行程问题解题技巧
- 格式:doc
- 大小:175.50 KB
- 文档页数:26
行程问题的解题技巧和方法
行程问题指的是计算一个人或物体在一段时间内的移动距离问题。
这类问题中,我们通常会遇到很多不同的变量,包括起点和终点位置、速度、时间等等。
因此,解决这类问题需要一些特定的技巧和方法。
以下是一些解决行程问题的技巧和方法:
1. 确定问题所需的变量
在解决行程问题之前,我们需要先确定问题所涉及的所有变量。
例如,起点和终点位置、速度、时间等。
通过确定这些变量,我们可以更好地规划解题过程,避免出现遗漏或错误。
2. 使用单位转换
在行程问题中,我们通常需要涉及到不同的单位,例如英里、千米、小时、分钟等等。
为了更好地计算问题,我们需要将所有的单位转换成相同的单位。
例如,将小时转换成分钟、将英里转换成千米等等。
3. 利用公式计算
在行程问题中,有很多公式可以用来计算距离、速度和时间等。
例如,速度等于距离除以时间(v=d/t),距离等于速度乘以时间(d=v*t)等等。
通过利用这些公式,我们可以更快速地计算出所需的答案。
4. 注意时间和速度的关系
在行程问题中,时间和速度是密切相关的。
当速度增加时,时间会减少,距离也会相应地减少。
因此,在解决行程问题时,我们需要注意时间和速度的关系,并确保计算过程中这两个变量的一致性。
总之,解决行程问题需要一些具体的技巧和方法,包括确定变量、使用单位转换、利用公式计算、注意时间和速度的关系等等。
只有通过不断练习和实践,我们才能更好地掌握这些技巧和方法,并在实际问题中得到更好的应用。
小学奥数行程问题类型归纳及解题技巧总结在小学生数学竞赛中,行程问题是一个常见的考点。
而在行程问题中,又分为多种类型,比如速度问题、时间问题、距离问题等等。
本文将对小学奥数行程问题的类型进行归纳总结,并提供解题技巧供同学们参考。
一、速度问题速度问题是行程问题中最经典的类型之一。
通常情况下,速度问题会给出一个人或物体的速度以及时间,然后要求计算距离。
解决速度问题的关键在于掌握单位之间的转换关系。
常见的单位包括:米/秒、千米/时、厘米/分等等。
在解题过程中,我们可以利用等速运动的基本公式:速度=距离/时间。
通过根据已知条件列出方程,求解未知量即可得到结果。
例如,某辆汽车以60千米/时的速度行驶了3小时,求汽车行驶的距离。
解法:根据已知条件,我们可以列出方程:60 = 距离/3。
通过解方程可得距离=60×3=180千米。
因此,汽车行驶的距离为180千米。
二、时间问题时间问题是行程问题中常见的类型之一。
解决时间问题的关键在于掌握时间的单位换算。
在解题过程中,我们需要灵活运用时间=距离/速度的公式,根据已知条件列方程,最后求解未知量。
例如,小明骑自行车以20千米/时的速度骑行了2小时,求小明骑行的距离。
解法:根据已知条件,我们可以列出方程:2 = 距离/20。
通过解方程可得距离=2×20=40千米。
因此,小明骑行的距离为40千米。
三、距离问题距离问题是行程问题中常见的类型之一。
在距离问题中,我们通常需要根据已知的速度和时间,求解行程的距离。
同样,解决距离问题也需要掌握单位的换算关系。
例如,一辆火车以每小时50千米的速度行驶了4小时,求火车行驶的距离。
解法:根据已知条件,我们可以列出方程:50 = 距离/4。
通过解方程可得距离=50×4=200千米。
因此,火车行驶的距离为200千米。
四、奥数行程问题解题技巧总结1. 学会单位之间的转换:在解决行程问题时,单位之间的转换是非常重要的。
六年级奥数行程问题解题技巧一、行程问题解题技巧之相遇问题。
1. 题目。
甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是每小时15千米,乙的速度是每小时10千米,经过3小时两人相遇。
求A、B两地的距离。
解析。
根据相遇问题的公式:路程 = 速度和×相遇时间。
甲、乙的速度和为15 + 10=25(千米/小时),相遇时间是3小时,所以A、B两地的距离为25×3 = 75千米。
2. 题目。
A、B两地相距200千米,甲、乙两车分别从A、B两地同时相向开出,甲车的速度为每小时30千米,乙车的速度为每小时20千米。
问几小时后两车相遇?解析。
速度和为30+20 = 50千米/小时,根据相遇时间 = 路程÷速度和,可得相遇时间为200÷50=4小时。
3. 题目。
甲、乙两人在周长为400米的环形跑道上跑步,甲的速度是每秒6米,乙的速度是每秒4米。
两人同时同地反向出发,经过多少秒两人第一次相遇?解析。
在环形跑道上反向出发,相遇时两人跑的路程和就是跑道的周长。
速度和为6 + 4=10米/秒,根据时间 = 路程÷速度和,可得相遇时间为400÷10 = 40秒。
二、行程问题解题技巧之追及问题。
4. 题目。
甲、乙两人同向而行,甲的速度是每小时8千米,乙的速度是每小时6千米,乙先走2小时后,甲才出发,问甲几小时后能追上乙?解析。
乙先走2小时,则先走的路程为6×2 = 12千米。
甲、乙的速度差为8 6 = 2千米/小时。
根据追及时间 = 路程差÷速度差,可得追及时间为12÷2 = 6小时。
5. 题目。
一辆汽车以每小时60千米的速度从A地开往B地,3小时后一辆摩托车以每小时90千米的速度也从A地开往B地,问摩托车出发后几小时能追上汽车?解析。
汽车先出发3小时,行驶的路程为60×3 = 180千米。
摩托车与汽车的速度差为90 60 = 30千米/小时。
初一数学行程问题解题技巧行程问题是初一数学中比较常见的一种题型,也是考试中常出现的题目之一。
这类问题很容易看懂,但是在解题过程中常常会遇到各种困难。
下面介绍一些解决行程问题的技巧,希望对初一学生有所帮助。
1、了解“路程=速度×时间”公式在行程问题中,我们经常需要用到“路程=速度×时间”这个公式。
这个公式的意思是:行程等于速度乘以时间。
其中,路程是指行程的长度,速度是指行程的速度,时间是指行程的用时。
当我们知道其中两个量时,就可以通过这个公式推算出另一个量。
2、注意单位的换算在解题过程中,我们还需要注意单位的换算。
例如,行程单位有千米、米、厘米等,时间单位有小时、分钟、秒等,速度单位有千米每小时、米每秒等。
如果不进行单位换算,那么最终得到的结果就有可能是错误的。
因此,在解决行程问题时,一定要注意单位的统一和换算。
3、绘制图形、列出表格对于一些比较复杂的行程问题,我们可以通过绘制图形或列出表格的方式来进行解题。
例如,对于多人多车行程问题,我们可以通过绘制图形或列出表格的方式,将每个人和每辆车的行程情况清晰地表示出来,便于我们进行分析和计算。
4、分步解题对于一些较难的行程问题,我们可以采用分步解题的方法。
这种方法的核心是将一个复杂的问题分解成若干个简单的小问题,逐步进行解决。
例如,对于一个车队行驶的问题,我们可以先计算每辆车的行驶距离,再计算整个车队的行驶时间等。
5、注意逻辑推理在解题过程中,我们还需要注意逻辑推理。
有时候,我们需要通过已知条件进行推理,才能得到未知量。
例如,对于一个行程问题,我们已知两个人的行驶距离相等,那么我们可以推理出这两个人的行驶速度也应该相等,从而可以求出另一个未知量。
总之,行程问题虽然看起来简单,但是在解题过程中需要注意各种细节。
只有掌握了正确的解题方法和技巧,才能在考试中更好地解决这类问题。
行程问题的解题技巧1. 哎呀呀,行程问题中遇到相向而行的情况,那简直就像是两个人对着跑呀!比如说,小明和小红在一条路上,一个从这头走,一个从那头走,他们多久能相遇呢?这时候只要把两人的速度加起来,再用总路程除以这个和,不就能算出相遇时间啦!就像搭积木一样简单嘛!2. 嘿,要是同向而行呢,那不就是一个追一个嘛!就好像跑步比赛,跑得快的追跑得慢的。
比如小强每分钟跑 100 米,小亮每分钟跑 80 米,那小强要多久才能追上小亮呀?用他们的速度差乘以时间等于最初的距离差这个道理,一下子就能算出来啦,是不是超有趣呀!3. 碰到那种来回跑的行程问题呀,可别晕!比如说小李在 A、B 两点间跑来跑去。
这就像钟摆一样来来回回呀!这时候得仔细分析他跑的每一段路程和时间,然后加起来或者算差值,搞清楚到底怎么回事儿!这很考验耐心哦,但搞懂后会超有成就感的呀!4. 还有那种在环形跑道上跑的呢,这不就像围着一个大圆圈转嘛!比如小王在环形跑道上跑,和别人相遇几次或者追上几次,就得想想他们相对的速度和跑的圈数啦。
这多有意思呀,就好像在玩一个特别的游戏!5. 你们想想看,行程问题里有时候给的条件可隐晦啦!这就像捉迷藏一样,得仔细找线索呀!比如说告诉你一段路程走了几小时,又告诉你另外一些模糊的信息,就得开动脑筋把有用的找出来,算出行程中的各种数据。
是不是有点像侦探破案呀,刺激吧!6. 有时候行程问题里会有停顿呀什么的,那就像走路走一半歇会儿一样。
比如小张走一段路,中间停了几分钟,这时候得把停顿的时间考虑进去呀,不然可就算错啦,可不能马虎哟!7. 哈哈,行程问题其实就是生活中的各种走呀跑呀的情况。
只要我们把它当成有趣的事儿,像玩游戏一样去对待,就不会觉得难啦!所以呀,不要害怕行程问题,大胆去挑战它们吧!我的观点结论就是:行程问题没那么可怕,只要用心去理解和分析,都能轻松搞定!。
行程问题的解题技巧和方法
行程问题是数学中常见的问题之一,它涉及到速度、时间、距离等基本概念。
在解题时,我们需要根据题目中所给出的信息,运用合适的方法进行求解。
以下是一些常用的解题技巧和方法:
1. 基本公式法:行程问题的基本公式为:路程=速度×时间。
利用这个公式,我们可以很方便地求解各类行程问题。
2. 比例法:比例法是行程问题中常用的方法之一。
如果题目中给出的比例关系正确,我们可以通过比例关系来求解问题。
3. 假设法:假设法适用于一些无法确定具体数值的行程问题。
通过假设一些数值,然后根据题目中给出的信息,进行分析推理,进而求解问题。
4. 方程法:方程法是行程问题中最常见的方法之一。
通过建立方程,我们可以将行程问题转化为代数问题,然后通过解方程来求解答案。
5. 正反比法:正反比法适用于一些行程问题中的速度变化情况。
如果题目中给出的速度变化规律正确,我们可以通过正反比关系来求解问题。
6. 比例分配法:比例分配法适用于一些行程问题中的比例关系不正确,但可以分解成两个比例关系的情况。
通过比例分配,我们可以将问题转化为两个比例关系的问题,然后求解答案。
总之,行程问题的解题技巧和方法有很多种,我们需要根据具体情况进行选择。
在学习过程中,我们应该注重基础知识的掌握和技巧的应用,这样才能在解题时更加从容自信。
行程问题的解题技巧和方法
行程问题是数学中常见的一种问题类型,通常应用于时间、速度、距离等方面。
解题时需要掌握一定的技巧和方法,下面介绍一些常见的解题技巧:
1. 建立方程
在解决行程问题时,可以根据题目所给出的条件,建立相应的方程式,来求解未知数。
例如,当我们知道两个物体在同一方向上移动时,可以运用公式:距离=速度×时间,建立方程,进而求出未知数。
2. 画图辅助解题
有些行程问题,尤其是多个物体同时移动时,画图可以帮助我们更好地理解题目意思,并且有利于我们找到解题的方法。
因此,在解题时,可以根据题目要求,画出相应的图形,帮助我们更好地理解题目。
3. 分析速度、时间、距离之间的关系
在行程问题中,速度、时间和距离之间有着密切的关系。
当我们知道任意两项,都可以通过公式求出另一项。
因此,在解题时,可以尝试从速度、时间、距离之间的关系入手,找到解题的方法。
4. 求平均速度
有些题目中,物体在行程中可能有多个速度。
此时,我们可以求出平均速度来解决问题。
平均速度的公式是:平均速度=总路程÷总时间。
在求解平均速度时,我们需要注意速度的单位应该统一。
总之,解决行程问题需要综合运用数学知识和思维能力,灵活运用解题技巧和方法,精准地分析题目,才能得到正确的答案。
行程问题数学解题技巧一、基本公式1. 路程 = 速度×时间,即s = vt。
- 速度v=(s)/(t)。
- 时间t=(s)/(v)。
二、相遇问题1. 题目类型及公式- 相向而行(两人或两车等从两地同时出发,面对面行走):总路程s = (v_1 + v_2)t,其中v_1、v_2分别是两者的速度,t是相遇时间。
2. 题目解析- 例:甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是5米/秒,乙的速度是3米/秒,经过10秒两人相遇,求A、B两地的距离。
- 解析:已知v_1 = 5米/秒,v_2 = 3米/秒,t = 10秒。
根据相遇问题公式s=(v_1 + v_2)t=(5 + 3)×10 = 8×10 = 80米,所以A、B两地的距离是80米。
三、追及问题1. 题目类型及公式- 同向而行(一人或一车等在前面走,另一人或车在后面追):追及路程s=(v_1 - v_2)t,其中v_1是快者速度,v_2是慢者速度,t是追及时间。
2. 题目解析- 例:甲在乙前面100米,甲的速度是8米/秒,乙的速度是10米/秒,问乙多长时间能追上甲?- 解析:这里追及路程s = 100米,v_1=10米/秒,v_2 = 8米/秒。
根据追及问题公式t=(s)/(v_1 - v_2)=(100)/(10 - 8)=(100)/(2)=50秒,所以乙50秒能追上甲。
四、环形跑道问题1. 相遇情况(同地出发,反向而行)- 公式:环形跑道一圈的长度s=(v_1 + v_2)t,和普通相遇问题公式一样,v_1、v_2是两人速度,t是相遇时间。
- 题目解析:例如,甲、乙两人在周长为400米的环形跑道上,同时同地反向出发,甲的速度是6米/秒,乙的速度是4米/秒,求两人第一次相遇的时间。
- 解析:已知s = 400米,v_1 = 6米/秒,v_2 = 4米/秒,根据公式t=(s)/(v_1 + v_2)=(400)/(6 + 4)=(400)/(10)=40秒,所以两人第一次相遇的时间是40秒。
行程问题的解题技巧和方法
旅行是每个人都喜欢的活动之一,但是在规划行程时可能会遇到许多问题。
下面列出一些解决行程问题的技巧和方法。
1. 制定详细的行程计划:在规划旅行时,制定详细的行程计划非常
重要,包括行程的时间、地点、预算和活动。
这可以使您更好地了解您的旅行,并在您的旅行期间更轻松地管理时间和资源。
2. 确定您的预算:在规划旅行时,预算是非常关键的因素。
您需要
确定旅行预算,并制定一个预算计划,以确保您的旅行花费在合理范围内,同时还能尽情享受旅行。
3. 掌握当地的文化和风俗:在规划旅行时,了解当地的文化和风俗
也非常重要。
了解当地的文化和风俗可以帮助您更好地融入当地人群,避免造成尴尬和冒犯。
4. 确定您的旅行方式:在规划旅行时,您需要确定您的旅行方式。
您可以选择乘坐公共交通工具、租用汽车或参加旅行团等方式。
选择最适合您的旅行方式可以让您更舒适地旅行,并节省时间和金钱。
5. 预定住宿和机票:在规划旅行时,预定住宿和机票也是非常重要的。
您需要提前预定住宿和机票,以确保您有一个舒适的住宿和便捷
的交通。
总之,在规划旅行时,您需要考虑许多因素。
这些技巧和方法可以帮助您更好地规划旅行,并获得最佳的旅行体验。
数学行程问题解题技巧数学行程问题是中小学数学中常见的一类问题,主要涉及物体在直线或曲线上运动的相关计算。
解决这类问题需要掌握一定的解题技巧。
下面,我将为您详细介绍数学行程问题的解题技巧。
一、理解题意,明确问题解决数学行程问题的第一步是仔细阅读题目,理解题意,明确需要求解的问题。
注意抓住题目中的关键词,如:速度、时间、路程、起点、终点等。
二、建立数学模型根据题目描述,建立相应的数学模型。
对于直线运动,通常使用公式:路程= 速度× 时间;对于曲线运动,需要根据具体情况进行求解。
三、解题技巧1.匀速直线运动在匀速直线运动中,速度保持不变。
解题时,只需使用路程= 速度× 时间这个公式即可。
例题:小明骑自行车以每小时15公里的速度行驶,问3小时后他行驶了多少公里?解答:路程= 速度× 时间= 15公里/小时× 3小时= 45公里2.非匀速直线运动在非匀速直线运动中,速度随时间变化。
此时,需要求出平均速度,然后使用路程= 平均速度× 时间求解。
例题:一辆汽车从静止开始加速,加速度为2米/秒,求5秒后汽车行驶的距离。
解答:首先求出5秒末的速度:v = at = 2米/秒× 5秒= 10米/秒然后求出平均速度:v_avg = (初速度+ 末速度) / 2 = (0 + 10) / 2 = 5米/秒最后求出路程:s = v_avg × t = 5米/秒× 5秒= 25米3.曲线运动曲线运动的问题较为复杂,需要根据具体情况进行分析。
通常,可以采用微元法或图像法求解。
四、检查答案,确保正确完成解题过程后,不要急于提交答案,要检查计算过程和结果是否正确,确保无误。
总结:数学行程问题虽然种类繁多,但只要掌握了解题技巧,就能迎刃而解。
在解题过程中,要注意理解题意、建立数学模型、选择合适的解题方法,并检查答案。
行程问题的解题技巧和方法介绍在日常生活中,我们经常面临行程安排的问题。
无论是规划旅行还是安排工作日程,合理的行程安排对我们的生活具有重要意义。
本文将介绍一些解决行程问题的技巧和方法,帮助读者更好地规划自己的行程。
行程问题的来源和类型行程问题通常分为两类:旅行行程问题和工作日程问题。
旅行行程问题涉及到如何合理地安排旅行路线、景点游览顺序、交通工具选择等;而工作日程问题则是关于如何合理安排工作任务、会议安排、时间分配等。
解决行程问题的技巧和方法以下是一些解决行程问题的技巧和方法,可以帮助读者更好地规划自己的行程。
旅行行程问题的解决技巧和方法1.确定旅行目的地和时间:首先需要明确旅行的目的地和出行的时间,这将有助于确定有关行程安排的其他要素。
2.研究目的地:了解目的地的景点、气候、交通等信息,帮助做出更明智的决策。
3.制定旅行路线:根据目的地景点的位置和开放时间,制定一个合理的旅行路线。
考虑景点之间的交通便利性、旅行时间等因素,避免来回折腾。
4.合理安排游览时间:根据景点的特点和自己的兴趣,合理安排游览时间,避免时间过长或过短。
5.选择合适的交通工具:根据旅行路线和自己的预算,选择合适的交通工具,如飞机、火车、汽车等。
同时,预先购买车票或订票有助于降低成本和提前规划行程。
6.考虑食宿问题:根据旅行路线,提前安排好合适的食宿,以免到达目的地后再苦苦寻找,浪费时间和精力。
工作日程问题的解决技巧和方法1.列出工作任务:首先将需要完成的工作任务列出来,并根据重要性和紧急程度进行排序。
2.估算任务完成时间:对每个工作任务估计所需的完成时间,以便更好地分配时间和优先处理。
3.合理分配时间:根据工作任务的紧急程度和时间估计,合理分配每天工作的时间段。
4.避免过度安排:不宜在同一时间段内安排过多的工作任务,以免无法有效完成。
5.留出灵活时间:在行程中留出一些灵活的时间,以应对可能的变动和突发事件。
6.合理安排会议和约会:将会议和约会集中在一天或几天内安排,以减少工作中的中断和时间浪费。
初一行程问题解题技巧
初一数学行程问题的解题技巧主要有以下几点:
1. 仔细阅读题目,找出已知条件:首先,需要清晰地理解问题,知道题目给出的条件是什么,要求解决什么问题。
这是解决任何数学问题的基础。
2. 画图分析:对于复杂的行程问题,可以通过画图的方式来清晰地表示出每个人或车辆的行程情况。
这样有助于更好地理解问题,找到解决的方法。
3. 设未知数:根据题目的描述,设立未知数。
例如,如果不知道某人的速度,就可以设他的速度为v。
4. 建立数学方程:根据题目中的等量关系,建立数学方程。
例如,如果两个人同时出发,但是一个人走得快,一个人走得慢,那么他们走的总路程就是速度乘以时间,根据这个等量关系就可以建立一个方程。
5. 解方程:使用代数方法解方程,找出未知数的值。
6. 检验答案:将找到的解代入原方程进行检验,确认答案的正确性。
同时也要注意检查答案是否符合题目的实际情况。
小学奥数“行程问题”类型归纳及解题技巧总结“行程问题”主要类型归纳一、直线型(1)两岸型:第n次迎面碰头相遇,两人的路程和是(2n-1)S。
第n次背面追及相遇,两人的路程差是(2n-1)S。
(2)单岸型:第n次迎面碰头相遇,两人的路程和为2ns。
第n次背面追及相遇,两人的路程差为2ns。
二、环型环型主要分两种情况,一种是甲、乙两人同地同时反向迎面相遇(不可能背面相遇),一种是甲、乙两人同地同时同向背面追及相遇(不可能迎面相遇)。
“行程问题”解题技巧总结一、直线型直线型多次相遇问题宏观上分“两岸型”和“单岸型”两种。
“两岸型”是指甲、乙两人从路的两端同时出发相向而行;“单岸型”是指甲、乙两人从路的一端同时出发同向而行。
现在分开向大家一一介绍:(一)两岸型两岸型甲、乙两人相遇分两种情况,可以是迎面碰头相遇,也可以是背面追及相遇。
题干如果没有明确说明是哪种相遇,考生对两种情况均应做出思考。
1、迎面碰头相遇:如下图,甲、乙两人从A、B两地同时相向而行,第一次迎面相遇在a处,(为清楚表示两人走的路程,将两人的路线分开画出)则共走了1个全程,到达对岸b后两人转向第二次迎面相遇在c处,共走了3个全程,则从第一次相遇到第二次相遇走过的路程是第一次相遇的2倍。
之后的每次相遇都多走了2个全程。
所以第三次相遇共走了5个全程,依次类推得出:第n次相遇两人走的路程和为(2n-1)S,S为全程。
而第二次相遇多走的路程是第一次相遇的2倍,分开看每个人都是2倍关系,经常可以用这个2倍关系解题。
即对于甲和乙而言从a到c走过的路程是从起点到a的2倍。
相遇次数全程个数再走全程数1 1 12 3 23 5 24 7 2………n 2n-1 22、背面追及相遇与迎面相遇类似,背面相遇同样是甲、乙两人从A、B两地同时出发,如下图,此时可假设全程为4份,甲1分钟走1份,乙1分钟走5份。
则第一次背面追及相遇在a处,再经过1分钟,两人在b处迎面相遇,到第3分钟,甲走3份,乙走15份,两人在c处相遇。
三年级数学行程问题解题技巧
一、基本公式
1. 路程 = 速度×时间,即公式。
2. 速度 = 路程÷时间,即公式。
3. 时间 = 路程÷速度,即公式。
二、常见题型及解题技巧
1. 简单的行程问题
题目:一辆汽车每小时行驶60千米,3小时行驶多少千米?
解析:这是一个已知速度公式千米/小时和时间公式小时,求路程公式的问题。
根据公式公式,可得公式千米。
2. 求速度的问题
题目:小明家到学校的距离是900米,他走了15分钟到学校,他的速度是多少?
解析:已知路程公式米,时间公式分钟,根据速度公式公式,公式米/分钟。
3. 求时间的问题
题目:一辆车以80千米/小时的速度行驶400千米,需要多少小时?
解析:已知速度公式千米/小时,路程公式千米,根据时间公式公式,公式小时。
4. 相遇问题
题目:甲、乙两人分别从相距300米的A、B两地同时出发,相向而行,甲的速度是20米/分钟,乙的速度是30米/分钟,经过多长时间两人相遇?
解析:两人是相向而行,所以他们的相对速度是两人速度之和,即公式
米/分钟。
已知路程公式米,根据时间公式公式,可得公式分钟。
5. 追及问题
题目:甲在乙前面100米,甲的速度是30米/分钟,乙的速度是50米/分钟,乙多长时间能追上甲?
解析:乙追甲,他们的速度差是公式米/分钟,两人的路程差是100米。
根据追及时间公式公式(这里的公式是路程差,公式是速度差),可得公式分钟。
行程问题的解题技巧和方法
行程问题是数学中的一类常见问题,它们通常涉及到时间、距离、速度等概念。
解决这类问题需要掌握一些技巧和方法,以下是其中的一些:
1. 画图法
我们可以通过画图的方式将问题模拟出来,明确各个变量的含义和关系。
比如在解决汽车行驶问题时,可以画出车辆行驶的路线图,标明起点、终点、途中的里程数等,以便更好地理解问题和推导答案。
2. 等量代换法
有时候问题中的某些变量可以用其他变量表示出来,这时候可以通过等量代换来简化计算。
比如在解决两车相遇问题时,可以将两车相遇的时间转化为两车之间的距离关系,然后用速度和时间的公式求解。
3. 速度图法
速度图是一种表示车速变化的图形,可以帮助我们更好地理解车辆行驶的过程。
在解决多车同时出发的问题时,可以通过画速度图来分析各车之间的关系,以便更好地推导答案。
4. 追及问题法
追及问题是一类特殊的行程问题,通常涉及到两个物体的相对运动。
在解决这类问题时,可以采用追及问题法,即通过两个物体的相对速度和相对距离来推导它们相遇的时间和地点。
5. 求平均速度
在解决行程问题时,有时需要求出多个车辆或物体的平均速度。
这时候可以通过平均速度的公式来计算,即平均速度=总路程/总时间。
以上是解决行程问题的一些常用技巧和方法,它们可以帮助我们更好地理解问题和推导答案。
当然,还有很多其他的方法和技巧,需要根据具体情况进行选择和应用。
行程问题解题技巧和思路
1. 哎呀呀,碰到行程问题别慌呀!你看,就像你要去一个好玩的地方,得先规划好路线一样。
比如说,从家到超市5 公里,你走路每小时3 公里,那算一下不就知道得走多久啦!解题时要抓住路程、速度和时间的关系,这可是关键哦!
2. 嘿,行程问题有时候挺绕人的,可咱不怕呀!比如说两辆车同时出发,一辆速度快,一辆速度慢,它们之间的距离变化不就是个有趣的事儿嘛。
就好像跑步比赛,谁跑得快,不就更容易领先嘛,这里面的窍门可得搞清楚咯!
3. 哇塞,行程问题的思路其实不难找呢!就像你找宝藏,得有线索呀。
比如知道了总路程和两人的速度比,那就能算出各自走的路程啦。
好比分蛋糕,按比例来嘛,这样一想是不是就简单多啦?
4. 哟呵,行程问题里还藏着好多小秘密呢!比如说相遇问题,两个人相向而行,就跟你和朋友约好见面,想想怎么才能碰面最快嘛。
这不就是实际生活中的事儿嘛,可有意思啦!
5. 哈哈,解决行程问题可得仔细着点!就像走路要一步一步稳着来。
比如给你一段路程,中间休息了一会儿,那时间可得单独算呀。
就好比做一件事,中间停了会儿,总得把时间分清楚不是?
6. 呀,行程问题也不是那么难搞嘛!比如说知道了速度和时间,那路程不就呼之欲出啦。
这就像你知道每天跑多少,跑了几天,一共跑了多远不就清楚啦,是不是很好理解呀?
7. 哼,行程问题可难不倒我!就像爬山,虽然过程有点累,但到了山顶就超有成就感。
遇到难题别怕,一点点分析,总能找到答案的!
我的观点结论就是:只要掌握好方法和思路,行程问题绝对能轻松拿下!。
三段行程问题解题技巧和方法摘要:一、行程问题概述二、行程问题解题技巧1.利用速度、时间和距离的关系2.利用相对速度解决相遇问题3.利用时间、距离和速度的复合条件求解三、行程问题实用方法1.画图法2.代数法3.列举法四、总结与建议正文:行程问题主要包括相遇问题、追及问题、绕行问题和多次相遇问题等。
在解决这些问题时,可以运用以下解题技巧:一、行程问题概述行程问题涉及到速度、时间和距离三个基本要素。
理解这些概念及它们之间的关系是解决行程问题的基础。
二、行程问题解题技巧1.利用速度、时间和距离的关系速度、时间和距离之间的关系为:速度=距离/时间。
通过这个关系,可以求出未知量,如速度、时间或距离。
2.利用相对速度解决相遇问题相遇问题的特点是两个物体在同一路线上行驶,且其中一个物体速度大于另一个物体。
解决相遇问题只需计算两个物体的相对速度,然后根据时间求出相遇时的距离。
3.利用时间、距离和速度的复合条件求解在解决行程问题时,有时需要同时考虑时间、距离和速度三个因素。
根据题意列出方程组,然后求解方程组,得出未知量的值。
三、行程问题实用方法1.画图法对于复杂行程问题,可以通过画图来帮助理解问题,从而找到解题思路。
画图能直观地表示物体间的相对位置和运动轨迹,有助于解决问题。
2.代数法代数法是解决行程问题的常用方法。
通过列出方程,将未知量表示为字母,然后求解方程得到未知量的值。
3.列举法列举法适用于题意明确、条件有限的行程问题。
通过列举可能的情况,逐一验证得出正确答案。
行程问题解题技巧走走停停的要点及解题技巧一、行程问题里走走停停的题目应该怎么做1、画出速度与路程的图。
2、要学会读图。
3、每一个加速减速、匀速要分清楚,这有利于您的解题思路。
4、要注意每一个行程之间的联系。
二、学好行程问题的要诀行程问题可以说就是难度最大的奥数专题。
类型多:行程分类细,变化多,工程抓住工作效率与比例关系,而行程每个类型重点不一,因此没有一个关键点可以抓题目难:理解题目、动态演绎推理——静态知识容易学,动态分析需要较高的理解能力、逻辑分析与概括能力跨度大:从三年级到六年级都要学行程——四年的跨度,需要不断的复习巩固来加深理解、夯实基础那么想要学好行程问题,需要掌握哪些要诀呢?要诀一:大部分题目有规律可依,要诀就是"学透"基本公式要诀二:无规律的题目有"攻略",一画(画图法)二抓(比例法、方程法)竞赛考试中的行程题涉及到很多中数学方法与思想(比如:假设法、比例、方程)等的熟练运用,而这些方法与思想,都就是小学奥数中最为经典并能考察孩子思维的专项。
例1、甲乙两人同时从一条800环形跑道同向行驶,甲100米/分,乙80米/分,两人每跑200米休息1分钟,甲需多久第一次追上乙?【解答】这样的题有三种情况:在乙休息结束时被追上、在休息过程中被追上与在行进中被追上。
很显然首先考虑在休息结束时的时间最少,如果不行再考虑在休息过程中被追上,最后考虑行进中被追上。
其中在休息结束时或者休息过程中被追上的情况必须考虑就是否就是在休息点追上的。
由此首先考虑休息800÷200-1=3分钟的情况。
甲就要比乙多休息3分钟,就相当于甲要追乙800+80×3=1040米,需要1040÷(100-80)=52分钟,52分钟甲行了52×100=5200米,刚好就是在休息点追上的满足条件。
行5200米要休息5200÷200-1=25分钟。
因此甲需要52+25=77分钟第一次追上乙。
例2、在400米环形跑道上,A、B两点的跑道相距200米,甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,她们每人跑100米都停5秒.那么,甲追上乙需要多少秒?【解答】这就是传说中的“走走停停”的行程问题。
这里分三种情况讨论休息的时间,第一、如果在行进中追上,甲比乙多休息10秒,第二,如果在乙休息结束的时候追上,甲比乙多休息5秒,第三,如果在休息过程中且又没有休息结束,那么甲比乙多休息的时间,就在这5~10秒之间。
显然我们考虑的顺序就是首先瞧就是否在结束时追上,又就是否在休息中追上,最后考虑在行进中追上。
有了以上的分析,我们就可以来解答这个题了。
我们假设在同一个地点,甲比乙晚出发的时间在200/7+5=235/7与200/7+10=270/7的之间,在以后的行程中,甲就要比乙少用这么多时间,由于甲行100米比乙少用100/5-100/7=40/7秒。
继续讨论,因为270/7÷40/7不就是整数,说明第一次追上不就是在乙休息结束的时候追上的。
因为在这个范围内有240/7÷40/7=6就是整数,说明在乙休息的中追上的。
即甲共行了6×100+200=800米,休息了7次,计算出时间就就是800/7+7×5=149又2/7秒。
注:这种方法不适于休息点不同的题,具有片面性。
例1、快车与慢车分别从A,B两地同时开出,相向而行、经过5小时两车相遇、已知慢车从B到A用了12、5小时,慢车到A停留半小时后返回、快车到B停留1小时后返回、问:两车从第一次相遇到再相遇共需多少时间?【解答】画一张示意图:设C点就是第一次相遇处、慢车从B到C用了5小时,从C到A用了12、5-5=7、5(小时)、我们把慢车半小时行程作为1个单位、B到C10个单位,C到A15个单位、慢车每小时走2个单位,快车每小时走3个单位、有了上面"取单位"准备后,下面很易计算了、慢车从C到A,再加停留半小时,共8小时、此时快车在何处呢?去掉它在B停留1小时、快车行驶7小时,共行驶3×7=21(单位)、从B到C再往前一个单位到D点、离A点15-1=14(单位)、现在慢车从A,快车从D,同时出发共同行走14单位,相遇所需时间就是14÷(2+3)=2、8(小时)、慢车从C到A返回行驶至与快车相遇共用了7、5+0、5+2、8=10、8(小时)、答:从第一相遇到再相遇共需10小时48分。
例2、小轿车的速度比面包车速度每小时快6千米,小轿车与面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离就是多少千米?【解答】先计算,从学校开出,到面包车到达城门用了多少时间、此时,小轿车比面包车多走了9千米,而小轿车与面包车的速度差就是6千米/小时,因此所用时间=9÷6=1、5(小时)、小轿车比面包车早10分钟到达城门,面包车到达时,小轿车离城门9千米,说明小轿车的速度就是面包车速度就是54-6=48(千米/小时)、城门离学校的距离就是48×1、5=72(千米)、答:学校到城门的距离就是72千米、简单相遇的要点及解题技巧一、简单相遇问题的特点:(1)两个运动物体一般同时不同地(或不同时不同地)出发作相向运动.(2)在一定时间内,两个运动物体相遇。
(3)相遇问题的解题要点:相遇所需时间=总路程÷速度与。
解答相遇问题必须紧紧抓住"速度与"这个关键条件.主要数量关系就是:二:简单相遇问题与追及问题的共同点:(1)就是否同时出发(2)就是否同地出发(3)方向:同向、背向、相向(4)方法:画图三、简单相遇在解题时的入手点及需要注意的地方相遇问题与速度与、路程与有关(1)就是否同时出发(2)就是否有返回条件(3)就是否与中点有关:判断相遇点位置(4)就是否就是多次返回:按倍数关系走。
(5)一般条件下,入手点从"与"入手,但当条件与"差"有关时,就从差入手,再分析出时间,由此再得所需结果例1、两列对开的列车相遇,第一列车的车速为10米/秒,第二列车的车速为12.5米/秒,第二列车的旅客发现第一列车在旁边开过时用了6秒,则第一列车的长度为多少米?A.60米B、75 C.80米 D.135米【解答】D。
解析:这里A,B两地的距离就为第一列车的长度,那么第一列车的长度为(10+12、5)×6=135米。
例2、甲、乙二人同时从相距60千米的两地同时相向而行,6小时相遇。
如果二人每小时各多行1千米,那么她们相遇的地点距前次相遇点1千米。
又知甲的速度比乙的速度快,乙原来的速度为( )A.3千米/时B.4千米/时C、5千米/时 D.6千米/时【解答】B。
解析:原来两人速度与为60÷6=10千米/时,现在两人相遇时间为60÷(10+2)=5小时,设原来乙的速度为X千米/时且乙的速度较慢,则5(X+1)=6X+1,解得X=4。
注意:在解决这种问题的时候一定要先判断谁的速度快。
例3、每天早上李刚定时离家上班,张大爷定时出家门散步,她们每天都相向而行且准时在途中相遇。
有一天李刚因有事提早离家出门,所以她比平时早7分钟与张大爷相遇。
已知李刚每分钟行70米,张大爷每分钟行40米,那么这一天李刚比平时早出门( )分钟。
A、7B、9C、10D、11【答案】D。
解析:设每天李刚走X分钟,张大爷走Y分钟相遇,李刚今天提前Z分钟离家出门,可列方程为70X+40Y=70×(X+Z-7)+40×(Y-7),解得Z=11,故应选择D。
抓住了,两地距离不变,列方程。
例1、甲、乙两车同时从A、B两地相向而行,在距B地54千米处相遇她们各自到达对方车站后立即返回原地,途中有在距A地42千米处相遇。
求两次相遇地点的距离。
【解答】设两次相遇地点的距离为x千米根据她们相遇时用的时间就是相等的在距B地54千米处相遇时有:(42+x)/V甲=54/V乙在距A地42千米处相遇时有:(54*2+x)/V甲=(x+42*2)/V乙则(42+x)/54=(108+x)/(x+84)x2+72x-2304=0(x-24)(x+96)=0解得x=24,x=-96(舍去)所以两次相遇地点的距离为24千米。
例2、在一次野外长跑比赛中,A、B两人同时从起点开始跑,A的速度为每秒3米,B的速度为每秒2米。
途中,一辆汽车以每秒10米的速度迎面开来,在与A相遇2分钟后,又遇B擦肩而过。
问:当汽车与A擦肩而过时,A、B二人相距多远?当汽车与B擦肩而过时,A、B二人相距多远?【解答】当汽车与A擦肩而过、与B相向而行时,这道题可改编为:汽车与B相向而行,已知汽车每秒前进10米,B每秒前进2米,二者2分钟相遇,问两地相距多远?非常容易的一道题,先将2分钟换算成120秒,然后按照公式速度与×时间=距离的方法,得到:﹙10+2﹚×120=1440米。
即:当汽车与A擦肩而过时A、B二人相距1440米我们把第二问也简化以下。
A、B二人赛跑,已知A在B前面1440米的地方,二人同向而行,又知A的速度就是每秒3米,B的速度就是每秒2米,跑了2分钟时﹙就就是汽车从相遇A到相遇B的时间﹚,两人相距多远?我们已知开始跑时﹙即汽车与A相遇时﹚,两人本来就相距1440米,二人速度差为每秒1米﹙3-2﹚。
汽车走了120秒,两人的距离就增加了120米﹙1×120﹚。
那么,2分钟时,两人距离应为1560米﹙120+1440﹚。
即:当汽车与B擦肩而过时,A、B二人相距1560米。
多人行程的要点及解题技巧行程问题就是小学奥数中难度系数比较高的一个模块,在小升初考试与各大奥数杯赛中都能见到行程问题的身影。
行程问题中包括:火车过桥、流水行船、沿途数车、猎狗追兔、环形行程、多人行程等等。
每一类问题都有自己的特点,解决方法也有所不同,但就是,行程问题无论怎么变化,都离不开“三个量,三个关系”:这三个量就是:路程(s)、速度(v)、时间(t)三个关系:1、简单行程:路程=速度×时间2、相遇问题:路程与=速度与×时间3、追击问题:路程差=速度差×时间牢牢把握住这三个量以及它们之间的三种关系,就会发现解决行程问题还就是有很多方法可循的。
如“多人行程问题”,实际最常见的就是“三人行程”例:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。
甲每分钟走40米,乙每分钟走38米,丙每分钟走36米。
在途中,甲与乙相遇后3分钟与丙相遇。