常用函数的拉氏变换
- 格式:pdf
- 大小:133.25 KB
- 文档页数:4
拉氏变换及反变换公式3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。
按代数定理可将)(s F 展开为部分分式。
分以下两种情况讨论。
① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。
∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)(式中,n s s s ,,,21 是特征方程A(s)=0的根。
i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:)()(lim s F s s c i s s i i-=→或iss i s A s B c ='=)()(式中,)(s A '为)(s A 对s 的一阶导数。
根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+ =nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→- )()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1( (F-6)。
拉氏变换及反变换公式3. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。
按代数定理可将)(s F 展开为部分分式。
分以下两种情况讨论。
① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。
∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)(式中,n s s s ,,,21 是特征方程A(s)=0的根。
i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:)()(lim s F s s c i s s i i-=→或iss is A s B c ='=)()(式中,)(s A '为)(s A 对s 的一阶导数。
根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+ =nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11111111)()()(式中,1s 为F(s)的r 重根,1 r s ,…, n s 为F(s)的n-r 个单根;其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→-)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5))()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1( (F-6)(注:可编辑下载,若有不当之处,请指正,谢谢!)。
附录A 拉普拉斯变换及反变换4194204213. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
设)(s F 是s 的有理真分式1110111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==----ΛΛ (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110-Λ都是实常数;n m ,是正整数。
按代数定理可将)(s F 展开为部分分式。
分以下两种情况讨论。
① 0)(=s A 无重根这时,F(s)可展开为n 个简单的部分分式之和的形式。
∑=-=-++-++-+-=ni ii n n i i s s c s s c s s c s s c s s c s F 12211)(ΛΛ (F-1)式中,n s s s ,,,21Λ是特征方程A(s)=0的根。
i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算:)()(lim s F s s c i s s i i-=→ (F-2)或iss i s A s B c ='=)()( (F-3)式中,)(s A '为)(s A 对s 的一阶导数。
根据拉氏变换的性质,从式(F-1)可求得原函数[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 111)()(=ts n i i ie c -=∑1(F-4)②0)(=s A 有重根设0)(=s A 有r 重根1s ,F(s)可写为())()()()(11n r rs s s s s s s B s F ---=+Λ =nn i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++--ΛΛΛ11111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根;422其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算:)()(lim 11s F s s c r s s r -=→)]()([lim111s F s s dsdc r s s r -=→- M)()(lim !11)()(1s F s s dsd j c r j j s s jr -=→- (F-5) M)()(lim )!1(11)1()1(11s F s s dsd r c r r r s s --=--→原函数)(t f 为 [])()(1s F Lt f -=⎥⎦⎤⎢⎣⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L ΛΛΛ111111111)()()( t s nr i i t s r r r r ie c e c t c t r c t r c ∑+=---+⎥⎦⎤⎢⎣⎡+++-+-=1122111)!2()!1(Λ (F-6)。
1拉氏变换及反变换公式1. 拉氏变换的基本性质 1线性定理齐次性)()]([s aF t af L =叠加性)()()]()([2121s F s F t f t f L ±=±2微分定理一般形式=-=][ '- -=-=----=-∑11)1()1(1222)()()0()()(0)0()(])([)0()(])([k k k k nk kn nnndtt f dt ffss F s dtt f dL f sf s F s dt t f dL f s sF dt t df L )(初始条件为0时)(])([s F s dtt f dL nnn=3 积分定理一般形式∑⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰==+-===+=++=+=nk t nn k n nnn t t t dt t f sss F dt t f L sdt t f sdt t f ss F dt t f L s dt t f ss F dt t f L 112222]))(([1)(])()([]))(([])([)(]))(([])([)(])([个共个共初始条件为0时nnn ss F dt t f L )(]))(([=⎰⎰个共4 延迟定理(或称t 域平移定理) )()](1)([s F e T t T t f L Ts-=--5 衰减定理(或称s 域平移定理) )(])([a s F e t f L at +=-6 终值定理 )(lim )(lim 0s sF t f s t →∞→=7 初值定理 )(lim )(lim 0s sF t f s t ∞→→=8 卷积定理)()(])()([])()([21021021s F s F d t f t f L d f t f L tt =-=-⎰⎰τττττ22. 常用函数的拉氏变换和z 变换表 序号 拉氏变换E(s)时间函数e(t) Z 变换E(z)1 1δ(t)12 Tse--11∑∞=-=)()(n T nT t t δδ1-z z 3 s1 )(1t1-z z 4 21st2)1(-z Tz5 31s22t32)1(2)1(-+z z z T6 11+n s!n tn)(!)1(limaTnn na ez zan -→-∂∂-7 as +1 ate- aTez z -- 8 2)(1a s + atte- 2)(aTaT ez Tze --- 9 )(a s s a + ate--1 ))(1()1(aTaTez z ze-----10 ))((b s a s ab ++- btatee---bTaTez z ez z ----- 11 22ωω+s tωsin 1cos 2sin 2+-T z z T z ωω12 22ω+s s tωcos1cos 2)cos (2+--T z z T z z ωω13 22)(ωω++a s t eatωsin - aTaT aTeT zez T ze22cos 2sin ---+-ωω 14 22)(ω+++a s a st eatωcos -aTaTaTeT ze zTzez 222cos 2cos ---+--ωω15aT s ln )/1(1-Tt a/az z-33. 用查表法进行拉氏反变换用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。
Laplace拉氏变换公式表1. 常数变换:对于常数C,其拉普拉斯变换为C/s,其中s是复数频率。
2. 幂函数变换:对于幂函数t^n,其中n为实数,其拉普拉斯变换为n!/s^(n+1)。
3. 指数函数变换:对于指数函数e^(at),其中a为实数,其拉普拉斯变换为1/(sa)。
4. 正弦函数变换:对于正弦函数sin(at),其中a为实数,其拉普拉斯变换为a/(s^2+a^2)。
5. 余弦函数变换:对于余弦函数cos(at),其中a为实数,其拉普拉斯变换为s/(s^2+a^2)。
6. 双曲正弦函数变换:对于双曲正弦函数sinh(at),其中a为实数,其拉普拉斯变换为a/(s^2a^2)。
7. 双曲余弦函数变换:对于双曲余弦函数cosh(at),其中a为实数,其拉普拉斯变换为s/(s^2a^2)。
8. 指数衰减正弦函数变换:对于指数衰减正弦函数e^(at)sin(bt),其中a和b为实数,其拉普拉斯变换为b/(s+a)^2+b^2。
9. 指数衰减余弦函数变换:对于指数衰减余弦函数e^(at)cos(bt),其中a和b为实数,其拉普拉斯变换为s+a)/(s+a)^2+b^2。
10. 指数增长正弦函数变换:对于指数增长正弦函数e^(at)sin(bt),其中a和b为实数,其拉普拉斯变换为b/(sa)^2+b^2。
Laplace拉氏变换公式表11. 幂函数与指数函数的乘积变换:对于函数t^n e^(at),其中n为实数,a为实数,其拉普拉斯变换为n!/(sa)^(n+1)。
12. 幂函数与正弦函数的乘积变换:对于函数t^n sin(at),其中n为实数,a为实数,其拉普拉斯变换可以通过分部积分法得到。
13. 幂函数与余弦函数的乘积变换:对于函数t^n cos(at),其中n为实数,a为实数,其拉普拉斯变换可以通过分部积分法得到。
14. 指数函数与正弦函数的乘积变换:对于函数e^(at) sin(bt),其中a和b为实数,其拉普拉斯变换为b/(sa)^2+b^2。
常用拉普拉斯变换总结1、指数函数000)(≥<⎩⎨⎧=-t t Aet f t α,其中,A 和a 为常数; αααα+===⎰⎰∞+-∞---s A t e A t e Ae Ae L t s st t t 0)(0d d ][ 2、阶跃函数000)(><⎩⎨⎧=t t At f ,其中,A 为常数; sA t Ae A L st ==⎰∞-0d ][ 3、单位阶跃函数 0010)(><⎩⎨⎧=t t t u s t e t u L st 1d )]([0==⎰∞-4、斜坡函数000)(≥<⎩⎨⎧=t t At t f ,其中,A 为常数;⎰⎰∞-∞-∞----==000d d ][t sAe s e At t Ate At L st st st 20d sA t e s A st ==⎰∞-A =1时的斜坡函数称为单位斜坡函数,发生在t=t 0时刻的单位斜坡函数写成rt-t 05、单位斜坡函数000)(≥<⎩⎨⎧=t t t t f⎰⎰∞-∞-∞----==000d d ][t s e s e t t te t L st st st201d 1s t e s st ==⎰∞- 6、正弦函数00sin 0)(≥<⎩⎨⎧=t t tA t f ω,其中A 为常数; )(t f t 图2.3正弦函数和余弦函数)(t f t(a)(b)00根据欧拉公式:拉式变换为: 2201212d )(2]sin [ωωωωωωω+=+--=-=⎰∞--s A j s j A j s j A t e e e j A t A L st t j t j 同理余弦函数的拉式变换为:22]cos [ωω+=s As t A L 7、脉动函数 t t t t t t A t f <<<<⎪⎩⎪⎨⎧=000,000)(,其中,A 和t 0为常数;脉动函数可以看做是一个从t =0开始的高度为A /t 0的阶跃函数,与另一个从t =t 0开始的高度为A /t 0的负阶跃函数叠加而成;)()()(000t t u t A t u t A t f --= )1()()()]([00000000st st e st A e s t A s t A t t u t A L t u t A L t f L ---=-=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡= )(21sin t j t j e e jt ωωω--=8、脉冲函数脉冲函数是脉动函数的一种特殊极限情况;t t t A t g <∆<∆<<⎪⎩⎪⎨⎧∆=→∆,000lim )(0[]()A s As s e A e s A t g L s s ==∆∆-∆=⎥⎦⎤⎢⎣⎡-∆=∆-→∆∆-→∆d d )1(d d lim )1(lim )]([00 9、单位脉冲函数当面积A =1的脉冲函数称为单位脉冲函数,或称为狄拉克Disac 函数,1d )(0)(-0000=-⎩⎨⎧=∞≠=-⎰∞∞t t t t t t t t t δδ量值为无穷大且持续时间为零的脉冲函数纯属数学上的一种假设,而不可能在物理系统中发生;但是,如果系统的脉动输入量值很大,而持续时间与系统的时间常数相比较非常小时,可以用脉冲函数去近似地表示脉动输入;当描述脉冲输入时,脉冲的面积大小是非常重要的,而脉冲的精确形状通常并不重要;脉冲输入量在一个无限小的时间内向系统提供能量;单位脉冲函数)(0t t -δ可以看作是单位阶跃函数ut-t 0在间断点t=t 0上的导数,即)(d d )(00t t u tt t -=-δ 相反,如若对单位脉冲函数)(0t t -δ积分:)(d )(000t t u t t t tt -=-⎰δ 积分的结果就是单位阶跃函数 ut-t 0利用脉冲函数的概念,我们可以对包含不连续点的函数进行微分,从而得到一些脉冲,这些脉冲的量值等于每一个相应的不连续点上的量值;10、加速度函数000)(2<≥⎩⎨⎧=t t At t f ,其中,A 为常数; 拉氏变化为:300202212d 2d ][s At te e t s A t e At At L st st st =⎥⎦⎤⎢⎣⎡-==⎰⎰∞-∞-∞- 当A=21时称之为单位加速度函数,用at 表示,发生在t=t 0时刻的加速度函数通常写成)(0t t a -,图像如下: )t 00t 图单位加速度函数(a)(b) 8642123411、单位加速度函数:00210)(2≥<⎪⎩⎪⎨⎧=t t t t a30020221d 211d 21)(21s t te e t st e t t u t L st st st =⎥⎥⎦⎤⎢⎢⎣⎡-==⎥⎦⎤⎢⎣⎡⋅⎰⎰∞-∞-∞-。
常用的拉氏变换表包括以下几个函数:
1.单位阶跃函数:F(s) = 1/s。
2.单位脉冲函数:F(s) = 1。
3.常数K:F(s) = K/s。
4.单位斜坡函数:F(s) = 1/s^2。
5.指数函数:F(s) = 1/(s-a)。
6.正弦函数和余弦函数:F(s) = a/(s^2+a^2)(正弦函数),F(s) = s/(s^2+a^2)(余弦函数)。
7.双曲正弦和双曲余弦函数:F(s) = a/(s^2-a^2)(双曲正弦函数),F(s) = s/(s^2-a^2)(双曲
余弦函数)。
拉氏变换是一种将时域函数转换为复平面上的函数的工具,常用于电路分析、控制系统等领域。
通过拉氏变换,可以将微分方程转换为代数方程,从而简化问题的求解过程。
在拉氏变换表中,列出了常见的时域函数及其对应的拉氏变换,方便查阅和使用。
请注意,以上列举的拉氏变换表仅供参考,具体的拉氏变换公式可能因不同的定义和约定而有所差异。
在实际使用时,应根据具体的文献或教材来确定准确的拉氏变换公式。
拉氏变换常用公式拉氏变换是一种重要的数学工具,广泛应用于信号处理、控制系统分析和电路设计等领域。
本文将介绍拉氏变换常用的公式,包括重要的拉氏变换和反变换公式,以及一些常见的拉氏变换性质。
1. 拉氏变换公式拉氏变换公式是将一个时间域函数变换成复频域的函数。
以下是一些常用的拉氏变换公式:(1)常数信号的拉氏变换:如果输入信号为常数,即f(t)=A,其拉氏变换为F(s) = A/s,其中A 为常数。
(2)指数信号的拉氏变换:指数信号的拉氏变换公式为:f(t) = e^(at) -> F(s) = 1/(s-a),其中a为常数。
(3)单位冲激信号的拉氏变换:单位冲激信号的拉氏变换公式为:f(t) = δ(t) -> F(s) = 1,其中δ(t)表示单位冲激函数。
(4)正弦信号的拉氏变换:正弦信号的拉氏变换公式为:f(t) = sin(ωt) -> F(s) = ω/(s^2 + ω^2)。
其中ω为正弦信号的频率。
2. 拉氏反变换公式拉氏反变换是将复频域函数转换回时间域函数的过程,以下是一些常用的拉氏反变换公式:(1)常数信号的拉氏反变换:对于F(s) = A/s,其拉氏反变换为f(t) = A。
(2)指数信号的拉氏反变换:对于F(s) = 1/(s - a),其拉氏反变换为f(t) = e^(at),其中a为常数。
(3)单位冲激信号的拉氏反变换:对于F(s) = 1,其拉氏反变换为f(t) = δ(t)。
(4)正弦信号的拉氏反变换:对于F(s) = ω/(s^2 + ω^2),其拉氏反变换为f(t) = sin(ωt)。
3. 拉氏变换的性质拉氏变换具有一些重要的性质,其中包括线性性质、时间平移性质、频率平移性质、频率缩放性质、卷积定理等,这些性质对于信号处理和系统分析非常有用。
(1)线性性质:拉氏变换具有线性性质,即对于输入信号f1(t)和f2(t),以及相应的拉氏变换F1(s)和F2(s),有以下性质成立:a1*f1(t) + a2*f2(t) -> a1*F1(s) + a2*F2(s)。
常用拉普拉斯变换总结1、指数函数,其中,A 与a 为常数。
2、阶跃函数,其中,A 为常数。
3、单位阶跃函数0010)(><⎩⎨⎧=t t t u s t e t u L st 1d )]([0==⎰∞-4、斜坡函数000)(≥<⎩⎨⎧=t t Att f ,其中,A 为常数。
20d s A t e s A st ==⎰∞-A =1时得斜坡函数称为单位斜坡函数,发生在t=t 0时刻得单位斜坡函数写成r(t-t 0)5、单位斜坡函数6、正弦函数,其中A 为常数。
)(t f t 图2.3正弦函数和余弦函数)(t f t(a)(b)00根据欧拉公式: 拉式变换为:同理余弦函数得拉式变换为:7、脉动函数,其中,A 与t 0为常数。
脉动函数可以瞧做就是一个从t =0开始得高度为A /t 0得阶跃函数,与另一个从t =t 0开)(21sin t j t j e e j t ωωω--=始得高度为A /t 0得负阶跃函数叠加而成。
8、脉冲函数脉冲函数就是脉动函数得一种特殊极限情况。
9、单位脉冲函数当面积A =1得脉冲函数称为单位脉冲函数,或称为狄拉克(Disac)函数,量值为无穷大且持续时间为零得脉冲函数纯属数学上得一种假设,而不可能在物理系统中发生。
但就是,如果系统得脉动输入量值很大,而持续时间与系统得时间常数相比较非常小时,可以用脉冲函数去近似地表示脉动输入。
当描述脉冲输入时,脉冲得面积大小就是非常重要得,而脉冲得精确形状通常并不重要。
脉冲输入量在一个无限小得时间内向系统提供能量。
单位脉冲函数可以瞧作就是单位阶跃函数u(t-t 0)在间断点t=t 0上得导数,即相反,如若对单位脉冲函数积分:积分得结果就就是单位阶跃函数 u(t-t 0)利用脉冲函数得概念,我们可以对包含不连续点得函数进行微分,从而得到一些脉冲,这些脉冲得量值等于每一个相应得不连续点上得量值。
10、加速度函数,其中,A 为常数。
419
附录A 拉普拉斯变换及反变换
1.表A-1 拉氏变换的基本性质齐次性)
()]([s aF t af L =1
线性定理
叠加性
)
()()]()([2121s F s F t f t f L ±=±一般形式
=
-=][ '- -=-=----=-∑1
1
)1()
1(1
22
2)
()()
0()()(0)0()(])([)0()(])
([
k k k k n
k k n n n
n dt t f d t f f s s F s dt t f d L f sf s F s dt t f d L f s sF dt t df L
)(2
微分定理初始条件为0时
)
(])([s F s dt t f d L n n
n =一般形式
∑⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰==+-===+=+
+=+=
n
k t n n k n n n
n t t t dt t f s
s s F dt t f L s
dt t f s dt t f s s F dt t f L s
dt t f s s F dt t f L 10
10
2
2022
]))(([1)(])()([]))(([])([)(]))(([])([)(])([个
共个
共 3
积分定理
初始条件为0时
n
n n s
s F dt t f L )
(]))(([=⎰⎰个
共 4延迟定理(或称域平移定理)t )
()](1)([s F e T t T t f L Ts -=--5
衰减定理(或称域平移定理)s )
(])([a s F e t f L at +=-6终值定理)
(lim )(lim 0
s sF t f s t →∞
→=7
初值定理
)
(lim )(lim 0
s sF t f s t ∞
→→=
420
8
卷积定理
)
()(])()([])()([210
210
21s F s F d t f t f L d f t f L t
t =-=-⎰⎰τττττ2.表A-2 常用函数的拉氏变换和z 变换表序
号 拉氏变换E(s)
时间函数e(t)
Z 变换E(z)
1
1
δ(t)1
2
Ts
e --11∑∞
=-=0)
()(n T nT t t δδ1
-z z 3s
1)
(1t 1
-z z 42
1s t
2
)1(-z Tz 53
1s 2
2t 3
2
)1(2)1(-+z z z T
61
1+n s !n t n )(!)1(lim 0aT
n n n a e z z a n -→-∂∂-7a
s +1at
e
-aT
e z z
--82
)(1a s +at
te -2
)(aT aT e z Tze ---9)
(a s s a +at
e
--1)
)(1()1(aT aT e z z z e -----10)
)((b s a s a b ++-bt
at e e ---bT aT e z z
e z z ----
-112
2ωω
+s t
ωsin 1
cos 2sin 2+-T z z T
z ωω122
2ω+s s t
ωcos 1
cos 2)cos (2
+--T z z T z z ωω132
2)(ωω
++a s t e at
ωsin -aT
aT aT e T ze z T
ze 22cos 2sin ---+-ωω14
2
2)(ω+++a s a s t
e
at
ωcos -aT
aT aT e T ze z T ze z 222cos 2cos ---+--ωω
421
15
a
T s ln )/1(1
-T
t a /a
z z -3. 用查表法进行拉氏反变换
用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进
行反变换。
设是的有理真分式
)(s F s ()0
11
10
111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- m n >式中系数,都是实常数;是正整数。
按代数定理可
n n a a a a ,,...,,110-m m b b b b ,,,110- n m ,将展开为部分分式。
分以下两种情况讨论。
)(s F ① 无重根
0)(=s A 这时,F(s)可展开为n 个简单的部分分式之和的形式。
(F-1)∑=-=-++-++-+-=n
i i
i n n i i s s c s s c s s c s s c s s c s F 122
11)( 式中,是特征方程A(s)=0的根。
为待定常数,称为F(s)在处的留数,可n s s s ,,,21 i c i s 按下式计算:
(F-2)
)()(lim s F s s c i s s i i
-=→或
(F-
i
s
s i s A s B c ='=
)()
(3)
式中,为对的一阶导数。
根据拉氏变换的性质,从式(F-1)可求得原函数
)(s A ')(s A s
= (F-4)
[]⎥⎦⎤⎢⎣⎡-==∑=--n i i i s s c L s F L t f 11
1)()(t
s n i i i
e c -=∑1
②
有重根
0)(=s A 设有r 重根,F(s)可写为
0)(=s A 1s ())
()()()
(11n r r s s s s s s s B s F ---=
+
422
=
n
n i i r r r
r r r s s c s s c s s c s s c s s c s s c -+
+-++-+-++-+-++-- 11
111111)()()(式中,为F(s)的r 重根,,…, 为F(s)的n-r 个单根;
1s 1+r s n s 其中,,…, 仍按式(F-2)或(F-3)计算,,,…, 则按下式计算:
1+r c n c r c 1-r c 1c )
()(lim 11
s F s s c r s s r -=→)]()([lim
111
s F s s ds
d
c r s s r -=→- (F-5)
)()(lim !11)()
(1s F s s ds
d j c r j j s s j
r -=→-
)
()(lim )!1(11)1()
1(11s F s s ds
d r c r r r s s --=--→原函数为
)(t f
[]
)()(1s F L t f -=⎥⎦⎤⎢⎣
⎡-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 11
111
1111)()()(
(F-6)
t s n
r i i t s r r r r i
e c e c t c t r c t r c ∑+=---+⎥⎦
⎤⎢⎣⎡+++-+-=112211
1
)!2()!1(。