材料物理性能复习总结

  • 格式:docx
  • 大小:2.77 MB
  • 文档页数:16

下载文档原格式

  / 16
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料物理性能复习总结

第一章电学性能

1.1 材料的导电性

,ρ称为电阻率或比电阻,只与材料特性有关,而与导体的几何尺寸无关,是评定材料导电性的基本参数。ρ的倒数σ称为电导率。

一、金属导电理论

1、经典自由电子理论

在金属晶体中,正离子构成了晶体点阵,并形成一个均匀的电场,价电子是完全自由的,称为自由电子,它们弥散分布于整个点阵之中,就像气体分子充满整个容器一样,因此又称为“电子气”。它们的运动遵循理想气体的运动规律,自由电子之间及它们与正离子之间的相互作用类似于机械碰撞。当对金属施加外电场时,自由电子沿电场方向作定向加速运动,从而形成了电流。在自由电子定向运动过程中,要不断与正离子发生碰撞,使电子受阻,这就是产生电阻的原因。

2、量子自由电子理论

金属中正离子形成的电场是均匀的,价电子与离子间没有相互作用,可以在整个金属中自由运动。但金属中每个原子的内层电子基本保持着单个原子时的能量状态,而所有价电子却按量子化规律具有不同的能量状态,即具有不同的能级。

0K时电子所具有最高能态称为费密能E F。

不是所有的自由电子都参与导电,只有处于高能态的自由电子才参与导电。另外,电子波在传播的过程中被离子点阵散射,然后相互干涉而形成电阻。

马基申定则:,总的电阻包括金属的基本电阻和溶质(杂质)浓度引起的电阻(与温度无关);从马基申定则可以看出,在高温时金属的电阻基本取决于,而在低温时则决定于残余电阻。

3、能带理论

能带:由于电子能级间隙很小,所以能级的分布可看成是准连续的,称为能带。

图1-1(a)、(b)、(c),如果允带内的能级未被填满,允带之间没有禁带或允带相互重叠,在外电场的作用下电子很容易从一个能级转到另一个能级上去而产生电流,具有这种能带结构的材料就是导体。

图1-1(d),若一个满带上面相邻的是一个较宽的禁带,由于满带中的电子没

电学特性:

(1) 本征激发成对地产生自由电子和空穴,所以自由电子浓度与空穴浓度相等,都是等于本征载流子的浓度n i;

(2) 禁带宽度E g越大,载流子浓度n i越小;

(3) 温度升高时载流子浓度n i增大;

(4) 载流子浓度n i与原子密度相比是极小的,所以本征半导体的导电能力很微弱。

二、杂质半导体的电学性能

1、n型半导体

概念:在本征半导体中掺入五价元素的杂质(磷、砷、锑)的半导体。

结构:掺入五价元素后,可以使晶体中的自由电子浓度极大地增加,这是因为五价元素的原子有五个价电子,当它顶替晶格中的一个四价元素的原子时,它的四个价电子与周围的四个硅(或锗)原子以共价键相结合后,还余下了一个价电子变成多余的。

多子:在n型半导体中,自由电子的浓度大(1.5*1014cm-3),故自由电子称为多数载流子,简称多子。

少子:n型半导体中的空穴称为少数载流子,简称少子。

在电场作用下,n型半导体中的电流主要由多数载流子——自由电子产生,也就是说,它是以电子电导为主。

2、p型半导体

概念:在本征半导体中掺入三价元素(硼、铝、镓、铟)的杂质半导体。

结构:三价元素的原子只有三个价电子,当它顶替晶格中的一个四价元素原子,并与周围的四个硅(或锗)原子组成四个共价键时,必然缺少一个价电子,形成一个空位置。

在电场作用下,p型半导体中的电流主要由多数载流子——空穴产生,即它是以空穴导电为主。

3、杂质半导体的特点

(1) 掺杂浓度与原子密度相比虽然很微小,但是却能使载流子浓度极大地提高,因而导电能力也显著地增强,掺杂浓度越大,其导电能力也越强。

(2) 掺杂只是使一种载流子的浓度增加,因此杂质半导体主要靠多子导电。当掺入五价元素时,主要靠自由电子导电;当掺入三价元素时,主要靠空穴导电。

三、金属和半导体的电阻随温度变化规律不同

点阵振动的声子散射:由于点阵振动使原子间距发生变化而偏离理想周期排列,引起禁带宽度的空间起伏,从而使载流子的势能随空间变化,导致载流子的散射。显然,温度越高振动越激烈,对载流子的散射越强,迁移率下降。

电离杂质散射:由于随温度升高载流子热运动速度加大,电离杂质的散射作用也就相对减弱,导致迁移率增加。

1.3 绝缘体的电学性能

绝缘体:一般是指电阻率大于1010Ω·m、用来限制电流流动的材料。

评价电介质的主要电学性能指标有介电常数、耐电强度、损耗因素、体电阻率和表面电阻率。

一、电介质的介电常数

当极板间为真空时,平板电容器的电容量C与平板的面积S、板间距离d 的关系为,C 0、分别为真空下的电容和介电常数,

.

当极板间存在电介质时的介电常数为静态介电常数。

带有电介质的电容C与无电介质(真空)的电容C0之比称为电介质的相对介电常数εr。

极化强度,不仅随外电场强度E升高而增加,而且取决于材料的相对介电系数。

复介电常数,实部;虚部.

介电强度:当施加于电介质上的电场强度或电压增大到一定程度时,电介质就由介电状态变为导电状态,这一突变现象称为电介质的击穿,发生击穿时的电场强度即为介电强度。

二、电介质的极化

电介质按其分子中正负电荷的分布状况可以分为中性电介质、偶极电介质和离子型电介质。

极化:电介质在电场的作用下,其内部的束缚电荷所发生的弹性唯一现象和偶极子的取向(正端转向电场负极、负端转向电场正极)现象。

介质极化的基本形式

(1) 电子式极化:在电场作用下,构成介质原子的电子云中心与原子核发生相对位移,形成感应电偶极矩而使介质极化的现象。电子位移极化的形成过程

很快,外电场消失后会立即恢复原状,不消耗任何能量。

(2) 离子式极化:在离子晶体中,除离子中的电子要产生位移极化外,处于点阵结点上的正负离子也要在电场作用下发生相对位移而引起极化。

(3) 偶极子极化:偶极分子在无外电场时就有一定的电偶极矩p,当有外电场时,由于偶极子要受到转矩的作用,有沿外电场方向排列的趋势,因而呈现宏观电偶极矩,形成极化。

(4) 空间电荷极化:在一部分电介质中存在着可移动的离子,在外电场作用下,正离子将向负电极侧移动并积累,而负离子将向正电极侧移动并积累。三、电介质的介电损耗

介质损耗:电介质在电场作用下,在单位时间内因发热而消耗的能量。

漏导电流:在外电场的作用下,总有一些带电粒子会发生移动而引起微弱的电流,这种微小电流称为漏导电流。

漏导损耗:漏导电流流经介质时使介质发热而消耗了电能,这种因电导而引起的介质损耗称为漏导损耗。

极化损耗:除电子、离子弹性位移极化基本上不消耗能量外,其他缓慢极化(例如松弛极化、空间电荷极化等)在极化缓慢建立的过程中都会因客服阻力而引起能量的损耗,这种损耗一般称为极化损耗。

1.4 超导电性

超导电性:在一定的低温条件下材料电阻突然失去的现象。

材料有电阻的状态称为正常态,失去电阻的状态称为超导态,材料由正常状态转变为超导状态的温度称为临界温度。

超导体的三个性能指标:完全导电性、完全抗磁性和通量量子化。

评价超导体的三个性能指标:临界转变温度T c、临界磁场强度H c、临界电流密度J c。

临界磁场强度:破幻超导态的最小磁场。

临界电流密度:保持超导态的最大输入电流。

超导现象的物理本质:超导现象产生的原因是由于超导体中的电子在超导态时电子之间存在着特殊的吸引力,而不是正常态时电子之间的静电斥力。这种特殊吸引力使电子双双结成电子对,电子对在材料中规则地运动时,如果碰到物理缺陷、化学缺陷或热缺陷,而这种缺陷所给予电子的能量变化又不足以使“电子对”破坏,则此“电子对”将不损耗能量,即在缺陷处电子不发生散射而无障碍地通过,这时电子运动的非对称分布状态将继续下去。