数值分析第二章 插值总结
- 格式:ppt
- 大小:4.83 MB
- 文档页数:66
数值分析知识点总结数值分析知识点总结:本文提供了数值分析中的一些重要知识点和例题,但更多的例题可以参考老师布置的作业题和课件相关例题。
第1章数值分析与科学计算引论:绝对误差和相对误差是衡量近似值精度的指标,有效数字则是描述近似值精度的一种方式。
其中,相对误差限是绝对误差的上界。
有效数字的计算方法为:如果近似值x的误差限是某一位的半个单位,该位到x的第一位非零数字共有n位,就说x*共有n位有效数字。
一个比较好用的公式是f(x)的误差限:f(x)f'(x)(x)。
第2章插值法:插值多项式的余项表达式可以用来估计截断误差。
三次样条插值与三次分段埃尔米特插值有所不同,但哪一个更优越需要根据实际情况而定。
确定n+1个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?三弯矩法可以用来求解三次样条表达式。
第3章函数逼近与快速傅里叶变换:带权(x)的正交多项式是在特定区间上满足一定条件的多项式,其中[-1,1]上的勒让德多项式具有重要性质。
切比雪夫多项式也有其独特的性质。
用切比雪夫多项式零点做插值点得到的插值多项式与拉格朗日插值有所不同。
最小二乘拟合的法方程可以用来拟合曲线,但当次数n较大时,不直接求解法方程。
第4章数值积分与数值微分:XXX让德求积公式和XXX-XXX求积公式是数值积分中的两种方法,其中高斯求积公式可以用来计算定积分。
勒让德多项式的零点就是高斯点,这种形式的高斯公式被称为XXX让德求积公式。
中点方法是一种数值积分方法,其公式如下:插值型的求导公式有两点公式和三点公式。
第5章介绍了解线性方程组的直接方法,其中包括LU矩阵的推导过程。
相关例题可以在教材第4章作业题和课件中找到。
第6章介绍了解线性方程组的迭代法,判断迭代法是否收敛的条件如下:第7章介绍了非线性方程与方程组的数值解法,其中牛顿法是一种常见的方法。
对于单根且光滑的f(x)=0,牛顿法是局部二阶收敛的。
简化牛顿法和牛顿下山法都是非线性方程组的求解方法。
1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。
龙格(Runge )给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。
实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。
(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。
(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。
1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。
1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。
Matlab 脚本文件为Experiment2_1_1fx.m 。
可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。
数值分析插值知识点总结一、插值的基本概念插值是指在已知数据点的基础上,通过某种数学方法求得两个已知数据点之间的未知数值。
插值方法的基本思想是在已知数据点之间找出一个合适的函数形式,使得该函数穿过已知数据点,并预测未知点的数值。
插值问题通常出现在实际工程、科学计算中,比如天气预报、经济数据的预测、地震勘探等领域。
插值可以帮助人们预测未知点的数值,从而更好地了解数据之间的关系。
二、插值的分类根据插值的基本原理,插值方法可以分为多种类型,常见的插值方法包括:拉格朗日插值、牛顿插值、分段插值、立方插值、样条插值等。
1. 拉格朗日插值拉格朗日插值是一种通过拉格朗日多项式来实现数据插值的方法。
该方法通过已知的数据点(x1,y1), (x2,y2),...,(xn,yn)来确定一个n-1次的多项式P(x),使得P(xi)=yi。
2. 牛顿插值牛顿插值是利用牛顿插值多项式来实现数据插值的方法。
该方法通过已知的数据点(x1,y1), (x2,y2),...,(xn,yn)来确定一个n-1次的多项式P(x),使得P(xi)=yi。
3. 分段插值分段插值是将插值区间分割成多个小区间,然后在每个小区间内采用简单的插值方法进行插值。
常见的分段插值方法包括线性插值和抛物线插值。
4. 立方插值立方插值是一种通过构造三次多项式来实现数据插值的方法。
该方法通过已知的数据点(x1,y1), (x2,y2),...,(xn,yn)来确定一个三次多项式P(x),使得P(xi)=yi。
5. 样条插值样条插值是一种通过构造分段三次多项式来实现数据插值的方法。
该方法通过已知的数据点(x1,y1), (x2,y2),...,(xn,yn)来确定一个分段三次多项式P(x),使得P(xi)=yi。
三、插值的应用插值方法在实际工程中有着广泛的应用,常见的应用包括图像处理、声音处理、地图绘制、气象预测、经济预测等领域。
1. 图像处理在图像处理中,插值方法主要用于图像的放大、缩小以及图像的重构等操作。
数值分析第⼆章学习⼩结-第2章插值法--------学习⼩结姓名班级学号⼀、本章学习体会1.我的感受:在学习本章之前,我在很多地⽅都见到过涉及到插值法的问题,⽐如中学时见到的类似于“给定两组数据,求⽬标函数”,⽣活中的“由坐⽕车的某两站到站时间估计⽕车到其他站的时间”。
⽽经过了《数值分析》第⼆章“插值法”的学习,我知道了简单估计与科学插值之间的关系以及拉格朗⽇插值、⽜顿插值、分段线性插值、三次样条插值、埃尔⽶特插值这些经典的插值⽅法,我知道了插值法是⾮常系统、科学的数学估计⽅法与⼯科领域的优化⽅法。
2.我的困惑:经过了这⼀章插值法的学习,我知道了拉格朗⽇插值、⽜顿插值等等优秀的插值⽅法,但是针对不同的问题,我们应该如何选择最适合的插值⽅法呢?或者说在不同类型的题⽬中各种插值法的优势是什么?(困惑解答在⼩结思考题处)⼆、本章知识梳理b x a x xc x a x s n j j i i ≤≤-+=∑∑-+,)(1)(313三、本章思考题思考题:在不同类型的题⽬中各种插值法的优势劣势分别是什么?思考:1.拉格朗⽇插值:优点:公式结构整齐紧凑,理论分析⽅便简单;缺点:随着插值点的变化计算量成倍增加,计算变得⼗分繁琐,插值点较多时误差⼤数值不稳定。
插值多项式不能全⾯反映被插值函数的性质,不能满⾜插值多项式与被插值函数在部分或全部插值节点上的导数值与⾼阶导数值相等。
2.⽜顿插值:优点:公式结构整齐紧凑,理论分析⽅便简单并且随着插值点的变化计算仍相对⽐较简单;缺点:插值多项式不能全⾯反映被插值函数的性质,不能满⾜插值多项式与被插值函数在部分或全部插值节点上的导数值与⾼阶导数值相等。
3.埃尔⽶特插值优点:插值函数与被插值函数贴合程度⾼,在插值节点上其⼆者导数值相同;缺点:被插值函数在插值节点的导数值在实例中不易知。
4.分段线性插值优点:计算简洁⽅便,舍⼊误差较⼩,数据稳定性好,易编程缺点:在插值节点处不光滑,不满⾜插值节点处插值函数导数连续。
数值分析--第2章插值法第2章 插值法在科学研究与工程技术中,常常遇到这样的问题:由实验或测量得到一批离散样点,要求作出一条通过这些点的光滑曲线,以便满足设计要求或进行加工。
反映在数学上,即已知函数在一些点上的值,寻求它的分析表达式。
此外,一些函数虽有表达式,但因式子复杂,不易计算其值和进行理论分析,也需要构造一个简单函数来近似它。
解决这种问题的方法有两类:一类是给出函数)(x f 的一些样点,选定一个便于计算的函数)(x ϕ形式,如多项式、分式线性函数及三角多项式等,要求它通过已知样点,由此确定函数)(x ϕ作为)(x f 的近似,这就是插值法;另一类方法在选定近似函数的形式后,不要求近似函数过已知样点,只要求在某种意义下在这些样点上的总偏差最小。
这类方法称为曲线(数据)拟合法。
设已知函数f 在区间],[b a 上的1+n 个相异点ix 处的函数值(),0,,iif f x i n ==,要求构造一个简单函数()x ϕ作为函数()f x 的近似表达式()()f x x ϕ≈,使得()(),0,1,,iiix f x f i n ϕ=== (2-1) 这类问题称为插值问题。
称f 为被插值函数;()x ϕ为插值函数;nx x ,,0 为插值节点;(2-1)为插值条件。
若插值函数类{()}x ϕ是代数多项式,则相应的插值问题为代数插值。
若{()}x ϕ是三角多项式,则相应的插值问题称为三角插值。
若{()}x ϕ是有理分式,则相应的插值问题称为有理插值。
§1 Lagrange 插值1.1 Lagrange 插值多项式设函数f 在1+n 个相异点01,,,nx x x 上的值n i x f f ii ,,1,0),( ==是已知的,在次数不超过n 的多项式集合n P 中,求()nL x 使得(),0,1,,n i iL x f n n == (2-2) 定理2.1 存在惟一的多项式nn P L ∈满足插值条件(2-2)。
数值分析第2章插值法插值法是数值分析中常用的一种数值逼近方法,用于在给定一组有限数据点的情况下,通过构造合适的数学模型来估计这些数据点之间的未知数值。
插值法的应用广泛,包括图像处理、计算机辅助设计、数值计算等领域。
常见的插值方法有拉格朗日插值、牛顿插值、埃尔米特插值以及样条插值等。
这些方法都是基于多项式的插值形式,通过构造一个多项式函数来逼近数据点,并据此对未知点进行估计。
拉格朗日插值是一种基于拉格朗日多项式的插值方法。
对于给定的n+1个不同的数据点 (x0, y0), (x1, y1), ..., (xn, yn),拉格朗日插值构造了一个n次多项式Ln(x),满足:Ln(x) = y0L0(x) + y1L1(x) + ... + ynLn(x)其中,L0(x),L1(x),...,Ln(x)是拉格朗日基函数,定义为:Lk(x) = ∏(i≠k)(x - xi)/(xk - xi) (k = 0, 1, ..., n)拉格朗日插值方法的优点是简单易用,但随着数据点数量的增加,拉格朗日多项式的计算复杂度也会大大增加。
牛顿插值是另一种基于多项式的插值方法,它使用差商的概念来构造插值多项式。
对于给定的n+1个不同的数据点 (x0, y0), (x1, y1), ..., (xn, yn),牛顿插值构造了一个n次多项式Nn(x),满足:Nn(x) = y0 + c0(x - x0) + c1(x - x0)(x - x1) + ... + cn(x -x0)(x - x1)...(x - xn-1)其中,c0 = Δy0/(x0 - x1),ci = Δyi/(xi - xi+1) (i = 0, 1, ..., n-1),Δyi = yi+1 - yi。
牛顿插值方法相比于拉格朗日插值方法,在计算多项式时具有更高的效率,尤其是在需要更新数据点时。
此外,牛顿插值方法还可以通过迭代的方式得到更高次数的插值多项式。