模型参考自适应控制—MIT法
- 格式:doc
- 大小:148.50 KB
- 文档页数:9
自适应控制中的模型参考自适应控制算法研究在控制系统中,控制器的设计和应用都是十分重要的,并且也是十分复杂的。
自适应控制是一种在控制器中嵌入智能算法的方法,可以让控制器根据被控制系统的状态自适应地调整参数,以达到最佳控制效果。
在自适应控制中,模型参考自适应控制算法是一种常见的算法,其原理和应用将在本文中进行介绍。
一、模型参考自适应控制算法的基本原理模型参考自适应控制算法是一种基于模型的自适应控制方法,其基本思想是将被控制系统的模型和控制器的模型进行匹配,通过模型匹配的误差来适应地调整控制器的参数。
其主要流程包括:建立被控制系统的模型;建立控制器的模型;将被控制系统的模型和控制器的模型进行匹配,计算出模型匹配误差;根据模型匹配误差来自适应地调整控制器的参数。
模型参考自适应控制算法的具体实现方式可以分为直接调节法和间接调节法两种。
直接调节法是将模型参考自适应控制算法中的误差直接反馈到控制器的参数中,以达到自适应控制的目的。
间接调节法则是通过在模型参考自适应控制算法中引入额外的参数,间接地调节控制器的参数,以达到自适应控制的目的。
二、模型参考自适应控制算法的应用模型参考自适应控制算法在实际工程中有着广泛的应用。
例如,它可以用于磁浮列车的高精度控制系统中,通过模型参考自适应控制算法来适应不同运行条件下的参数,达到最优的控制效果。
另外,模型参考自适应控制算法还广泛应用于机器人控制、电力系统控制等领域,可以有效地提高控制系统的性能和稳定性。
三、模型参考自适应控制算法的优缺点模型参考自适应控制算法的主要优点是可以适应不同的被控制系统和环境条件,具有较高的适应性和鲁棒性。
另外,它具有控制精度高、响应速度快等优点。
不过,模型参考自适应控制算法也存在一些缺点,例如模型误差对控制系统的影响比较大,不易对模型参数进行优化等。
四、结论综上所述,模型参考自适应控制算法是一种重要的自适应控制方法,在实际工程中具有广泛的应用前景。
模型参考自适应控制与模型控制比较模型参考自适应控制(Model Reference Adaptive Control, MRAC)和模型控制(Model-based Control)都是现代控制理论中常用的方法。
它们在实际工程应用中具有重要意义,本文将对这两种控制方法进行比较和分析。
一、模型参考自适应控制模型参考自适应控制是一种基于模型的自适应控制方法,主要用于模型未知或参数变化的系统。
该方法基于一个参考模型,通过在线更新控制器参数以追踪参考模型的输出,从而实现对系统的控制。
在模型参考自适应控制中,首先需要建立系统的数学模型,并根据实际系统的特性选择合适的参考模型。
然后通过设计自适应控制器,利用模型参数估计器对系统的不确定性进行补偿,实现对系统输出的精确追踪。
模型参考自适应控制的优点在于其适应性强,能够处理模型未知或参数变化的系统。
它具有很好的鲁棒性,能够适应系统的不确定性,同时可以实现对参考模型的精确追踪。
然而,模型参考自适应控制也存在一些缺点,如对系统模型的要求较高,需要较为准确的模型参数估计。
二、模型控制模型控制是一种基于数学模型的控制方法,通过对系统的建模和分析,设计出合适的控制器来实现对系统的控制。
模型控制方法主要有PID控制、状态反馈控制、最优控制等。
在模型控制中,首先需要建立系统的数学模型,并对模型进行分析和优化。
然后根据系统的特性,设计合适的控制器参数。
最后,将控制器与系统进行耦合,实现对系统的控制。
模型控制的优点在于其理论基础牢固,控制效果较好。
它能够根据系统的数学模型进行精确的设计和分析,具有较高的控制精度和鲁棒性。
然而,模型控制方法在实际应用中对系统模型的要求较高,而且对系统参数变化不敏感。
三、比较与分析模型参考自适应控制与模型控制都是基于模型的控制方法,它们在实际应用中具有各自的优缺点。
相比而言,模型参考自适应控制具有更强的适应性和鲁棒性,能够处理模型未知或参数变化的系统。
10.自适应控制严格地说,实际过程中的控制对象自身及能所处的环境都是十分复杂的,其参数会由于种种外部与内部的原因而发生变化。
如,化学反应过程中的参数随环境温度和湿度的变化而变化(外部原因),化学反应速度随催化剂活性的衰减而变慢(内部原因),等等。
如果实际控制对象客观存在着较强的不确定,那么,前面所述的一些基于确定性模型参数来设计控制系统的方法是不适用的。
所谓自适应控制是对于系统无法预知的变化,能自动地不断使系统保持所希望的状态。
因此,一个自适应控制系统,应能在其运行过程中,通过不断地测取系统的输入、状态、输出或性能参数,逐渐地了解和掌握对象,然后根据所获得的过程信息,按一定的设计方法,作出控制决策去修正控制器的结构,参数或控制作用,以便在某种意义下,使控制效果达到最优或近似更优。
目前比较成熟的自适应控制可分为两大类:模型参考自适应控制(Model Reference Adaptive Control)和自校正控制(Self-Turning)。
10.1模型参考自适应控制10.1.1模型参考自适应控制原理模型参考自适应控制系统的基本结构与图10.1所示:10.1模型参考自适应控制系统它由两个环路组成,由控制器和受控对象组成内环,这一部分称之为可调系统,由参考模型和自适应机构组成外环。
实际上,该系统是在常规的反馈控制回路上再附加一个参考模型和控制器参数的自动调节回路而形成。
在该系统中,参考模型的输出或状态相当于给定一个动态性能指标,(通常,参考模型是一个响应比较好的模型),目标信号同时加在可调系统与参考模型上,通过比较受控对象与参考模型的输出或状态来得到两者之间的误差信息,按照一定的规律(自适应律)来修正控制器的参数(参数自适应)或产生一个辅助输入信号(信号综合自适应),从而使受控制对象的输出尽可能地跟随参考模型的输出。
在这个系统,当受控制对象由于外界或自身的原因系统的特性发生变化时,将导致受控对象输出与参考模型输出间误差的增大。
目录第一章自适应控制概述 (1)第一节自适应控制的产生背景及分类 (1)一.自适应控制产生的背景 (1)二.自适应控制的原理及分类 (2)第二章模型参考自适应控制(MODEL REFERENCE ADAPTIVE CONTROL)简称MRAC 3第一节MRAC的基本概念 (3)第二节最优化的设计方法 (4)一、利用梯度法的局部参数最优化的设计方法 (4)第三节基于李雅普诺夫第二方法稳定性理论的MRAC设计方法 (7)一.关于李雅普诺夫( Liaupunov) 稳定性的第二方法 (7)第四节基于超稳定理论的MRAC设计方法 (13)一、关于超稳定性理论的基本概念 (13)二、用超稳定理论设计MRAC系统 (15)第三章自校正控制 (18)第一节自校正控制的原理及组成 (18)第二节最小方差控制律 (21)第一章自适应控制概述任何一个动态系统,通常都具有程度不同的不确定性。
这种不确定性因素的产生主要由于:(1)系统的输入包含有随机扰动,如飞行器飞行过程中的阵风;(2) 系统的测量传感器具有测量噪声;以上两者又称为不确定性的(或随机的)环境因素。
(3) 系统数学模型的参数甚至结构具有不确定性。
如导弹控制系统中气动力参数随导弹飞行高度、速度、导弹质量及重心的变化而变化。
在只存在不确定环境因素,但系统模型具有确定性的情况下,这是随机控制需要解决的问题;而自适应控制是解决具有数学模型不确定性为特征的最优控制问题。
这时如果系统基本工作于确定环境下,则称为确定性自适应控制;如果系统工作于随机环境下,则称为随机自适应控制。
自适应控制的提法可归纳为:在系统数学模型不确定的条件下(工作环境可以是基本确定的或是随机的),要求设计控制规律,使给定的性能指标尽可能达到及保持最优。
为了完成以上任务,自适应控制必须首先要在工作过程中不断地在线辨识系统模型(结构及参数)或性能,作为形成及修正最优控制的依据,这就是所谓的自适应能力,它是自适应控制主要特点。
自适应控制的分类_自适应控制的主要类型什么是自适应控制1、自适应控制所讨论的对象,一般是指对象的结构已知,仅仅是参数未知,而且采用的控制方法仍是基于数学模型的方法。
2、但实践中我们还会遇到结构和参数都未知的对象,比如一些运行机理特别复杂,目前尚未被人们充分理解的对象,不可能建立有效的数学模型,因而无法沿用基于数学模型的方法解决其控制问题,这时需要借助人工智能学科,也就是智能控制。
3、自适应控制与常规的控制与最优控制一样,是一种基于数学模型的控制方法。
4、自适应控制所依据的关于模型的和扰动的先验知识比较少,需要在系统的运行过程中不断提取有关模型的信息,使模型愈来愈准确。
5、常规的反馈控制具有一定的鲁棒性,但是由于控制器参数是固定的,当不确定性很大时,系统的性能会大幅下降,甚至失稳。
自适应控制的原理框图自适应控制的分类自从50年代末由美国麻省理工学院提出第一个自适应控制系统以来,先后出现过许多不同形式的自适应控制系统。
比较成熟的自适应控制系统有下述几大类。
(1)可变增益自适应控制系统这类自适应控制系统结构简单,响应迅速,在许多方面都有应用。
其结构如图1所示,调节器按被控过程的参数的变化规律进行设计,也就是当被控对象(或控制过程)的参数因工作状态或环境情况的变化而变化时,通过能够测量到的某些变量,经过计算而按规定的程序来改变调节器的增益,以使系统保持较好的运行性能。
另外在某些具有非线性校正装置和变结构系统中,由于调节器本身对系统参数变化不灵敏。
采用此种自适应控制方案往往能去的较满意的效果。
(2)模型参考自适应控制系统(Model Reference Adaptive System,简称MRAS)模型参考自适应控制系统由以下几部分组成,即参考模型、被控对象、反馈控制器和调整控制器参数的自适应机构等部分组成,如图2所示。
自适应控制综述标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]自适应控制文献综述卢宏伟(华中科技大学控制科学与工程系信息与技术研究所 M0)摘要:文中对自适应控制系统的发展、系统类型、控制器类型以及国内外自适应控制在工业和非工业领域的应用研究现状进行了较系统的总结。
自适应控制成为一个专门的研究课题已超过50年了,至今,自适应控制已在很多领域获得成功应用,证明了其有效性。
但也有其局限性和缺点,导致其推广应用至今仍受到限制,结合神经网络、模糊控制是自适应控制今后发展的方向。
关键字:自适应控制鲁棒性自适应控制器1.自适应控制的发展概况自适应控制系统首先由Draper和Li 在1951年提出,他们介绍了一种能使性能特性不确定的内燃机达到最优性能的控制系统。
而自适应这一专门名词是1954年由Tsien在《工程控制论》一书中提出的,其后,1955年Benner和Drenick也提出一个控制系统具有“自适应”的概念。
自适应控制发展的重要标志是在1958午Whitaker“及共同事设计了一种自适应飞机飞行控制系统。
该系统利用参考模型期望特性和实际飞行特性之间的偏差去修改控制器的参数,使飞行达到最理想的特性,这种系统称为模型参考自适应控制系统(MRAC系统)。
此后,此类系统因英国皇家军事科学院的Parks利用李稚普诺夫(Lyapunov)稳定性理论和法国Landau利用Popov的超稳定性理论等设计方法而得到很大的发展,使之成为—种最基本的自适应控制系统。
1974年,为了避免出现输出量的微分信号,美国的Monopli提出了一种增广误差信号法,因而使输入输出信号设汁的自适应控制系统更加可靠地应用与实际工程中。
1960年Li和Wan Der Velde提出的自适应控制系统,他的控制回路中用一个极限环使参数不确定性得到自动补偿,这样的系统成为自振荡的自适应控制系统。
Petrov等人在1963年介绍了一种自适应控制系统,它的控制数如有一个开关函数或继电器产生,并以与参数值有关的系统轨线不变性原理为基础来设计系统,这种系统称为变结构系统。
控制系统中的模型参考自适应控制在现代控制领域中,模型参考自适应控制(Model Reference Adaptive Control,简称MRAC)是一种被广泛应用的控制策略。
它通过将控制系统建模为一个参考模型和一个可调参数的控制器,从而实现对系统动态特性的调节和优化。
本文将介绍控制系统中的模型参考自适应控制的原理、应用以及一些典型的实例。
一、模型参考自适应控制的原理模型参考自适应控制的核心思想是通过参考模型来描述控制系统应有的动态特性,然后利用自适应算法调整控制器的参数,使得实际输出与参考模型的输出误差最小化。
具体步骤如下:1. 建立参考模型:首先,需要根据系统的要求和性能指标,建立一个理想的参考模型。
该模型应能描述系统的期望响应和稳定性。
2. 设计控制器:基于参考模型,设计一个可调参数的控制器。
一般来说,控制器通常分为线性和非线性两种类型。
线性控制器常用的有比例-积分-微分(PID)控制器和模型预测控制器(MPC),而非线性控制器则可以采用自抗扰控制(Disturbance Observer,DOB)控制器等。
3. 参数调整:控制器的参数调整是模型参考自适应控制的关键步骤。
通过监测实际输出并与参考模型输出进行比较,可以计算出误差,并利用自适应算法不断调整控制器参数,使误差最小化。
常用的自适应算法有最小二乘法、梯度下降法和Lyapunov方法等。
二、模型参考自适应控制的应用模型参考自适应控制广泛应用于电力系统、工业过程控制、机器人控制和飞行器控制等领域。
以下是一些典型的应用案例:1. 电力系统稳定控制:电力系统是一个复杂的非线性系统,稳定性对于保障供电的可靠性至关重要。
模型参考自适应控制可以在不确定的负荷和传输线路参数变化的情况下,实时调节控制器参数,使得系统的动态响应稳定在期望的范围内。
2. 工业过程控制:在化工和制造业等工业过程中,模型参考自适应控制可以实现对过程的精确控制。
通过建立合适的参考模型,并对控制器参数进行自适应调整,可以调节工艺系统的输出,保证产品质量和生产效率。
自适应控制Adaptive control1.关于控制2.关于自适应控制3.模型参考自适应控制4.自校正控制5.自适应替代方案6.预测控制参考文献主要章节内容说明:第一部分:第一章自适应律的设计§1.参数最优化方法§2.基于Lyapunov稳定性理论的方法§3.超稳定性理论在自适应控制中的应用第二章误差模型§1.Narendra误差模型§2.增广矩阵§3.线性误差模型第三章MRAC的设计和实现第四章小结第二部分:第一章模型辨识及控制器设计§1.系统模型:CARMA模型§2.参数估计:LS法§3.控制器的设计方法:利用传递函数模型§4.自校正第二章最小方差自校正控制§1.最小方差自校正调节器§2.广义最小方差自校正控制第三章极点配置自校正控制§1.间接自校正§2.直接自校正1.About control engineering education1)control curriculum basic concept(1)dynamic system●The processes and plants that are controlled have responses that evolvein time with memory of past responses●The most common mathematical tool used to describe dynamic system isthe ordinary differential equation (ODE).●First approximate the equation as linear and time-invariant. Thenextensions can be made from this foundation that are nonlinear 、time-varying、sampled-data、distributed parameter and so on.●Method of building model (or equation )a)Idea of writing equations of motion based on the physics andchemistry of the situation.b)That of system identification based on experimental data.●Part of understanding the dynamical system requires understanding theperformance limitations and expectation of the system.2.stabilityWith stability, the system can at least be used●Classical control design method, are based on a stability test.Root locus 根轨迹Bode‟s frequency response 波特图Nyquist stability criterion 奈奎斯特判据●Optimal control, especially linear-quadratic Gaussian (LQG) control (线性二次型高斯问题) was always haunted by the fact that method did notinclude a guarantee of margin of stability.The theory and techniques of robust (鲁棒)design have been developedas alternative to LQG●In the realm of nonlinear control, including adaptive control, it iscommon practice to base the design on Lyapunov function in order to beable to guarantee stability of final result.3.feedbackMany open-loop devices such as programmable logic controllers (PLC) are in use, their design and use are not part of control engineering.●The introduction of feedback brings costs as well as benefits. Among thecosts are need for both actuators and sensors, especially sensors.●Actuator defines the control authority and set the limits of speed indynamic response.●Sensor via their inevitable noise, limit the ultimate(最终) accuracy ofcontrol within these limits, feedback affords the benefit of improveddynamic response and stability margins, improved disturbancerejection(拒绝) ,and improved robustness to parameter variability.●The trade off between costs and benefits of feedback is at the center ofcontrol design.4.Dynamic compensation●In beginning there was PID compensation, today remaining a widely usedelement of control, especially in the process control.●Other compensation approaches : lead-and-log networks (超前-滞后)observer-based compensators include : pole placement, LQG designs.●Of increasing interest are designs capable of including trade-off amongstability, dynamic response and parameter robustness.Include: Q parameterization, adaptive schemes.Such as self-tuning regulators, neural-network-based-controllers.二、historical perspectives (透视)●Most of early control manifestations appear as simple on-off (bang-bang)controllers with empirical (实验;经验性的) setting much dependent uponexperience.●The following advances such as Routhis and Hurwitz stability analysis(1877).Lyapunov‟s state model and nonlinear stability criteria(判据) (1890) .Sperry‟s early work on gyroscope and autopilots (1910), and Sikorsky‟swork on ship steering (1923)Take differential equation, Heaviside operators and Laplace transform astheir tools.●电机工程(electrical engineering)The largely changed in the late 1920s and 1930s with Black‟s developmentof the feedback electronic amplifier, Bush‟s differential analyzer, Nyquist‟sstability criterion and Bode‟s frequency response methods.The electrical engineering problems faced usually had vary complex albeitmostly linear model and had arbitrary (独立的;随机的) and wide-ringingdynamics.●过程控制(process control in chemical engineering)Most of the progress controlled were complex and highly nonlinear, butusually had relatively docile (易于处理的) dynamics.One major outcome of this type of work was Ziegler-Nichols‟PIDthres-term controller. This control approach is still in use today, worldwidewith relatively minor modifications and upgrades (including sampled dataPID controllers with feed forward control, anti-integrator-windupcontrollers :抗积分饱和,and fuzzy logic implementations).●机械工程(mechanical engineering)The application of controls in mechanical engineering dealt mostly in thebeginning with mechanism controls, such as servomechanisms, governorsand robots.Some typical control application areas now include manufacturing processcontrols, vehicle dynamic and safety control, biomedical devices and geneticprocess research.Some early methodological outcomes were the olden burger-Kahenbugerdescribing function method of equivalent linearization, and minimum-time,bang-bang control.●航空工程(aeronautical engineering )The problems were generally a hybrid (混合) of well-modeled mechanicsplus marginally understood fluid dynamics. The models were often weaklynonlinear, and the dynamics were sometimes unstable.Major contributions to framework of controls as discipline were Evan‟s rootlocus (1948) and gain-scheduling.●Additional major contributions to growth of the discipline of control over thelast 30-40 years have tended to be independent of traditional disciplines.Examples include:Pontryagin‟s maximum principle (1956) 庞特里金Bellman‟s dynamic programming (1957)贝尔曼Kalman‟s optimal estimation (1960)And the recent advances in robust control.三、Abstract thoughts on curriculum●The possibilities for topic to teach are sufficiently great. If one tries topresent proofs of all theoretical results. One is in danger of giving thestudents many mathematical details with little physical intuition orappreciation for the purposes for which the system is designed.●Control is based on two distinct streams of thought. One stream is physicaland discipline-based. Because one must always be controlling some thing.The other stream is mathematics-based, because the basis concepts ofstability and feedback are fundamentally abstract concepts best expressedmathematically. This duality(两重性) has raised, over the years, regularcomplaints about the …gap‟ between theory and practice.●The control curriculum typically begins with one or two courses designed topresent an overview of control based on linear, constant, ODE models,s-plane and Nyquist‟s stability ideas, SISO feedback and PID, lead-lay andpole-placement compensation.These introductory courses can then be followed by courses in linear systemtheory, digital of control, optimal control, advanced theory of feedback, andsystem identification.四、Main control courses●Introduction to controlLumped system theoryNonlinear controlOptimal controlAdaptive controlRobot controlDigital controlModeling and simulationAdvanced theoryStochastic processesLarge scale multivariable systemManufacturing systemFuzzy logic Neural Networks外文期刊:《Automatic》IFAC 国际自动控制联合会Computer and control abstractsIEEE translations on Automatic controlAutomation●Specialized \ experimental courses✓Intelligent controlApplication of Artificial IntelligenceSimulation and optimization of lager scale systems robust control ✓System identification✓Microcomputer-based control systemDiscrete-event systemsParallel and Distributed computationNumerical optimization methodsNumerical system theory●Top key works from 1963-1995 in IIACAdaptive control 305Optimal control 277Identification 255Parameter estimation 244Stability 217Linear system 184Non-linear systems 168Robust control 158Discrete-time systems 143Multivariable systems 140Robustness 140Multivariable systems control systems 110Optimization 110Computer control 104Large-scale systems 103Kalman filter 102Modeling 107为什么自适应 《Astrom 》chapter 1✓ 反馈可以消除扰动。
一 原理及方法模型参考自适应系统,是用理想模型代表过程期望的动态特征,可使被控系统的特征与理想模型相一致。
一般模型参考自适应控制系统的结构如图1所示。
图1 一般的模型参考自适应控制系统其工作原理为,当外界条件发生变化或出现干扰时,被控对象的特征也会产生相应的变化,通过检测出实际系统与理想模型之间的误差,由自适应机构对可调系统的参数进行调整,补偿外界环境或其他干扰对系统的影响,逐步使性能指标达到最小值。
基于这种结构的模型参考自适应控制有很多种方案,其中由麻省理工学院科研人员首先利用局部参数最优化方法设计出世界上第一个真正意义上的自适应控制律,简称为MIT 自适应控制,其结构如图2所示。
图2 MIT 控制结构图系统中,理想模型Km 为常数,由期望动态特性所得,被控系统中的增益Kp 在外界环境发生变化或有其他干扰出现时可能会受到影响而产生变化,从而使其动态特征发生偏离。
而Kp 的变化是不可测量的,但这种特性的变化会体现在广义误差e 上,为了消除或降低由于Kp 的变化造成的影响,在系统中增加一个可调增益Kc ,来补偿Kp 的变化,自适应机构的任务即是依据误差最小指标及时调整Kc ,使得Kc 与Kp 的乘积始终与理想的Km 一致,这里使用的优化方法为最优梯度法,自适应律为:⎰⨯+=tm d y e B Kc t Kc 0)0()(τYp Yme+__+R参考模型调节器被控对象适应机构可调系统———kmq(s)p(s)KcKpq(s)-----p(s)适应律Rymype+-MIT 方法的优点在于理论简单,实施方便,动态过程总偏差小,偏差消除的速率快,而且用模拟元件就可以实现;缺点是不能保证过程的稳定性,换言之,被控对象可能会发散。
二 对象及参考模型该实验中我们使用的对象为:122)()()(2++==s s s p s q K s G pp 参考模型为:121)()()(2++==s s s p s q K s G mm 用局部参数最优化方法设计一个模型参考自适应系统,设可调增益的初值Kc(0)=0.2,给定值r(t)为单位阶跃信号,即r(t)=A ×1(t)。
A 取1。
三 自适应过程将对象及参考模型离散化,采样时间取0.1s ,进而可得对象及参考模型的差分方程分别为:)2(0044.0)1(0047.0)2(8187.0)1(8079.1)(-+-+---=k r k r k y k y k y m)2(0088.0)1(0094.0)2(8187.0)1(8097.1)(-+-+---=k u k u k y k y k y p p p其中u 为经过可调增益控制器后的信号。
编程进行仿真,经大量实验发现,取修正常数B 为0.3,可得较好的动态过度过程,如下图3所示:图3 仿真结果由图3中第一个图形可以看出,在阶跃扰动后,经过一段时间对象的输出完全跟踪上了理想模型的值,系统最终趋于稳定;由第二个图可以看出,当系统稳定后,Kp*Kc等于Km,说明补偿环节达到了期望的补偿效果,这与系统设计的目标一致;由第三个图可以看出,在控制的动态过程中,偏差的总和是比较小的,而且偏差的消除是很快的,这是由于所选用的优化方法为最有梯度法的结果。
在1中我们已经得到一个能使对象得到较好控制的参数B=0.3,在此情况下,我们将Kp 取为1,对应于实际中即指对象增益发生漂移,再做仿真,结果如图4所示。
图4 对象增益变化后的仿真图由图4我们可以看出,在一个适当的修真参数B下,当对象的特性参数Kp发生漂移后,控制器依然能很好的控制对象,这也证明了MIT方法的自适应特性。
而且我们发现,当Kp 由2变为1后,控制器的控制效果更好了,具体表现为振荡减弱,过渡过程有所加快,关于导致这一现象发生的原因,我们会在第四部分中做详细的分析与说明。
四研究分析1 对于一个被控过程,系统能稳定运行是设计与控制的首要指标,然而如前所述,依据最优控制的原则设计出来的MIT自适应控制器却可能会使得系统不稳定,输出发散,以下我们对此做一研究,以期找出其中的相关信息。
我们设某连续二阶对象为:1)()()(122++==s b s b Kps p s q K s G p则有:pm m m m m c p p p p p y y e R K y y b y b R K K u K y y b yb -==++==++ 1212控制律为:mBey c K = R 为一阶跃信号,即R(t)=A ×1(t), 则偏差的动态方程为:0212=+++e A K BK e e b eb m p 根据劳斯稳定判据,列出劳斯行列式:1101221121223s b A K BK b b s A K BK b s b s m p m p -得知,对于该连续系统,当212/b b A K BK m p >时会不稳定。
试验中Kp=2,Km=1,A=1,1,221==b b ,因而对于连续系统,可求得当B=1时,系统将会等幅振荡。
现取B=1,得仿真曲线如图5所示。
图5显示,当B 为1的时候系统发散,另取原使系统稳定的B=0.3,计算出此时可使系统振荡的阶跃幅值A=sqrt(1/0.3)做仿真,结果如图6所示:图6显示结果与图5一样,系统也发散。
图5、6过程中所取参数均为由劳斯判据所得临界值,然而系统并未做等幅振荡,而是发散,这似乎使得理论计算与仿真结果不符。
但稍作分析我们就会发现,问题在于我们仿真时用的是离散化的模型,而所用参数为由连续系统计算所得。
我们知道用连续系统分析的结论是不完全适用于离散系统的,这是因为随着采样时间取不同的值,同一对象的连续特性和离散特性会不同。
因而对于离散系统,我们对其做稳定性分析时还需考虑采样时间的影响。
正确的做法应是:将连续开环对象做Z 变换,进而得到闭环的Z 域特征方程,对此方程做双线性变化,然后对所得w 域方程列出其劳斯阵列,应用劳斯稳定判据即可得到使离散系统做等幅振荡的相关参数。
本实验中广义偏差方程为三阶系统,在应用采样系统的劳斯稳定判据时需要求解含有参变量的三解方程的解析解,运算量较大,因而这里未做相应的求解。
只是对其做一些定性的分析,指出对于同一对象,使得连续系统和离散系统做等幅振荡的参数B 是不一样的,因而仿真的结果并没有问题。
在对离散系统进行大量的仿真实验后发现当B取0.8367左右的时候,离散系统会发生等幅振荡。
如图7所示:图5 B=1时的仿真结果图6 A=sqrt(1/0.3)时的仿真图7 离散系统等幅振荡2 为了更进一步的了解该实验的相关特征,我们设计以下实验,来分别研究该仿真中Kc的初始值、阶跃信号的幅值对实验的影响。
(1) 我们得知当B=0.3时原系统是稳定的,这里我们逐步改变阶跃信号的幅值,使A分别取1、1.3、1.6、1.9、2.3来观察其结果,如图8所示:图8 A 取不同值的过渡过程由图8可以看出,当A 由小逐渐增大时,系统将由稳定转向发散,因为在设计实验或真实过程中,该扰动的幅值不可太大,否则将使得系统发散。
其原因已在1中做过说明。
(2) 在原系统稳定的情况下,我们改变修改常数Kc 的初始值,分别取Kc=-5、-0.5、 -0.2、0、0.2、0.5、5来进行观测,结果如图9所示:图9 取不同Kc 初始值的仿真由实验我们得到Kc 的最终稳定值为0.49921,有图可以看出,当Kc 的初始值取得离此稳态值越远的话,过程的初始超调越大,但最终过程都能趋于稳定。
因而在设计实验的时候,Kc 的初始值应根据先验知识或粗略计算去一个与其稳定值较为相近的值为宜。
五 结论:由以上的推导及仿真结果可以看出,依据最优控制的方法设计出的MIT 控制律并不能保证控制器在任何情况下都能很好的工作,换言之,对于连续系统当212/b b A K BK m p 时系统会不稳定。
对于离散系统随未给出准确的解析表达式,但从定性的角度来说,各参数的影响是相似的。
因而在实验设计中为避免系统发散,阶跃信号的幅值不可选择太大。
同时由此式可以看出,当Kp 减小后,对应使系统振荡的B 将增大,这就说明了第三部分中我们在没有改变B 的情况下将Kp 由2变为1后系统的性能为什么会得到提高。
参考文献[1]韩曾晋.自适应控制[M].北京: 清华大学出版社,1995: 148-151[2]厉玉鸣,等.自动控制原理[M].北京:化学工业出版社,2005: 279-280附程序clcclearts=0.1;B=0.8367;ei=0; % 临界值 B=0.836Kp=2;Km=1;Kc(1)=0.2;num1=[Km];den1=[1 2 1]; % 参考模型sys1=tf(num1,den1);dsys1=c2d(sys1,ts,'z')[num11,den11]=tfdata(dsys1,'v');num2=[Kp];den2=[1 2 1]; % 对象模型sys2=tf(num2,den2);dsys2=c2d(sys2,ts,'z')[num22,den22]=tfdata(dsys2,'v');ym_1=0;ym_2=0;r_1=0;r_2=0;yp_1=0;yp_2=0;u_1=0;u_2=0;for i=1:1:500time(i)=i*ts;rin(i)=1;r(i)=rin(i);u(i)=Kc(i)*rin(i);ym(i)=-den11(2)*ym_1-den11(3)*ym_2+num11(2)*r_1+num11(3)*r_2;yp(i)=-den22(2)*yp_1-den22(3)*yp_2+num22(2)*u_1+num22(3)*u_2;error(i)=ym(i)-yp(i);Err(i)=error(i)^2;gain(i)=Kc(i)*Kp;ei=ei+error(i)*ym(i)*ts;Kc(i+1)=Kc(1)+B*ei;ym_2=ym_1;ym_1=ym(i);r_2=r_1;r_1=r(i); yp_2=yp_1;yp_1=yp(i);u_2=u_1;u_1=u(i);endsubplot(1,3,1)plot(time,rin,'r',time,ym,'g',time,yp,'b') legend('R','ym','yp',4)title('input and output')xlabel('time/second')subplot(1,3,2)plot(time,Km,'r',time,gain,'b')legend('Km','Kp*Kc')title('change of Kc')xlabel('time/second')subplot(1,3,3)plot(time,Err)title('change of error^2')xlabel('time/second')。