2018考研数学大纲之数三历年对比分析
- 格式:doc
- 大小:813.50 KB
- 文档页数:4
2018年全国硕士研究生招生考试数学考试大纲(数学三)微积分(56%)一、函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:0sin 1lim 1,lim 11xx x x e x →→∞⎛⎫=+= ⎪⎝⎭ 函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质 考试要求:1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系2.了解函数的有界性、单调性、周期性和奇偶性3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念4.掌握基本初等函数的性质及其图形,了解初等函数的概念5.了解数列极限和函数极限(包括左极限与右极限)的概念6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法7.理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital )法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘 函数的最大值与最小值考试要求1、理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数3.了解高阶导数的概念,会求简单函数的高阶导数4.了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分5.理解罗尔(Rolle )定理、拉格朗日(Lagrange)中值定理,了解泰勒(Taylor )定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用6.会用洛必达法则求极限7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用8.会用导数判断函数图形的凹凸性(注:在区间()b a ,内,设函数()x f 具有二阶导数.当()0>''x f 时,()x f 的图形是凹的;当()0<''x f 时,()x f 的图形是凸的),会求函数图形的拐点和渐近线9.会描述简单函数的图形三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz )公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题4.了解反常积分的概念,会计算反常积分四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算五、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散、收敛级数的和的概念2.了解级数的基本性质及级数收敛的必要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法4.会求幂级数的收敛半径、收敛区间及收敛域5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数6.了解x e ,x sin ,x cos ,()x +1ln 及()αx +1的麦克劳林(Maclaurin )展开式 六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法3.会解二阶常系数齐次线性微分方程4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程5.了解差分与差分方程及其通解与特解等概念6.了解一阶常系数线性差分方程的求解方法7.会用微分方程求解简单的经济应用问题线性代数(22%)行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质2.会应用行列式的性质和行列式按行(列)展开定理计算行列式二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法5.了解分块矩阵的概念,掌握分块矩阵的运算法则三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法四、线性方程组考试内容线性方程组的克拉默(Cramer)法则线性方程组有解和无解的判定齐次线性方程组的基础解系和通解非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系非齐次线性方程组的通解考试要求1.会用克拉默法则解线性方程组2.掌握非齐次线性方程组有解和无解的判定方法3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法4.理解非齐次线性方程组解的结构及通解的概念5.掌握用初等行变换求解线性方程组的方法五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值和特征向量及相似对角矩阵考试要求理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法掌握实对称矩阵的特征值和特征向量的性质六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形3.理解正定二次型、正定矩阵的概念,并掌握其判别法概率论与数理统计(22%)一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes )公式等3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数(){}()+∞<<∞-≤=x x X P x F的概念及性质,会计算与随机变量相联系的事件的概率2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布B (n,p )、几何分布、超几何分布、泊松(Poisson )P(λ)分布及其应用3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布4.理解连续型随机变量及其概率密度的概念,掌握均匀分布()b a U ,、正态分布()2,σμN 、指数分布及其应用 ,其中参数为()0>λλ的指数分布()λE 的概率密度为 ()⎩⎨⎧≤>=-0,00,x x e x f x λλ 5.会求随机变量函数的分布三、多维随机变量的分布考试内容多维随机变量及其分布函数二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常见二维随机变量的分布两个及两个以上随机变量简单函数的分布。
2018考研数学一二三区别及难度对比考研数学一二三区别难度那个大?了解了这个问题,才能根据自己的水平去选择相关专业,或者是规划自己的复习力度。
首先,我们先来看看这三者之间的区别▶适用范围不同适用情况数学一数学二数学三完全适用工学门类的力学、机械工程、光学工程、仪器科学与技术、治金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等一级学科中所有的二级学科、专业。
工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等一级学科中所有的二级学科、专业。
(1)经济学门类的理论经济学一级学科中所有的二级学科、专业。
(2)经济门类的应用经济学一级学科中的二级学科、专业:统计学、数量经济学、国民经济学、区域经济学、财政学(含税收学)、金融学(含保险学)、产业经济学、国管理学门类中的管理科学与工程一级学科中所有的二级学科、专业。
际贸易学、劳动经济学、国防经济专业。
(3)管理学门类的工商管理一级学科中的二级学科、专业:企业管理(含财务管理、市场营销、人力资源管理)、技术经济及管理、会计学、旅游管理专业。
(4)管理学门类的农林经济管理一级学科中所有的二级学科、专业。
数学一、二任选其一工学门类的材料科学与工程、化学工程与技术、地质资源与地质工程、矿业工程、石油与天然气工程、环境科学与工程等一级学科中所有的二级学科、专业。
备注具体考试内容需考生针对大纲再次确认▶内容侧重不同数学一高等数学(或微积分) 56% 线性代数22% 概率论与数理统计22%数学二高等数学(或微积分) 78%线性代数22%数学三高等数学(或微积分) 56% 线性代数22% 概率论与数理统计22%▶具体考试内容不同考试内容数学一数学二数三高等数学函数、极限、连续、一元函数微积分学、向量代数函数、极限、连续、函数、极限、连续、一元函数微积分学、多元函数微积与空间解析几何、多元函数的微积分学、无穷级数、常微分方程一元函数微积分学、常微分方程分学、无穷级数、常微分方程与差分方程线性代数行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型概率论与数理统计随机事件和概率、随机变量及其概率分布、二维随机变量及其概率分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验无随机事件和概率、随机变量及其概率分布、随机变量的联合概率分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计备注2016考研数学具体考试范围请参考2016考研大纲我们再来说说这三者的难度哪个大考研数学一和数学二针对的是理工科,数学三针对的是管理类的,难度对比为:考研数学一>考研数学二>考研数学三。
2018考研数学:大纲三次变化2018考研数学:大纲三次变化第一次,2002年全国硕士研究生入学考试数学考试大纲是在原考试大纲的基础上修订而成。
修订的原则是保持考试内容、考试要求和试卷结构的基本稳定。
现将修订情况说明如下:删去有关近似计算的考试内容由于目前大多数高等院校开设了“计算方法”课程,近似计算的内容基本上在此课程中讲授,高等数学已基本不再讲授近似计算的内容。
同时考虑到随着计算机的广泛普及和应用,近似计算的问题完全可由计算机解决,对考生近似计算的能力已不是研究生入学考试考核的重点。
基于以上考虑,新的数学考试大纲中删除了有关近似计算的所有考试内容和考试要求。
(1)数学一中删去一元函数微分学中关于“微分在近似计算中的应用”以及“方程近似解的二分法和切线法”的考试内容和考试要求;一元函数积分学中“定积分的近似计算法”及相应的考试要求;多元函数微分学中关于“全微分在近似计算中的应用”的考试内容和考试要求;无穷级数中的“幂级数在近似计算中的应用”及相应的考试要求;常微分方程考试内容中的“微分方程的幂级数解法”及相应的考试要求;概率论中“会用有关定理近似计算有关随机事件概率”的要求。
(2)数学二中删去一元函数微分学中关于“微分在近似计算中的应用”以及“方程近似解的二分法和切线法”的考试内容和考试要求以及一元函数积分学中“定积分的近似计算法”及相应的考试要求。
数学二考试大纲中增加了部分线性代数考试内容数学二考试大纲中增加了部分线性代数考试内容,提高了线性代数在试卷中的占分比例,同时将“线性代数初步”更名为“线性代数”。
自1997年考试大纲修订以来,“线性代数初步”作为考试内容已被高校和考生普遍接受,随着新技术的发展,对线性代数内容的深广度的要求越来越高,原数学二线性代数初步的考试内容过少,增加部分考试内容并提高线性代数在数学二试卷中的占分比例是非常必要的。
修订的主要内容包括:(1)在矩阵的考试内容部分增加了“反对称矩阵”、“方阵的幂”、“初等矩阵”。
2018年考研数学三(原创版)目录1.2018 年考研数学三概述2.考试内容及难度分析3.备考建议4.总结正文【2018 年考研数学三概述】2018 年考研数学三是全国硕士研究生入学统一考试的数学科目之一,主要测试考生的数学基础知识、基本技能和综合运用能力。
数学三主要针对理工类专业的考生,涵盖了高等数学、线性代数、概率论与数理统计等课程内容。
【考试内容及难度分析】2018 年考研数学三的考试内容包括三个部分:选择题、填空题和解答题。
选择题和填空题主要测试考生的基本知识和技能,解答题则主要测试考生的综合运用能力。
在难度方面,2018 年考研数学三的整体难度相对稳定,但部分题目难度略有提高。
选择题和填空题的难度适中,要求考生熟练掌握基础知识和技能。
解答题部分,题目设置较为灵活,需要考生具备较强的综合运用能力和解题技巧。
【备考建议】1.扎实掌握基础知识:数学三考试的基础知识非常重要,考生需要对高等数学、线性代数、概率论与数理统计等课程内容有扎实的掌握。
建议考生从教材入手,系统学习相关知识点,并辅以一定的习题训练。
2.提高解题技巧:考研数学三的题目设置灵活多变,考生需要具备一定的解题技巧。
建议考生多做真题和模拟题,总结解题方法和技巧,提高解题速度和准确率。
3.注重模拟考试:模拟考试可以帮助考生了解自己的考试水平,提高应试能力。
考生可以在备考过程中定期进行模拟考试,以检验自己的学习成果,并针对自己的薄弱环节进行有针对性的复习。
4.调整心态:考研数学三是一项重要的考试,但考生需要保持良好的心态,避免过度紧张影响考试表现。
在备考过程中,考生可以适当参加一些休闲活动,缓解压力,保持身心健康。
【总结】2018 年考研数学三考试在基础知识和解题技巧方面对考生提出了较高的要求。
凯程考研,为学员服务,为学生引路!第 1 页 共 1 页 2018年考研数学大纲重难点解析 从科目上看,从数一到数三,分量最重的都是高等数学,它在数一数三中占了56%,在数二中更是占了百分之78%,因此科目上的重头戏在高数。
在高数里边比较难的有微分中值定理以及定积分的证明题,这一部分题目技巧性比较强,考生普遍反映难度比较大。
另外数一的曲线积分和曲面积分在考试中得分率也不高,而数二和数三在多元函数微积分里的要求虽然比数一低很多,但得分率也不高。
这个现象,根本原因在考生的复习规划上,大多数考生对这一部分重视程度不够,导致对这一部分的内容很生疏,那到考试中得分率当然就不高了,这是高数需要我们注意的地方。
而线代的内容,我本身认为比较简单,考试的时候出题的套路也比较固定。
但线代的考题对考生对基本概念的理解要求很高,很多考生往往是读完了题却不知道题目的实际含义是什么。
这就要求我们在复习时多注意一下基本概念,只要能抓准概念认清题型,拿到线代的分数还是很容易的。
概率论里边考生反映最大的问题就是不知道怎么把实际的问题抽象转化为数学问题。
这就要求大家学习知识要灵活,在做题的时候不要想着生搬硬套,要真正去理解一些数学概念的实际意义。
当然了,考研数学的出题也并不一定都是按照我们预想的规律的来出题。
分析历年的试卷,会发现数学出题存在这样一种现象:出题人为了避免考生猜题,会有很多不按常理出牌的行为。
比如说傅里叶级数,以往出现的频率很低,大概四五年才会出一道小题,但是在08年数一里,考了一道傅里叶级数的大题,11分,这是任何人都事先都没有想到的。
又比如说数一在考查多元函数积分学时,它的大题大多数时候都是出在第二类曲线积分或是第二类曲面积分上的,因为这里有一些很重要的公式和定理,题目比较好出。
但2010年,我们的数一考的却是一道第一类曲面积分的题目;2018年也只考了一道二重积分的题目,这在以往的考研中都是很少见的,但是看这道题的要求又是在大纲范围之内的,不能说它超纲。
2018考研数学一与数学三异同分析大全第一篇:2018考研数学一与数学三异同分析大全2018考研数学一与数学三异同分析感谢凯程郑老师对本文做出的重要贡献问题一:数一和数三有什么区别?各包含什么内容?答:数学一与数学三的区别如下一、适用专业不同(数一)1、工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。
(数三)1、经济学门类的各一级学科。
2、管理学门类中的工商管理、农林经济管理一级学科。
3、授管理学学位的管理科学与工程一级学科。
二、知识板块比重不同(数学一)高等数学(或微积分)56%线性代数22%概率论与数理统计22%(数学三)高等数学(或微积分)56%线性代数22%概率论与数理统计22%三、考试内容不同(数学一)高等数学函数、极限、连续、一元函数微积分学、向量代数与空间解析几何、多元函数的微积分学、无穷级数、常微分方程。
线性代数行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型。
概率论与数理统计随机事件和概率、随机变量及其概率分布、二维随机变量及其概率分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验。
(数学三)高等数学函数、极限、连续、一元函数微积分学、向量代数与空间解析几何、多元函数的微积分学、无穷级数、常微分方程。
线性代数行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型。
概率论与数理统计随机事件和概率、随机变量及其概率分布、二维随机变量及其概率分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验。
四、难度不同从对各自知识面的要求上来看,数学一最广,数学三其次,数学二最低。
章节2018年数学考试大纲考试内容和考试要求2018年数学考试大纲考试内容和考试要求变化对比高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念<含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质<有界性、最大值和最小值定理、介值定理),并会应用这些性质.考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念<含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质<有界性、最大值和最小值定理、介值定理),并会应用这些性质.对比:无变化二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达<L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle>定理、拉格朗日(Lagrange>中值定理和泰勒(Taylor>定理,考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达<L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle>定理、拉格朗日(Lagrange>中值定理和泰勒(Taylor>定理,了解并会用柯西(Cauchy>中值定理.对比:无变化了解并会用柯西(Cauchy>中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性<注:在区间内,设函数具有二阶导数。
2018考研数学大纲之数三历年对比分析
高杨——数学教研室
考研大纲新鲜出炉,数三在试卷形式和结构上依然没有变化,试卷满分为150分,考试时间为180分钟,答题方式为闭卷、笔试,试卷内容结构为微积分约56%、线性代数约22%、概率论与数理统计约22%。
试卷题型结构为单项选择题选题8小题,每小题4分,共32分;填空题6小题,每小题4分,共24分;解答题(包括证明题)9小题,共94分。
在考试内容上依然没有变化,考研数学已有了相对固定的形式。
下面分章总结一下重点要掌握的知识点。
微积分第一章函数、极限、连续,要了解函数的有界性、单调性、周期性和奇偶性。
理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
掌握基本初等函数的性质及其图形。
了解数列极限和函数极限(包括左极限与右极限)的概念。
了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。
掌握无穷小量的比较方法。
会判别函数间断点的类型。
了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
第二章一元函数微分学,要理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。
掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数。
会求简单函数的高阶导数。
了解微分的概念、导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。
理解罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理,了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用。
会用洛必达法则求极限。
掌握函数单调性的判别方法,掌握函数极值、最大值和最小值的求法及其应用。
会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点和渐近线。
第三章一元函数积分学,要掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法。
了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法。
会利用定积分计算平面图形
的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题。
会计算反常积分
第四章多元函数微积分学,需要了解二元函数的几何意义,了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。
会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数。
掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题。
掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算。
第五章无穷级数,要掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法。
了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法。
会求幂级数的收敛半径、收敛区间及收敛域。
了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数。
第六章常微分方程与差分方程,要了解微分方程及其阶、解、通解、初始条件和特解等概念。
掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法。
会解二阶常系数齐次线性微分方程。
了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程。
了解差分与差分方程及其通解与特解等概念,一阶常系数线性差分方程的求解方法。
会用微分方程求解简单的经济应用问题。
对于线性代数部分,第一章行列式,要会应用行列式的性质和行列式按行(列)展开定理计算行列式。
第二章矩阵,理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质。
掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。
掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。
了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法。
掌握分块矩阵的运算法则。
第三章向量,需要了解向量的概念,掌握向量的加法和数乘运算法则,理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有
关性质及判别法。
理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩。
理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系。
了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法。
第四章线性方程组,要会用克拉默法则解线性方程组,掌握非齐次线性方程组有解和无解的判定方法。
掌握齐次线性方程组的基础解系和通解的求法,掌握用初等行变换求解线性方程组的方法。
第五章矩阵的特征值和特征向量,要理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法。
理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。
第六章二次型,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念,了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形,理解正定二次型、正定矩阵的概念,并掌握其判别法。
概率论与数理统计部分,第一章随机事件和概率,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等。
理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。
第二章随机变量及其分布,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率。
理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布及其应用。
掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。
理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用。
会求随机变量函数的分布。
第三章多维随机变量的分布,理解多维随机变量的分布函数的概念和基本性质,理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布。
理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系。
掌握二维均匀分布和二维正态分布,理解其中参数的概率意义。
会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其简单函数的分布。
第四章随机变量的数字特征,会运用数字特征的基本性质,并掌握常用分布的数字特征,会求随机变量函数的数学期望。
了解切比雪夫不等式。
第五章大数定律和中心极限定理,了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律),并会用相关定理近似计算有关随机事件的概率。
第六章数理统计的基本概念,了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,了解标准正态分布、分布、分布和分布的上侧分位数,会查相应的数值表。
掌握正态总体的样本均值、样本方差、样本矩的抽样分布。
了解经验分布函数的概念和性质。
第七章参数估计,了解参数的点估计、估计量与估计值的概念。
掌握矩估计法(一阶矩、二阶矩)和最大似然估计法。
以上是数三大纲的分章解析,同学们结合考研大纲和真题去做题总结,一定会得到预期的分数,加油!。