认阈值消噪后的信号');%=============================%用给定的软阈值进行消噪处理sosoftd2=wthresh(d2,'s',1.823);softd3=wthresh(d3,'s',2.768);c2=[a3 softd3 softd2 softd1];s3=waverec(c2,l,'db1');subplot(2,2,4);plot(s3);grid;title('给定软阈值消噪后的信号');ftd1=wthresh(d1,'s',1.465);。
小波变换图像降噪的matlab代码求小波变换图像降噪的matlab代码load wbarb; % 装载原始图像subplot(221); % 新建窗口image(X); % 显示图像colormap(map); % 设置色彩索引图title('原始图像'); % 设置图像标题axis square; % 设置显示比例,生成含噪图像并图示init=2055615866; % 初始值randn('seed',init); % 随机值XX=X+8*randn(size(X)); % 添加随机噪声subplot(222); % 新建窗口image(XX); % 显示图像colormap(map); % 设置色彩索引图title('含噪图像'); % 设置图像标题axis square; %用小波函数coif2 对图像XX 进行2 层分解[c,l]=wavedec2(XX,2,'coif2'); % 分解n=[1,2]; % 设置尺度向量p=[10.28,24.08]; % 设置阈值向量,对高频小波系数进行阈值处理%nc=wthcoef2('h',c,l,n,p,'s');%nc=wthcoef2('v',c,l,n,p,'s');nc=wthcoef2('d',c,l,n,p,'s');X1=waverec2(nc,l,'coif2'); % 图像的二维小波重构subplot(223); % 新建窗口image(X1); % 显示图像colormap(map); %设置色彩索引图title('第一次消噪后的图像'); % 设置图像标题axis square; % 设置显示比例,再次对高频小波系数进行阈值处理%mc=wthcoef2('h',nc,l,n,p,'s');mc=wthcoef2('v',nc,l,n,p,'s');mc=wthcoef2('d',nc,l,n,p,'s');X2=waverec2(mc,l,'coif2'); % 图像的二维小波重构subplot(224); % 新建窗口image(X2); % 显示图像colormap(map); % 设置色彩索引图title('第二次消噪后的图像'); % 设置图像标题axis square; % 设置显示比例。
基于 Matlab 实现小波阈值去噪的图像处理方法张天祥;黄小欣【摘要】概述了小波阈值去噪的基本原理,对基于 Matlab 的小波去噪函数进行了简介,并就其中的主要工作进行了详细阐述。
此外结合理论分析,进行了基于Matlab 的小波阈值去噪处理仿真实验。
为实际的图像处理过程中,小波阈值去噪方法的选择和改进提供了数据参考和依据。
%This paper summarizes the basic principles of the wavelet threshold denoising,introduces Matlab⁃based wavelet denoising function,and elaborates main tasks of wavelet threshold denoising. In addition,combined with theoretical analysis, Matlab⁃based wavelet threshold denoising processing is simulated. The paper serves as a data reference and basis for the selec⁃tion and improvement of wavelet threshold denoising method in actual image processing.【期刊名称】《现代电子技术》【年(卷),期】2013(000)005【总页数】3页(P103-105)【关键词】小波变换;图像去噪;阈值;Matlab【作者】张天祥;黄小欣【作者单位】河南省民政学校,河南郑州 450002;河南省民政学校,河南郑州450002【正文语种】中文【中图分类】TN911.73-34在产生和传输过程中数字图像会被各种噪声干扰和影响,如电子器件干扰、传感器振荡、高磁场干扰等,导致数字图像在经转换后质量有所下降,对图像的后续处理,如分割、压缩和图像理解等将造成不利的影响[1]。
% Function to calculate Threshold for BayesShrinkfunction threshold=bayes(X,sigmahat)len=length(X);sigmay2=sum(X.^2)/len;sigmax=sqrt(max(sigmay2-sigmahat^2,0));if sigmax==0 threshold=max(abs(X));else threshold=sigmahat^2/sigmax;endfunction rmse=compare11(f1,f2,scale) %%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%error(nargchk(2,3,nargin));if nargin<3scale=1;end%%%%%%%%%%%%%%%%%compute the root mean square errore=double(f1)-double(f2);[m,n]=size(e);rmse=sqrt(sum(e(:).^2)/(m*n)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%if rmse%%%%%%%%%%%%%%%%%emax=max(abs(e(:)));[h,x]=hist(e(:),emax);if length(h)>=1%figure,bar(x,h,'k');%%%%%%%%%%%%%%%%%%%emax=emax/scale;e=mat2gray(e,[-emax, emax]);%figure;imshow(e);endend%% JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY%%%%clear;clc;clear all;close all;display(' ');display(' ');display(' ');display(' SOME EXPERIMENTS ON IMAGE DENOISING USING WAVELETS ');display(' ');display(' ');display(' RAJA RAO ');display(' ');display(' ');display('select the image');display(' 1:lena.png');display(' 2:barbara.png');display(' 3:boat.png');display(' 4:house.png');display(' 5:peppers256.png');display(' 6:cameraman.jpg');display(' ');display(' 7:hyderabad.png');display(' 8:friendgray.jpg');display(' ');ss1=input('enter your choice: ');switch ss1case 1f=imread('lena.png');%f=imread('babu.jpg');case 2f=imread('barbara.png');case 3f=imread('boat.png');case 4f=imread('house.png');case 5f=imread('peppers256.png');case 6f=imread('cameraman.jpg');case 7f=imread('hyderabad512.png');case 8f=imread('friendgray.jpg');endsubplot(2,2,1), imshow(f);title('original image');display('enter the type of noise:');display(' 1 for salt & pepper');display(' 2 for gaussian');display(' 3 for poisson');display(' 4 for speckle');ud=input('enter the value:');switch udcase 1display('enter the % of noise(Ex:0.2)');ud1=input('pls enter: ');g=imnoise(f,'salt & pepper',ud1);case 2%f=imread('peppers256.png');%subplot(2,2,1),imshow(f);display('enter the noise varience: ');va=input('enter between 0.01 to 0.09: ');g=imnoise(f,'gaussian',0,va);case 3% display('enter the % of noise(Ex:0.2)');%ud1=input('pls enter: ');g=imnoise(f,'poisson');case 4display('enter the varience of noise(Ex:0.02)');ud1=input('pls enter: ');g=imnoise(f,'speckle',ud1);end%g=imnoise(f,'salt & pepper',01);subplot(2,2,2),imshow(g);title('noisy image');%[ca,ch,cv,cd] = dwt2(g,'db2');%c=[ca ch;cv cd];%subplot(2,2,3),imshow(uint8(c));x=g;% Use wdencmp for image de-noising.% find default values (see ddencmp). [thr,sorh,keepapp] = ddencmp('den','wv',x); display('');display('select wavelet');display('enter 1 for haar wavelet');display('enter 2 for db2 wavelet');display('enter 3 for db4 wavelet');display('enter 4 for sym wavelet');display('enter 5 for sym wavelet');display('enter 6 for bior wavelet');display('enter 7 for bior wavelet');display('enter 8 for mexh wavelet'); display('enter 9 for coif wavelet'); display('enter 10 for meyr wavelet'); display('enter 11 for morl wavelet'); display('enter 12 for rbio wavelet'); display('press any key to quit');display('');ww=input('enter your choice: '); switch wwcase 1wv='haar';case 2wv='db2';case 3wv='db4' ;case 4wv='sym2'case 5wv='sym4';case 6wv='bior1.1';case 7wv='bior6.8';case 8wv='mexh';case 9wv='coif5';case 10wv='dmey';case 11wv='mor1';case 12wv='jpeg9.7';otherwisequit;enddisplay('');display('enter 1 for soft thresholding');display('enter 2 for hard thresholding');display('enter 3 for bayes soft thresholding');sorh=input('sorh: ');display('enter the level of decomposition');level=input(' enter 1 or 2 : ');switch sorhcase 1sorh='s';xd = wdencmp('gbl',x,wv,level,thr,sorh,keepapp);case 2sorh='h';xd = wdencmp('gbl',x,wv,level,thr,sorh,keepapp);case 3%%%%%%%%%%%%%%%%%%%%%% clear all;%close all;%clc;%Denoising using Bayes soft thresholding%Note: Figure window 1 displays the original image, fig 2 the noisy img%fig 3 denoised img by bayes soft thresholding%Reading the image%pic=imread('elaine','png');pic=f;%figure, imagesc(pic);colormap(gray);%Define the Noise Variance and adding Gaussian noise%While using 'imnoise' the pixel values(0 to 255) are converted to double in the range 0 to 1 %So variance also has to be suitably convertedsig=15;V=(sig/256)^2;npic=g;%npic=imnoise(pic,'gaussian',0,V);%figure, imagesc(npic);colormap(gray);%Define the type of wavelet(filterbank) used and the number of scales in the wavelet decomp filtertype=wv;levels=level;%Doing the wavelet decomposition[C,S]=wavedec2(npic,levels,filtertype);st=(S(1,1)^2)+1;bayesC=[C(1:st-1),zeros(1,length(st:1:length(C)))];var=length(C)-S(size(S,1)-1,1)^2+1;%Calculating sigmahatsigmahat=median(abs(C(var:length(C))))/0.6745;for jj=2:size(S,1)-1%for the H detail coefficientscoefh=C(st:st+S(jj,1)^2-1);thr=bayes(coefh,sigmahat);bayesC(st:st+S(jj,1)^2-1)=sthresh(coefh,thr);st=st+S(jj,1)^2;% for the V detail coefficientscoefv=C(st:st+S(jj,1)^2-1);thr=bayes(coefv,sigmahat);bayesC(st:st+S(jj,1)^2-1)=sthresh(coefv,thr);st=st+S(jj,1)^2;%for Diag detail coefficientscoefd=C(st:st+S(jj,1)^2-1);thr=bayes(coefd,sigmahat);bayesC(st:st+S(jj,1)^2-1)=sthresh(coefd,thr);st=st+S(jj,1)^2;end%Reconstructing the image from the Bayes-thresholded wavelet coefficientsbayespic=waverec2(bayesC,S,filtertype);xd=bayespic;%Displaying the Bayes-denoised image%figure, imagesc(uint8(bayespic));colormap(gray);display('IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 9, SEPTEMBER 2000');display('IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 9, SEPTEMBER 2000'); display('Adaptive Wavelet Thresholding for Image Denoising and Compression');display('S. Grace Chang, Student Member, IEEE, Bin Yu, Senior Member, IEEE, and Martin Vetterli, Fellow, IEEE');%%%%%%%%%%%%%%%%%%%%%%%%%%end%sorh=sorh;% de-noise image using global thresholding option.%f=imread('peppers256.png');[c,s]=wavefast(g,level,wv);subplot(2,2,3),wave2gray(c,s,8);title('decomposed structure');subplot(2,2,4),xd=uint8(xd);imshow(xd);title('denoised image');%subplot(2,2,4),sub=f-xd;%sub=abs(1.2*sub);%imshow(im2uint8(sub));title('difference image');ff=im2double(f);xdd=im2double(xd);display(' ');display(' ');display('reference: To calcullate signal to noise ratio');display('Makoto Miyahara');display('"Objective Picture Quality Scale (PQS) for Image Coding"'); display('IEEE Trans. on Comm., Vol 46, No.9, 1998.');display(' ');display(' ');snr=wpsnr(ff,xdd)display(' ');display(' ');mse=compare11(ff,xdd)function op=sthresh(X,T);%A function to perform soft thresholding on a%given an input vector X with a given threshold T% S=sthresh(X,T);ind=find(abs(X)<=T);ind1=find(abs(X)>T);X(ind)=0;X(ind1)=sign(X(ind1)).*(abs(X(ind1))-T);op=X;。
clear all
clc
%在噪声环境下语音信号的增强
%语音信号为读入的声音文件
%噪声为正态随机噪声
sound=wavread('c12345.wav');
count1=length(sound);
noise=0.05*randn(1,count1);
for i=1:count1
signal(i)=sound(i);
end
for i=1:count1
y(i)=signal(i)+noise(i);
end
%在小波基'db3'下进行一维离散小波变换
[coefs1,coefs2]=dwt(y,'db3'); %[低频高频]
count2=length(coefs1);
count3=length(coefs2);
energy1=sum((abs(coefs1)).^2);
energy2=sum((abs(coefs2)).^2);
energy3=energy1+energy2;
for i=1:count2
recoefs1(i)=coefs1(i)/energy3;
end
for i=1:count3
recoefs2(i)=coefs2(i)/energy3;
end
%低频系数进行语音信号清浊音的判别
zhen=160;
count4=fix(count2/zhen);
for i=1:count4
n=160*(i-1)+1:160+160*(i-1);
s=sound(n);
w=hamming(160);
sw=s.*w;
a=aryule(sw,10);
sw=filter(a,1,sw);
sw=sw/sum(sw);
r=xcorr(sw,'biased');
corr=max(r);
%为清音(unvoice)时,输出为1;为浊音(voice)时,输出为0 if corr>=0.8
output1(i)=0;
elseif corr<=0.1
output1(i)=1;
end
end
for i=1:count4
n=160*(i-1)+1:160+160*(i-1);
if output1(i)==1
switch abs(recoefs1(i))
case abs(recoefs1(i))<=0.002
recoefs1(i)=0;
case abs(recoefs1(i))>0.002 & abs(recoefs1(i))<=0.003
recoefs1(i)=sgn(recoefs1(i))*(0.003*abs(recoefs1(i))-0.000003)/0.002; otherwise recoefs1(i)=recoefs1(i);
end
elseif output1(i)==0
recoefs1(i)=recoefs1(i);
end
end
%对高频系数进行语音信号清浊音的判别
count5=fix(count3/zhen);
for i=1:count5
n=160*(i-1)+1:160+160*(i-1);
s=sound(n);
w=hamming(160);
sw=s.*w;
a=aryule(sw,10);
sw=filter(a,1,sw);
sw=sw/sum(sw);
r=xcorr(sw,'biased');
corr=max(r);
%为清音(unvoice)时,输出为1;为浊音(voice)时,输出为0
if corr>=0.8
output2(i)=0;
elseif corr<=0.1
output2(i)=1;
end
end
for i=1:count5
n=160*(i-1)+1:160+160*(i-1);
if output2(i)==1
switch abs(recoefs2(i))
case abs(recoefs2(i))<=0.002
recoefs2(i)=0;
case abs(recoefs2(i))>0.002 & abs(recoefs2(i))<=0.003
recoefs2(i)=sgn(recoefs2(i))*(0.003*abs(recoefs2(i))-0.000003)/0.002; otherwise recoefs2(i)=recoefs2(i);
end
elseif output2(i)==0
recoefs2(i)=recoefs2(i);
end
end
%在小波基'db3'下进行一维离散小波反变换output3=idwt(recoefs1, recoefs2,'db3');
%对输出信号抽样点值进行归一化处理maxdata=max(output3);
output4=output3/maxdata;
%读出带噪语音信号,存为'101.wav' wavwrite(y,5500,16,'c101');
%读出处理后语音信号,存为'102.wav' wavwrite(output4,5500,16,'c102');。