算法与设计实验报告
- 格式:docx
- 大小:98.48 KB
- 文档页数:10
算法实验报告算法实验报告引言:算法是计算机科学的核心内容之一,它是解决问题的方法和步骤的描述。
算法的设计和分析是计算机科学与工程中的重要研究方向之一。
本实验旨在通过对算法的实际应用和实验验证,深入理解算法的性能和效果。
实验一:排序算法的比较在本实验中,我们将比较三种常见的排序算法:冒泡排序、插入排序和快速排序。
我们将通过对不同规模的随机数组进行排序,并记录每种算法所需的时间和比较次数,以评估它们的性能。
实验结果显示,快速排序是最快的排序算法,其时间复杂度为O(nlogn),比较次数也相对较少。
插入排序的时间复杂度为O(n^2),比较次数较多,但对于小规模的数组排序效果较好。
而冒泡排序的时间复杂度也为O(n^2),但比较次数更多,效率相对较低。
实验二:图的最短路径算法在图的最短路径问题中,我们将比较Dijkstra算法和Floyd-Warshall算法的效率和准确性。
我们将使用一个带权有向图,并计算从一个顶点到其他所有顶点的最短路径。
实验结果表明,Dijkstra算法适用于单源最短路径问题,其时间复杂度为O(V^2),其中V为顶点数。
而Floyd-Warshall算法适用于多源最短路径问题,其时间复杂度为O(V^3)。
两种算法在准确性上没有明显差异,但在处理大规模图时,Floyd-Warshall算法的效率较低。
实验三:动态规划算法动态规划是一种通过将问题分解成子问题并记录子问题的解来解决复杂问题的方法。
在本实验中,我们将比较两种动态规划算法:0-1背包问题和最长公共子序列问题。
实验结果显示,0-1背包问题的动态规划算法可以有效地找到最优解,其时间复杂度为O(nW),其中n为物品个数,W为背包容量。
最长公共子序列问题的动态规划算法可以找到两个序列的最长公共子序列,其时间复杂度为O(mn),其中m和n分别为两个序列的长度。
结论:通过本次实验,我们对不同算法的性能和效果有了更深入的了解。
排序算法中,快速排序是最快且效率最高的;在图的最短路径问题中,Dijkstra算法和Floyd-Warshall算法分别适用于不同的场景;动态规划算法可以解决复杂的问题,并找到最优解。
《算法设计与分析》实验报告实验一递归与分治策略应用基础学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期第九周一、实验目的1、理解递归的概念和分治法的基本思想2、了解适用递归与分治策略的问题类型,并能设计相应的分治策略算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:以下题目要求应用递归与分治策略设计解决方案,本次实验成绩按百分制计,完成各小题的得分如下,每小题要求算法描述准确且程序运行正确。
1、求n个元素的全排。
(30分)2、解决一个2k*2k的特殊棋牌上的L型骨牌覆盖问题。
(30分)3、设有n=2k个运动员要进行网球循环赛。
设计一个满足要求的比赛日程表。
(40分)提交结果:算法设计分析思路、源代码及其分析说明和测试运行报告。
三、设计分析四、算法描述及程序五、测试与分析六、实验总结与体会#include "iostream"using namespace std;#define N 100void Perm(int* list, int k, int m){if (k == m){for (int i=0; i<m; i++)cout << list[i] << " ";cout << endl;return;}else{for (int i=m; i<k; i++){swap(list[m], list[i]);Perm(list, k, m+1);swap(list[m], list[i]);}}}void swap(int a,int b){int temp;temp=a;a=b;b=temp;}int main(){int i,n;int a[N];cout<<"请输入排列数据总个数:";cin>>n;cout<<"请输入数据:";for(i=0;i<n;i++){cin>>a[i];}cout<<"该数据的全排列:"<<endl;Perm(a,n,0);return 0;}《算法设计与分析》实验报告实验二递归与分治策略应用提高学号:**************姓名:*************班级:*************日期:2014-2015学年第1学期一、实验目的1、深入理解递归的概念和分治法的基本思想2、正确使用递归与分治策略设计相应的问题的算法3、掌握递归与分治算法时间空间复杂度分析,以及问题复杂性分析方法二、实验内容任务:从以下题目中任选一题完成,要求应用递归与分治策略设计解决方案。
实验报告(2013/2014学年第一学期)课程名称算法分析与设计实验名称密码算法实验时间2014 年 5 月23 日指导单位计算机学院软件工程系指导教师张怡婷学生姓名班级学号B******** 学院(系) 软件工程专业软件工程实验报告三、实验原理及内容(包括操作过程、结果分析等)实验步骤1、RSA 算法是由麻省理工学院的Ron Rivest,Adi Shamir 和Len Adleman 于1977 年研制并于1978 年首次发表的一种算法,是第一个能同时用于加密和数字签名的算法,且易于理解和操作,因此作为一种通用公开密钥加密方式而受到推崇。
RSA 是一种分组密码,其中明文和密文都是小于某个n 的从0 到n-1 的整数,则分组的二进制值长度必须小于或等于log2n。
若以M 表示明文分组,而C 表示密文分组,则加密和解密的过程如下:C=Me mod nM=Cd mod n=(Me)d mod n=Med mod n发送方和接受方都必须知道n 的值。
发送方知道 e 的值,而只有接受方知道d 的值。
因此这是一种公开密钥为{e,n},且私有密钥为{d,n}的公开密钥加密算法。
此时算法要能够满足公开密钥加密的要求,则必须满足以下条件:(1)有可能找到e、d、n 的值,使得对所有M<n 有Med=M mod n。
(2)对于所有M<n 的值,要计算Me和Cd 相对来说是简单的。
(3)在给定e 和n 时,判断出 d 是不可行的。
2、重点考虑第一个条件:由Euler 定理的一个推论:给定两个素数p和q以及两个整数n 和m,使得n=pq 而且0<m<n,并且对于任意整数k,下列关系成立:mkΦ(n)+1=mk(p-1)(q-1)+1≡m mod n其中Φ(n)是欧拉函数,也就是不超过n 且与n 互素的整数个数。
对于素数p 和q,有Φ(pq)=(p-1)(q-1)。
因此得到需要的关系:ed=kΦ(n)+1,等价于: ed≡1 mod Φ(n)d≡e-1 mod Φ(n)也就是说:d 和 e 是以Φ(n)为模的乘法逆元。
算法分析与设计实验报告--回溯法实验目的:通过本次实验,掌握回溯法的基本原理和应用,能够设计出回溯法算法解决实际问题。
实验内容:1.回溯法概述回溯法全称“试探回溯法”,又称“逐步退化法”。
它是一种通过不断试图寻找问题的解,直到找到解或者穷尽所有可能的解空间技术。
回溯法的基本思路是从问题的某一个初始状态开始,搜索可行解步骤,一旦发现不满足求解条件的解就回溯到上一步,重新进行搜索,直到找到解或者所有可能的解空间已经搜索完毕。
2.回溯法的基本应用回溯法可用于求解许多 NP 问题,如 0/1 背包问题、八皇后问题、旅行商问题等。
它通常分为两种类型:一种是通过枚举所有可能的解空间来寻找解;另一种则是通过剪枝操作将搜索空间减少到若干种情况,大大减少了搜索时间。
3.回溯法的解题思路(1)问题分析:首先需要对问题进行分析,确定可行解空间和搜索策略;(2)状态表示:将问题的每一种状况表示成一个状态;(3)搜索策略:确定解空间的搜索顺序;(4)搜索过程:通过逐步试探,不断扩大搜索范围,更新当前状态;(5)终止条件:在搜索过程中,如果找到了满足要求的解,或者所有的可行解空间都已搜索完毕,就结束搜索。
4.八皇后问题八皇后问题是指在一个 8x8 的棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。
通过回溯法可以求解出所有的可能解。
实验过程:回溯法的实现关键在于搜索空间的剪枝,避免搜索无用的解;因此,对于八皇后问题,需要建立一个二维数组来存放棋盘状态,以及一个一维数组来存放每行放置的皇后位置。
从第一行开始搜索,按照列的顺序依次判断当前的空位是否可以放置皇后,如果可以,则在相应的位置标记皇后,并递归到下一行;如果不能,则回溯到上一行,重新搜索。
当搜索到第八行时,获取一组解并返回。
代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn True实验结果:当 n=4 时,求得的所有可行解如下:```[[1, 3, 0, 2],[2, 0, 3, 1]]```本次实验通过实现回溯法求解八皇后问题,掌握了回溯法的基本原理和应用,并对回溯法的核心思想进行了深入理解。
第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。
为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。
二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。
1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。
(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。
- 对每种算法进行时间复杂度和空间复杂度的分析。
- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。
(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。
- 编写三种排序算法的代码。
- 分析代码的时间复杂度和空间复杂度。
- 编写测试程序,生成随机测试数据,测试三种算法的性能。
- 比较三种算法的运行时间和内存占用。
2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。
(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。
- 分析贪心算法的正确性,并证明其最优性。
(3)实验步骤:- 分析活动选择问题的贪心策略。
- 编写贪心算法的代码。
- 分析贪心算法的正确性,并证明其最优性。
- 编写测试程序,验证贪心算法的正确性。
3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。
(2)实验内容:- 实现一个动态规划算法问题,如背包问题。
- 分析动态规划算法的正确性,并证明其最优性。
(3)实验步骤:- 分析背包问题的动态规划策略。
- 编写动态规划算法的代码。
- 分析动态规划算法的正确性,并证明其最优性。
- 编写测试程序,验证动态规划算法的正确性。
三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。
算法分析与设计实验报告:合并排序与快速排序一、引言算法是计算机科学中非常重要的一部分,它涉及到解决问题的方法和步骤。
合并排序和快速排序是两种经典而常用的排序算法。
本文将对这两种排序算法进行分析和设计实验,通过对比它们的性能和效率,以期得出最优算法。
二、合并排序合并排序是一种分治算法,它将原始数组不断分解为更小的数组,直到最后细分为单个元素。
然后,再将这些单个元素两两合并,形成一个有序数组。
合并排序的核心操作是合并两个有序的数组。
1. 算法步骤(1)将原始数组分解为更小的子数组,直到每个子数组只有一个元素;(2)两两合并相邻的子数组,同时进行排序,生成新的有序数组;(3)重复步骤(2),直到生成最终的有序数组。
2. 算法性能合并排序的最优时间复杂度为O(nlogn),其中n为待排序数组的长度。
无论最好情况还是最坏情况,合并排序的复杂度都相同。
合并排序需要额外的存储空间来存储临时数组,所以空间复杂度为O(n)。
三、快速排序快速排序也是一种分治算法,它将原始数组根据一个主元(pivot)分成两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元。
然后,递归地对这两个子数组进行排序,最后得到有序数组。
快速排序的核心操作是划分。
1. 算法步骤(1)选择一个主元(pivot),可以是随机选择或者固定选择第一个元素;(2)将原始数组根据主元划分为两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元;(3)递归地对这两个子数组进行快速排序;(4)重复步骤(2)和(3),直到每个子数组只有一个元素,即得到最终的有序数组。
2. 算法性能快速排序的平均时间复杂度为O(nlogn),其中n为待排序数组的长度。
最坏情况下,当每次选择的主元都是最小或最大元素时,时间复杂度为O(n^2)。
快速排序是原地排序,不需要额外的存储空间,所以空间复杂度为O(1)。
四、实验设计为了验证合并排序和快速排序的性能和效率,我们设计以下实验:1. 实验目的:比较合并排序和快速排序的时间复杂度和空间复杂度。
算法设计与分析实验报告实验一全排列、快速排序【实验目的】1. 掌握全排列的递归算法。
2. 了解快速排序的分治算法思想。
【实验原理】一、全排列全排列的生成算法就是对于给定的字符集,用有效的方法将所有可能的全排列无重复无遗漏地枚举出来。
任何n个字符集的排列都可以与1~n的n个数字的排列一一对应,因此在此就以n 个数字的排列为例说明排列的生成法。
n个字符的全体排列之间存在一个确定的线性顺序关系。
所有的排列中除最后一个排列外,都有一个后继;除第一个排列外,都有一个前驱。
每个排列的后继都可以从它的前驱经过最少的变化而得到,全排列的生成算法就是从第一个排列开始逐个生成所有的排列的方法。
二、快速排序快速排序(Quicksort)是对冒泡排序的一种改进。
它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
【实验内容】1.全排列递归算法的实现。
2.快速排序分治算法的实现。
【实验结果】1. 全排列:2. 快速排序:实验二最长公共子序列、活动安排问题【实验目的】1. 了解动态规划算法设计思想,运用动态规划算法实现最长公共子序列问题。
2. 了解贪心算法思想,运用贪心算法设计思想实现活动安排问题。
【实验原理】一、动态规划法解最长公共子序列设序列X=和Y=的一个最长公共子序列Z=,则:i. 若xm=yn,则zk=xm=yn且Zk-1是Xm-1和Yn-1的最长公共子序列;ii. 若xm≠yn且zk≠xm ,则Z是Xm-1和Y的最长公共子序列;iii. 若xm≠yn且z k≠yn ,则Z是X和Yn-1的最长公共子序列。
其中Xm-1=,Yn-1=,Zk-1=。
最长公共子序列问题具有最优子结构性质。
由最长公共子序列问题的最优子结构性质可知,要找出X=和Y=的最长公共子序列,可按以下方式递归地进行:当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(=yn)即可得X和Y的一个最长公共子序列。
实验一找最大和最小元素与归并分类算法实现(用分治法)一、实验目的1.掌握能用分治法求解的问题应满足的条件;2.加深对分治法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。
二、实验内容1、找最大和最小元素输入n 个数,找出最大和最小数的问题。
2、归并分类将一个含有n个元素的集合,按非降的次序分类(排序)。
三、实验要求(1)用分治法求解问题(2)上机实现所设计的算法;四、实验过程设计(算法设计过程)1、找最大和最小元素采用分治法,将数组不断划分,进行递归。
递归结束的条件为划分到最后若为一个元素则max和min都是这个元素,若为两个取大值赋给max,小值给min。
否则就继续进行划分,找到两个子问题的最大和最小值后,比较这两个最大值和最小值找到解。
2、归并分类使用分治的策略来将一个待排序的数组分成两个子数组,然后递归地对子数组进行排序,最后将排序好的子数组合并成一个有序的数组。
在合并过程中,比较两个子数组的首个元素,将较小的元素放入辅助数组,并指针向后移动,直到将所有元素都合并到辅助数组中。
五、源代码1、找最大和最小元素#include<iostream>using namespace std;void MAXMIN(int num[], int left, int right, int& fmax, int& fmin); int main() {int n;int left=0, right;int fmax, fmin;int num[100];cout<<"请输入数字个数:";cin >> n;right = n-1;cout << "输入数字:";for (int i = 0; i < n; i++) {cin >> num[i];}MAXMIN(num, left, right, fmax, fmin);cout << "最大值为:";cout << fmax << endl;cout << "最小值为:";cout << fmin << endl;return 0;}void MAXMIN(int num[], int left, int right, int& fmax, int& fmin) { int mid;int lmax, lmin;int rmax, rmin;if (left == right) {fmax = num[left];fmin = num[left];}else if (right - left == 1) {if (num[right] > num[left]) {fmax = num[right];fmin = num[left];}else {fmax = num[left];fmin = num[right];}}else {mid = left + (right - left) / 2;MAXMIN(num, left, mid, lmax, lmin);MAXMIN(num, mid+1, right, rmax, rmin);fmax = max(lmax, rmax);fmin = min(lmin, rmin);}}2、归并分类#include<iostream>using namespace std;int num[100];int n;void merge(int left, int mid, int right) { int a[100];int i, j,k,m;i = left;j = mid+1;k = left;while (i <= mid && j <= right) {if (num[i] < num[j]) {a[k] = num[i++];}else {a[k] = num[j++];}k++;}if (i <= mid) {for (m = i; m <= mid; m++) {a[k++] = num[i++];}}else {for (m = j; m <= right; m++) {a[k++] = num[j++];}}for (i = left; i <= right; i++) { num[i] = a[i];}}void mergesort(int left, int right) { int mid;if (left < right) {mid = left + (right - left) / 2;mergesort(left, mid);mergesort(mid + 1, right);merge(left, mid, right);}}int main() {int left=0,right;int i;cout << "请输入数字个数:";cin >> n;right = n - 1;cout << "输入数字:";for (i = 0; i < n; i++) {cin >> num[i];}mergesort(left,right);for (i = 0; i < n; i++) {cout<< num[i];}return 0;}六、运行结果和算法复杂度分析1、找最大和最小元素图1-1 找最大和最小元素结果算法复杂度为O(logn)2、归并分类图1-2 归并分类结果算法复杂度为O(nlogn)实验二背包问题和最小生成树算法实现(用贪心法)一、实验目的1.掌握能用贪心法求解的问题应满足的条件;2.加深对贪心法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。
第1篇一、实验目的通过本次实验,掌握常见算法的设计原理、实现方法以及性能分析。
通过实际编程,加深对算法的理解,提高编程能力,并学会运用算法解决实际问题。
二、实验内容本次实验选择了以下常见算法进行设计和实现:1. 排序算法:冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序。
2. 查找算法:顺序查找、二分查找。
3. 图算法:深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)。
4. 动态规划算法:0-1背包问题。
三、实验原理1. 排序算法:排序算法的主要目的是将一组数据按照一定的顺序排列。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序等。
2. 查找算法:查找算法用于在数据集中查找特定的元素。
常见的查找算法包括顺序查找和二分查找。
3. 图算法:图算法用于处理图结构的数据。
常见的图算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)等。
4. 动态规划算法:动态规划算法是一种将复杂问题分解为子问题,通过求解子问题来求解原问题的算法。
常见的动态规划算法包括0-1背包问题。
四、实验过程1. 排序算法(1)冒泡排序:通过比较相邻元素,如果顺序错误则交换,重复此过程,直到没有需要交换的元素。
(2)选择排序:每次从剩余元素中选取最小(或最大)的元素,放到已排序序列的末尾。
(3)插入排序:将未排序的数据插入到已排序序列中适当的位置。
(4)快速排序:选择一个枢纽元素,将序列分为两部分,使左侧不大于枢纽,右侧不小于枢纽,然后递归地对两部分进行快速排序。
(5)归并排序:将序列分为两半,分别对两半进行归并排序,然后将排序好的两半合并。
(6)堆排序:将序列构建成最大堆,然后重复取出堆顶元素,并调整剩余元素,使剩余元素仍满足最大堆的性质。
2. 查找算法(1)顺序查找:从序列的第一个元素开始,依次比较,直到找到目标元素或遍历完整个序列。
动态规划算法实现多段图的最短路径问题算法设计与分析实验报告算法设计与分析实验报告实验名称 动态规划算法实现多段图的最短路径问题 评分 实验日期 年 月 日 指导教师 姓名 专业班级 学号一.实验要求1. 理解最优子结构的问题。
有一类问题的活动过程可以分成若干个阶段,而且在任一阶段后的行为依赖于该阶段的状态,与该阶段之前的过程如何达到这种状态的方式无关。
这类问题的解决是多阶段的决策过程。
在50年代,贝尔曼(Richard Bellman )等人提出了解决这类问题的“最优化原理”,从而创建了最优化问题的一种新的算法设计方法-动态规划。
对于一个多阶段过程问题,是否可以分段实现最优决策,依赖于该问题是否有最优子结构性质,能否采用动态规划的方法,还要看该问题的子问题是否具有重叠性质。
最优子结构性质:原问题的最优解包含了其子问题的最优解。
子问题重叠性质:每次产生的子问题并不总是新问题,有些子问题被反复计算多次。
问题的最优子结构性质和子问题重叠性质是采用动态规划算法的两个基本要素。
2.理解分段决策Bellman 方程。
每一点最优都是上一点最优加上这段长度。
即当前最优只与上一步有关。
U s 初始值,u j 第j 段的最优值。
⎪⎩⎪⎨⎧+==≠}.{min ,0ijiji js w u u u3.一般方法1)找出最优解的性质,并刻画其结构特征;2)递归地定义最优值(写出动态规划方程);3)以自底向上的方式计算出最优值;4)根据计算最优值时得到的信息,构造一个最优解。
步骤1-3是动态规划算法的基本步骤。
在只需要求出最优值的情形,步骤4可以省略,步骤3中记录的信息也较少;若需要求出问题的一个最优解,则必须执行步骤4,步骤3中记录的信息必须足够多以便构造最优解。
二.实验内容1.编程实现多段图的最短路径问题的动态规划算法。
2.图的数据结构采用邻接表。
3.要求用文件装入5个多段图数据,编写从文件到邻接表的函数。
4.验证算法的时间复杂性。
第1篇一、实验目的1. 理解快速排序算法的基本原理和实现方法。
2. 掌握快速排序算法的时间复杂度和空间复杂度分析。
3. 通过实验验证快速排序算法的效率。
4. 提高编程能力和算法设计能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验原理快速排序算法是一种分而治之的排序算法,其基本思想是:选取一个基准元素,将待排序序列分为两个子序列,其中一个子序列的所有元素均小于基准元素,另一个子序列的所有元素均大于基准元素,然后递归地对这两个子序列进行快速排序。
快速排序算法的时间复杂度主要取决于基准元素的选取和划分过程。
在平均情况下,快速排序的时间复杂度为O(nlogn),但在最坏情况下,时间复杂度会退化到O(n^2)。
四、实验内容1. 快速排序算法的代码实现2. 快速排序算法的时间复杂度分析3. 快速排序算法的效率验证五、实验步骤1. 设计快速排序算法的C++代码实现,包括以下功能:- 选取基准元素- 划分序列- 递归排序2. 编写主函数,用于生成随机数组和测试快速排序算法。
3. 分析快速排序算法的时间复杂度。
4. 对不同规模的数据集进行测试,验证快速排序算法的效率。
六、实验结果与分析1. 快速排序算法的代码实现```cppinclude <iostream>include <vector>include <cstdlib>include <ctime>using namespace std;// 生成随机数组void generateRandomArray(vector<int>& arr, int n) {srand((unsigned)time(0));for (int i = 0; i < n; ++i) {arr.push_back(rand() % 1000);}}// 快速排序void quickSort(vector<int>& arr, int left, int right) { if (left >= right) {return;}int i = left;int j = right;int pivot = arr[(left + right) / 2]; // 选取中间元素作为基准 while (i <= j) {while (arr[i] < pivot) {i++;}while (arr[j] > pivot) {j--;}if (i <= j) {swap(arr[i], arr[j]);i++;j--;}}quickSort(arr, left, j);quickSort(arr, i, right);}int main() {int n = 10000; // 测试数据规模vector<int> arr;generateRandomArray(arr, n);clock_t start = clock();quickSort(arr, 0, n - 1);clock_t end = clock();cout << "排序用时:" << double(end - start) / CLOCKS_PER_SEC << "秒" << endl;return 0;}```2. 快速排序算法的时间复杂度分析根据实验结果,快速排序算法在平均情况下的时间复杂度为O(nlogn),在最坏情况下的时间复杂度为O(n^2)。
算法设计与分析报告学生姓名学号专业班级指导教师完成时间目录一、课程内容 (3)二、算法分析 (3)1、分治法 (3)(1)分治法核心思想 (3)(2)MaxMin算法分析 (3)2、动态规划 (4)(1)动态规划核心思想 (4)(2)矩阵连乘算法分析 (5)3、贪心法 (5)(1)贪心法核心思想 (5)(2)背包问题算法分析 (6)(3)装载问题算法分析 (7)4、回溯法 (7)(1)回溯法核心思想 (7)(2)N皇后问题非递归算法分析 (7)(3)N皇后问题递归算法分析 (8)三、例子说明 (9)1、MaxMin问题 (9)2、矩阵连乘 (10)3、背包问题 (10)4、最优装载 (10)5、N皇后问题(非递归) (11)6、N皇后问题(递归) (11)四、心得体会 (12)五、算法对应的例子代码 (12)1、求最大值最小值 (12)2、矩阵连乘问题 (13)3、背包问题 (15)4、装载问题 (17)5、N皇后问题(非递归) (19)6、N皇后问题(递归) (20)一、课程内容1、分治法,求最大值最小值,maxmin算法;2、动态规划,矩阵连乘,求最少连乘次数;3、贪心法,1)背包问题,2)装载问题;4、回溯法,N皇后问题的循环结构算法和递归结构算法。
二、算法分析1、分治法(1)分治法核心思想当要求解一个输入规模为n,且n的取值相当大的问题时,直接求解往往是非常困难的。
如果问题可以将n个输入分成k个不同子集合,得到k个不同的可独立求解的子问题,其中1<k≤n, 而且子问题与原问题性质相同,原问题的解可由这些子问题的解合并得出。
那末,这类问题可以用分治法求解。
分治法的核心技术1)子问题的划分技术.2)递归技术。
反复使用分治策略将这些子问题分成更小的同类型子问题,直至产生出不用进一步细分就可求解的子问题。
3)合并技术.(2)MaxMin算法分析问题:在含有n个不同元素的集合中同时找出它的最大和最小元素。
实验一分治与递归(4学时)一、实验目的与要求1、熟悉C/C++语言的集成开发环境;2、通过本实验加深对递归过程的理解二、实验内容掌握递归算法的概念和基本思想,分析并掌握“整数划分”问题的递归算法。
三、实验题任意输入一个整数,输出结果能够用递归方法实现整数的划分。
四、程序代码五、实验结果首先按照提示输入数字:按回车键,得到此数划分的个数:此时您可以接着计算另一个数的划分个数:若要退出,请输入一个小于等于零的数:六、结果分析及程序功能经过和其它同学的实验数据对比,初步认定此程序基本正确,然而不足之处是只能得到划分的个数,而不能列出每个划分的详细情况。
一、实验目的与要求1、掌握棋盘覆盖问题的算法;2、初步掌握分治算法二、实验题盘覆盖问题:在一个2k×2k个方格组成的棋盘中,恰有一个方格与其它方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘。
在棋盘覆盖问题中,要用图示的4种不同形态的L型骨牌覆盖给定的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖。
三、程序代码四、实验结果按照提示输入特殊方格的行号和列号(起始行列号为0):按回车键,得到一个矩阵,数字相同区域为一个L型骨牌覆盖:五、结果分析及程序功能得到的16*16棋盘覆盖结果正确,此程序的不足之处:只能设定特殊方格的行列号,而不能设定棋盘的大小。
实验二动态规划算法(4学时)一、实验目的与要求1、熟悉最长公共子序列问题的算法;2、初步掌握动态规划算法;二、实验题若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。
例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。
给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。
算法设计与分析实验报告实验名称贪心算法实现背包问题评分实验日期年月日指导教师姓名专业班级学号一.实验要求1. 优化问题有n个输入,而它的解就由这n个输入满足某些事先给定的约束条件的某个子集组成,而把满足约束条件的子集称为该问题的可行解。
可行解一般来说是不唯一的。
那些使目标函数取极值(极大或极小)的可行解,称为最优解。
2.贪心法求优化问题算法思想:在贪心算法中采用逐步构造最优解的方法。
在每个阶段,都作出一个看上去最优的决策(在一定的标准下)。
决策一旦作出,就不可再更改。
作出贪心决策的依据称为贪心准则(greedy criterion)。
3.一般方法1)根据题意,选取一种量度标准。
2)按这种量度标准对这n个输入排序3)依次选择输入量加入部分解中。
如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。
procedure GREEDY(A,n) /*贪心法一般控制流程*///A(1:n)包含n个输入//solutions←φ //将解向量solution初始化为空/for i←1 to n dox←SELECT(A)if FEASIBLE(solution,x)then solutions←UNION(solution,x)endifrepeatreturn(solution)end GREEDY4. 实现典型的贪心算法的编程与上机实验,验证算法的时间复杂性函数。
二.实验内容1. 编程实现背包问题贪心算法。
通过具体算法理解如何通过局部最优实现全局最优,并验证算法的时间复杂性。
2.输入5个的图的邻接矩阵,程序加入统计prim算法访问图的节点数和边数的语句。
3.将统计数与复杂性函数所计算比较次数比较,用表格列出比较结果,给出文字分析。
三.程序算法1.背包问题的贪心算法procedure KNAPSACK(P,W,M,X,n)//P(1:n)和W(1;n)分别含有按P(i)/W(i)≥P(i+1)/W(i+1)排序的n件物品的效益值和重量。
第1篇一、实验目的本次实验旨在深入理解并掌握裁剪算法的基本原理,通过编程实现Cohen-Sutherland算法和Liang-Barsky算法,对图形进行窗口裁剪,从而提高图形处理效率,优化显示效果。
二、实验环境1. 开发环境:Visual Studio 20192. 编程语言:C++3. 图形库:OpenGL三、实验内容1. 理解裁剪算法的基本原理;2. 实现Cohen-Sutherland算法;3. 实现Liang-Barsky算法;4. 对图形进行窗口裁剪,并展示裁剪效果。
四、实验过程1. 理解裁剪算法的基本原理裁剪算法是计算机图形学中的一个重要技术,用于将一个图形或图像中不需要的部分去除,只保留需要的部分。
常见的裁剪算法有Cohen-Sutherland算法、Liang-Barsky算法等。
Cohen-Sutherland算法是一种编码线段裁剪算法,通过将线段端点相对于窗口的位置进行编码,判断线段是否与窗口相交,从而实现裁剪。
Liang-Barsky算法是一种参数化线段裁剪算法,通过计算线段参数,判断线段是否与窗口相交,从而实现裁剪。
2. 实现Cohen-Sutherland算法(1)定义窗口边界首先,定义窗口边界,包括左边界、右边界、上边界和下边界。
(2)编码线段端点将线段端点相对于窗口的位置进行编码,编码规则如下:- 如果端点在窗口内,则编码为0;- 如果端点在窗口左侧,则编码为1;- 如果端点在窗口右侧,则编码为2;- 如果端点在窗口上方,则编码为4;- 如果端点在窗口下方,则编码为8。
(3)判断线段是否与窗口相交将线段两端点的编码进行异或运算,如果结果为0,则线段与窗口相交;否则,线段与窗口不相交。
(4)裁剪线段如果线段与窗口相交,则根据端点编码,将线段分为两部分,分别进行裁剪。
3. 实现Liang-Barsky算法(1)定义窗口边界首先,定义窗口边界,包括左边界、右边界、上边界和下边界。
算法设计及实验报告实验报告1 递归算法一、实验目的掌握递归算法的基本思想;掌握该算法的时间复杂度分析;二、实验环境电脑一台,Turbo C 运行环境三、实验内容、步骤和结果分析以下是四个递归算法的应用例子:用C语言实现1.阶乘:main(){int i,k;scanf("%d\n",&i);k= factorial(i);printf("%d\n",k);}int factorial(int n){ int s;if(n==0) s=1;else s=n*factorial(n-1); //执行n-1次return s;}阶乘的递归式很快,是个线性时间,因此在最坏情况下时间复杂度为O(n)。
2.Fibonacci 数列:main(){int i,m;scanf("%d\n",&i);m=fb(i);printf("%d",m);}int fb(int n){int s;if(n<=1)return 1;else s=fb(n-1)+fb(n-2);return s;}Fibonacci数列则是T(n)=T(n-1)+T(n-2)+O(1)的操作,也就是T(n)=2T(n)+O(1),由递归方程式可以知道他的时间复杂度T(n)是O(2n),该数列的规律就是不停的赋值,使用的内存空间也随着函数调用栈的增长而增长。
3.二分查找(分治法)#include<stdio.h>#define const 8main(){int a[]={0,1,2,3,4,5,6,7,8,9};int n=sizeof(a);int s;s=BinSearch(a,const,n);printf("suo cha de shu shi di %d ge",s);}BinSearch(int a[],int x,int n){int left,right,middle=0;left=0;right=n-1;whlie(left<=right){middle=(left+right)/2;if(x==a[middle]) return middle;if(x>a[middle]) left=middle+1;else right=middle-1;}return -1;}二分搜索算法利用了元素间的次序关系,采用分治策略,由上程序可知,每执行一次while循环,数组大小减少一半,因此在最坏情况下,while循环被执行了O(logn)次。
本科实验报告课程名称:算法设计与分析实验项目:递归与分治算法实验地点:计算机系实验楼110专业班级:物联网1601 学号:2016002105 学生姓名:俞梦真指导教师:郝晓丽2018年05月04 日实验一递归与分治算法1.1 实验目的与要求1.进一步熟悉C/C++语言的集成开发环境;2.通过本实验加深对递归与分治策略的理解和运用。
1.2 实验课时2学时1.3 实验原理分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。
需要注意的是,分治法使用递归的思想。
划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。
最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。
1.4 实验题目1.上机题目:格雷码构造问题Gray码是一个长度为2n的序列。
序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。
试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。
对于给定的正整数n,格雷码为满足如下条件的一个编码序列。
(1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。
(2)序列中无相同的编码。
(3)序列中位置相邻的两个编码恰有一位不同。
2.设计思想:根据格雷码的性质,找到他的规律,可发现,1位是0 1。
两位是00 01 11 10。
三位是000 001 011010 110 111 101 100。
n位是前n-1位的2倍个。
N-1个位前面加0,N-2为倒转再前面再加1。
3.代码设计:}}}int main(){int n;while(cin>>n){get_grad(n);for(int i=0;i<My_grad.size();i++)cout<<My_grad[i]<<endl;My_grad.clear();}return 0;}运行结果:1.5 思考题(1)递归的关键问题在哪里?答:1.递归式,就是如何将原问题划分成子问题。
《算法设计与分析》课程实验报告实验序号:04实验项目名称:实验4 分治法(三)一、实验题目1.邮局选址问题问题描述:在一个按照东西和南北方向划分成规整街区的城市里,n个居民点散乱地分布在不同的街区中。
用x 坐标表示东西向,用y坐标表示南北向。
各居民点的位置可以由坐标(x,y)表示。
街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。
居民们希望在城市中选择建立邮局的最佳位置,使n个居民点到邮局的距离总和最小。
编程任务:给定n 个居民点的位置,编程计算邮局的最佳位置。
2.最大子数组问题问题描述:对给定数组A,寻找A的和最大的非空连续子数组。
3.寻找近似中值问题描述:设A是n个数的序列,如果A中的元素x满足以下条件:小于x的数的个数≥n/4,且大于x的数的个数≥n/4 ,则称x为A的近似中值。
设计算法求出A的一个近似中值。
如果A中不存在近似中值,输出false,否则输出找到的一个近似中值4.循环赛日程表问题描述:设有n=2^k个运动员要进行网球循环赛。
现要设计一个满足以下要求的比赛日程表:每个选手必须与其他n-1个选手各赛一次,每个选手一天只能赛一次,循环赛一共进行n-1天。
二、实验目的(1)进一步理解分治法解决问题的思想及步骤(2)体会分治法解决问题时递归及迭代两种不同程序实现的应用情况之差异(3)熟练掌握分治法的自底向上填表实现(4)将分治法灵活于具体实际问题的解决过程中,重点体会大问题如何分解为子问题及每一个大问题涉及哪些子问题及子问题的表示。
三、实验要求(1)写清算法的设计思想。
(2)用递归或者迭代方法实现你的算法,并分析两种实现的优缺点。
(3)根据你的数据结构设计测试数据,并记录实验结果。
(4)请给出你所设计算法的时间复杂度的分析,如果是递归算法,请写清楚算法执行时间的递推式。
四、实验过程(算法设计思想、源码)1.邮局选址问题(1)算法设计思想根据题目要求,街区中任意2 点(x1,y1)和(x2,y2)之间的距离可以用数值∣x1−x2∣+∣y1−y2∣度量。
算法与分析实验报告软件工程专业
安徽工业大学
指导老师:许精明
实验内容
1:杨辉三角
2:背包问题
3:汉诺塔问题
一:实验目的
1:掌握动态规划算法的基本思想,学会用其解决实际问题。
2:通过几个基本的实验,提高算法分析与设计能力,提高动手操作能力和培养良好的编程习惯。
二:实验内容
1:杨辉三角
2:背包问题
3:汉诺塔问题
实验一:杨辉三角
问题分析:
①每行数字左右对称,由1开始逐渐变大,然后变小,回到1。
②第n行数之和为2^n。
③下一行每个数字等于上一行的左右两个数字之和。
算法设计及相关源代码:
public void yanghui(int n) {
int[] a = new int[n];
if(n==1){
System.out.println(1);
}else if(n==2) {
System.out.print(1 + " " +1);
}else{
a[1]=1;
System.out.println(a[1]);
a[2]=1;
System.out.println(a[1]+" "+a[2]);
for(int i=3;i<=n;i++){
a[1]=a[i]=1;
for(int j=i-1;j>1;j--){
a[j]=a[j]+a[j-1];
}
for(int j=1;j<=i;j++){
System.out.print(a[j]+" ");
}
System.out.println();
}
}
}
实验结果:n=10
实验二:0-1背包问题
问题分析::令V(i,j)表示在前i(1<=i<=n)个物品中能够装入容量为就
j(1<=j<=C)的背包中的物品的最大价值,则可以得到如下的动态规划函数:
(1) V(i,0)=V(0,j)=0
(2) V(i,j)=V(i-1,j) j<w i
V(i,j)=max{V(i-1,j) ,V(i-1,j-w i)+v i) } j>w i
(1)式表明:如果第i个物品的重量大于背包的容量,则装人前i个物品得到的
最大价值和装入前i-1个物品得到的最大价是相同的,即物品i不能装入背包;
第(2)个式子表明:如果第i个物品的重量小于背包的容量,则会有一下两种情况:(a)如果把第i个物品装入背包,则背包物品的价值等于第i-1个物品装入容量位j-w i的背包中的价值加上第i个物品的价值v i;(b)如果第i个物品没有装入背包,则背包中物品价值就等于把前i-1个物品装入容量为j的背包中所取得的价值。
显然,取二者中价值最大的作为把前i个物品装入容量为j的背包中的最优解。
时间复杂度
时间复杂度为o(V* T) ,空间复杂度为o(V * T) 。
算法设计及相关代码:
public class beibaoProblem {
static int[] a = new int[5]; // 背包重量
static int[] b = new int[5]; // 结果数组
static int flag = 0; // 下一个候选项
static int bound = 20; // 总重量
static int totle = 0; // 每次选择后的总重量
/**
* @param i 元素坐标
* @param leftbound 目标重量
* @param t
*/
public static void inserttry(int i, int leftbound, int t) {
if (i < 5 && leftbound <= totle) {
if (a[i] < leftbound) { // 当前的所选的数小于已选数的总和,将
当前所选的数放入结果数组,从目标重量减掉当前所选数,递归,选择后的重量数减掉当前所选数
b[t++] = a[i];
totle = totle - a[i];
leftbound = leftbound - a[i];
i++;
inserttry(i, leftbound, t);
} else if (a[i] > leftbound) { // 当前的所选的数大于已选数的总和,不符合条件,选择后的重量数减掉当前所选数,递归
totle = totle - a[i];
i++;
inserttry(i, leftbound, t);
} else { // 当前所选的数等于已选数的总和
b[t] = a[i];
return;
}
} else { // 数组中没有符合当前条件的元素,将前一个数值移除,递归
leftbound = leftbound + b[--t];
for (int f = 0; f < 5; f++) {
if (a[f] == b[t]) {
flag = ++f;
break;
}
}
b[t] = 0;
totle = 0;
for (int m = flag; m < 5; m++) {
totle += a[m];
}
inserttry(flag, leftbound, t);
}
return;
}
public static void main(String[] args) {
a[0] = 11;
a[1] = 8;
a[2] = 6;
a[3] = 7;
a[4] = 5;
for (int i = 0; i < 5; i++) {
b[i] = 0;
}
for (int i = 0; i < 5; i++) {
totle += a[i];
}
inserttry(0, 20, 0);
for (int i = 0; i < 5; i++) {
System.out.println(b[i]);
}
}
}
实验结果:
实验三:汉诺塔问题
玩法规制
1.有三根杆子A,B,C。
A杆上有若干碟子
2.每次移动一块碟子,小的只能叠在大的上面
3.把所有碟子从A杆全部移到C杆上
问题分析:
如果柱子标为ABC,要由A搬至C,在只有一个盘子时,就将它直接搬至C,当有两个盘子,就将B当作辅助柱。
如果盘数超过2个,将最后一个盘子遮起来,就很简单了,每次处理两个盘子,也就是:A->B、A->C、B->C 这三个步骤,而被遮住的部份,
其实就是进入程序的递回处理
递推方法:将n-1个圆盘按要求放在C塔,第n个圆盘放在B塔,现在A塔空。
n号圆盘是最大的圆盘,按问题要求我们终于把n号最大的圆盘放在了B塔,这下借助已空的A塔联合BC塔推回来,就可以把n个圆盘按要求放在B塔。
算法设计及相关代码:
public class HanoiTest {
static int step = 0;
/**
* @param args
*/
public static void main(String[] args) {
hanioSort(3, "A", "B", "C");
}
/**
* 递归函数,用来遍历hanoi步骤
*/
public static void hanioSort(int num ,String a ,String
b ,String c){
if(num == 1){
move(num,a,c);
} else{
hanioSort(num-1, a, c, b);
move(num,a,c);
hanioSort(num-1, b, a, c);
}
}
public static void move(int num ,String a,String b){ step ++ ;
System.out.println("第"+step+"步,盘子"+num+"从"+a+"塔移到"+b+"塔/n");
}
}
时间复杂度
假设移动n个圆盘需要f(n)次移动
首先考虑一个圆盘,只需一步就可以了f(1)=1……①
现在考虑n个圆盘,假设开始圆盘在A柱,可以先把A柱的上面n-1个圆盘移到B,再将A剩下的一个移到C,最后将B的n-1个移到C。
总共需要f(n)=2f(n-1)+1……②
根据①②两式,可求出f(n)=2^n-1 所以O(n)=2^n
实验结果:
三:实验总结
通过这次实验,掌握动态规划算法的基本思想,学会用其解决实际问题,并且提高我算法分析与设计能力,提高动手操作能力和
培养良好的编程习惯。
细想,一个高效的程序不仅需要编程的技巧,更需要合理的数据组织和清晰的高效的算法,通过设计出高效的算法,提高程序的效率。
该课程的学习让我掌握了许多算法设计与分
析的方法。
拥有了一套属于自己的算法分析思想。