初二数学分式方程应用题归类
- 格式:doc
- 大小:23.50 KB
- 文档页数:2
八年级数学上册 分式方程及其应用(习题)班级 姓名➢ 例题示范例1:解分式方程:11322x x x-=---. 【过程书写】1(1)3(2)1136242x x x x x x =----=-+-+==解:检验:把x =2代入原方程,不成立 ∴x =2是原分式方程的增根 ∴原分式方程无解例2:八年级(1)班学生周末乘汽车到游览区游览,游览区距学校120km .一部分学生乘慢车先行,出发0.5h 后,另一部分学生乘快车前往,结果他们同时到达游览区.已知快车的速度是慢车速度的1.2倍,求慢车的速度. 【思路分析】 列表梳理信息:【过程书写】解:设慢车的速度为x km/h ,则快车的速度为1.2x km/h ,由题意得,1201200.51.2x x =-解得,x =40 经检验:x =40是原方程的解,且符合题意 答:慢车的速度是40km/h .➢ 巩固练习1. 下列关于x 的方程,其中不属于分式方程的是( )A .1a b a x a ++=B .x a b x b a +=-11C .b x a a x 1-=+D .1=-+++-nx mx m x n x 2. 解分式方程2236111x x x +=+--分以下四步,其中错误的一步是( ) A .方程两边分式的最简公分母是(1)(1)x x -+B .方程两边都乘以(1)(1)x x -+,得整式方程: 2(1)3(1)6x x -++=C .解这个整式方程,得1x =D .原方程的解为1x =3. 张老师和李老师同时从学校出发,骑行15千米去县城购买书籍.已知张老师比李老师每小时多走1千米,结果比李老师早到半小时,则两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意可列方程为( )A .1515112x x -=+ B .1515112x x -=+ C .1515112x x -=- D .1515112x x -=- 4. 若方程61(1)(1)1mx x x -=+--有增根,则m =_________. 5. 如果解关于x 的分式方程1134x m x x +-=-+出现了增根,那么增根是________.6. 解分式方程: (1)43(1)1x x x x +=--; (2)22(1)23422x x x x +=+--+;(3)23112x x x x -=+--; (4)11222x x x-=---.7.某服装厂设计了一款新式夏装,想尽快制作8 800件投入市场.已知该服装厂有A,B两个制衣车间,A车间每天加工的数量是B车间的1.2倍.A,B 两车间共同完成一半的生产任务后,A车间因出现故障而停产,剩下的全部由B车间单独完成,结果前后共用了20天完成全部生产任务.则A,B两车间每天分别能加工多少件该款夏装?【思路分析】列表梳理信息:【过程书写】8.某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求.商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但是单价贵了4元.商厦销售这种衬衫时每件定价都是58元,最后剩下150件按八折销售,很快售完.在这两笔生意中,商厦共盈利多少元?【思路分析】列表梳理信息:【过程书写】附加题:1. 解分式方程:(1)2115225x x x ++=--;(2)100602020x x=+-;(3)3201(1)x x x x +-=--;(4)2216124x x x ++=---;(5)2236111x x x +=+--; (6)2221114268x x x x x +-=----+.【参考答案】 ➢ 巩固练习1. C2. D3. B4. 35.x =36. (1)x =2(2) (3)无解 (4)无解7. A 车间每天能加工384件该款夏装B 车间每天能加工320件该款夏装 8. 商厦共盈利90 260元附加题;1. (1)(2)(3)无解 (4)无解 (5)无解 (6)x =143x =43x =5x =。
分式方程应用(四大类型)类型一:行程问题类型二:工程问题类型三:销售问题类型四:方案问题【类型一:行程问题】【典例1】(2020秋•安丘市期末)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.【变式1-1】(2012•山西模拟)列方程或方程组解应用题:为响应低碳号召,肖老师上班的交通方式由自驾车改为骑自行车,肖老师家距学校15千米,因为自驾车的速度是骑自行车速度的4倍,所以肖老师每天比原来早出发45分钟,才能按原时间到校,求肖老师骑自行车每小时走多少千米.【变式1-2】(2020秋•白云区期末)一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地,求前一小时的行驶速度.【变式1-3】(2021•扬州模拟)近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A为全程25km的普通道路,路线B包含快速通道,全程30km,走路线B比走路线A平均速度提高50%,时间节省6min,求走路线B的平均速度.【类型二:工程问题】【典例2】(2022春•瑶海区期末)某建工集团下有甲、乙两个工程队,现中标承建一段公路,若甲、乙两工程队合做20天可完成;若让两队合做15天后,剩下的工程由甲队独做,还需15天才能完成.(1)甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费10000元,乙工程队施工每天需付施工费26000元,此项工程若由甲工程队先独做若干天后,乙工程队再加入共同完成剩下的工程,则甲工程队至少要独做多少天,才能使施工费不超过680000元?【变式2-1】(2022•桂林模拟)为了进一步丰富市民的休闲生活,某区政府决定在漓江沿岸扩建5400米绿道并进行招标,根据招标结果,该工程由甲、乙两个工程队参与建设.已知:甲工程队每天完成的工程量是乙队的1.2倍,甲队单独完成工程比乙队单独完成少用10天.(1)求乙队每天能完成多少米?(2)若甲、乙两个工程队合作20天后,剩余工程由乙工程队单独完成,求乙工程队还需多少天?【变式2-2】(2022•玉州区一模)为美化小区环境,物业计划安排甲、乙两个工程队完成小区绿化工作.已知甲工程队每天绿化面积是乙工程队每天绿化面积的2倍,甲工程队单独完成600m2的绿化面积比乙工程队单独完成600m2的绿化面积少用2天.(1)求甲、乙两工程队每天绿化的面积分别是多少m2;(2)小区需要绿化的面积为9600m2,物业需付给甲工程队每天绿化费为0.3万元,付给乙工程队每天绿化费为0.2万元,若要使这次的绿化总费用不超过12万元,则至少应安排甲工程队工作多少天?【类型三:销售问题】【典例3】(2022春•大观区校级期末)某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.(1)求每个甲、乙两种商品的进价分别是多少元?(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?【变式3-1】(2022春•普宁市期末)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次性购进这两种家电共100台,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,一共有多少种合理的购买方案?【变式3-2】(2022春•市南区期末)某中学举办了以“童心绘未来”为主题绘画比赛.学校计划购买A、B两种学习用品奖励获奖同学,已知购买一个A种学习用品比购买一个B 种学习用品多用20元,若用400元购买A种学习用品的数量是用160元购买B种学习用品数量的一半.(1)求A、B两种学习用品每件多少元?(2)商店给该校购买一个A种学习用品赠送一个B种学习用品的优惠,如果该校需要B 种学习用品的个数是A种学习用品个数的2倍还多8个,且该校购买A、B两种奖品的总费用不超过670元,那么该校最多可购买多少个A种学习用品?【类型四:方案问题】【典例4】(2021春•花都区校级月考)学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?【变式4-1】(2021春•龙华区校级期中)某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.(1)求每个甲、乙两种商品的进价分别是多少元?(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?(3)在(2)的条件下,如果甲、乙两种商品的售价分别是12元/个和15元/个,且将购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润超过380元,那么该商场购进甲、乙两种商品有哪几种方案?【变式4-2】(2021•郴州)“七•一”建党节前夕,某校决定购买A,B两种奖品,用于表彰在“童心向党”活动中表现突出的学生.已知A奖品比B奖品每件多25元,预算资金为1700元,其中800元购买A奖品,其余资金购买B奖品,且购买B奖品的数量是A 奖品的3倍.(1)求A,B奖品的单价;(2)购买当日,正逢该店搞促销活动,所有商品均按原价八折销售,故学校调整了购买方案:不超过预算资金且购买A奖品的资金不少于720元,A,B两种奖品共100件,求购买A,B两种奖品的数量,有哪几种方案?1.(2021•张家界模拟)为创建国家级生态市,遵义市政府决定对市区周边水域的水质进行改善,这项工程由甲、乙两个工程队承包.已知甲工程队每天的施工量是乙工程队的3倍,若先让乙工程队单独施工14天后甲工程队加入,甲、乙两个工程队合作4天后,可完成总工程的.(1)求甲工程队单独完成这项工程需要多少天;(2)甲工程队每天需支付的工程款为10万元,乙工程队每天需支付的工程款为3万元,若工程费用不超过190万元,则甲工程队最多工作多少天?2.(2021•长沙模拟)《三湘都市报》华声在线2月21日讯,在长沙市岳麓区麓景路与梅溪湖路的交汇处,一条穿过桃花岭公园连接含浦片区与梅溪湖片区的麓景路隧道正在加紧施工当中.从隧道中运输挖出土方,其中每辆大货车运输的土方比每辆小货车多8立方米,大货车运120立方米与小货车运80立方米车辆数相同.(1)求大货车与小货车每辆各运输土方多少立方米?(2)总共有大小货车共20辆,每天需运出432立方米泥土,大小货车各需要多少辆?3.(2020秋•仓山区校级期末)某段铁路全长2400千米,经过铁路技术改造,列车实现第一次提速,已知提速后比提速前速度增加了20%,行驶全程所需时间减少了4小时.(1)求列车提速前的速度;(2)现将铁路全长延伸至3000千米,且要继续缩短行驶全程所需的时间,则列车需再次提速,设提速百分比为m,已知列车在现有条件下安全行驶的速度不应超过180千米/每小时,求m的取值范围.4.(2021•昆明模拟)受新冠肺炎疫情影响,口罩、体温计、消毒液等一度紧缺,某药店用3200元采购一批耳温计(测量体温的),上市后发现供不应求,很快销售完了,该药店又去采购第二批同样的耳温计,进货价比第一批贵了5元,该店用了9900元,所购数量是第一批的3倍.(1)求第一批采购的耳温计单价是多少元?(2)若该药店按每个耳温计的售价为210元,销售光这两批耳温计,总共获利多少元?5.(2021春•埇桥区期末)开学初,学校要补充部分体育器材,从超市购买了一些排球和篮球.其中购买排球的总价为1000元,购买篮球的总价为1600元,且购买篮球的数量是购买排球数量的2倍.已知购买一个排球比一个篮球贵20元.种类标价优惠方案A品牌足球150元/个八折B品牌足球100元/个九折(1)求购买排球和篮球的单价各是多少元;(2)为响应“足球进校园”的号召,学校计划再购买50个足球.恰逢另一超市对A、B 两种品牌的足球进行降价促销,销售方案如表所示.如果学校此次购买A、B两种品牌足球的总费用不超过5000元.那么最多可购买多少个A品牌足球?6.(2020秋•天心区期末)明德中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?。
1.(2018?哈尔滨模拟)某市对一段全长2000米的道路进行改造,为了尽量减少施工对城市交通所造成的影响,实际施工时,若每天修路比原来计划提高效率25%,就可以提前5天完成修路任务.(1)求修这段路计划用多少天?(2)有甲、乙两个工程队参与修路施工,其中甲队每天可修路120米,乙队每天可修路80米,若每天只安排一个工程队施工,在保证至少提前5天完成修路任务的前提下,甲工程队至少要修路多少天?【解答】解:(1)设原计划每天修x米,由题意得﹣=5解得x=80,经检验x=80是原方程的解,则=25天,答:修这段路计划用20天。
(2)设甲工程队至少要修路a天,则乙工程队要修路20﹣a天,根据题意得120a+80(20﹣a)≥2000,解得a≥10,所以a最小等于10.答:甲工程队至少要修路10天.2.(2018?南岗区一模)某商店用640元钱购进水果销售,过了一段时间,又用1600元钱购进这种水果,所购数量是第一次购进数量的2倍,但每千克水果的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的50千克水果按标价的六折优惠销售.若两次购进水果全部售完,利润不低于400元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【解答】解:(1)设该商店第一次购进水果x千克,根据题意得:﹣=2,解得:x=80,经检验,x=80是原方程的解,答:该商店第一次购进水果80千克.(2)设每千克水果的标价是y元,则(80+160﹣50)y+50×60%y﹣640﹣1600≥400,解得:y≥12,答:每千克水果的标价至少是12元.3.(2018?雨城区校级模拟)为了迎接“五?一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:运动鞋价格甲乙进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?该专卖店要获得最大利润应如何进货?【解答】解:(1)依题意得,=,整理得,3000(m﹣20)=2400m,解得:m=100,经检验,m=100是原分式方程的解,所以,m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,不等式组的解集是95≤x≤105,∵x是正整数,105﹣95+1=11,∴共有11种方案.设总利润为W,则W=(240﹣100)x+80(200﹣x)=60x+16000(95≤x≤105),所以,当x=105时,W有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95双.4.(2018?松北区一模)某学校九年级举行乒乓球比赛,准备发放一些奖品进行奖励,奖品设为一等奖和二等奖.已知购买一个一等奖奖品比购买一个二等奖奖品多用20元.若用400元购买一等奖奖品的个数是用160元购买二等奖奖品个数的一半.(1)求购买一个一等奖奖品和一个二等奖奖品各需多少元?(2)经商谈,商店决定给予该学校购买一个一等奖奖品即赠送一个二等奖奖品的优惠,如果该学校需要二等奖奖品的个数是一等奖奖品个数的2倍还多8个,且该学校购买两个奖项奖品的总费用不超过670元,那么该学校最多可购买多少个一等奖奖品?【解答】解:(1)设购买一个二等奖奖品需x元,则购买一个一等奖奖品需(x+20)元,根据题意得:=?,解得:x=5,经检验,x=5是原分式方程的解,∴x+20=25.答:购买一个二等奖奖品需5元,购买一个一等奖奖品需25元.(2)设该学校可购买a个一等奖奖品,则可购买(2a+8)个二等奖奖品,根据题意得:15a+5(2a+8﹣a)≤670,解得:a≤21.答:该学校最多可购买21个一等奖奖品.5.(2018?黄岛区一模)学校计划选购甲、乙两种图书作为校园图书节的奖品,已知甲种图书的单价是乙种图书单价的 1.5倍,用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,要使购买的甲种图书数量不少于乙种图书的数量的一半,如何购买使得所需费用最少?最少费用是多少?【解答】解:(1)设乙种图书的单价为x元/本,则甲种图书的单价为 1.5x元/本,根据题意得:﹣=10,解得:x=20,经检验,x=20是原方程的根,且符合题意,∴1.5x=30.答:甲种图书的单价为30x元/本,乙种图书的单价为20元/本.(2)设购买甲种图书m本,则购买乙种图书(40﹣m)本,根据题意得:m≥(40﹣m),解得:m≥,∵m为整数,∴m≥14.设购书费用为y元,则y=30m+20(40﹣m)=10m+800,∵10>0,∴y随m的增大而增大,∴当m=14时,y取最小值,最小值=10×14+800=940.答:购买14本甲种图书、26本乙种图书费用最少,最少费用为940元.6.(2018?道外区一模)某工厂签了1200件商品订单,要求不超过15天完成.现有甲、乙两个车间来完成加工任务.已知甲车间的加工能力是乙车间加工能力的 1.5倍,并且加工240件需要的时间甲车间比乙车间少用2天.(1)求甲、乙每个车间的加工能力每天各是多少件?(2)甲、乙两个车间共同生产了若干天后,甲车间接到新任务,留下乙车间单独完成剩余工作,求甲、乙两车间至少合作多少天,才能保证完成任务.【解答】解:(1)设乙车间的加工能力每天是x件,则甲车间的加工能力每天是 1.5x 件.根据题意得:﹣=2,解得:x=40.经检验x=40是方程的解,则1.5x=60.答:甲、乙每个车间的加工能力每天分别是60件和40件;(2)设甲、乙两车间合作m天,才能保证完成任务.根据题意得:m+[1200﹣(40+60)m]÷40≤15,解得m≥10.答:甲、乙两车间至少合作10天,才能保证完成任务.7.(2018?东莞市校级一模)人民商场准备购进甲、乙两种牛奶进行销售,若甲种牛奶的进价比乙种牛奶的进价每件少5元,其用90元购进甲种牛奶的数量与用100元购进乙种牛奶的数量相同.(1)求甲种牛奶、乙种牛奶的进价分别是多少元?(2)若该商场购进甲种牛奶的数量是乙种牛奶的3倍少5件,该商场甲种牛奶的销售价格为49元,乙种牛奶的销售价格为每件55元,则购进的甲、乙两种牛奶全部售出后,可使销售的总利润(利润=售价﹣进价)等于371元,请通过计算求出该商场购进甲、乙两种牛奶各自多少件?【解答】解:(1)设乙种牛奶的进价为x元/件,则甲种牛奶的进价为(x﹣5)元/件,根据题意得:=,解得:x=50,经检验,x=50是原分式方程的解,且符合实际意义,∴x﹣5=45.答:乙种牛奶的进价是50元/件,甲种牛奶的进价是45元/件.(2)设购进乙种牛奶y件,则购进甲种牛奶(3y﹣5)件,根据题意得:(49﹣45)(3y﹣5)+(55﹣50)y=371,解得:y=23,∴3y﹣5=64.答:该商场购进甲种牛奶64件,乙种牛奶23件.8.(2018?阿城区模拟)某文具店用1050元购进第一批某种钢笔,很快卖完,又用1440元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的 1.2倍,数量比第一批多了10支.(1)求第一批每支钢笔的进价是多少元?(2)第二批钢笔按24元/支的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的钢笔全按8折一次性打折销售,但要求第二批钢笔的利润率不低于20%,问至少销售多少支后开始打折?【解答】解:(1)设第一批每只文具盒的进价是x元,根据题意得:﹣=10,解得:x=15,经检验,x=15是方程的解,答:第一批文具盒的进价是15元/只;(2)设销售y只后开始打折,根据题意得:(24﹣15×1.2)y+(﹣y)(24×80%﹣15×1.2)≥1440×20%,解得:y≥40.答:至少销售40只后开始打折.9.(2018?铁西区模拟)A,B两地间仅有一长为180千米的平直公路,若甲,乙两车分别从A,B两地同时出发匀速前往B,A两地,乙车速度是甲车速度的倍,乙车比甲车早到45分钟.(1)求甲车速度;(2)乙车到达A地停留半小时后以来A地时的速度匀速返回B地,甲车到达B地后立即提速匀速返回A地,若乙车返回到B地时甲车距A地不多于30千米,求甲车至少提速多少千米/时?【解答】解:(1)设甲车速度为x千米/时,则乙车的速度是x千米/时,依题意得:=+,解得:x=60.经检验:x=60是原方程的解.答:设甲车速度为60千米/时;(2)设甲车提速y千米/时,依题意得:180﹣(×2+)(60+y)≤30,解得:y≥15.所以甲车至少提速15千米/时.10.(2018?长春模拟)甲乙两地相距72千米,李磊骑自行车往返两地一共用了7小时,已知他去时的平均速度比返回时的平均速度快,求李磊去时的平均速度是多少?小芸同学解法如下:解:设李磊去时的平均速度是x千米/时,则返回时的平均速度是(1﹣)x千米/时,由题意得:+=7,…你认为小芸同学的解法正确吗?若正确,请写出该方程所依据的等量关系,并完成剩下的步骤;若不正确,请说明原因,并完整地求解问题.【解答】解:小芸同学的解法不正确.理由为:“去时的平均速度比返回时的平均速度快”并不等于“返回时的平均速度比去时的平均速度慢”.正确的解法是:设返回时的平均速度为x千米/时,则去时的平均速度为(1+)x 千米/时,根据题意得:+=7,解得:x=18,经检验,x=18是原分式方程的解,∴(1+)x=(1+)×18=24.答:李磊去时的平均速度是24千米/时.11.(2017秋?福州期末)在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式:(Ⅰ)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5个,请求出这种篮球的标价;(Ⅱ)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)【解答】解:(Ⅰ)设这种篮球的标价为x元.由题意:﹣=5,解得:x=50,经检验:x=50是原方程的解.答:这种篮球的标价为50元.(Ⅱ)购买购买100个篮球,所需的最少费用为3850元.方案:在A超市分两次购买,每次45个,费用共为3450元,在B超市购买10个,费用400元,两超市购买100个篮球,所需的最少费用为3850元.12.(2017秋?青山区期末)张明和李强两名运动爱好者周末相约到东湖绿道进行跑步锻炼.(1)周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为 4.5千米和1.2千米的绿道落雁岛入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,求张明和李强的速度分别是多少米/分?(2)两人到达绿道后约定先跑6千米再休息,李强的跑步速度是张明跑步速度的m倍,两人在同起点,同时出发,结果李强先到目的地n分钟.①当m=12,n=5时,求李强跑了多少分钟?②张明的跑步速度为米/分(直接用含m,n的式子表示).【解答】解:(1)设李强的速度为x米/分,则张明的速度为(x+220)米/分,根据题意得:=,解得:x=80,经检验,x=80是原方程的根,且符合题意,∴x+220=300.答:李强的速度为80米/分,张明的速度为300米/分.(2)①∵m=12,n=5,∴5÷(12﹣1)=(分钟).故李强跑了分钟;②李强跑了的时间:分钟,张明跑了的时间:+n=分钟,张明的跑步速度为:6000÷=米/分.故答案为:.13.(2017秋?汶上县期末)元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?【解答】解:(1)设零售价为5x元,团购价为4x元,则解得,,经检验:x=是原分式方程的解,5x=2.5答:零售价为 2.5元;(2)学生数为=38(人)答:王老师的班级里有38名学生.。
小专题(十九) 分式方程应用题的常见类型类型1 工程问题1.某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队再单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x 天,可列方程为520+45x=1. 2.(十堰中考)甲、乙两名学生练习计算机打字,甲打一篇1 000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,问:甲、乙两人每分钟各打多少个字?解:设乙每分钟打x 个字,则甲每分钟打(x +5)个字,由题意,得1 000x +5=900x ,解得x =45. 经检验,x =45是原方程的解.答:甲每分钟打50个字,乙每分钟打45个字.3.(广东中考)某工程队修建一条1 200 m 的道路,采用新的施工方式,工效提高了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前两天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?解:(1)设这个工程队原计划每天修建道路x 米,得1 200x = 1 200(1+50%)x+4,解得x =100. 经检验,x =100是原方程的解.答:这个工程队原计划每天修建100 m .(2)设实际平均每天修建道路的工效比原计划增加y%,可得1 200100= 1 200100+100y%,解得y =20. 经检验,y =20是原方程的解.答:实际平均每天修建道路的工效比原计划增加百分之二十.4.一项工程,甲、乙两公司合做,12天可以完成,共需付施工费102 000元;如果甲、乙两公司单独完成此项工程,乙公司所用的时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1 500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?解:(1)设甲公司单独完成此项工程需x 天,则乙公司单独完成此项工程需1.5x 天.根据题意,得1x +11.5x =112,解得x =20, 经检验,x =20是方程的解且符合题意.1.5x =30.答:甲公司单独完成此项工程需20天,乙公司需30天.(2)设甲公司每天的施工费为y 元,则乙公司每天的施工费为(y -1 500)元,根据题意,得 12(y +y -1 500)=102 000,解得y =5 000.甲公司单独完成此项工程所需的施工费为20×5 000=100 000(元);乙公司单独完成此项工程所需的施工费为30×(5 000-1 500)=105 000(元).∴甲公司的施工费较少.类型2 行程问题5.(娄底中考)甲、乙两同学与学校的距离均为3 000米,甲同学先步行600米然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行的速度是乙骑自行车速度的12,公交车速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度.(2)当甲到达学校时,乙同学离学校还有多远?解:(1)设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意,得60012x +3 000-6002x =3 000x -2, 解得x =300.经检验,x =300是方程的解.答:乙骑自行车的速度为300米/分钟.(2)300×2=600(米).答:当甲到达学校时,乙同学离学校还有600米.6.从贵阳到广州,乘特快列车的行程约为1 800 km ,高铁开通后,高铁列车的行程约为860 km ,运行时间比特快列车所用的时间减少了16 h .若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.解:设特快列车的平均速度为x km /h ,根据题意可列出方程为1 800x =8602.5x+16,解得x =91. 检验:当x =91时,2.5x ≠0.所以x =91是方程的解.答:特快列车的平均速度为91 km /h .类型3 销售问题7.某学校后勤人员到一家文具店给九年级的同学购买考试用的文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1 936元;若多买88个,就可享受8折优惠,同样只需付款1 936元.请问该学校九年级学生有多少人?解:设九年级学生有x 人,根据题意,得1 936x ×0.8=1 936x +88, 整理得0.8(x +88)=x ,解得x =352.经检验,x =352是方程的解.答:这个学校九年级学生有352人.8.华昌中学开学初在金利源商场购进A 、B 两种品牌足球,购买A 品牌足球花费了2 500元,购买B 品牌足球花费了2 000元,且购买A 品牌足球数量是购买B 品牌足球数量的2倍,已知购买一个B 品牌足球比购买一个A 品牌足球多花30元.(1)求购买一个A 品牌、一个B 品牌的足球各需多少元;(2)华昌中学为响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共50个.恰逢金利源商场对两种品牌足球的售价进行调整,A 品牌足球售价比第一次购买时提高了8%,B 品牌足球按第一次购买时售价的9折出售.如果这所中学此次购买A 、B 两种品牌足球的总费用不超过3 260元,那么华昌中学此次最多可购买多少个B 品牌足球?解:(1)设购买一个A 品牌足球需x 元,则购买一个B 品牌足球需(x +30)元,根据题意,得 2 500x =2 000x +30×2,解得x =50. 经检验,x =50是原方程的解.则x +30=80.答:购买一个A 品牌足球需50元,购买一个B 品牌足球需80元.(2)设本次购买a 个B 品牌足球,则购进A 品牌足球(50-a)个,根据题意,得50×(1+8%)(50-a)+80×0.9a ≤3 260,解得a ≤3119. ∵a 取正整数,∴a 最大值为31.答:此次华昌中学最多可购买31个B 品牌足球.9.(常德中考)某服装店用4 500元购进一批衬衫,很快售完.服装店老板又用2 100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1 985元,则第二批衬衫每件至少要售多少元?解:(1)设第二次购进衬衫x 件,则第一次购进衬衫2x 件,根据题意,得 4 5002x -2 100x=10,解得x =15. 经检验,x =15是此方程的解,则2x =30.答:第一次购进衬衫30件,第二次购进衬衫15件.(2)设第二批衬衫每件售价为y 元,根据题意,得30×(200-4 50030)+15(y -2 10015)≥1 985, 解得y ≥17213. 答:第二批衬衫每件至少要售17213元.。
分式方程应用题分类练习一、行程问题1、某校学生利用春假时间去距离学校10km的静园参观。
一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达。
已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度。
2、比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议。
蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达。
已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度。
3、全国铁路实施第六次大面积提速,从A站到B站的某次列车提速前的运行时km刻表如下,该次列车现在提速后,每小时比提速前7快20,那么按现在的速度终到时刻是多少?4、甲、乙两队同时分别从A、B两地沿同一条公路骑自行车到C地,已知A、C 两地间的距离为110千米,B、C两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C地,求两人的平均速度.5、中国地大物博,过去由于交通不便,一些地区的经济发展受到了制约,自从“高铁网络”在全国陆续延伸以后,许多地区的经济和旅游发生了翻天覆地的变化,高铁列车也成为人们外出旅行的重要交通工具.李老师从北京到某地去旅游,从北京到该地普快列车行驶的路程约为 1 352 km,高铁列车比普快列车行驶的路程少52 km,高铁列车比普快列车行驶的时间少8 h.已知高铁列车的平均时速是普快列车平均时速的2.5倍,求高铁列车的平均时速6、初二一班在军训时举行了登山活动,已经知道此山的高度是450米,于是教练员选择较平缓的南面开始登山,他首先把全班学生分成两组,已知第一组的攀登速度是第二组的1.2倍,他们比第二组早15分钟到达山顶.求这两个小组的攀登速度各是多少?二、工程问题1、某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.求原计划平均每天生产多少台机器?2、某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果提前2天完成全部任务.则采用技术后每天加工多少套运动服?3、为了维修某高速公路需开凿一条长为1300米的隧道,为了提高工作效率,高速公路建设指挥部决定由甲、乙两个工程队从两端同时开工.已知甲工程队比乙工程队每天能多开凿10米,且甲工程队开凿300米所用的天数与乙工程队开凿200米所用的天数相同,则甲、乙两个工程队每天各能开凿多少米4、甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?5、某市为治理污水,需要铺设一段全长600m的污水排放管道,铺设120m后,为加快施工进度,后来每天比原计划增加20m,结果共用11天完成这一任务,求原计划每天铺设管道的长度.6、为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?7、有一段6000米的道路由甲、乙两个工程队负责完成,已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费700元,乙工程队每天需工程费500元,若甲队先单独工作若干天,再由甲、乙两工程队合作完成剩余的任务,支付工程队总费用不大于7600元,则两工程队最多可合作施工多少天?8、为治理太湖,某市决定铺设一段全长为3000米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加25%,结果提前20天完成这一任务,原计划每天铺设多长管道?三、盈利问题1、夏季来临,商场准备购进甲、乙两种空调.已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同.请解答下列问题:(1)求甲、乙两种空调每台的进价;(2)若甲种空调每台售价2500元,乙种空调每台售价1800元,商场欲同时购进两种空调20台,且全部售出,请写出所获利润y(元)与甲种空调x(台)之间的函数关系式;(3)在(2)的条件下,若商场计划用不超过36000元购进空调,且甲种空调至少购进10台,并将所获得的最大利润全部用于为某敬老院购买1100元/台的A型按摩器和700元/台的B型按摩器.直接写出购买按摩器的方案.2、夏天到了,欣欣服装店老板用4500元购进一批卡通团T桖衫,由于深受顾客喜爱,很快售完,老板又用5000元购进第二批该款式T恤杉,所购数量与第一批相同,但每件进价比第一批多了10元.求第二批衣服售价该定为多少元?3、某文化用品商店用1 000元购进一批“晨光”套尺,很快销售一空;商店又用1 500元购进第二批该款套尺,购进时单价是第一批的54倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?4、某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2 5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价均为每件15元.(1)问第二次购进了多少件文具?(2)文具店老板第一次购进的文具有3% 的损耗,第二次购进的文具有5% 的损耗,问文具店老板在这两笔生意中是盈利还是亏本?请说明理由.5、某超市用4000元购进某种服装销售,由于销售状况良好,超市又调拨9000元资金购进该种服装,但这次的进价比第一次的进价降低了10%,购进的数量是第一次的2倍还多25件,问这种服装的第一次进价是每件多少元?6、今年6月25日是我国的传统节日端午节,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A,B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.求A,B两种粽子的单价各是多少?7、端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?8、某文化用品商店用2000元购进一批小学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了2元,结果第二批用了2600元.若商店销售这两批书包时,每个售价都是30元,全部售出后,商店共盈利多少元?9、某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出.如果两批衬衫全部售完后利润率不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?四、水流问题1、轮船顺水航行40千米所需的时间与逆水航行30千米所需的时间相同.已知水流速度为3千米/时,求轮船在静水中的速度为多少?2、轮船顺水航行75千米所需时间于逆水航行50千米所需要的时间一致,已知水流速度是3.5千米每小时,求轮船在静水中的速度是多少?五、耕地问题1、有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,求第一块试验田每公顷的产量为多少千克?2、有两块面积相同的试验田,其中分别收获小麦10000千克和9500千克,已知第一块试验田比第二块试验田的产量每公顷多3000千克,求两块试验田的产量为每公顷多少千克?六、其他问题1、小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.则设他上月买了多少本笔记本?.小丽家去年2、某市从今年1月1日起调整居民用水价格,每立方米水费上涨1312月份的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3.求该市今年居民用水的价格.3、母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?4、端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?5、某城建部门计划在城市道路两旁栽1500棵树,原计划每天栽若干棵,考虑到季节、人员安排等因素,决定每天比原计划多栽50棵,最后提前5天完成任务,求原计划每天栽树多少棵?6、我国是一个水资源贫乏的国家,第每一个公民都应自觉养成节约用水的意识和习惯。
方程应用题1.工程问题1.工作量=工作效率×工作时间,工作效率=工作量工作时间 ,工作时间=工作量工作效率2.完成某项任务的各工作量的和=总工作量=12.营销问题1.商品利润=商品售价一商品成本价2.商品利润率=商品利润商品成本价×100% 3.商品销售额=商品销售价×商品销售量4.商品的销售利润=(销售价一成本价)×销售量3.行程问题1.路程=速度×时间,速度=路程时间 ,时间=路程速度; 2.在航行问题中,其中数量关系是(同样适用于航空):顺水速度=静水速度+水流速度逆水速度=静水速度-水流速度3.两车相遇问题,其中数量关系是: 两车相向:车头车尾相错时间=甲车长+乙车长速度和两车同向:车头车尾相错时间=甲车长+乙车长速度差(速度差=较大车速减较小车速)【例】某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每0.5kg 少3元,比乙种原料每0.5kg 多1元,问混合后的单价每0.5kg 是多少元?解析:设混合后的单价为每0.5kg x 元,则甲种原料的单价为每0.5kg(x +3)元,乙种原料的单价为每0.5kg(x -1)元,混合后的总价值为(2000+4800)元,混合后的重量为x 48002000+斤,甲种原料的重量为32000+x 斤,乙种原料的重量为14800-x 斤, 依题意,得:32000+x +14800-x =x48002000+,解得x =17 经检验,x =17是原方程的根,所以x =17.即混合后的单价为每0.5kg 17元.总结升华:营销类应用性问题,涉及进货价、售货价、利润率、单价、混合价、赢利、亏损等概念,要结合实际问题对它们表述的意义有所了解.同时,要掌握好基本公式,巧妙建立关系式.随着市场经济体制的建立,这类问题具有较强的时代气息,因而成为中考常考的热点问题.举一反三:【变式】A 、B 两位采购员同去一家饲料公司购买同一种饲料两次,两次饲料的价格有变化,但两位采购员的购货方式不同.其中,采购员A 每次购买1000千克,采购员B 每次用去800元,而不管购买饲料多少,问选用谁的购货方式合算?【答案】设两次购买的饲料单价分别为每1千克m 元和n 元(m>0,n>0,m ≠n),依题意,得:采购员A 两次购买饲料的平均单价为21000100010001000n m n m +=++ (元/千克), 采购员B 两次购买饲料的平均单价为n m mn n m +=++2800800800800 (元/千克). 而 ()()n m n m n m mn n m +-=+-+2222> 0 也就是说,采购员A 所购饲料的平均单价高于采购员B 所购饲料的平均单价,所以选用采购员B 的购买方式合算.【例】某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队工程费共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队工程费共9500元,甲、丙两队合做5天完成全部工程的2/3,厂家需付甲、丙两队工程费共5500元. ⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.思路点拨:这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量.对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队单独完成这项工程所需时间分别为x 天,y 天,z 天,可列出分式方程组.解析:⑴设甲队单独做需x 天完成,乙队单独做需y 天完成,丙队单独做需z 天完成,依题意,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+33211521*********z x z y y x ①×61+②×101+③×51,得x 1+y 1+z 1=51.④ ④-①×61, 得z 1=301,即30=z , ④-②×101,得x 1=101,即10=x , ④-③×51, 得y 1=151,即15=y . 经检验,x = 10,y = 15,z = 30是原方程组的解.⑵设甲队做一天厂家需付a 元,乙队做一天厂家需付b 元,丙队做一天厂家需付c 元,根据题意,得由⑴可知完成此工程不超过工期只有两个队:甲队和乙队.此工程由甲队单独完成需花钱800010=a 元;此工程由乙队单独完成需花钱975015=b 元.所以,由甲队单独完成此工程花钱最少.总结升华:在求解时,把x1,y 1,z 1分别看成一个整体,就可把分式方程组转化为整式方程组来解.举一反三:【变式1】 某工程需在规定日期内完成,若由甲队去做,恰好如期完成;若由乙队去做,要超过规定日期三天完成.现由甲、乙两队合做两天,剩下的工程由乙独做,恰好在规定日期完成,问规定日期是多少天?【答案】工程规定日期就是甲单独完成工程所需天数,设为x 天,那么乙单独完成工程所需的天数就是()3+x 天.设工程总量为1,甲的工作效率就是x1,乙的工作效率是31+x ,依题意,得1323112=+-+⎪⎭⎫ ⎝⎛++x x x x ,解得 6=x . 即规定日期是6天.【变式2】今年某大学在招生录取时,为了防止数据输入出错,2640名学生的成绩数据分别由两位教师向计算机输入一遍,然后让计算机比较两人的输入是否一致.已知教师甲的输入速度是教师乙的2倍,结果甲比乙少用2小时输完.问这两位教师每分钟各能输入多少名学生的成绩?【答案】设教师乙每分钟能输入x 名学生的成绩,则教师甲每分钟能输入x 2名学生的成绩,依题意,得:260264022640⨯-=xx , 解得11=x 经检验,11=x 是原方程的解,且当11=x 时,222=x ,符合题意.即教师甲每分钟能输入22名学生的成绩,教师乙每分钟能输入11名学生的成绩.【例】甲、乙两地相距828km ,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h ,比普通快车早4h 到达乙地,求两车的平均速度.思路点拨:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程=速度×时间,应根据题意,找出追击问题中的等量关系.解析:设普通快车的平均速度为x km /h ,则直达快车的平均速度为1.5x km /h ,依题意,得:()xx 5.182842828=--,解得46=x 经检验,46=x 是方程的根,且符合题意.∴当46=x 时,695.1=x即普通快车的平均速度为46km /h ,直达快车的平均速度为69km /h .总结升华:列分式方程与列整式方程一样,注意找出应用题中数量间的相等关系,设好未知数,列出方程.不同之处是:所列方程是分式方程,最后进行检验,既要检验其是否为所列方程的解,还要检验是否符合题意,即满足实际意义.举一反三:【变式1】 一队学生去校外参观.他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍行进速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?【答案】设步行速度为x 千米/时,骑车速度为2x 千米/时,依题意,得:603021515=-x x 方程两边都乘以x 2,去分母,得x =-1530, 所以 15=x .检验:当15=x 时,01522≠⨯=x所以15=x 是原分式方程的根,并且符合题意.∵213015=,∴骑车追上队伍所用的时间为30分钟.【变式2】农机厂职工到距工厂15千米的生产队检修农机,一部分人骑自行车先走,40分钟后,其余的人乘汽车出发,结果他们同时到达,已知汽车的速度是自行车的3倍,求两车的速度.【答案】设自行车的速度为x 千米/小时,那么汽车的速度为x 3千米/小时,依题意,得:604015315-=x x 解得 15=x经检验15=x 是这个方程的解.当15=x 时,453=x即自行车的速度是15千米/小时,汽车的速度为45千米/小时.【变式3】轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度.【答案】设船在静水中速度为千米/时,则顺水航行速度为()2+x 千米/时,逆水航行速度为()2+x 千米/时,依题意,得:220230-=+x x ,解得10=x . 经检验,10=x 是原方程的根.即船在静水中的速度是10千米/时.。
八年级上数学分式方程专项练习1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
问:乙单独整理需多少分钟完工?解:设乙单独整理需x 分钟完工,则120204020=++x解,得x =80 经检验:x =80是原方程的解。
答:乙单独整理需80分钟完工。
2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x 千克,则3001500900+=x x 解,得x =450 经检验:x =450是原方程的解。
答:第一块试验田每亩收获蔬菜450千克。
3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
解:设步行速度是x 千米/时,则247197=-+xx 解,得x =5 经检验:x =5是原方程的解。
进尔4x =20(千米/时)答:步行速度是5千米/时,骑自行车的速度是20千米/时。
4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x 瓶酸奶,则2.053140.185.12+⎪⎭⎫ ⎝⎛+=x x 解,得x =5 经检验:x =5是原方程的解。
答:她第一次在供销大厦买了5瓶酸奶。
5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
⑴ 求这种纪念品4月份的销售价格。
人教版八年级下册数学分式方程解应用题常见类型题及答案分式方程解应用题常见类型题及答案1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。
问:乙单独整理需多少分钟完工?解:设乙单独整理需x分钟完工,则2021 20 1 解,得x=80 40x经检验:x=80是原方程的解。
答:乙单独整理需80分钟完工。
2、有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块少300千克,求第一块试验田每亩收获蔬菜多少千克?解:设第一块试验田每亩收获蔬菜x千克,则9001500 解,得x=450 xx 300经检验:x=450是原方程的解。
答:第一块试验田每亩收获蔬菜450千克。
3、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
解:设步行速度是x千米/时,则719 7 2 解,得x=5 x4x经检验:x=5是原方程的解。
进尔4x=20(千米/时)答:步行速度是5千米/时,骑自行车的速度是20千米/时。
4、小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多,问:她第一次在供销大厦买了几瓶酸奶?解:⑴设她第一次在供销大厦买了x瓶酸奶,则12.518.40 0.2 解,得x=5 x 3 1 x 5经检验:x=5是原方程的解。
答:她第一次在供销大厦买了5瓶酸奶。
5、某商店经销一种纪念品,4月份的营业额为2000元,为扩大销售,5月份该商店对这种纪念品打九折销售,结果销售量增加20件,营业额增加700元。
⑴ 求这种纪念品4月份的销售价格。
列分式方程解应用题的常见类型分析列分式方程解决实际问题和列一元一次方程解决实际问题的思考和处理过程是类似的,只是多了对分式方程的根的检验。
这里的检验应包括两层含义:第一,检验得到的根是不是分式方程的根;第二,检验得到的根是不是使实际问题有意义。
一、路程问题:这类问题涉及到三个数量:路程、速度和时间。
它们的数量关系是:路程=速度×时间。
列分式方程解决实际问题要用到它的变形公式:速度=路程/时间,时间=路程/速度。
例1 A、B两地相距60千米。
甲骑自行车从A地出发到B地,出发1小时后,乙骑摩托车也从A地出发到B地,且比甲早到3小时。
已知乙的速度是甲的3倍,求甲、乙的速度。
相等关系:二、工程问题这类问题也涉及三个数量:工作量、工作效率和工作时间。
它们的数量关系是:工作量=工作效率×工作时间。
列分式方程解决实际问题用它的变形公式:工作效率=工作量/工作时间。
特别地,有时工作总量可以看作整体“1”,这时,工作效率=1/工作时间。
例2某项工作,甲、乙两人合作3天后,剩下的工作由乙单独来做,用1天即可完成。
已知乙单独完成这项工作所需天数是甲单独完成这项工作所需天数的2倍。
甲、乙单独完成这项工作各需多少天?相等关系:三、销售问题:解决这类问题,首先要弄清一些有关的概念:商品的进价:商店购进商品的价格;商品的标价:商店销售商品时标出的价格;商品的售价:商店售出商品时的实际价格;利润:商店在销售商品时所赚的钱;利润率:商店在销售商品时利润占商品进价的百分率;打折:商店在销售商品时的实际售价占商品标价的百分率。
其次,还要弄清它们之间的关系:商品的售价=商品的标价×商品的打折率;商品的利润=商品的售价-商品的进价;商品的利润率=商品的利润/商品的进价。
例3 某超市销售一种钢笔,每枝售价为12元。
后来,钢笔的进价降低了4%,从而使超市销售这种钢笔的利润率提高了5%。
这种钢笔原来每枝进价是多少元?本题中的主要等量关系:练习:1.某地为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?2.甲乙两车在A、B两城间连续往返行驶,甲车从A城出发,乙车从B城出发,且比甲车早出发1小时,两车在途中分别距离200千米和240千米的C处第一次相遇。
分式方程应用题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( ) A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .通过这段对话,11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价) 12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时.1、解:设通车后火车从福州直达温州所用的时间为x 小时.1分 依题意,得29833122x x =⨯+. 5分 148 1.6491x =≈. 答:通车后火车从福州直达温州所用的时间约为1.64小时. 10分2、解:设每盒粽子的进价为x 元,由题意得 1分20%x ×50-(x2400-50)×5=350 4分 化简得x 2-10x -1200=0 5分解方程得x 1=40,x 2=-30(不合题意舍去) 6分答: 每盒粽子的进价为40元. 8分3、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 1分341040%1.05x x-= 解得56x ≈ 5分经检验,56x ≈是原方程的解 6分答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨. 7分(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天约为1.05x 万吨) (2)解:59(120%)70.8⨯+=8分 70.870%49.5⨯= 9分 答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨. 4、D5、D6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.注:此题将方程列为30020020010x x -=⨯或其变式,同样得分.7、C8、解:设原来每天加固x 米,根据题意,得1分 926004800600=-+x x . 3分去分母,得 1200+4200=18x (或18x =5400) 5分解得 300x =. 6分9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天, 根据题意,得 10x +1245x =1 解这个方程,得x =25 ………………6分 10、22402240220x x-=- 11、解:设这种计算器原来每个的进价为x 元, 1分 根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分12、240024008(120)x x-=+% 13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815,……………………………………2分 去分母,整理得:x 2+40x -32000=0,解之,得:x 1=160,x 2=-200, ……………………………… 4分经检验,x 1=160,x 2=-200都是原方程的解,但x 2=-200<0,不合题意,舍去.∴x =160,x +40=200. …………………………………………6分答:第五次提速后的平均时速为160公里/时,第六次提速后的平均时速为200公里/时.15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 解80x =. 5分 80 3.2256∴⨯=(千米/时). 所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.16、解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得 1分111220x x +=, 解得 30x =. 经检验30x =是原方程的解,且30x =,260x =都符合题意. 5分∴应付甲队30100030000⨯=(元).应付乙队30255033000⨯⨯=(元).∴公司应选择甲工程队,应付工程总费用30000元. 8分17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里根据题意, 得 311818=+-x x ………………………4分 解得21=x ,32-=x 经检验21=x ,32-=x 都是原方程的根但32-=x 不符合题意,舍去 ∴31=+x18、 20。
专题18 分式方程应用题的常见类型◎类型一:工程问题1.(2022·四川成都·八年级期末)某车间加工1300个零件后,采用了新工艺,工效提升了30%,这样加工同样多的零件就少用10小时.若设采用新工艺前每小时加工x 个零件,则可列方程为( )A .()1300130010130%x x -=-B .()1300130010130%x x -=+C .()1300130010130%x x -=-D .()1300130010130%x x -=+2.(2022·浙江湖州·七年级期末)某帐篷生产企业承接生产7000顶帐篷的任务,原计划每天生产x 顶,但后因帐篷急需,该企业加大生产投入,提高生产效率,实际每天生产数量提高到原计划的1.4倍,结果提前4天完成任务.根据题意,下面所列方程正确的是( )A .7000700041.4x x x -=+B .7000700041.4x x =-C .7000700041.4x x x -=+D .7000700041.4x x-=【答案】D3.(2022·甘肃·武威第九中学八年级期末)建筑公司修建一条400米长的道路,开工后每天比原计划多修10米,结果提前2天完成了任务.如果设建筑公司实际每天修x米,那么可得方程是________.4.(2022·江苏泰州·八年级期末)为了改善生态环境,防止水土流失,某村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数比原计划多50%,结果提前4天完成任务,设原计划每天植树x 棵,根据题意列出方程________.5.(2022·河南信阳·八年级期末)在学习“分式方程应用”时,张老师板书了如下的问题,小明和小亮两名同学都列出了对应的方程.15.3分式方程例:有甲乙两个工程队,甲队修路800m与乙队修路1200m所用时间相等,乙队每天比甲队多修40m,求甲队每天修路的长度小明:800120040x x=+小亮:120080040y y-=根据以上信息,解答下列问题:(1)小明同学所列方程中x表示______,列方程所依据的等量关系是________________________________;小亮同学所列方程中y表示______,列方程所依据的等量关系是________________________________;(2)请你在两个方程中任选一个,解答老师的例题.6.(2022·福建·莆田二中八年级期末)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.求甲、乙两个工程队每天各修路多少千米?【答案】甲每天修路1.5千米,则乙每天修路1千米【分析】可设甲每天修路x千米,则乙每天修路(x-0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;【详解】解:设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,◎类型二:行程问题(1)基本数量关系:路程=速度×时间(2)常见应用题中的等量关系:①同一路程慢速-同一路程快速=时间差②顺水速度=船的速度+水速 逆水速度=船的速度-水速③一段路程原计划按甲速度行驶完,但行驶途中速度变为乙速度,则:全部路程甲速度=原计划时间,甲速度行驶路程+乙速度行驶路程=全部路程,全部路程甲速度-甲速度行驶路程甲速度-乙速度行驶路程乙速度=时间差7.(2022·浙江金华·七年级期末)某校组织七年级同学乘坐大巴到金华万福塔开展社会实践活动.该塔距离学校5千米.1号车出发4分钟后,2号车才出发,结果两车同时到达.已知2号车的平均速度是1号车的平均速度的1.5倍,求2号车的平均速度.设1号车的平均速度为x km/h ,可列方程为 ( )A .5541.5x x -=B .5541.5x x -=C .5541.560x x -=D .5541.560x x -=8.(2022·辽宁朝阳·中考真题)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60km ,一部分学生乘慢车先行,出发30min后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶x km,根据题意,所列方程正确的是( )A.60x﹣601.5x=3060B.601.5x﹣60x=3060C.60x﹣601.5x=30D.601.5x﹣60x=309.(2022·山西·寿阳县教研室九年级期末)斑马线前“礼让行人”,不仅体现着对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段“A﹣B﹣C”横穿双向行驶车道,其中AB=BC=12米,在绿灯亮时,小敏共用20秒通过AC,其中通过BC的速度是通过AB速度的1.5倍,求小敏通过AB时的速度.设小敏通过AB时的速度是x米/秒,根据题意列方程为____.10.(2022·浙江浙江·二模)某班同学到距学校12千米的森林公园植树,一部分同学骑自行车先行,半小时后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是自行车速度的3倍,求自行车和汽车的速度.设自行车的速度为x千米/时,则根据题意可列方程为________.11.(2022·辽宁沈阳·一模)小明家距学校980m.(1)若他从家跑步上学,路上时间不超过490s,请直接写出小明跑步的平均速度至少为______m/s.(2)若他从家出发,先步行了350m后,发现上学要迟到了,因此换骑上了共享单车,达到学校时,全程共花了480s.已知小明骑共享单车的平均速度是步行平均速度的3倍,求小明骑共享单车的平均速度是多少?(转换出行方式时,所需时间忽略不计,假设家到学校随时都有共享单车).【点睛】本题考查实际运用题的求解,熟练掌握解实际应用题的步骤“设、列、解、答”,读懂题意,找到等量关系列出方程是解决问题的关键.12.(2022·山东潍坊·八年级期末)甲、乙两列高铁列车在不同的时刻分别从北京出发开往上海.已知北京到上海的距离约为1320千米,列车甲行驶的平均速度为列车乙行驶平均速度的43倍,全程运行时间比列车乙少1.5小时,求列车甲从北京到上海运行的时间.◎类型三:打折销售问题总售价=单价×销售量总利润=单价利润×销售量=总售价-总成本1--%100成本售价成本成本售价成本利润利润率==⨯=利润率售价成本+=1利润=成本×利润率=售价-成本价(进价)售价=成本×(1+利润率)=标价×打折数(不打折时,售价=标价)=成本价+利润=成本价×(1+利润率)标价=成本价×(1+提高成数)成本价=售价-利润13.(2022·安徽合肥·七年级期末)母亲节前夕,某花店购进若干束花,很快售完,接着又在原总进价的基础上增加12.5%购进第二批花.已知第二批所购花束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少8元,设第一批花束每束的进价为x 元,依据题意可得方程( )A .1.5112.5%8x x +=-B .1.512.5%8x x =-C .1112.5%81.5x x+-=D .112.5%181.5x x +-=14.(2022·内蒙古巴彦淖尔·八年级期末)某图书馆计划选购甲、乙两种图书,已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.求甲、乙两种图书每本价格分别为多少元,我们设乙图书每本价格为x 元,则可得方程( )A .8008002.5x x -=4B .8008002.5x x -=24C .800 2.5800x x ⨯-=24D .800800 2.5x x⨯-=24故答案为A.【点睛】本题主要考查了列分式方程,正确理解等量关系是解答本题的关键.15.(2022·贵州铜仁·八年级期末)为做好新冠疫情的防控工作,某单位需购买甲、乙两种消毒液,经了解每桶甲种消毒液的零售价比乙种消毒液的零售价多6元,该单位以零售价分别用900元和720元采购了相同桶数的甲、乙两种消毒液.求甲、乙两种消毒液的零售价分别是每桶多少元?设乙种消毒液零售价x元/桶,则可立方程为:________.16.(2022·辽宁·沈阳市第七中学八年级阶段练习)某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求.商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了5元.商厦销售这种衬衫时每件定价都是60元,最后剩下200件按7折销售,很快售完.在这两笔生意中,商厦共盈利______元.2760000840080000176000=+--=(元)28400∴在这两笔生意中,商厦共盈利28400元.故答案为:28400.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.17.(2022·山东·济南市天桥区泺口实验学校八年级期中)购买甲、乙两种物品,已知乙种物品的单价比甲种物品的单价贵10元,用480元购买乙种物品的数量与用360元购买甲种物品的数量相同,求甲、乙两种物品的单价各是多少元?18.(2022·甘肃·民勤县第六中学八年级期末)列方程解应用题:某商店用2000元购进一批小学生书包,出售后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了2元,结果购买第二批书包用了6600元.(1)请求出第一批每只书包的进价;(2)该商店第一批和第二批分别购进了多少只书包;(3)若商店销售这两批书包时,每个售价都是30元,全部售出后,商店共盈利多少元?【答案】(1)20元(2)第一批购进100只,第二批购进300只(3)3400元【分析】(1)设第一批书包的单价为x元,然后可得到第二批书包的单价,最后依据第二所购书包的数量◎类型四:方案选择问题19.(2022·辽宁沈阳·八年级期末)某校组织540名学生去外地参观,现有A,B两种不同型号的客车可供选择.在每辆车刚好满座的前提下,每辆B型客车比每辆A型客车多坐15人,单独选择B型客车比单独选择A型客车少租6辆.设A型客车每辆坐x人,根据题意可列方程( )A.54015x-﹣540x=6B.540x﹣54015x+=6C.54015x+﹣540x=6D.540x﹣54015x-=620.(2013·山东泰安·九年级期末)小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意得A.B.C.D.21.(2020·黑龙江哈尔滨·二模)为了配合新型冠状病毒的防控工作,某社区欲购进一批酒精对社区进行消毒,现有A、B 两种酒精可供选择,B 种酒精比 A 种酒精每瓶贵 2 元,用600 元购买 A 种酒精和用800 元购买B 种酒精的数量相同,现要求出A、B 两种酒精每瓶的价格.设A 种酒精每瓶的价格为x 元,则可列方程为__________.22.(2019·浙江温州·中考模拟)某校组织1080名学生去外地参观,现有A、B两种不同型号的客车可供选择.每辆B型客车的载客量比每辆A型客车多坐15人,若只选择B型客车比只选择A型客车少租12辆(每辆客车均坐满).设B型客车每辆坐x人,则列方程为_____.23.(2022·江苏·扬州市江都区第三中学八年级阶段练习)某公司有960件新产品需经加工后才能投放市场,现有甲、乙两家工厂都想加工加工这批产品.已知甲工厂单独完成这批产品比乙工厂单独完成这批产品多用20天,而甲工厂每天加工数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费每天80元,需付乙工厂加工费每天120元.(1)甲、乙两工厂每天能加工多少件新产品?(2)公司制定的方案如下:可以由每个厂家单独完成,也可以有两个厂家合作完成.在加工过程中,公司派一名工程师进行技术指导,并担负每天25元的午餐补助,请帮公司需出一种既省时又省钱的加工方案,并说明理由.16a+24a=960∴a=24∴需要的总费用为:24×(80+120+25)=5400元综上所述:甲、乙两工厂合作完成此项任务既省时又省钱.【点睛】本题主要考查分式方程的应用,解题的关键在于理解清楚题意,找出等量关系,列出方程求解.需要注意:①分式方程求解后,应注意检验其结果是否符合题意;②选择最优方案时,需将求各个方案所需时间和所需费用,经过比较后选择最优的那个方案.24.(2022·浙江舟山·七年级期末)舟山市疫情防控工作领导小组在5月30日发布了常态化核酸检测工作的通知,6月3日起我市居民进入公共场所须凭7天内核酸采样或检测阴性证明.根据文件要求,学生在校期间每周要组织核酸检测一次,某校积极响应,安排校医甲和教师乙进行核酸采集培训.经过培训后,甲采集的速度是乙的两倍,且甲采集52人用时比乙采集30人用时少2分钟.(1)求甲、乙平均每分钟分别采集多少人?(2)该校七年级学生人数比八年级少18人,其中七年级有7个班,每班m人,8八年级有6个班,每班n 人,两名采集员各自用了87分钟完成了七、八年级学生核酸采集工作,求m和n的值;(3)该校教职工70人完成核酸采集后要放入10人试管或20人试管中,在保证每个试管不浪费情况下,有哪几种分装方案?【答案】(1)甲平均每分钟采集4人,乙平均每分钟采集2人;(2)3645 mn=ìí=î(3)有4种方案:①5个10人试管,1个20人试管;②3个10人试管,2个20人试管;③1个10人试管,3个20人试管;④7个10人试管,0个20人试管.【分析】(1)可设乙速度为平均每分钟采集x人,甲为2x人,根据所用的时间可列出方程,解方程即可;(2)根据题意列出关于m,n的二元一次方程组,解方程组即可;(3)设10人试管有x个,20人试管有y个,从而得到10x+20y=70,根据x与y都是正整数,从而可求解.(1)解:设乙速度为平均每分钟采集x人,则甲为每分钟采集2x人,。
初二分式方程应用题及答案
题目:某工厂生产一批零件,甲车间单独完成需要15天,乙车间单
独完成需要20天。
现在甲乙两个车间合作,共同完成这批零件的生产,问需要多少天?
解答:
设甲车间每天完成这批零件的\( \frac{1}{15} \),乙车间每天完成
这批零件的\( \frac{1}{20} \)。
设甲乙两个车间合作完成这批零件
需要\( x \)天。
根据题意,甲乙两个车间合作\( x \)天完成的零件数等于这批零件的
总数,即:
\[ \frac{1}{15}x + \frac{1}{20}x = 1 \]
为了解这个方程,我们首先找到两个分数的最小公倍数,即60,然后
将方程两边同时乘以60,得到:
\[ 4x + 3x = 60 \]
合并同类项,得到:
\[ 7x = 60 \]
解得:
\[ x = \frac{60}{7} \]
所以,甲乙两个车间合作需要\( \frac{60}{7} \)天完成这批零件的生产。
答案:甲乙两个车间合作需要\( \frac{60}{7} \)天完成这批零件的生产。
分式方程1. 对于非零的两个实数a ,b ,规定a ⊕b =1b -1a,若2⊕(2x -1)=1,则x 的值为( ) A. 56 B. 54 C. 32 D. -162. 货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是( )A. 25x =35x -20B. 25x -20=35xC. 25x =35x +20D. 25x +20=35x3. 分式方程2x -2-1x =0的根是( )A. x =1B. x =-1C. x =2D. x =-24.方程2xx -1=1+1x -1的解是( )A. x =-1B. x =0C. x =1D. x =25. 解方程:①: 1x -1-3x 2-1=0.②:2x -3+2=x-2x -3.③已知关于x 的分式方程1+2-mx3-x =2x -3x -3无解,求m 的值.6把分式方程2x +4=1x 转化为一元一次方程时,方程两边需同乘() A. x B. 2x C. x +4 D. x(x +4)7分式方程3x +2=1x 的解为________.8解方程:4x x -2-1=32-x ,则方程的解是________.9阅读思考题.解方程:2x x 2-1=3x +1x 2-1.解:方程两边都乘x 2-1,得2x =3x +1解这个方程,得x =-1.所以x =-1是方程的根.上面解题过程是否有错误?若有错误,请指出来,并改正.10关于x 的方程2x +a x -1=1的解是正数,则a 的取值范围是( ) A. a>-1 B. a>-1且a≠0C. a<-1D. a<-1且a≠-211已知关于x 的分式方程a -1x +2=1有增根,则a =________. 12 已知关于x 的分式方程2x +m x -2=3的解是正数,则m 的取值范围为________.13某服装厂设计了一款新式夏装,想尽快制作8800件投入市场,服装厂有A ,B 两个制衣车间,A 车间每天加工的数量是B 车间的1.2倍,A ,B 两车间共同完成一半后,A 车间出现故障停产,剩下全部由B 车间单独完成,结果前后共用20天完成,求A ,B 两车间每天分别能加工多少件?14某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果共用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为( )A.2300x +23001.3x =33 B. 2300x +2300x +1.3x =33 C. 2300x +4600x +1.3x =33 D. 4600x +2300x +1.3x=33 15小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑自行车速度的2倍,现在小军乘班车上学可以从家晚出发10分钟,结果与原来到校的时间相同.设小军骑车的速度为x 千米/时,则所列方程正确的为( )A. 5x +16=52xB. 5x -16=52xC. 5x +10=52xD. 5x -10=52x16某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增快20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设x m 管道,那么根据题意,可得方程______________.17吉首城区某中学组织学生到距学校20 km 的德夯苗寨参加社会实践活动,一部分学生沿“谷韵绿道”骑自行车先走,半小时后,其余学生沿319国道乘汽车前往,结果他们同时到达(两条道路路程相同),已知汽车速度是自行车速度的2倍,求骑自行车学生的速度.18某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用.(2)若购买的两种球拍数一样,求x.19某校举行书法比赛,为奖励优胜学生,购买了一些钢笔和毛笔.毛笔单价是钢笔单价的1.5倍,购买钢笔用了1500元,购买毛笔用了1800元,购买的钢笔支数比毛笔多30支.钢笔、毛笔的单价分别是多少元?20为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?。
行程问题:这类问题涉及到三个数量:路程、速度和时间。
它们的数量关系是:路程=速度*时间.列分式方程解决实际问题要用到它的变形公式:速度=路程/时间,时间=路程/速度。
1、走完全长3000米的道路,如果速度增加25%,可提前30分到达,那么速度应达到多少?2、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的告诉公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间.3、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。
已知B的速度是A的速度的3倍,求两车的速度。
4、假日工人到离厂25千米的浏览区去旅游;一部分人骑自行车,出发1小时20分钟后,其余的人乘汽车出发,结果两部分人同时到达,已知汽车速度是自行车的3倍,求汽车和自行车速度5、我部队到某桥头阻击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1。
5倍,结果比敌人提前48分钟到达,求我部队的速度。
水流问题1、轮船顺流航行66千米所需时间和逆流航行48千米所需时间相等,已知水流速度每小时3千米,求轮船在静水中的速度2、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
1、为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。
已知第一次捐款总额为4800元,第二次捐款为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额相等,如果设第一次捐款人数X人,那么X应满足怎样的方程?2、一个正多边形的每个内角都是172度,求它的边数N应满足的分式方程。
3、某质检部门抽取甲、乙两厂相同数量的产品进行质量检查,结果甲厂有48件合格产品,乙厂有45件合格产品,甲厂的合格率乙厂高5%,求甲厂的合格率?4、对甲乙两班学生进行体育达标检查,结果甲班有48人合格,乙班有45人合格,甲班的合格率比乙班高5%,求甲班的合格率?工程问题:这类问题也涉及三个数量:工作量、工作效率和工作时间。
八年级数学分式方程题目一、分式方程题目。
1. 解方程:(1)/(x - 2)=(3)/(x)- 解析:- 方程两边同乘x(x - 2)(这是x-2与x的最简公分母)得:x=3(x - 2)。
- 展开括号得x = 3x-6。
- 移项得3x - x=6,即2x = 6。
- 解得x = 3。
- 检验:当x = 3时,x(x - 2)=3×(3 - 2)=3≠0,所以x = 3是原分式方程的解。
2. 解方程:(2)/(x+1)+(3)/(x - 1)=(6)/(x^2)-1- 解析:- x^2-1=(x + 1)(x - 1),方程两边同乘(x + 1)(x - 1)得:2(x - 1)+3(x + 1)=6。
- 展开括号得2x-2 + 3x+3 = 6。
- 合并同类项得5x+1 = 6。
- 移项得5x=6 - 1,即5x = 5。
- 解得x = 1。
- 检验:当x = 1时,(x + 1)(x - 1)=(1 + 1)×(1 - 1)=0,所以x = 1是增根,原分式方程无解。
3. 若关于x的分式方程(x)/(x - 3)-2=(m)/(x - 3)有增根,求m的值。
- 解析:- 方程两边同乘(x - 3)得x-2(x - 3)=m。
- 展开括号得x-2x + 6=m,即-x+6 = m。
- 因为分式方程有增根,所以x - 3 = 0,即x = 3。
- 把x = 3代入-x + 6=m得m=-3 + 6 = 3。
4. 解方程:(3)/(x - 1)-(x + 3)/(x^2)-1=0- 解析:- 方程两边同乘(x + 1)(x - 1)(x^2-1=(x + 1)(x - 1))得:3(x + 1)-(x + 3)=0。
- 展开括号得3x+3 - x - 3 = 0。
- 合并同类项得2x = 0。
- 解得x = 0。
- 检验:当x = 0时,(x + 1)(x - 1)=(0 + 1)×(0 - 1)= - 1≠0,所以x = 0是原分式方程的解。
分式方程应用题分类一、营销类应用性问题例1 某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料0.5kg 少3元,比乙种原料0.5kg 多1元,问混合后的单价0.5kg 是多少元?分析:市场经济中,常遇到营销类应用性问题,与价格有关的是:单价、总价、平均价等,要了解它们的意义,建立它们之间的关系式.二、工程类应用性问题例2 某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元.⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由. 分析:这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量.对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队完成这项工程所需时间分别为x 天,y 天,z 天,可列出分式方程组.三、行程中的应用性问题例3 甲、乙两地相距828km ,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h ,比普通快车早4h 到达乙地,求两车的平均速度.分析:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程= 速度×时间,应根据题意,找出追击问题总的等量关系,即普通快车走完路程所用的时间与直达快车由甲地到乙地所用时间相等.四、轮船顺逆水应用问题例4 轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度分析:此题的等量关系很明显:顺水航行30千米的时间= 逆水中航行20千米的时间,即顺水航行速度千米30=逆水航行速度千米20.设船在静水中的速度为x 千米/时,又知水流速度,于是顺水航行速度、逆水航行速度可用未知数表示,问题可解决.五、浓度应用性问题例5 要在15%的盐水40千克中加入多少盐才能使盐水的浓度变为20%.分析:浓度问题的基本关系是:溶液溶质=浓度.此问题中变化前后三个基本量的关系如下表:设加入盐x 千克.根据基本关系即可列方程. 六、货物运输应用性问题 例6 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货物量不变,且甲、乙两车单独运这批货物分别运2a 次、a 次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180t ;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270t .问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍;⑵现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运1t 付运费20元计算)分析:解题思路应先求出乙车与甲车每次运货量的比,再设出甲车每次运货量是丙车每次运货量的n 倍,列出分式方程.巩固习题:1、某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每千克少3元,比乙种原料每千克多1元,问混合后的单价每千克是多少元?2、甲、乙两个学生分别向计算机输入1500个汉字,乙的速度是甲的3倍,因此比甲少用20分钟完成任务,他们平均每分钟输入汉字多少个?3、某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元.⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.4、轮船顺流、逆流各走48千米,共需5小时,如果水流速度是4千米/小时,求轮船在静水中的速度。
八年级分式方程应用题在学习分式方程的过程中,能够准确有效地解决问题是一个非常重要的技能。
考虑一下下面一些八年级分式方程的应用题:题目1:小明拿了5瓶可乐,其中有3瓶含有1000毫升,2瓶含有500毫升,若将全部可乐倒入一个容器中,那么容器中可乐有多少毫升?解答:用分式方程来解决这个问题:5x = 3000 + 1000x = 800由于小明拿了5瓶可乐,所以容器中有800毫升可乐。
题目2:小红要将3.5升的汽油从一个容器注入5个小容器中,若小容器都盛满,那么每个小容器含有汽油有多少升?解答:用分式方程来解决这个问题:3.5x = 5xx = 0.7由于小红要将3.5升的汽油分成5份,所以每个小容器含有汽油有0.7升。
题目3:小张在游乐场玩具船乘坐了5艘,其中3艘的价钱是15元,而其他2艘的价钱是20元,若小张支付了80元,那么每艘玩具船小张花费了多少钱?解答:用分式方程来解决这个问题:5x = 15*3 + 20*2x = 16由于小张乘坐了5艘玩具船,所以每艘玩具船小张花费了16元。
以上所列的三道题都可以通过分式方程的应用来解决,但是要想准确解决,就必须掌握基本的分式方程知识。
下面我们来谈一下分式方程的基本概念。
分式方程是一类常微分方程,是以分式的形式表达出来的方程,常用来求解物理、化学以及数学等涉及分析的问题。
通过分式方程可以求出某个量与其他量之间的比例关系,例如钱、货物、流量等。
在分式方程中,变量可以用一个字母表示,一般用x来表示,可以有两个或多个变量。
当所有的变量都已知,但又未知其中的一个变量时,可以用分式方程来求解。
分式方程的解决方法有两种,一种是直接法,即将该分式方程分解为多个分母相等的分数,然后通过比例关系求出未知数;另一种是分层法,即将该分式方程拆分成多个分数,然后分层求解,最后求出未知数。
熟练掌握了分式方程的基本概念,就可以轻松解决一些常见的分式方程应用题,并且能够有效节约时间,进而提高效率。
行程问题:这类问题涉及到三个数量:路程、速度和时间。
它们的数量关系是:路程=速度*时间。
列分式方
程解决实际问题要用到它的变形公式:速度=路程/时间,时间=路程/速度。
1、走完全长3000米的道路,如果速度增加25%,可提前30分到达,那么速度应达到多少?
2、从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的告诉公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
3、从甲地到乙地的路程是15千米,A骑自行车从甲地到乙地先走,40分钟后,B骑自行车从甲地出发,结果同时到达。
已知B的速度是A的速度的3倍,求两车的速度。
4、假日工人到离厂25千米的浏览区去旅游;一部分人骑自行车,出发1小时20分钟后,其余的人乘汽车出发,结果两部分人同时到达,已知汽车速度是自行车的3倍,求汽车和自行车速度
5、我部队到某桥头阻击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度。
水流问题
1、轮船顺流航行66千米所需时间和逆流航行48千米所需时间相等,已知水流速度每小时3千米,求轮船在静水中的速度
2、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
其他问题
1、为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。
已知第一次捐款总额为4800元,第二次捐款为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额相等,如果设第一次捐款人数X人,那么X应满足怎样的方程?
2、一个正多边形的每个内角都是172度,求它的边数N应满足的分式方程。
3、某质检部门抽取甲、乙两厂相同数量的产品进行质量检查,结果甲厂有48件合格产品,乙厂有45件合格产品,甲厂的合格率乙厂高5%,求甲厂的合格率?
4、对甲乙两班学生进行体育达标检查,结果甲班有48人合格,乙班有45人合格,甲班的合格率比乙班高5%,求甲班的合格率?
工程问题:这类问题也涉及三个数量:工作量、工作效率和工作时间。
它们的数量关系是:工作量=工作效率*工
作时间。
列分式方程解决实际问题用它的变形公式:工作效率=工作量/工作时间。
特别地,有时工作总量可以看作整体“1”,这时,工作效率=1/工作时间。
1、某项紧急工程,由于乙没有到达,只好由甲先开工,6小时后完成一半,乙到来后俩人同时进行,1小时完成了后一半,如果设乙单独x小时可以完成后一半任务,那么x应满足的方程是什么?
2、某运输公司需要装运一批货物,由于机械设备没有到位,只好先用人工装运,6小时后完成一半,后来机械装运和人工同时进行,1小时完成了后一半,如果设单独采用机械装运X小时可以完成后一半任务,那么应满足的方程是什么?
3、某车间加工1200个零件,采用新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10小时,采用新工艺前后每时分别加工多少个零件?
4、某人现在平均每天比原计划多加工33个零件,已知现在加工3300个零件所需的时间和原计划加工2310个零件的时间相同,问现在平均每天加工多少个零件。
5、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?
耕地问题
1、块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000Kg和15000Kg,已知第一块试验田的每公顷的产量比第二块少3000Kg,分别求这块试验田每公顷的产量。
2、某农场原有水田400公顷,旱田150公顷,为了提高单位面积产量,准备把部分旱田改为水田,改完之后,要求旱田占水田的10%,问应把多少公顷旱田改为水田。
3、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。
4、退耕还林还草是我国西部地区实施的一项重要生态工程,某地规划退耕面积69000公顷,退耕还林与退耕还草的面积比是5:3,设退耕还林的面积是X公顷,那么应满足的分式方程是什么?
盈利问题
销售问题
销售问题是近几年来新增加的题型,解决这类问题,首先要弄清一些有关的概念:
商品的进价:商店购进商品的价格;
商品的标价:商店销售商品时标出的价格;
商品的售价:商店售出商品时的实际价格;
利润:商店在销售商品时所赚的钱;
利润率:商店在销售商品时利润占商品进价的百分率;
打折:商店在销售商品时的实际售价占商品标价的百分率。
其次,还要弄清它们之间的关系:
商品的售价=商品的标价*商品的打折率;
商品的利润=商品的售价-商品的进价;
商品的利润率=商品的利润/商品的进价。
在解决这类问题时,我们只要运用这些关系就能正确求解。
1、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。
小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,
(1)这个八年级的学生总数在什么范围内?
(2)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人
(3)这个八年级的学生总数在什么范围内?
(4)若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?
3、某工厂去年赢利25万元,按计划这笔赢利额应是去、今两年赢利总额的20%,今年的赢利额应是多少?
4、某商品的标价比成本高p%,当该商品降价出售,为了不亏本,降价幅度不得超过d%,请用p表示d。
5、某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商厦销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商厦共赢利多少元。
6、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款。
小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果购买60枝,那么可以按批发价付款,同样需要120元,
7、某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价。
8、某商店甲种糖果的单价为每千克20元,乙种糖果的单价为每千克16元,为了促销,现将10千克的乙种糖果和一包甲种糖果混合后销售,如果将混合后的糖果单价定为每千克17。
5元,那么混合销售与分开销售的销售额相同,这包甲糖果有多少千克?
9、总价9元的甲种糖果和总价是9元的乙种糖果混合,混合后所得的糖果每千克比甲种糖果便宜1元,比乙种糖果贵5.0元,求甲、乙两种糖果每千克各多少元?
10、甲种原料和乙种原料的单价比是2:3,将价值2000元的甲种原料有价值1000元的乙混合后,单价为9元,求甲的单价。
11、某市从今年1月1日起调整居民用水价格,每立方水费上涨1/3,小利家去年12月的水费是15元,而今年7月份的水费则是30元,已知小利家今年7月的用水量比去年12月份的用水量多5立方米,求该市今年居民的用水的价格。
12、小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书,科普书的价格比文学书的价格高出一半,因此他们买的文学书比科普书多一本,这种科普和文学书的价格各是多少?。