四旋翼无人机建模
- 格式:ppt
- 大小:1.06 MB
- 文档页数:19
四旋翼飞行器动力学建模与控制技术研究随着无人机技术的不断发展,四旋翼飞行器已经成为了无人机市场中的一种重要机型。
四旋翼飞行器由于其体积小、操作灵活、便携性强等特点,被广泛应用于农业、地质勘探、安防、航拍等领域。
然而,四旋翼飞行器的稳定性及控制问题一直是制约其广泛应用的关键性技术之一。
因此,本文将探究四旋翼飞行器动力学建模及控制技术的研究现状和趋势。
一、四旋翼飞行器动力学建模四旋翼飞行器的动力学模型一般包括四个方程,分别是运动学方程、动力学方程、气动平衡方程以及电机方程。
首先,运动学方程是描述四旋翼飞行器在空间的运动轨迹和姿态的方程。
这个方程组包括七个微分方程,包括三个表示位置的方程和四个表示姿态的方程。
位置方程描述飞行器在三个自由度上的运动,姿态方程描述飞行器在三个方向上的旋转。
接下来,动力学方程主要描述四旋翼飞行器的运动和状态方程。
四旋翼飞行器的动力学方程主要包括牛顿定律、欧拉定理、动量定理和角动量定理。
气动平衡方程则描述了四旋翼飞行器在空气中的运动状态。
这个方程组包括六个方程,其中四个方程描述四个电机的输出,两个方程描述飞行器的速度和角速度。
电机方程则描述了四个电机的动力输出。
这个方程通常采用电机的转矩和输出功率来进行建模,用来计算四旋翼飞行器的运动状态。
二、四旋翼飞行器控制技术四旋翼飞行器的控制技术是保障其稳定飞行的关键之一。
控制技术的核心是设计合理的控制算法和系统结构,通过对飞行器的状态进行控制,以达到预定的控制目标。
其中,传统的PID控制算法无法适应四旋翼飞行器的高自由度、快速响应的特点。
针对这个问题,目前研究较多的是基于模型预测控制(MPC)和切换控制的方法。
MPC将控制问题视为一个优化问题,通过对未来状态进行预测,优化当前状态,从而实现系统控制。
而切换控制则通过将控制问题分成多个子空间,通过切换不同的控制子空间,实现系统控制。
同时,四旋翼飞行器的控制技术也离不开传感技术的支撑。
四旋翼飞行器需要准确地获取各种姿态、位置、速度等信息才能进行控制。
译文四旋翼飞行器的建模与控制摘要迄今为止,大多数四旋翼空中机器人有是基于飞行玩具。
虽然这样的系统可以作为原型,它们是不够健全,作为实验机器人平台。
我们已经开发出了X-4传单,采用四旋翼机器人定制底盘和航空电子设备与现成的,现成的电机和电池,是一个高度可靠的实验平台。
车用调谐厂带有板载嵌入式姿态动力学控制器以稳定飞行。
线性单输入单输出系统控制器旨在规范传单态度。
1介绍直升机的主要限制是需要广泛的,和昂贵,维护可靠的飞行。
无人驾驶航空飞行器(无人机)和微型飞行器(MAV)旋翼机也不例外。
简化了机械飞行机的结构产生明显的福利操作这些设备的物流。
四转子是强大和简单的直升机,因为他们没有复杂的旋转倾转盘和联系在传统的旋翼机发现。
多数四转子的飞行器从遥控玩具构建组件。
其结果是,缺少必要的这些工艺可靠性和性能是切实可行的实验平台。
1.1现有的四旋翼平台几个四转子工艺最近已开发用作玩具或进行研究。
许多研究旋翼飞行器开始了生活作为市售的玩具,如作为HMX -4和Rctoys的Draganflyer 。
未经修改的,这些工艺通常由光机身塑料转子。
它们是由镍镉电池或锂聚合物电池供电,使用速度反馈的微机电系统陀螺仪。
这些四转子一般没有稳定的稳态。
研究四旋翼添加自动稳定及使用各种硬件和控制方案。
澳大利亚联邦科学与工业研究组织的如图1 :X-4传单型号2的。
四旋翼飞行器,例如,是一个Draganflyer衍生使用视觉伺服和惯性测量单元(IMU ),以稳定的工艺在一个被做成动画的目标。
其他四转子包括Eidgenossische TECHNISCHE Hochschule的苏黎世' OS4 '[ Bouabdallah等,2004 ] ,皮带驱动飞与低纵横比的叶片; CEA的“X4- flyer'1 ,小四转子电机每四个刀片[ Guenard等,2005 ]。
和康奈尔大学的自治飞行器,采用的爱好飞机螺旋桨的大型工艺。
动态系统建模(四旋翼飞行器仿真)实验报告:动态系统建模(四旋翼飞行器仿真)实验报告院(系)名称大飞机班学号学生姓名任课教师2021年 _月四旋翼飞行器的建模与仿真一、实验原理 I.四旋翼飞行器简介四旋翼飞行器通过四个螺旋桨产生的升力实现飞行,原理与直升机类似。
四个旋翼位于一个几何对称的十字支架前、后、左、右四端,如图1-1所示。
旋翼由电机控制;整个飞行器依靠改变每个电机的转速来实现飞行姿态控制。
在图1-1中,前端旋翼1 和后端旋翼3 逆时针旋转,而左端旋翼2 和右端的旋翼4 顺时针旋转,以平衡旋翼旋转所产生的反扭转矩。
由此可知,悬停时,四只旋翼的转速应该相等,以相互抵消反扭力矩;同时等量地增大或减小四只旋翼的转速,会引起上升或下降运动;增大某一只旋翼的转速,同时等量地减小同组另一只旋翼的转速,则产生俯仰、横滚运动;增大某一组旋翼的转速,同时等量减小另一组旋翼的转速,将产生偏航运动。
图1-1 四旋翼飞行器旋翼旋转方向示意图从动力学角度分析,四旋翼飞行器系统本身是不稳定的,因此,使系统稳定的控制算法的设计显得尤为关键。
由于四旋翼飞行器为六自由度的系统(三个角位移量,三个线位移量),而其控制量只有四个(4 个旋翼的转速),这就意味着被控量之间存在耦合关系。
因此,控制算法应能够对这种欠驱动(under-actuated)系统足够有效,用四个控制量对三个角位移量和三个线位移量进行稳态控制。
本实验针对四旋翼飞行器的悬浮飞行状态进行建模。
II.飞行器受力分析及运动模型(1)整体分析如图1-2所示,四旋翼飞行器所受外力和力矩为:Ø重力mg,机体受到重力沿-Zw方向Ø四个旋翼旋转所产生的升力Fi(i=1,2,3,4),旋翼升力沿ZB方向Ø旋翼旋转会产生扭转力矩Mi (i=1,2,3,4), Mi垂直于叶片的旋翼平面,与旋转矢量相反。
图1-2 四旋翼飞行器受力分析(2)电机模型Ø力模型(1.1)旋翼通过螺旋桨产生升力。
四旋翼动力学建模一、引言四旋翼无人机是近年来飞行器领域的热门话题,其广泛应用于农业、环保、安全监控等领域。
为了更好地掌握四旋翼的运动规律,需要对其进行建模分析。
本文将介绍四旋翼动力学建模的基本原理和方法。
二、四旋翼结构和工作原理1. 四旋翼结构四旋翼主要由机身、电机、螺旋桨和控制系统等组成。
其中,机身是支撑整个飞行器的主体部分,电机驱动螺旋桨产生升力,控制系统负责调节电机转速和方向。
2. 四旋翼工作原理四旋翼通过调节各个螺旋桨的转速和方向来实现飞行姿态调整和位置控制。
当四个螺旋桨转速相等时,飞行器保持平衡状态;当某一侧或某一角度需要调整时,相应螺旋桨的转速会发生变化以产生所需的力矩。
三、四旋翼运动学建模1. 坐标系选择在进行运动学建模时,需要选择合适的坐标系。
通常选择惯性坐标系和机体坐标系。
惯性坐标系是固定不动的,用于描述四旋翼在空间中的位置和速度;机体坐标系则随着四旋翼运动而改变,用于描述其姿态。
2. 姿态表示四旋翼的姿态通常用欧拉角表示。
欧拉角包括滚转角、俯仰角和偏航角,分别表示飞行器绕x、y、z轴旋转的角度。
3. 运动方程根据牛顿第二定律和欧拉定理,可以得到四旋翼的运动方程。
其中,力和力矩来自于螺旋桨产生的升力和扭矩,阻力主要来自于空气阻力和重力。
四、四旋翼动力学建模1. 动力学方程四旋翼的动力学方程可以通过牛顿第二定律和欧拉定理推导得到。
其中,电机输出扭矩与电机转速成正比;螺旋桨产生升力与螺旋桨转速的平方成正比。
2. 状态空间模型将四旋翼的动力学方程转化为状态空间模型可以方便地进行控制设计和仿真分析。
状态空间模型包括状态向量、输入向量和输出向量,其中状态向量包括四旋翼的位置、速度和姿态等状态变量。
3. 控制系统设计四旋翼的控制系统通常采用PID控制器。
PID控制器由比例、积分和微分三个部分组成,用于调节电机转速和方向以实现飞行姿态调整和位置控制。
五、结论本文介绍了四旋翼动力学建模的基本原理和方法。