立体几何中的向量方法(全)
- 格式:ppt
- 大小:3.06 MB
- 文档页数:69
第 3 讲立体几何中的向量方法1. (2014课·标全国Ⅱ )直三棱柱 ABC- A1B1C1中,∠ BCA= 90°,M ,N 分别是 A1B1, A1C1的中点, BC= CA= CC1,则 BM 与 AN 所成角的余弦值为 ()12302A. 10B.5C. 10D. 22. (2015安·徽 ) 如图所示,在多面体A1B1D1DCBA 中,四边形AA1B1B,ADD 1A1, ABCD 均为正方形, E 为 B1D 1的中点,过A1,D ,E 的平面交CD1于 F.(1)证明: EF∥ B1C;(2)求二面角E-A1D- B1的余弦值.以空间几何体为载体考查空间角是高考命题的重点,与空间线面关系的证明相结合,热点为二面角的求解,均以解答的形式进行考查,难度主要体现在建立空间直角坐标系和准确计算上 .热点一利用向量证明平行与垂直设直线 l 的方向向量为a=(a1,b1,c1),平面α、β的法向量分别为μ=( a2,b2,c2),v=(a3,b3, c3)则有:(1)线面平行l∥ α? a⊥ μ? a·μ= 0? a1a2+ b1b2+ c1c2= 0.(2)线面垂直l⊥ α? a∥ μ? a= kμ? a1=ka2, b1= kb2, c1= kc2.(3)面面平行α∥ β? μ∥v? μ=λv? a2=λa, b =λb, c =λc32323.(4)面面垂直α⊥ β? μ⊥v? μ·v= 0? a2a3+ b2b3+c2c3= 0.例 1 如图,在直三棱柱 ADE— BCF 中,面 ABFE 和面 ABCD 都是正方形且互相垂直, M 为 AB 的中点, O 为 DF 的中点.运用向量方法证明:(1)OM ∥平面 BCF ;(2)平面 MDF ⊥平面 EFCD .思维升华用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a∥ b,只需证明向量a=λb(λ∈ R)即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.跟踪演练1如图所示,已知直三棱柱ABC— A1B1C1中,△ ABC 为等腰直角三角形,∠BAC= 90°,且 AB= AA1, D、 E、 F 分别为 B1A、 C1C、BC 的中点.求证:(1)DE ∥平面 ABC;(2)B1F ⊥平面 AEF .热点二利用空间向量求空间角设直线 l ,m 的方向向量分别为a=( a1,b1,c1),b=(a2,b2,c2).平面α,β的法向量分别为μ= (a3, b3, c3),v= (a4, b4, c4)(以下相同 ) .(1)线线夹角π设 l , m 的夹角为θ(0≤θ≤2),则|a·b|=|a1a2+ b1b2+ c1c2 |cosθ=|a||b|a12+ b12+ c12a22+ b22+ c22.(2)线面夹角π设直线 l 与平面α的夹角为θ(0≤θ≤2),则 sin θ=|a·μ|=|cos〈a,μ〉 |. |a||μ|(3)面面夹角设平面α、β的夹角为θ(0≤θ<π),则 |cos θ|=|μ·v|= |cos〈μ,v〉 |. |μ||v|例 2 (2015 ·江苏 )如图,在四棱锥P-ABCD 中,已知PA⊥平面 ABCD ,πABCD 为直角梯形,∠ ABC=∠ BAD=, PA= AD = 2, AB= BC2=1.(1)求平面 PAB 与平面 PCD 所成二面角的余弦值;(2)点 Q 是线段 BP 上的动点,当直线CQ 与 DP 所成的角最小时,求线段BQ 的长.思维升华(1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.(2)求空间角注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cosα=|cos β|.②两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.③直线和平面所成的角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,即注意函数名称的变化.跟踪演练 2 (2014 ·福建 )在平面四边形ABCD中, AB=BD=CD=1,AB⊥ BD,CD ⊥BD.将△ABD沿BD折起,使得平面ABD ⊥平面BCD ,如图所示.(1)求证: AB⊥ CD ;(2)若 M 为 AD 中点,求直线AD 与平面 MBC 所成角的正弦值.热点三利用空间向量求解探索性问题存在探索性问题的基本特征是要判断在某些确定条件下的某一数学对象(数值、图形、函数等 )是否存在或某一结论是否成立.解决这类问题的基本策略是先假设题中的数学对象存在(或结论成立 )或暂且认可其中的一部分结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设;否则,给出肯定结论.例 3 如图,在直三棱柱 ABC- A1B1C1中,AB= BC= 2AA1,∠ ABC=90°,D 是 BC 的中点.(1)求证: A1 B∥平面 ADC 1;(2)求二面角C1- AD- C 的余弦值;(3)试问线段A1B1上是否存在点E,使 AE 与 DC 1成 60°角?若存在,确定 E 点位置;若不存在,说明理由.思维升华空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.跟踪演练3如图所示,四边形ABCD 是边长为 1 的正方形, MD ⊥平面 ABCD ,NB⊥平面 ABCD ,且 MD =NB =1, E 为 BC 的中点.(1)求异面直线NE 与 AM 所成角的余弦值;(2)在线段 AN 上是否存在点 S,使得 ES⊥平面 AMN ?若存在,求线段AS 的长;若不存在,请说明理由.如图,五面体中,四边形ABCD 是矩形, AB∥EF , AD⊥平面 ABEF ,1且 AD =1, AB=2EF= 22, AF= BE= 2,P、 Q 分别为 AE 、BD 的中点.(1)求证: PQ∥平面 BCE;(2)求二面角A- DF -E 的余弦值.提醒:完成作业专题五第3讲二轮专题强化练专题五第 3 讲立体几何中的向量方法A 组专题通关1.已知平面 ABC,点 M 是空间任意一点,点→3→1→1→M 满足条件 OM= OA+OB+ OC,则直线488AM()A .与平面ABC 平行B .是平面ABC 的斜线C.是平面ABC 的垂线D.在平面ABC 内2.如图,点P 是单位正方体ABCD - A1B1C1D1中异于 A 的一个顶点,→ →则 AP·AB的值为 ()A . 0B.1C.0或1D.任意实数3.如图所示,正方体ABCD -A1B1C1D1的棱长为a, M、 N 分别为A1B和 AC 上的点, A1M= AN=23a,则 MN 与平面 BB1C1C 的位置关系是()A .相交B.平行C.垂直D.不能确定4.如图,三棱锥 A- BCD 的棱长全相等, E 为 AD 的中点,则直线 CE 与 BD 所成角的余弦值为 ()33A.6B. 2331C.6D. 25.已知正三棱柱 ABC-A1B1C1的侧棱长与底面边长相等,则 AB1与侧面 ACC 1A1所成角的正弦值等于 ()610A.4B. 423C. 2D. 26.在棱长为 1 的正方体ABCD - A1B1C1D1中,M,N 分别为 A1B1,BB1的中点,那么直线 AM 与 CN 所成角的余弦值为 ________.7.在一直角坐标系中,已知A(-1,6), B(3,- 8),现沿 x 轴将坐标平面折成60°的二面角,则折叠后 A、B 两点间的距离为 ________.→→→ 2→ 2→→→8.已知 ABCD -A1B1C1D1为正方体,① (A1A+ A1D 1+ A1B1) =3A1B1;②A1C·(A1B1- A1 A)= 0;→→→ → →③向量 AD 1与向量 A1B的夹角是 60°;④正方体ABCD - A1B1C1D 1的体积为 |AB ·AA 1·AD |.其中正确命题的序号是________.9.如图,在底面是矩形的四棱锥P— ABCD 中, PA⊥底面 ABCD,E,F 分别是 PC, PD 的中点, PA= AB= 1, BC= 2.(1)求证: EF∥平面 PAB;(2)求证:平面PAD ⊥平面 PDC .10.(2015 ·庆重 )如图,三棱锥 P-ABC 中,PC⊥平面 ABC,PC= 3,∠ ACB π=2.D, E 分别为线段AB, BC 上的点,且CD=DE =2, CE= 2EB=2.(1)证明: DE⊥平面 PCD;(2)求二面角APDC 的余弦值.B 组 能力提高11. (2014 ·川四 )如图,在正方体 ABCD -A 1B 1C 1D 1 中,点 O 为线段 BD 的中点.设点 P 在线段 CC 1 上,直线 OP 与平面 A 1BD 所成的角为 α,则 sin α的取值范围是 ()3,1]B . [6, 1]A .[ 33 62 2 2 2, 1]C .[3,3]D .[ 312.如图, 在正方体 ABCD - A 1B 1C 1D 1 中,点 P 在直线 BC 1 上运动时,有下列三个命题:①三棱锥 A - D 1PC 的体积不变;②直线 AP 与平面ACD 1 所成角的大小不变;③二面角 P - AD 1- C 的大小不变.其中真命题的序号是 ________.13.已知正方体 ABCD - A 1 B 1 C 1D 1 的棱长为 1, E 、 F 分别为 BB 1、 CD 的中点,则点 F 到平面 A 1D 1E 的距离为 ______________.14.如图, 在三棱锥 P —ABC 中, AC = BC =2,∠ ACB =90°,AP = BP =AB ,PC ⊥ AC ,点 D 为 BC 的中点.(1)求二面角A— PD —B 的余弦值;1(2)在直线 AB 上是否存在点M,使得 PM 与平面 PAD 所成角的正弦值为6,若存在,求出点M的位置;若不存在,说明理由.学生用书答案精析第 3 讲 立体几何中的向量方法高考真题体验1. C [方法一补成正方体,利用向量的方法求异面直线所成的角.由于∠ BCA = 90°,三棱柱为直三棱柱,且 BC = CA = CC 1,可将三棱柱补成正方体.建立如图 (1)所示空间直角坐标系.设正方体棱长为 2,则可得 A(0,0,0) ,B(2,2,0) , M(1,1,2) , N(0,1,2) ,→∴ BM = (-1,- 1,2),→.AN = (0,1,2)→ → → →BM ·AN∴ cos 〈BM , AN 〉= → →|BM||AN|- 1+ 4=-2+- 2+ 22× 02+ 12+ 22330=6×5=10.方法二 通过平行关系找出两异面直线的夹角,再根据余弦定理求解.如图 (2) ,取 BC 的中点 D ,连接 MN ,ND ,AD ,由于 MN 綊1 B 1C 1 綊 BD ,因此有 ND 綊 BM ,2则 ND 与 NA 所成的角即为异面直线BM 与 AN 所成的角.设 BC = 2,则 BM = ND = 6, AN= 5, AD = 5,因此 cos ∠ AND = ND 2+ NA 2- AD 230 2ND ·NA=10.]2. (1)证明由正方形的性质可知A 1B 1∥ AB ∥ DC ,且 A 1B 1= AB = DC ,所以四边形A 1B 1CD为平行四边形,从而 B 1 C ∥ A 1D ,又 A 1D ? 面 A 1DE , B 1 C?面 A 1DE ,于是 B 1C ∥面 A 1DE.又B 1C? 面 B 1 CD 1.面 A 1DE ∩面 B 1CD 1= EF ,所以 EF ∥ B 1C.(2)解 因为四边形 AA 1B 1B ,ADD 1A 1, ABCD 均为正方形,所以 AA 1⊥ AB , AA 1⊥AD , AB ⊥ AD 且AA 1 =AB =AD .以 A 为原点,分别以 → → →AB , AD ,AA 1为 x 轴, y 轴和 z 轴 单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0) ,B(1,0,0) ,D(0,1,0) ,A 1(0,0,1) , B 1(1,0,1) ,D 1 (0,1,1) ,而 E 点为 B 1D 1 的11中点,所以 E 点的坐标为, , 1 .设面 A 1DE 的法向量n 1= (r 1, s 1, t 1),而该面上向量→1 1 →A 1E = , , 0, A 1D = (0,1,- 1),由2 2→n 1⊥A 1E ,→11r 1+ s 1= 0,n 1⊥ A 1D 得 r 1, s 1, t 1 应满足的方程组2 2s 1- t 1= 0,(- 1,1,1)为其一组解,所以可取 n 1= (- 1,1,1).设面 A 1B 1CD 的法向量 n 2= (r 2,s 2,t 2),而该面上向量 →→A 1B 1= (1,0,0) ,A 1 D = (0,1,- 1),由此同理可得 n 2= (0,1,1) .所以结合图形知二面角E-A 1D -B 1 的余弦值为 |n 1·n 2| = 2 = 6.|n 1| ·|n 2| 3× 2 3热点分类突破例1 证明 方法一由题意,得 AB , AD ,AE 两两垂直,以 A 为原点建立如图所示的空间直角坐标系.设正方形边长为 1,则 A(0,0,0) , B(1,0,0), C(1,1,0) ,D (0,1,0) ,11 1 1 F(1,0,1),M 2, 0, 0 , O 2, 2,2 .→ 1 1 →1,0,0) , (1)OM = 0,-,- , BA = (- 2 2→ → → →∴OM ·BA =0, ∴OM ⊥BA.∵棱柱 ADE —BCF 是直三棱柱,→∴ AB ⊥平面 BCF ,∴ BA 是平面且 OM?平面 BCF ,∴ OM ∥平面BCF 的一个法向量,BCF .(2)设平面 MDF 与平面 EFCD 的一个法向量分别为n 1= (x 1, y 1, z 1 ),n 2= ( x 2, y 2 , z 2).→→∵ DF = (1,- 1,1), DM =n 1 ·DF →= 0, 由→n 1 ·DM = 0.x 1- y 1+ z 1= 0,得 1解得x 1- y 1= 0,21→→,,- 1,0 , DC =(1,0,0), CF = (0,- 1,1)21y 1=2x 1,1z 1 =- x 1,1 1 令 x 1= 1,则 n 1= 1,2,-2 . 同理可得 n 2= (0,1,1) .∵ n 1·n 2= 0,∴平面MDF ⊥平面 EFCD .方法二→ → → →1 →→ + 1 →(1)OM = OF + FB +BM= DF -BF BA2 21 →→→1→1 → 1 → 1 →=(DB + BF)- BF + BA =-BD - BF +BA2 2222=- 1 → →1 → 1 →2 (BC + BA)- BF +2BA2=- 1 → 1 →2 BC - BF .2→ → →∴向量 OM 与向量 BF , BC 共面,又 OM?平面 BCF ,∴ OM ∥平面 BCF .(2)由题意知, BF , BC , BA 两两垂直,∵→ =→,→=→-→, CD BA FC BC BF→ →1 → 1 → → = 0, ∴ OM·CD =-BC -BF2 2·BA→ → 1 → 1 →→ → OM ·FC = - BC - BF ·(BC -BF )22=- 1BC →2+ 1BF → 2= 0.2 2∴ OM ⊥ CD , OM ⊥ FC ,又 CD ∩FC = C ,∴ OM ⊥平面 EFCD .又 OM? 平面 MDF ,∴平面 MDF ⊥平面 EFCD .跟踪演练 1证明 (1)如图建立空间直角坐标系 A - xyz ,令 AB = AA 1= 4,则 A(0,0,0) , E(0,4,2) ,F(2,2,0) , B(4,0,0) , B 1(4,0,4) .取 AB 中点为 N ,连接 CN ,则 N(2,0,0) , C(0,4,0) ,D (2,0,2) ,→∴ DE = (- 2,4,0),→NC = (- 2,4,0) ,→ →∴ DE =NC ,∴ DE ∥ NC ,又∵ NC? 平面 ABC , DE?平面 ABC.故 DE ∥平面 ABC.→(2)B 1F = (- 2,2,- 4),→ →.EF = (2,- 2,- 2), AF = (2,2,0)→ →B 1F ·EF = (- 2) ×2+ 2×(-2)+ (- 4) ×(- 2)= 0,→ →B 1F ·AF = (- 2) ×2+ 2×2+ (- 4) ×0=0.∴→⊥→,→⊥→,即B 1F EF B 1F AF B 1F ⊥ EF , B 1F ⊥AF ,又∵ AF ∩FE = F ,∴ B 1F ⊥平面 AEF.例 2解→ → →以 { AB ,AD ,AP } 为正交基底建立如图所示的空间直角坐标系 Axyz ,则各点的坐标为B(1,0,0) ,C(1,1,0) , D(0,2,0) , P(0,0,2).(1)因为 AD ⊥平面→ →.PAB ,所以 AD 是平面 PAB 的一个法向量, AD = (0,2,0) → ,- →= (0,2,- 2). 因为 PC =(1,1 2), PD设平面 PCD 的法向量为 m =( x , y , z),→ →则 m ·PC = 0, m ·PD = 0,x + y - 2z = 0,令 y =1,解得 z =1, x = 1.即2y - 2z = 0.所以 m =(1,1,1) 是平面 PCD 的一个法向量.→ →3AD ·m从而 cos 〈 AD , m 〉= → = 3 ,|AD ||m |所以平面 PAB 与平面 PCD 所成二面角的余弦值为33 .→ → →≤λ≤1),(2)因为 BP = (- 1,0,2),设 BQ = λBP = (- λ, 0,2λ)(0 → → → →又 CB = (0,- 1,0) ,则 CQ =CB +BQ = (- λ,- 1,2λ), →,又 DP = (0,- 2,2)→ → → →1+ 2λCQ ·DP= .从而 cos 〈 CQ , DP 〉= → → 2|CQ||DP | 10λ+ 2设 1+2λ= t , t ∈ [1,3] ,2→→2t 2=2 9则 cos 〈 CQ ,DP 〉=21 5≤ .5t - 10t + 92 20 109 t -9 + 99 2→ →3 10 当且仅当 t =,即 λ= 时, |cos 〈CQ , DP 〉 |的最大值为10.55π因为 y = cos x 在 0,2 上是减函数,此时直线CQ 与 DP 所成角取得最小值.又因为 BP = 12+ 22= 5,所以 BQ = 2BP =2 5.55跟踪演练 2 (1)证明 ∵平面 ABD ⊥平面 BCD ,平面 ABD ∩平面 BCD = BD ,AB? 平面 ABD ,AB ⊥ BD ,∴ AB ⊥平面 BCD .又 CD ? 平面 BCD ,∴ AB ⊥ CD .(2)解过点 B 在平面 BCD 内作 BE ⊥ BD ,如图.由 (1) 知 AB ⊥平面 BCD , BE? 平面 BCD , BD ? 平面 BCD , ∴ AB ⊥ BE , AB ⊥ BD.以 B 为坐标原点,分别以→ → →BE , BD , BA 的方向为 x 轴, y 轴, z 轴的正方向建立空间直角坐标系.依题意,得 B(0,0,0) , C(1,1,0) ,D (0,1,0) ,A(0,0,1) 11,M (0,, ),2 2→→1 1 →,- 1).则 BC =(1,1,0) ,BM = (0,, ), AD = (0,122设平面 MBC 的法向量 n = (x 0, y 0, z 0),n ·BC →=0,x 0+ y 0= 0,则即 1+ 1= 0,→2y 0 n ·BM = 0,2z 0取 z 0= 1,得平面 MBC 的一个法向量 n = (1,- 1,1).设直线 AD 与平面 MBC 所成角为 θ,→ →6|n ·AD |则 sin θ= |cos 〈n , AD 〉 |= → = 3 ,|n | ·|AD |即直线 AD 与平面 MBC 所成角的正弦值为63.例 3 (1) 证明 连接 A 1C ,交 AC 1 于点 O ,连接 OD . 由 ABC -A 1B 1C 1 是直三棱柱,得四边形ACC 1A 1 为矩形, O 为 A 1C的中点.又D 为BC 的中点,所以 OD 为 △ A 1BC 的中位线,所以 A 1B ∥ OD.因为 OD? 平面 ADC 1, A 1B?平面 ADC 1,所以 A 1B ∥平面 ADC 1.(2)解由 ABC - A 1B 1C 1 是直三棱柱,且∠ A BC = 90°,得 BA , BC , BB 1 两两垂直.以 BC , BA , BB 1 所在直线分别为 x , y , z 轴,建立如图所示的空间直角坐标系B - xyz.设 BA = 2,则 B(0,0,0) ,C(2,0,0) , A(0,2,0) , C 1(2,0,1) , D(1,0,0) ,→ →所以 AD = (1,- 2,0) , AC 1= (2,- 2,1). 设平面 ADC 1 的法向量为 n = (x , y , z), →n ·AD = 0,则有→n ·AC 1= 0.x - 2y = 0,取 y =1,得 n = (2,1,- 2).所以 2x - 2y + z = 0.易知平面 ADC 的一个法向量为 v =(0,0,1) .所以 cos 〈 n , v 〉= n ·v2=- .|n | |·v | 3因为二面角 C 1- AD - C 是锐二面角,所以二面角 C 1- AD - C 的余弦值为2 .3(3)解 假设存在满足条件的点 E.因为点 E 在线段 A 1B 1 上, A 1(0,2,1) , B 1(0,0,1) ,故可设 E(0, λ,1),其中 0≤λ≤2.→→. 所以 AE = (0, λ- 2,1), DC 1= (1,0,1) 因为 AE 与 DC 1 成 60°角,→→→ →1|AE ·DC 1|所以 |cos 〈AE ,DC 1〉 |= → →=2,|AE| |DC ·1 |即12+1· 2=1,解得 λ= 1 或 λ= 3(舍去 ).λ-2所以当点 E 为线段 A 1 B 1 的中点时, AE 与 DC 1 成 60°角. 跟踪演练 3解 (1) 如图,以 D 为坐标原点, DA , DC , DM 所在直线分别为 x 轴,y 轴,z 轴,建立空间直角坐标系, 则 D(0,0,0) ,A(1,0,0),M(0,0,1) , C(0,1,0) , B(1,1,0) ,1 →1 , 0,- 1), N(1,1,1), E(, 1,0),所以 NE = (-22→AM =(- 1,0,1).→ →1→ →2 10|NE ·AM |因为 |cos 〈NE ,AM 〉 |= → → =5=10 ,|NE| ×|AM| 2 × 2所以异面直线 NE 与 AM 所成角的余弦值为1010.(2)假设在线段 AN 上存在点 S ,使得 ES ⊥平面 AMN . →=(0,1,1) ,因为 AN→ → =(0 ,λ, λ)(0 ≤λ≤1), 可设 AS = λAN→1 又 EA = (2,- 1,0),→→→1所以 ES = EA + AS = ( , λ-1, λ).2由 ES ⊥平面 AMN ,→→ES ·AM = 0,得→ →ES ·AN = 0,- 1+ λ= 0,即 2λ- + λ= 0,1 → 1 1 →2 . 故 λ=,此时 AS = (0, , ), |AS|=222 2经检验,当 AS =2时, ES ⊥平面 AMN .2故线段 AN 上存在点 S ,使得 ES ⊥平面 AMN ,此时 AS = 2.2高考押题精练(1)证明连接 AC ,∵四边形 ABCD 是矩形,且 Q 为 BD 的中点,∴Q 为 AC 的中点,又在 △AEC 中, P 为 AE 的中点,∴ PQ ∥EC ,∵ EC? 面 BCE , PQ?面 BCE ,∴ PQ ∥平面 BCE.(2)解 如图,取 EF 的中点 M ,则 AF ⊥ AM ,以 A 为坐标原点,以 AM ,AF ,AD 所在直线分别为 x ,y ,z 轴建立空间直角坐标系.则 A(0,0,0) , D (0,0,1) ,M (2,0,0), F(0,2,0) .→ → →可得 AM = (2,0,0) , MF = (- 2,2,0), DF = (0,2,- 1).→n ·MF = 0,设平面 DEF 的法向量为n = (x , y , z),则→n ·DF = 0.- 2x + 2y =0,x - y = 0,故 2y -z =0, 即2y - z = 0.令 x =1,则 y =1, z = 2,故 n =(1,1,2) 是平面 DEF 的一个法向量.→∵ AM ⊥面 ADF ,∴ AM 为平面 ADF 的一个法向量.→→2×1+ 0×1+ 0×26n ·AM∴ cos 〈n , AM 〉=→ = 6×2= 6.|n | ·|AM|由图可知所求二面角为锐角,6∴二面角A-DF - E 的余弦值为 6 .二轮专题强化练答案精析第 3 讲 立体几何中的向量方法1. D [由已知得 M 、 A 、 B 、C 四点共面.所以 AM 在平面 ABC 内,选 D.]→→ → → → → →→ 1,其中一个与 →2. C [AP 可为下列 7 个向量: AB , AC , AD , AA 1, AB 1,AC 1, AD AB 重合,→→→2→→→→→ → → →→AP ·AB = |AB| = 1; AD ,AD 1, AA 1 与AB 垂直,这时 AP ·AB = 0; AC , AB 1 与 AB 的夹角为45°,→ → π → → 3×1×cos ∠ BAC 1= 3× 1= 1,故选 C.] 这时 AP ·AB = 2×1×cos = 1,最后 AC 1·AB =3 4 3. B [分别以 C 1B 1、 C 1D 1、 C 1C 所在直线为 x , y , z 轴,建立空间直角坐标系,如图所示.∵ A 1M = AN = 23 a ,∴ M a , 2 a ,N 2 23a , 3 3a ,3a , a ,→ a 2 a .∴MN = - ,0, 33→又 C 1 (0,0,0) ,D 1(0, a,0),∴ C 1D 1= (0, a,0),∴→ →=,∴→⊥→MN ·C 1D 1 0 MN C 1D 1.→MN?平面 BB 1C 1C ,∴ MN ∥平面 BB 1C 1C.]∵ C 1D 1是平面 BB 1C 1C 的法向量,且 4. A [设 AB = 1,→ → → → → → 则 CE ·BD = (AE - AC) ·(AD - AB)= 1 → 2 1 → →→ → → →2 AD - AD ·AB - AC ·AD + AC ·AB2= 1 112 - cos 60 -°cos 60 +°cos 60 =° .24→ →1→ →43CE ·BD∴ cos 〈CE ,BD 〉= → → = 3=6 .选 A.]|CE||BD | 25. A [如图所示建立空间直角坐标系,设正三棱柱的棱长为2, O(0,0,0),B(3, 0,0), A(0,- 1,0), B 1(→ 3, →3, 0,2),则 AB 1= ( 1,2),则 BO = (- 3,→ →0,0)为侧面ACC 1A 1的法向量,由 sin θ= |AB 1·BO|= 6.] → →4|AB 1||BO|2 6.5解析 以 D 点为坐标原点,分别以DA , DC ,DD 1 所在直线为 x 轴, y轴, z 轴建立如图所示的空间直角坐标系,则A(1,0,0) , M(1, 1, 1),21C(0,1,0), N(1,1, 2) .→ 1 →1所以 AM = (0,, 1),CN= (1,0, ).22 → →111故 AM ·CN = 0×1+ ×0+1× = ,2 2 2→2 1 2 + 1 25|AM |=0 + 2 = ,2→2 21 2 =5|CN|= 1+0+ 2 ,2→ →1→→2 2AM ·CN=所以 cos 〈 AM , CN 〉=→ → 5 5= .5|AM ||CN|2 ×27.2 17解析如图为折叠后的图形,其中作 AC ⊥ CD , BD ⊥ CD ,则 AC = 6, BD = 8, CD = 4,两异面直线 AC 、 BD 所成的角为 60°,故由→=→+→+→,AB AC CD DB→ 2 →→→2,得 |AB| = |AC +CD + DB | = 68→∴|AB|= 2 17.8.①②→→→2→ 2→ 2 → 解析 设正方体的棱长为 1,①中 (A 1A + A 1D 1+A 1B 1) =A 1C = 3A 1B 1 =3,故①正确; ②中 A 1B 1→ →→- A 1A = AB 1,由于 AB 1⊥ A 1C ,故②正确; ③中 A 1B 与 AD 1 两异面直线所成的角为 60°,但 AD 1→→ → →与 A 1B 的夹角为 120°,故③不正确;④中 |AB ·AA 1·AD |= 0.故④也不正确.9.证明(1) 以 A 为原点, AB 所在直线为 x 轴, AD 所在直线为 y 轴, AP 所在直线为 z 轴,建立如图所示的空间直角坐标系,则 A(0,0,0) , B(1,0,0) ,C(1,2,0) , D(0,2,0) , P(0,0,1) ,∵ E, F 分别是 PC, PD 的中点,∴ E 1, 1,1,F 0,1,1,222→1,0, 0→.EF=-,AB= (1,0,0)2→ 1 →→ →∵EF=-AB ,∴ EF ∥ AB,2即 EF∥AB,又 AB? 平面 PAB, EF?平面 PAB,∴ EF ∥平面 PAB.→,- 1)→→→→,(2)由 (1)可知 PB= (1,0,PD = (0,2,- 1),AP= (0,0,1), AD= (0,2,0), DC = (1,0,0)→→∵ AP·DC = (0,0,1) (1,0,0)·= 0,→→AD ·DC = (0,2,0) (1,0,0)·= 0,→→→→∴ AP⊥ DC,AD ⊥DC ,即 AP⊥ DC ,AD⊥ DC .又 AP∩AD= A,∴ DC ⊥平面 PAD .∵DC ? 平面 PDC,∴平面 PAD ⊥平面 PDC .10. (1)证明由PC⊥平面ABC,DE ?平面ABC,故PC⊥ DE.由 CE= 2, CD= DE= 2得△CDE 为等腰直角三角形,故 CD ⊥ DE .由 PC∩CD= C, DE 垂直于平面 PCD 内两条相交直线,故 DE ⊥平面 PCD .π(2)解由(1)知,△ CDE为等腰直角三角形,∠DCE =,如图,过 D 作4DF 垂直 CE 于 F,易知 DF = FC= FE= 1,又已知EB= 1,故 FB= 2.πDF=FB233.由∠ ACB=得 DF ∥AC ,AC BC =,故 AC=DF =2322以 C 为坐标原点,分别以→ →→轴, y 轴, z 轴的正方向建立空间直角坐标CA,CB,CP的方向为 x系,则 C(0,0,0) ,P(0,0,3) ,A 3,0, 0→→,2,E(0,2,0) ,D (1,1,0),ED=(1,- 1,0),DP= (- 1,- 1,3)→1,- 1,0 . DA =2→→- x1-y1+3z1=0,设平面 PAD 的法向量为n1=(x1,y1,z1),由 n1·DP=0,n1·DA=0,得1x1- y1=0,2故可取 n1=(2,1,1).→由 (1) 可知 DE ⊥平面 PCD ,故平面PCD 的法向量n2可取为ED,即 n2=(1,-1,0).从而法向量n1,n2的夹角的余弦值为cos 〈n1,n2〉=n1·n2=3,|n1| |·n2 |6故所求二面角 APDC 的余弦值为3 6 .11. B [ 根据题意可知平面A1BD ⊥平面 A1ACC 1且两平面的交线是A1O,所以过点P 作交线 A1O 的垂线 PE,则 PE⊥平面 A1BD,所以∠ A1OP 或其补角就是直线OP 与平面 A1BD 所成的角α.设正方体的边长为2,则根据图形可知直线OP 与平面 A1BD 可以垂直.当点 P 与点 C1重合时可得 A1O=OP=6,A1C1=2 2,所以1× 6× 6×sin α=1×22×2,22所以 sin α=2 2;3当点 P 与点 C 重合时,可得sin α=2=6 6 3.根据选项可知 B 正确. ]12.①③解析①中,∵ BC1∥平面 AD1C,∴ BC1上任意一点到平面 AD 1C 的距离相等,所以体积不变,正确;②中,P 在直线 BC1上运动时,直线 AB 与平面 ACD 1所成角和直线 AC1与平面ACD 1 所成角不相等,所以不正确;③中,P 在直线 BC 1 上运动时,点 P 在平面 AD 1 C 1B 中,既二面角 P —AD 1-C 的大小不受影响,所以正确.3 513. 10解析以 A 为坐标原点, AB 、 AD 、AA 1 所在直线分别为 x 轴、 y 轴、 z 轴建立空间直角坐标系,如图所示,11则 A 1 (0,0,1) ,E(1,0,2), F(2, 1,0), D 1 (0,1,1) .→1 →.∴ A 1E = (1,0,-),A 1D 1= (0,1,0)2设平面 A 1D 1E 的一个法向量为 n = (x , y , z),→=0,1n ·A 1E即x - z = 0,则2→ y = 0.n ·A 1D 1= 0,令 z = 2,则 x = 1.∴ n = (1,0,2) .→1又 A 1F = (2, 1,- 1),∴点 F 到平面 A 1D 1 E 的距离为→1- 2|||A 1F ·n |=2= 3 5d = |n |510.14.解 (1)∵ AC = BC , PA = PB , PC = PC ,∴△ PCA ≌△ PCB ,∴∠ PCA =∠ PCB ,∵ PC ⊥ AC ,∴ PC ⊥ CB ,又 AC ∩CB = C ,∴ PC ⊥平面 ACB ,且 PC , CA , CB 两两垂直,故以 C 为坐标原点,分别以CB , CA , CP 所在直线为 x ,y , z 轴建立空间直角坐标系,则C(0,0,0), A(0,2,0) , D(1,0,0) , P(0,0,2),→ →∴ AD = (1,- 2,0), PD = (1,0,- 2),设平面 PAD 的一个法向量为n = (x , y , z) ,→n ·AD =0∴,∴取 n = (2,1,1) ,→n ·PD =0→平面 PDB 的一个法向量为CA = (0,2,0) ,→6∴ cos 〈n , CA 〉= 6 ,设二面角 A —PD — B 的平面角为 θ,且 θ为钝角,6 6 ∴ cos θ=- 6 ,∴二面角 A — PD — B 的余弦值为-6.(2)方法一存在, M 是 AB 的中点或 A 是 MB 的中点.设 M(x,2- x,0) (x ∈ R ),→∴ PM = (x,2- x ,- 2),∴ →|cos 〈 PM , n 〉 ||x|1 = x 2+- x2+4· 6 = 6,解得 x = 1 或 x =- 2,∴ M(1,1,0) 或 M(- 2,4,0),∴在直线 AB 上存在点 M ,且当 M 是 AB 的中点或 A 是 MB 的中点时,使得 PM 与平面 PAD所成角的正弦值为 16.方法二 存在, M 是 AB 的中点或 A 是 MB 的中点. → →设 AM = λAB ,→=(2 λ,- 2λ, 0) (λ∈ R ),则 AM = λ(2,- 2,0) → → →∴ PM = PA + AM = (2λ,2- 2λ,- 2),→|2λ|∴ |cos 〈 PM , n 〉 |=2+- 2λ 2+ 4· 6 λ 1解得 λ= 或 λ=- 1.∴M 是 AB 的中点或 A 是 MB 的中点.∴在直线 AB 上存在点 M ,且当 M 是 AB 的中点或1=6.A 是 MB 的中点时,使得 PM 与平面 PAD1所成角的正弦值为 .。
13—立体几何中的向量方法向量是几何学中非常重要的概念之一,它可以用来描述空间中的方向和大小。
在立体几何中,向量方法被广泛应用于解决各种问题,例如计算向量的模、方向角、点到直线的距离等等。
本文将详细介绍立体几何中的向量方法,包括向量的基本概念、加减乘除、数量积、向量积等内容。
一、向量的基本概念在立体几何中,我们通常用箭头表示一个向量,表示向量的长度表示向量的大小,箭头的方向表示向量的方向。
两个向量相等意味着它们的大小和方向都相同。
向量的模表示向量的大小,一般用,AB,表示,表示点A到点B的距离,也表示向量的大小。
二、向量的加减乘除1.向量的加法:向量的加法按照平行四边形法则进行,即将一个向量的起点与另一个向量的终点相连,新向量的起点为第一个向量的起点,终点为第二个向量的终点。
用数学表示为A+B=C,C的起点为A的起点,终点为B的终点。
2.向量的减法:向量的减法等价于将减去的向量取反再进行加法,即A-B=A+(-B)。
其中,-B表示B的方向相反,大小相同的向量。
3. 向量的数量积:两个向量的数量积等于向量的模的乘积与两个向量之间的夹角的余弦值的乘积,即A·B=,A,B,cosθ。
其中,θ为两个向量之间的夹角。
4. 向量的向量积:两个向量的向量积等于一个新的向量,其方向垂直于原来两个向量所在的平面,大小等于两个向量的模的乘积与夹角的正弦值的乘积,即A×B=,A,B,sinθn。
其中,n为右手定则确定的垂直于平面的方向。
三、应用实例1.计算向量的模:给定一个向量A=(-3,4,5),可以计算其模为,A,=√((-3)^2+4^2+5^2)=√50。
2. 计算向量的方向角:给定一个向量A=(-3,4,5),可以计算其方向角为α=arccos(-3/√50),β=arccos(4/√50),γ=arccos(5/√50)。
3.计算点到直线的距离:给定一点P(x,y,z)和一直线l,可以通过向量的方法计算点P到直线l的距离。
第7讲立体几何中的向量方法1.直线的方向向量和平面的法向量(1)直线的方向向量直线l上的向量e或与01共线的向量叫做直线l的方向向量,显然一条直02无数个.(2)平面的法向量如果表示向量n03垂直于平面α,则称这个向量垂直于平面α,记作n⊥α,此时向量n叫做平面α的法向量.04无数个,且它们是05共线向量.(3)设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,v,则l∥m06a∥b⇔07a=k b,k∈R;l⊥m08a⊥b⇔09a·b=0;l∥α10a⊥u⇔11a·u=0;l⊥α12a∥u⇔13a=k u,k∈R;α∥β14u∥v⇔15u=k v,k∈R;α⊥β16u⊥v⇔17u·v=0.2.空间向量与空间角的关系(1)两条异面直线所成角的求法设两条异面直线a,b的方向向量分别为a,b,其夹角为θ,则cosφ=|cosθ| 18|a·b||a||b|(其中φ为异面直线a,b所成的角,范围是(0°,90°]).(2)直线与平面所成角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=19|e ·n ||e ||n |,φ的取值范围是[0°,90°].(3)求二面角的大小如图①,AB ,CD 是二面角α-l -β的两个半平面内与棱l 垂直的直线,则二面角的大小θ=20〈AB→,CD →〉.如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉,取值范围是[0°,180°].确定平面法向量的方法(1)直接法:观察是否有垂直于平面的向量,若有,则此向量就是法向量. (2)待定系数法:取平面内的两个相交向量a ,b ,设平面的法向量为n =(x ,y ,z ),由⎩⎨⎧n ·a =0,n ·b =0,解方程组求得.1.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α和平面β的位置关系是( )A .平行B .相交但不垂直C .垂直D .重合答案 C解析 由(1,2,0)·(2,-1,0)=1×2+2×(-1)+0×0=0,知两平面的法向量互相垂直,所以两平面互相垂直.2.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个单位法向量是( )A .⎝ ⎛⎭⎪⎫33,33,-33B .⎝ ⎛⎭⎪⎫33,-33,33C .⎝ ⎛⎭⎪⎫-33,33,33D .⎝ ⎛⎭⎪⎫-33,-33,-33答案 D解析 AB→=(-1,1,0),AC →=(-1,0,1),设平面ABC 的法向量n =(x ,y ,z ),∴⎩⎨⎧-x +y =0,-x +z =0.令x =1,则y =1,z =1,∴n =(1,1,1).单位法向量为±n |n |=±⎝ ⎛⎭⎪⎫33,33,33. 3. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .MN 在平面BB 1C 1C 内答案 B解析 MN →=MA 1→+A 1A →+AN →=13BA 1→+A 1A →+13AC →=13(B 1A 1→-B 1B →)+B 1B →+13(AB →+AD →)=23B 1B →+13B 1C 1→,∴MN →,B 1B →,B 1C 1→共面.又MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .4. 如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 的中心,E ,F 分别是CC 1,AD 的中点,那么异面直线OE 与FD 1所成角的余弦值等于( )A .105B .155C .45D .23答案 B解析 建立如图所示的空间直角坐标系,则O (1,1,0),E (0,2,1),F (1,0,0),D 1(0,0,2),∴FD 1→=(-1,0,2),OE →=(-1,1,1).∴cos 〈FD 1→,OE →〉=FD 1→·OE→|FD1→||OE →|=1+0+25×3=155.故选B .5.如图,已知P 为矩形ABCD 所在平面外一点,P A ⊥平面ABCD ,E ,F 分别是AB ,PC 的中点.若∠PDA =45°,则EF 与平面ABCD 所成的角的大小是( )A .90°B .60°C .45°D .30°答案 C解析 设AD =a ,AB =b ,因为∠PDA =45°,P A ⊥平面ABCD ,所以P A ⊥AD ,P A =AD =a .以点A 为坐标原点,AB ,AD ,AP 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,a ),E ⎝ ⎛⎭⎪⎫b 2,0,0,F ⎝ ⎛⎭⎪⎫b 2,a 2,a 2,所以EF→=⎝ ⎛⎭⎪⎫0,a 2,a 2.易知AP →=(0,0,a )是平面ABCD 的一个法向量.设EF 与平面ABCD 所成的角为θ,则sin θ=|cos 〈AP →,EF →〉|=|AP →·EF →||AP →||EF →|=22.所以θ=45°.6. (2020·广东华侨中学高三模拟)如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则点M 的坐标为( )A .(1,1,1)B .⎝ ⎛⎭⎪⎫23,23,1C .⎝ ⎛⎭⎪⎫22,22,1D .⎝ ⎛⎭⎪⎫24,24,1答案 C解析 设AC 与BD 相交于点O ,连接OE ,∵AM ∥平面BDE ,且AM ⊂平面ACEF ,平面ACEF ∩平面BDE =OE ,∴AM ∥EO ,又O 是正方形ABCD 对角线的交点,∴M 为线段EF 的中点.在空间直角坐标系中,E (0,0,1),F (2,2,1).由中点坐标公式,知点M 的坐标为⎝ ⎛⎭⎪⎫22,22,1.考向一 利用空间向量证明平行、垂直例1 如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠ABC =∠BCD =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 所成的角为30°.求证:(1)CM ∥平面P AD ; (2)平面P AB ⊥平面P AD .证明 以点C 为坐标原点,分别以CB ,CD ,CP 所在的直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系Cxyz .∵PC ⊥平面ABCD ,∴∠PBC 为PB 与平面ABCD 所成的角. ∴∠PBC =30°.∵PC =2,∴BC =23,PB =4.∴D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),M ⎝ ⎛⎭⎪⎫32,0,32,∴DP→=(0,-1,2),DA→=(23,3,0),CM →=⎝ ⎛⎭⎪⎫32,0,32. (1)设n =(x ,y ,z )为平面P AD 的一个法向量,由⎩⎪⎨⎪⎧DP →·n =0,DA →·n =0,得⎩⎨⎧-y +2z =0,23x +3y =0. 令y =2,得n =(-3,2,1).∵n ·CM→=-3×32+2×0+1×32=0,∴n ⊥CM →.又CM ⊄平面P AD ,∴CM ∥平面P AD . (2)如图,取AP 的中点E ,连接BE ,则E (3,2,1),BE →=(-3,2,1).∵PB =AB ,∴BE ⊥P A .又BE →·DA →=(-3,2,1)·(23,3,0)=0, ∴BE→⊥DA →,∴BE ⊥DA . 又P A ∩DA =A ,∴BE ⊥平面P AD . 又BE ⊂平面P AB ,∴平面P AB ⊥平面P AD . 1.用向量法证平行问题的类型及常用方法线线平行证明两直线的方向向量共线线面平行 ①证明该直线的方向向量与平面的某一法向量垂直;②证明该直线的方向向量与平面内某直线的方向向量平行;③证明该直线的方向向量可以用平面内的两个不共线的向量表示面面平行①证明两平面的法向量平行(即为共线向量); ②转化为线面平行、线线平行问题线线垂直 问题证明两直线所在的方向向量互相垂直,即证它们的数量积为零线面垂直 问题 直线的方向向量与平面的法向量共线,或利用线面垂直的判定定理转化为证明线线垂直面面垂直 问题两个平面的法向量垂直,或利用面面垂直的判定定理转化为证明线面垂直1. 如图所示,在直三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN ∥平面A 1B 1C 1; (2)平面MBC 1⊥平面BB 1C 1C .证明 由题意知AA 1,AB ,AC 两两垂直,以A 为坐标原点建立如图所示的空间直角坐标系.不妨设正方形AA 1C 1C 的边长为2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0),C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1).(1)因为几何体是直三棱柱, 所以侧棱AA 1⊥底面A 1B 1C 1.因为AA 1→=(2,0,0),MN →=(0,1,1),所以MN →·AA 1→=0,即MN →⊥AA 1→.因为MN ⊄平面A 1B 1C 1,故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为MB →=(-1,2,0),MC 1→=(1,0,2),所以⎩⎪⎨⎪⎧n 1·MB →=0,n 1·MC 1→=0,即⎩⎨⎧-x 1+2y 1=0,x 1+2z 1=0, 令x 1=2,则平面MBC 1的一个法向量为n 1=(2,1,-1).同理可得平面BB 1C 1C 的一个法向量为n 2=(0,1,1).因为n 1·n 2=2×0+1×1+(-1)×1=0,所以n 1⊥n 2,所以平面MBC 1⊥平面BB 1C 1C . 多角度探究突破考向二 利用空间向量求空间角 角度1 求异面直线所成的角例2 (1) (2020·汕头模拟)如图,正四棱锥P -ABCD 的侧面P AB 为正三角形,E 为PC 的中点,则异面直线BE 和P A 所成角的余弦值为( )A .33B .32C .22D .12答案 A解析 连接AC ,BD ,交于点O ,连接PO ,以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,设AB =2,则OA =OB =OP =1,A (1,0,0),B (0,1,0),C (-1,0,0),P (0,0,1),E ⎝ ⎛⎭⎪⎫-12,0,12,BE →=⎝ ⎛⎭⎪⎫-12,-1,12,P A →=(1,0,-1),设异面直线BE 和P A 所成角为θ,则cos θ=|BE →·P A →||BE →||P A →|=132×2=33. ∴异面直线BE 和P A 所成角的余弦值为33.故选A .(2) 如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是CC 1,AD 的中点,那么异面直线D 1E 和A 1F 所成角的余弦值等于________.答案 25解析 如图,以D 为原点建立空间直角坐标系.则A 1(2,0,2),F (1,0,0),D 1(0,0,2),E (0,2,1), 则A 1F →=(-1,0,-2),D 1E →=(0,2,-1), cos 〈D 1E →,A 1F →〉=D 1E →·A 1F →|D 1E →||A 1F →|=25×5=25, ∴异面直线D 1E 和A 1F 所成角的余弦值等于25.(1)求异面直线所成角的思路①选好基底或建立空间直角坐标系; ②求出两直线的方向向量v 1,v 2;③代入公式cos θ=|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解(θ为两异面直线所成角).(2)两异面直线所成角的关注点两异面直线所成角θ的范围是(0°,90°],两向量的夹角α的范围是[0°,180°],当异面直线的方向向量的夹角为锐角或直角时,该角就是异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.2.(多选)(2020·山东潍坊5月模拟)已知在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点E ,F ,H 分别是AB ,DD 1,BC 1的中点,下列结论中正确的是( )A .D 1C 1∥平面CHDB .AC 1⊥平面BDA 1C .三棱锥D -BA 1C 1的体积为56 D .直线EF 与BC 1所成的角为30° 答案 ABD解析 如图1所示,因为D 1C 1∥DC ,D 1C 1⊄平面CHD ,DC ⊂平面CHD ,所以D 1C 1∥平面CHD ,A 正确;建立空间直角坐标系,如图2所示.由于正方体ABCD -A 1B 1C 1D 1的棱长为1,则AC 1→=(-1,1,1),BD →=(-1,-1,0),DA 1→=(1,0,1),所以AC 1→·BD →=1-1+0=0,AC 1→·DA 1→=-1+0+1=0,所以AC 1→⊥BD →,AC 1→⊥DA 1→,所以AC 1⊥平面BDA 1,B 正确;三棱锥D -BA 1C 1的体积为V 三棱锥D -BA 1C 1=V 正方体ABCD -A 1B 1C 1D 1-4V 三棱锥A 1-ABD =1-4×13×12×1×1×1=13,所以C 错误;E ⎝ ⎛⎭⎪⎫1,12,0,F ⎝ ⎛⎭⎪⎫0,0,12,所以EF →=⎝ ⎛⎭⎪⎫-1,-12,12,BC →1=(-1,0,1),所以cos 〈EF →,BC 1→〉=EF →·BC 1→|EF →||BC 1→|=1+0+1232×2=32,所以直线EF 与BC 1所成的角是30°,D 正确.故选ABD.角度2 求直线与平面所成的角例3 (2020·山东高考) 如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.解 (1)证明:在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l .因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC ,又PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD . 因为DC ∩PD =D ,所以l ⊥平面PDC . (2)如图,建立空间直角坐标系Dxyz .因为PD =AD =1,所以D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0), 设Q (m,0,1),则有DC→=(0,1,0),DQ →=(m,0,1),PB →=(1,1,-1).设平面QCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎨⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,知直线PB 与平面QCD 所成角的正弦值等于|cos 〈n ,PB→〉|= |1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63, 当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63.利用向量法求线面角的方法 (1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.提醒:在求平面的法向量时,若能找出平面的垂线,则在垂线上取两个点可构成一个法向量.3.(2019·浙江高考)如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF⊥BC;(2)求直线EF与平面A1BC所成角的余弦值.解解法一:(1)证明:如图1,连接A1E.因为A1A=A1C,E是AC的中点,所以A1E⊥AC.又因为平面A1ACC1⊥平面ABC,A1E⊂平面A1ACC1,平面A1ACC1∩平面ABC=AC,所以A1E⊥平面ABC,则A1E⊥BC.又因为A1F∥AB,∠ABC=90°,故BC⊥A1F.又因为A1E∩A1F=A1,所以BC⊥平面A1EF.因为EF⊂平面A1EF,所以EF⊥BC.(2)如图1,取BC的中点G,连接EG,GF,连接A1G交EF于点O,则四边形EGF A1是平行四边形.由于A1E⊥平面ABC,故A1E⊥EG,所以平行四边形EGF A1为矩形.由(1),得BC⊥平面EGF A1,所以平面A1BC⊥平面EGF A1,所以EF在平面A1BC上的射影在直线A1G上.则∠EOG是直线EF与平面A1BC所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG = 3. 由于O 为A 1G 的中点,故EO =OG =A 1G 2=152, 所以cos ∠EOG =EO 2+OG 2-EG 22EO ·OG=35.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 解法二:(1)证明:如图2,连接A 1E .因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又因为平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .以点E 为坐标原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立如图所示的空间直角坐标系Exyz .不妨设AC =4,则E (0,0,0),A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝ ⎛⎭⎪⎫32,32,23,C (0,2,0). 因此,EF →=⎝ ⎛⎭⎪⎫32,32,23,BC →=(-3,1,0).由EF →·BC→=0,得EF ⊥BC .(2)由(1)可得BC →=(-3,1,0),A 1C →=(0,2,-23). 设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC →·n =0,A 1C →·n =0,得⎩⎪⎨⎪⎧-3x +y =0,y -3z =0. 取n =(1, 3,1),设直线EF 与平面A 1BC 所成的角为θ,故sin θ=|cos 〈EF →,n 〉|=|EF →·n ||EF →||n |=45,所以cos θ=35.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 角度3 求二面角例4 (2020·济南一模)如图1,平面四边形ABCD 中,AB =AC =2,AB ⊥AC ,AC ⊥CD ,E 为BC 的中点,将△ACD 沿对角线AC 折起,使CD ⊥BC ,连接BD ,DE ,AE ,得到如图2所示的三棱锥D -ABC .(1)证明:平面ADE ⊥平面BCD ;(2)已知直线DE 与平面ABC 所成的角为π4,求二面角A -BD -C 的余弦值. 解 (1)证明:在三棱锥D -ABC 中,因为CD ⊥BC ,CD ⊥AC ,AC ∩BC =C ,所以CD ⊥平面ABC . 又AE ⊂平面ABC ,所以AE ⊥CD .因为AB =AC ,E 为BC 的中点,所以AE ⊥BC . 又BC ∩CD =C ,所以AE ⊥平面BCD . 又AE ⊂平面ADE ,所以平面ADE ⊥平面BCD .(2)由(1)可知∠DEC 即为直线DE 与平面ABC 所成的角,所以∠DEC =π4. 在Rt △ABC 中,由勾股定理得BC =2,故CD =CE =1.作EF ∥CD 交BD 于点F ,由(1)知EA ,EB ,EF 两两垂直,以E 为原点,EA ,EB ,EF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则E (0,0,0),A (1,0,0),B (0,1,0),D (0,-1,1), 易知平面BCD 的一个法向量为n 1=(1,0,0), 又AB→=(-1,1,0),AD →=(-1,-1,1), 设平面ABD 的一个法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 2·AB →=-x +y =0,n 2·AD →=-x -y +z =0,令x =1,解得n 2=(1,1,2), cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=66.由图可知,该二面角为锐角, 所以二面角A -BD -C 的余弦值为66.利用向量法确定二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量夹角的大小就是二面角的大小.4. (2020·青岛模拟)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年,在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵(qiàn dǔ);阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖臑(biē nào)指四个面均为直角三角形的四面体.如图在堑堵ABC -A 1B 1C 1中,AB ⊥AC .(1)求证:四棱锥B -A 1ACC 1为阳马;(2)若C 1C =BC =2,当鳖臑C 1-ABC 体积最大时,求锐二面角C -A 1B -C 1的余弦值.解 (1)证明:∵A 1A ⊥底面ABC ,AB ⊂面ABC , ∴A 1A ⊥AB .又AB ⊥AC ,A 1A ∩AC =A , ∴AB ⊥面ACC 1A 1. 又四边形ACC 1A 1为矩形, ∴四棱锥B -A 1ACC 1为阳马.(2)∵AB ⊥AC ,BC =2,∴AB 2+AC 2=4. 又C 1C ⊥底面ABC ,∴VC 1-ABC =13·C 1C ·12AB ·AC =13·AB ·AC ≤13·AB 2+AC 22=23,当且仅当AB =AC =2时,=13·AB ·AC 取最大值.∵AB ⊥AC ,A 1A ⊥底面ABC ,∴以A 为原点,建立如图所示的空间直角坐标系,则B (2,0,0),C (0,2,0),A 1(0,0,2),C 1(0,2,2),A 1B →=(2,0,-2),BC →=(-2,2,0),A 1C 1→=(0,2,0).设面A 1BC 的一个法向量为n 1=(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n 1·A 1B →=0,n 1·BC →=0,得⎩⎪⎨⎪⎧2x 1-2z 1=0,-2x 1+2y 1=0,令z 1=1,得n 1=(2,2,1). 同理得面A 1BC 1的一个法向量为n 2=(2,0,1),cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=155,∴二面角C -A 1B -C 1的余弦值为155.用向量法探究点的位置如图所示,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.解 (1)证明:因为平面P AD ⊥平面ABCD ,AB ⊥AD ,所以AB ⊥平面P AD ,所以AB ⊥PD .又因为P A ⊥PD ,P A ∩AB =A ,所以PD ⊥平面P AB . (2)如图,取AD 的中点O ,连接PO ,CO .因为P A =PD ,所以PO ⊥AD . 又因为PO ⊂平面P AD , 平面P AD ⊥平面ABCD , 所以PO ⊥平面ABCD . 因为CO ⊂平面ABCD , 所以PO ⊥CO .因为AC =CD ,所以CO ⊥AD . 建立空间直角坐标系Oxyz .由题意得,A (0,1,0),B (1,1,0),C (2,0,0),D (0,-1,0),P (0,0,1),PB →=(1,1,-1),PC→=(2,0,-1),PD →=(0,-1,-1).设平面PCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0. 令z =2,则x =1,y =-2,所以n =(1,-2,2). 又PB→=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB→|=-33,所以直线PB 与平面PCD 所成角的正弦值为33.(3)假设在棱P A 上存在点M ,使得BM ∥平面PCD ,则存在λ∈[0,1]使得AM →=λAP→.因此点M (0,1-λ,λ),BM →=(-1,-λ,λ). 因为BM ⊄平面PCD ,所以当且仅当BM →·n =0时,BM ∥平面PCD ,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M 使得BM ∥平面PCD ,此时AM AP =14. 答题启示对于点的探究型问题,要善于根据点的位置结合向量的有关定理灵活设出未知量,尽量使未知量个数最少.对点训练(2020·滨州二模) 如图所示,在等腰梯形ABCD 中,AD ∥BC ,∠ADC =60°,直角梯形ADFE 所在的平面垂直于平面ABCD ,且∠EAD =90°,EA =AD =2DF =2CD =2.(1)证明:平面ECD ⊥平面ACE ;(2)点M 在线段EF 上,试确定点M 的位置,使平面MCD 与平面EAB 所成的二面角的余弦值为34.解 (1)证明:因为平面ABCD ⊥平面ADFE ,平面ABCD ∩平面ADFE =AD ,EA ⊥AD ,EA ⊂平面ADFE ,所以EA ⊥平面ABCD ,又CD ⊂平面ABCD ,所以EA ⊥CD , 在△ADC 中,CD =1,AD =2,∠ADC =60°, 由余弦定理得,AC = 1+4-2×1×2cos60°=3, 所以AC 2+CD 2=AD 2,所以CD ⊥AC .又EA ⊥CD ,EA ∩AC =A ,所以CD ⊥平面ACE , 又CD ⊂平面ECD ,所以平面ECD ⊥平面ACE . (2)以C 为坐标原点,以CA ,CD 所在直线分别为x 轴、 y 轴,过点C 且平行于AE 的直线为z 轴,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,0,0),B ⎝ ⎛⎭⎪⎫32,-12,0,D (0,1,0),E (3,0,2),F (0,1,1),AB →=⎝ ⎛⎭⎪⎫-32,-12,0,AE →=(0,0,2),CD→=(0,1,0),FE →=(3,-1,1),CF →=(0,1,1),设FM →=λFE →=(3λ,-λ,λ)(0≤λ≤1),则CM→=CF →+FM →=(3λ,1-λ,1+λ).设平面EAB 的一个法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AE →=0,即⎩⎨⎧-32x 1-12y 1=0,2z 1=0,取x 1=1,得m =(1,-3,0).设平面MCD 的一个法向量为n =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧n ·CD →=0,n ·CM →=0,得⎩⎨⎧y 2=0,3λx 2+(1-λ)y 2+(1+λ)z 2=0,令x 2=1+λ,得n =(1+λ,0,-3λ),因为平面MCD 与平面EAB 所成的二面角的余弦值为34,所以|cos 〈m ,n 〉|=|m ·n ||m ||n |=|1+λ|24λ2+2λ+1=34, 整理得8λ2-2λ-1=0,解得λ=12或λ=-14(舍去),所以点M 为线段EF 的中点时,平面MCD 与平面EAB 所成的二面角的余弦值为34.一、单项选择题1.直线l 的方向向量a =(1,-3,5),平面α的法向量n =(-1,3,-5),则有( )A .l ∥αB .l ⊥αC .l 与α斜交D .l ⊂α或l ∥α答案 B解析 因为a =(1,-3,5),n =(-1,3,-5),所以a =-n ,a ∥n .所以l ⊥平面α.选B .2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( )A .45°B .135°C .45°或135°D .90° 答案 C解析 ∵cos 〈m ,n 〉=m ·n |m ||n |=12=22,∴〈m ,n 〉=45°.∴二面角为45°或135°.故选C .3. 如图所示,已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是上底面A 1B 1C 1D 1和侧面ADD 1A 1的中心,则EF 和CD 所成的角是( )A .60°B .45°C .30°D .135°答案 B解析 以D 为原点,分别以射线DA ,DC ,DD 1为x 轴、y 轴、z 轴的非负半轴建立如图所示的空间直角坐标系Dxyz ,设正方体的棱长为1,则D (0,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫12,12,1,F ⎝ ⎛⎭⎪⎫12,0,12,EF →=⎝ ⎛⎭⎪⎫0,-12,-12,DC →=(0,1,0),∴cos 〈EF →,DC →〉=EF →·DC →|EF →||DC →|=-22,∴〈EF →,DC →〉=135°,∴异面直线EF 和CD 所成的角是45°.故选B .4.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,BB 1=4,则直线BB 1与平面ACD 1所成角的正弦值为( )A .13B .33C .63D .223答案 A解析 如图所示,建立空间直角坐标系Dxyz .则A (2,0,0),C (0,2,0),D 1(0,0,4),B (2,2,0),B 1(2,2,4),AC →=(-2,2,0),AD 1→=(-2,0,4),BB 1→=(0,0,4). 设平面ACD 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎨⎧-2x +2y =0,-2x +4z =0, 取x =2,则y =2,z =1,故n =(2,2,1)是平面ACD 1的一个法向量,设直线BB 1与平面ACD 1所成的角是θ,则sin θ=|cos 〈n ,BB 1→〉|=|n ·BB 1→||n ||BB 1→|=49×4=13.故选A .5.△ABC 的顶点分别为A (1,-1,2),B (5,-6,2),C (1,3,-1),则AC 边上的高BD 等于( )A .5B .41C .4D .2 5答案 A解析 ∵A (1,-1,2),B (5,-6,2),C (1,3,-1),∴AB→=(4,-5,0),AC →=(0,4,-3).∵点D 在直线AC 上,∴设AD →=λAC →=(0,4λ,-3λ),由此可得BD→=AD →-AB →=(0,4λ,-3λ)-(4,-5,0)=(-4,4λ+5,-3λ).又BD →⊥AC →,∴BD →·AC →=-4×0+(4λ+5)×4+(-3λ)×(-3)=0,解得λ=-45.因此BD →=(-4,4λ+5,-3λ)=⎝ ⎛⎭⎪⎫-4,95,125.可得|BD→|= (-4)2+⎝ ⎛⎭⎪⎫952+⎝ ⎛⎭⎪⎫1252=5.6. (2020·安徽六安一中质检)如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2.若二面角B 1-DC -C 1的大小为60°,则AD 的长为( )A . 2B . 3C .2D .22答案 A解析 分别以CA ,CB ,CC 1所在的直线为x ,y ,z 轴建立空间直角坐标系,则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),设AD =a ,则点D 坐标为(1,0,a ),CD →=(1,0,a ),CB 1→=(0,2,2),设平面B 1CD 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CB 1→=0,n ·CD →=0,得⎩⎨⎧2y +2z =0,x +az =0,令z =-1,得n =(a,1,-1),又平面C 1DC 的一个法向量为m =(0,1,0).所以cos60°=m ·n |m ||n |,得1a 2+2=12,解得a =2,故选A .7. (2021·湖南湘潭高三月考)在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,如图,建立空间直角坐标系,则下列向量中是平面P AB 的法向量的是( )A .⎝ ⎛⎭⎪⎫1,1,12 B .(1,2,1)C .(1,1,1)D .(2,-2,1)答案 A解析 P A →=(1,0,-2),AB →=(-1,1,0),设平面P AB 的法向量为n =(x ,y,1),则⎩⎨⎧ x -2=0,-x +y =0.解得⎩⎨⎧x =2,y =2.∴n =(2,2,1).又⎝ ⎛⎭⎪⎫1,1,12=12n ,∴A 正确.8.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A .12 B .23 C .33 D .22答案 B解析 以A 为坐标原点建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12,设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧n 1·A 1D →=0,n 1·A 1E →=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎨⎧y =2,z =2.∴n 1=(1,2,2).又平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.故选B .二、多项选择题9.(2020·海口高考调研) 如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC =23AB =2,AB ⊥AC ,点D ,E 分别是线段BC ,B 1C 上的动点(不含端点),且EC B 1C =DCBC .则下列说法正确的是( )A .ED ∥平面ACC 1B .该三棱柱的外接球的表面积为68πC .异面直线B 1C 与AA 1所成角的正切值为32 D .二面角A -EC -D 的余弦值为413 答案 AD解析 在直三棱柱ABC -A 1B 1C 1中,四边形BCC 1B 1是矩形,因为ECB 1C =DC BC ,所以ED ∥BB 1∥CC 1,所以ED ∥平面ACC 1,A 正确;因为AA 1=AC =23AB =2,所以AB =3,因为AB ⊥AC ,所以BC =22+32=13,所以B 1C =13+4=17,易知B 1C 是三棱柱外接球的直径,所以三棱柱外接球的表面积为4π×⎝⎛⎭⎪⎫1722=17π,B 错误;因为AA 1∥BB 1,所以异面直线B 1C 与AA 1所成的角为∠BB 1C .在Rt △B 1BC 中,BB 1=2,BC =13,所以tan ∠BB 1C =BC BB 1=132,C 错误;二面角A -EC -D 即二面角A -B 1C -B ,以A 为坐标原点,以AB →,AC →,AA 1→的方向分别为x ,y ,z 轴的正方向建立空间直角坐标系,可得平面AB 1C 的一个法向量为(2,0,-3),平面BB 1C 的一个法向量为(2,3,0),故二面角A -EC -D 的余弦值为2×213×13=413,D 正确.10. (2020·山东模拟)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,如图,E ,F ,G 分别为BC ,CC 1,BB 1的中点,则下列说法正确的是( )A .直线A 1G 与平面AEF 平行B .直线D 1D 与直线AF 垂直C .平面AEF 截正方体ABCD -A 1B 1C 1D 1所得截面的面积为98 D .点C 与点G 到平面AEF 的距离相等 答案 AC解析 如图,连接AD 1,D 1F ,因为A 1G ∥D 1F ,且A ,E ,F ,D 1在同一平面内,所以A 1G ∥平面AEF ,故A 正确;因为AF 与C 1C 相交且不垂直,D 1D 与C 1C 平行,所以直线D 1D 与直线AF 不垂直,故B 错误;平面AEF 截正方体ABCD -A 1B 1C 1D 1所得截面为等腰梯形AEFD 1,作EH ⊥AD 1,交AD 1于点H ,连接D 1E ,DE ,可得AE =52,AD 1=2,D 1E =1+54=32,所以在△AD 1E中,cos ∠D 1AE =1010,所以sin ∠D 1AE =31010,所以EH =52×31010=324,所以等腰梯形AD 1FE 的面积S =12×⎝ ⎛⎭⎪⎫2+22×324=98,故C 正确;以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,连接AG ,AC ,则可得平面AEF 的一个法向量为n =(2,1,2),AG →=⎝ ⎛⎭⎪⎫0,1,12,AC →=(-1,1,0),所以点G 到平面AEF 的距离d 1=|AG →·n ||n |=23,点C 到平面AEF 的距离d 2=|AC →·n ||n |=13,故D 错误.故选AC .三、填空题11. 如图所示,二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为________.答案60°解析∵CD→=CA→+AB→+BD→,∴|CD→|=(CA→+AB→+BD→)2= 36+16+64+2CA→·BD→= 116+2CA→·BD→=217.∴CA→·BD→=|CA→||BD→|cos〈CA→,BD→〉=-24.∴cos〈CA→,BD→〉=-12.又所求二面角与〈CA→,BD→〉互补,∴所求的二面角为60°.12. 正三棱柱(底面是正三角形的直棱柱)ABC-A1B1C1的底面边长为2,侧棱长为22,则AC1与侧面ABB1A1所成的角为________.答案 π6解析 以C 为原点建立如图所示的空间直角坐标系,得下列坐标:A (2,0,0),C 1(0,0,22).点C 1在侧面ABB 1A 1内的射影为点C 2⎝ ⎛⎭⎪⎫32,32,22.所以AC 1→=(-2,0,22),AC 2→=⎝ ⎛⎭⎪⎫-12,32,22,设直线AC 1与平面ABB 1A 1所成的角为θ,则cos θ=AC 1→·AC 2→|AC1→||AC 2→|=1+0+823×3=32.又θ∈⎣⎢⎡⎦⎥⎤0,π2,所以θ=π6.13.(2020·山西大同高三模拟)在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为A 1B 和AC 上的点,且A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是________.答案 平行解析 MN →=MA 1→+A 1A →+AN →=13BA 1→+A 1A →+13AC →=13(BA →+AA 1→)+A 1A →+13(AB →+BC →)=23A 1A →+13BC →=23B 1B →+13BC →.∴MN →与B 1B →,BC →共面.又MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .14.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________.答案23解析 如图,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),E ⎝ ⎛⎭⎪⎫1,1,13,F ⎝ ⎛⎭⎪⎫0,1,23,AE →=⎝ ⎛⎭⎪⎫0,1,13,AF →=⎝ ⎛⎭⎪⎫-1,1,23, 设平面AEF 的法向量为n =(x ,y ,z ),平面AEF 与平面ABC 所成的锐二面角为θ,由图知θ为锐角,由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,则z =-3,x =-1,则n =(-1,1,-3),平面ABC 的一个法向量为m =(0,0,-1),cos θ=|cos 〈n ,m 〉|=31111,tan θ=23.四、解答题15.(2020·山东省模拟考) 如图,四棱锥S -ABCD 中,底面ABCD 为矩形.SA ⊥平面ABCD ,E ,F 分别为AD ,SC 的中点,EF 与平面ABCD 所成的角为45°.(1)证明:EF 为异面直线AD 与SC 的公垂线;(2)若EF =12BC ,求二面角B -SC -D 的余弦值.解 (1)证明:以A 为坐标原点,AB →的方向为x 轴正方向,|AB →|为单位长,建立如图所示的空间直角坐标系Axyz .设D (0,b,0),S (0,0,c ),则C (1,b,0),E ⎝ ⎛⎭⎪⎫0,b 2,0,F ⎝ ⎛⎭⎪⎫12,b 2,c 2,EF →=⎝ ⎛⎭⎪⎫12,0,c 2,AS →=(0,0,c ),AD→=(0,b,0). 因为EF 与平面ABCD 所成的角为45°,所以EF →与平面ABCD 的法向量AS →的夹角为45°.所以AS →·EF →=|AS →||EF →|cos45°, 即c 22=22×c ×14+c 24,解得c =1,故EF →=⎝ ⎛⎭⎪⎫12,0,12,SC →=(1,b ,-1), 从而EF →·SC →=0,EF →·AD →=0,所以EF ⊥SC ,EF ⊥AD .因此EF 为异面直线AD 与SC 的公垂线. (2)由B (1,0,0),BC →=(0,b,0), |EF→|=12|BC →|得b = 2. 于是F ⎝ ⎛⎭⎪⎫12,22,12,C (1,2,0),连接FB ,故FB →=⎝ ⎛⎭⎪⎫12,-22,-12,SC →=(1,2,-1),从而FB →·SC→=0,即FB ⊥SC .取CF 的中点G ,连接GD ,则G ⎝ ⎛⎭⎪⎫34,324,14,GD →=⎝ ⎛⎭⎪⎫-34,24,-14,从而GD →·SC→=0,即GD ⊥SC .因此〈FB→,GD →〉等于二面角B -SC -D 的平面角.cos 〈FB →,GD →〉=FB →·GD →|FB →||GD →|=-33.所以二面角B -SC -D 的余弦值为-33.16. (2020·全国卷Ⅱ)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.解 (1)证明:∵M ,N 分别为BC ,B 1C 1的中点, ∴MN ∥BB 1.又AA 1∥BB 1,∴AA 1∥MN .∵△A 1B 1C 1为等边三角形,N 为B 1C 1的中点, ∴A 1N ⊥B 1C 1.又侧面BB 1C 1C 为矩形,∴B 1C 1⊥BB 1. ∵MN ∥BB 1,∴MN ⊥B 1C 1.又MN ∩A 1N =N ,MN ,A 1N ⊂平面A 1AMN , ∴B 1C 1⊥平面A 1AMN .又B 1C 1⊂平面EB 1C 1F , ∴平面A 1AMN ⊥平面EB 1C 1F .(2)解法一:连接NP ,∵AO ∥平面EB 1C 1F ,平面AONP ∩平面EB 1C 1F =NP , ∴AO ∥NP .∵三棱柱上下底面平行,平面A 1AMN ∩平面ABC =AM ,平面A 1AMN ∩平面A 1B 1C 1=A 1N ,∴ON ∥AP .∴四边形ONP A 是平行四边形. ∴ON =AP ,AO =NP . 设△ABC 边长是6m (m >0), 则NP =AO =AB =6m .∵O 为△A 1B 1C 1的中心,且△A 1B 1C 1的边长为6m , ∴ON =13×6m ×sin60°=3m .∴ON =AP =3m . ∵BC ∥B 1C 1,B 1C 1⊂平面EFC 1B 1, ∴BC ∥平面EFC 1B 1.又BC ⊂平面ABC ,平面ABC ∩平面EFC 1B 1=EF , ∴EF ∥BC ,∴AP AM =EP BM ,∴3m 33m =EP 3m ,解得EP =m .在B 1C 1截取B 1Q =EP =m ,连接PQ ,故QN =2m . ∵B 1Q =EP 且B 1Q ∥EP ,∴四边形B 1QPE 是平行四边形,∴B 1E ∥PQ . 由(1)可知B 1C 1⊥平面A 1AMN ,故∠QPN 为B 1E 与平面A 1AMN 所成角. 在Rt △QPN 中,根据勾股定理可得PQ =QN 2+NP 2=(2m )2+(6m )2=210m , ∴sin ∠QPN =QN PQ =2m 210m=1010.∴直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 解法二:由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC .由已知得AM ⊥BC ,以Q 为坐标原点,QA→的方向为x 轴正方向,QN →的方向为z 轴正方向,|MB →|为单位长,建立如图所示的空间直角坐标系Qxyz ,设QM =a ,则AB =2,AM = 3.连接NP ,则四边形AONP 为平行四边形, ∴NP =AO =AB =2,∴PQ =233-a ,NQ = NP 2-PQ 2= 4-⎝ ⎛⎭⎪⎫233-a2, ∴B 10,1,4-⎝ ⎛⎭⎪⎫233-a 2 ,E ⎝ ⎛⎭⎪⎫233-a ,13,0,故B 1E →=233-a ,-23,-4-⎝ ⎛⎭⎪⎫233-a2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量, 故sin ⎝ ⎛⎭⎪⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉=n ·B 1E →|n ||B 1E →|=1010.∴直线B 1E 与平面A 1AMN 所成角的正弦值为1010.17.(2020·泰安三模)在四棱锥P -ABCD 中,△P AB 为等边三角形,四边形ABCD 为矩形,E 为PB 的中点,DE ⊥PB .(1)证明:平面ABCD ⊥平面P AB ;(2)设二面角A -PC -B 的大小为α,求α的取值范围.解 (1)证明:连接AE ,因为△P AB 为等边三角形,所以AE ⊥PB . 又DE ⊥PB ,AE ∩DE =E ,所以PB ⊥平面ADE ,所以PB ⊥AD . 因为四边形ABCD 为矩形,所以AD ⊥AB ,且AB ∩PB =B , 所以AD ⊥平面P AB .因为AD ⊂平面ABCD ,所以平面ABCD ⊥平面P AB .(2)以A 为坐标原点建立如图所示的空间直角坐标系Axyz ,不妨设PB =AB =P A =1,C (0,1,n ),则A (0,0,0),P ⎝ ⎛⎭⎪⎫32,12,0,B (0,1,0),由空间向量的坐标运算可得PC →=⎝ ⎛⎭⎪⎫-32,12,n ,AP →=⎝ ⎛⎭⎪⎫32,12,0,BP →=⎝ ⎛⎭⎪⎫32,-12,0.设平面BPC 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·PC →=0,m ·BP →=0,即⎩⎪⎨⎪⎧-32x 1+12y 1+nz 1=0,32x 1-12y 1=0,令x 1=1,则y 1=3,z 1=0,所以m =(1,3,0). 设平面P AC 的法向量为n =(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n ·PC →=0,n ·AP →=0,即⎩⎪⎨⎪⎧-32x 2+12y 2+nz 2=0,32x 2+12y 2=0,令x 2=1,则y 2=-3,z 2=3n ,所以n =⎝ ⎛⎭⎪⎫1,-3,3n .二面角A -PC -B 的大小为α,由图可知,二面角α为锐二面角, 所以cos α=|m ·n ||m ||n |=|1-3|1+3×1+3+3n 2=14+3n 2∈⎝⎛⎭⎪⎫0,12,所以α∈⎝ ⎛⎭⎪⎫π3,π2. 18.(2020·山东平邑一中模拟)请从下面三个条件中任选一个,补充在下面的横线上,并作答.①AB ⊥BC ;②FC 与平面ABCD 所成的角为π6;③∠ABC =π3.如图,在四棱锥P -ABCD 中,底面ABCD 是菱形,P A ⊥平面ABCD ,且P A =AB =2,PD 的中点为F .(1)在线段AB上是否存在一点G,使得AF∥平面PCG?若存在,指出G在AB上的位置并给以证明;若不存在,请说明理由;(2)若________,求二面角F-AC-D的余弦值.解(1)在线段AB上存在中点G,使得AF∥平面PCG.证明如下:如图所示.设PC的中点为H,连接FH,GH,∵FH∥CD,FH=12CD,AG∥CD,AG=12CD,∴FH∥AG,FH=AG,∴四边形AGHF为平行四边形,则AF∥GH,又GH⊂平面PCG,AF⊄平面PCG,∴AF∥平面PCG.(2)选择①AB⊥BC:∵P A⊥平面ABCD,∴P A⊥BC,由题意,知AB,AD,AP两两垂直,以AB,AD,AP所在直线分别为x,y,z轴,建立空间直角坐标系,∵P A=AB=2,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),F(0,1,1),P(0,0,2),∴AF→=(0,1,1),CF→=(-2,-1,1),设平面F AC 的一个法向量为μ=(x ,y ,z ), ∴⎩⎪⎨⎪⎧μ·AF →=y +z =0,μ·CF →=-2x -y +z =0,取y =1,得μ=(-1,1,-1), 平面ACD 的一个法向量为v =(0,0,1), 设二面角F -AC -D 的平面角为θ, 由图可知,二面角θ为锐二面角, 则cos θ=|μ·v ||μ||v |=33,∴二面角F -AC -D 的余弦值为33. 选择②FC 与平面ABCD 所成的角为π6:∵P A ⊥平面ABCD ,取BC 中点E ,连接AE ,取AD 的中点M ,连接FM ,CM ,则FM ∥P A ,且FM =1,∴FM ⊥平面ABCD , FC 与平面ABCD 所成角为∠FCM , ∴∠FCM =π6,在Rt △FCM 中,CM =3,又CM =AE ,∴AE 2+BE 2=AB 2,∴BC ⊥AE , ∴AE ,AD ,AP 两两垂直,以AE ,AD ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,∵P A =AB =2,∴A (0,0,0),B (3,-1,0),C (3,1,0),D (0,2,0),E (3,0,0),F (0,1,1),P (0,0,2),∴AF→=(0,1,1),CF →=(-3,0,1), 设平面F AC 的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·AF →=y +z =0,m ·CF →=-3x +z =0,取x =3,得m =(3,-3,3),平面ACD 的一个法向量为n =(0,0,1),设二面角F -AC -D 的平面角为θ,由图可知,二面角θ为锐二面角,则cos θ=|m ·n ||m ||n |=217.∴二面角F -AC -D 的余弦值为217.选择③∠ABC =π3:∵P A ⊥平面ABCD ,∴P A ⊥BC ,取BC 中点E ,连接AE ,∵底面ABCD 是菱形,∠ABC =60°,∴△ABC 是正三角形,∵E 是BC 的中点,∴BC ⊥AE ,∴AE ,AD ,AP 两两垂直,以AE ,AD ,AP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,∵P A =AB =2,∴A (0,0,0),B (3,-1,0),C (3,1,0),D (0,2,0),E (3,0,0),F (0,1,1),P (0,0,2),∴AF→=(0,1,1),CF →=(-3,0,1), 设平面F AC 的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·AF →=y +z =0,m ·CF →=-3x +z =0,取x =3,得m =(3,-3,3),平面ACD 的一个法向量为n =(0,0,1), 设二面角F -AC -D 的平面角为θ,由图可知,二面角θ为锐二面角,则cos θ=|m ·n ||m ||n |=217.∴二面角F -AC -D 的余弦值为217.。
专题07 立体几何中的向量方法【要点提炼】1.直线与平面、平面与平面的平行与垂直的向量方法设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3),则 (1)线面平行l ∥α⇔a ⊥μ⇔a ·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0. (2)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. (3)面面平行α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3. (4)面面垂直α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0. 2.直线与直线、直线与平面、平面与平面的夹角计算设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角设l ,m 的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22. (2)线面夹角设直线l 与平面α的夹角为θ⎝ ⎛⎭⎪⎫0≤θ≤π2,则sin θ=|cos a ,μ|=|a ·μ||a ||μ|.(3)面面夹角设平面α,β的夹角为θ(0≤θ<π), 则|cos θ|=|cosμ,v|=|μ·v ||μ||v |.考点考向一 利用空间向量证明平行、垂直【典例1】 如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.证明:(1)BE ⊥DC ; (2)BE ∥平面P AD ; (3)平面PCD ⊥平面P AD .证明 依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)向量BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0. 所以BE ⊥DC .(2)因为AB ⊥AD ,又P A ⊥平面ABCD ,AB ⊂平面ABCD , 所以AB ⊥P A ,P A ∩AD =A ,P A ,AD ⊂平面P AD , 所以AB ⊥平面P AD ,所以向量AB→=(1,0,0)为平面P AD 的一个法向量, 而BE →·AB →=(0,1,1)·(1,0,0)=0,所以BE ⊥AB , 又BE ⊄平面P AD , 所以BE ∥平面P AD .(3)由(2)知平面P AD 的法向量AB →=(1,0,0),向量PD →=(0,2,-2),DC →=(2,0,0),设平面PCD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PD →=0,n ·DC →=0,即⎩⎨⎧2y -2z =0,2x =0,不妨令y =1,可得n =(0,1,1)为平面PCD 的一个法向量. 且n ·AB →=(0,1,1)·(1,0,0)=0,所以n ⊥AB →. 所以平面P AD ⊥平面PCD .探究提高 1.利用向量法证明平行、垂直,关键是建立恰当的坐标系(尽可能利用垂直条件,准确写出相关点的坐标,进而用向量表示涉及到直线、平面的要素). 2.向量证明的核心是利用向量的数量积或数乘向量,但向量证明仍然离不开立体几何的定理,如在(2)中忽略BE ⊄平面P AD 而致误.【拓展练习1】 如图,在直三棱柱ADE -BCF 中,平面ABFE 和平面ABCD 都是正方形且互相垂直,点M 为AB 的中点,点O 为DF 的中点.证明:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .证明 (1)由题意,得AB ,AD ,AE 两两垂直,以点A 为原点建立如图所示的空间直角坐标系A -xyz .设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝ ⎛⎭⎪⎫12,0,0,O ⎝ ⎛⎭⎪⎫12,12,12.OM →=⎝ ⎛⎭⎪⎫0,-12,-12,BA →=(-1,0,0), ∴OM →·BA →=0,∴OM →⊥BA →. ∵棱柱ADE -BCF 是直三棱柱,∴AB ⊥平面BCF ,∴BA →是平面BCF 的一个法向量, 且OM ⊄平面BCF ,∴OM ∥平面BCF .(2)在第(1)问的空间直角坐标系中,设平面MDF 与平面EFCD 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2).∵DF →=(1,-1,1),DM →=⎝ ⎛⎭⎪⎫12,-1,0,DC →=(1,0,0),CF →=(0,-1,1), 由⎩⎪⎨⎪⎧n 1·DF→=0,n 1·DM →=0,得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,令x 1=1,则n 1=⎝ ⎛⎭⎪⎫1,12,-12.同理可得n 2=(0,1,1).∵n 1·n 2=0,∴平面MDF ⊥平面EFCD . 考向二 线线角、线面角的求解【典例2】 (2020·浙江卷)如图,在三棱台ABC -DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(1)证明:EF ⊥DB ;(2)求直线DF 与平面DBC 所成角的正弦值.(1)证明 如图(1),过点D 作DO ⊥AC ,交直线AC 于点O ,连接OB .图(1)由∠ACD =45°,DO ⊥AC ,得 CD =2CO .由平面ACFD ⊥平面ABC ,得DO ⊥平面ABC , 所以DO ⊥BC .由∠ACB =45°,BC =12CD =22CO ,得BO ⊥BC . 所以BC ⊥平面BDO ,故BC ⊥DB .由ABC -DEF 为三棱台,得BC ∥EF ,所以EF ⊥DB .(2)解 法一 如图(1),过点O 作OH ⊥BD ,交直线BD 于点H ,连接CH .由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO ,得OH ⊥BC ,故OH ⊥平面DBC , 所以∠OCH 为直线CO 与平面DBC 所成角. 设CD =22,则DO =OC =2,BO =BC =2,得BD =6,OH =233,所以sin ∠OCH =OH OC =33.因此,直线DF 与平面DBC 所成角的正弦值为33.法二 由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图(2),以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O -xyz .图(2)设CD =22,由题意知各点坐标如下:O (0,0,0),B (1,1,0),C (0,2,0),D (0,0,2). 因此OC→=(0,2,0),BC →=(-1,1,0),CD →=(0,-2,2). 设平面DBC 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·BC →=0,n ·CD →=0,即⎩⎨⎧-x +y =0,-2y +2z =0,可取n =(1,1,1),所以sin θ=|cos 〈OC →,n 〉|=|OC →·n ||OC →|·|n |=33.因此,直线DF 与平面DBC 所成角的正弦值为33.探究提高 1.异面直线所成的角θ,可以通过两直线的方向向量的夹角φ求得,即cos θ=|cos φ|.2.直线与平面所成的角θ主要通过直线的方向向量与平面的法向量的夹角φ求得,即sin θ=|cos φ|,有时也可分别求出斜线与它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).【拓展练习2】 (2020·全国Ⅱ卷)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.(1)证明 因为侧面BB 1C 1C 是矩形且M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又侧面BB 1C 1C 是矩形,所以B 1C 1⊥MN . 又A 1N ∩MN =N ,A 1N ,MN ⊂平面A 1AMN , 所以B 1C 1⊥平面A 1AMN .又B 1C 1⊂平面EB 1C 1F , 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 由已知及(1)得AM ⊥BC ,MN ⊥BC ,AM ⊥MN .以M 为坐标原点,MA →的方向为x 轴正方向,|MB →|为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM = 3.连接NP ,AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN , 平面A 1AMN ∩平面EB 1C 1F =PN ,故AO ∥PN . 又AP ∥ON ,则四边形AONP 为平行四边形,故PM =233,E ⎝ ⎛⎭⎪⎫233,13,0.由(1)知平面A 1AMN ⊥平面ABC .作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设Q (a ,0,0),则 NQ =4-⎝ ⎛⎭⎪⎫233-a2, B 1⎝⎛⎭⎪⎫a ,1,4-⎝ ⎛⎭⎪⎫233-a2. 故B 1E →=⎝ ⎛⎭⎪⎫233-a ,-23,-4-⎝ ⎛⎭⎪⎫233-a 2, |B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量, 故sin ⎝ ⎛⎭⎪⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉=n ·B 1E →|n |·|B 1E →|=1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 考向三 利用向量求二面角【典例3】 (2020·全国Ⅲ卷)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.(1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求二面角A -EF -A 1的正弦值.解 设AB =a ,AD =b ,AA 1=c .如图,以C 1为坐标原点,C 1D 1→的方向为x 轴正方向, 建立空间直角坐标系C 1-xyz .(1)证明 连接C 1F ,C 1(0,0,0),A (a ,b ,c ),E ⎝ ⎛⎭⎪⎫a ,0,23c ,F ⎝ ⎛⎭⎪⎫0,b ,13c ,EA→=⎝ ⎛⎭⎪⎫0,b ,13c ,C 1F →=⎝ ⎛⎭⎪⎫0,b ,13c ,得EA →=C 1F →, 因此EA ∥C 1F ,即A ,E ,F ,C 1四点共面, 所以点C 1在平面AEF 内.(2)由已知得A (2,1,3),E (2,0,2),F (0,1,1),A 1(2,1,0),AE →=(0,-1,-1),AF →=(-2,0,-2),A 1E →=(0,-1,2),A 1F →=(-2,0,1). 设n 1=(x ,y ,z )为平面AEF 的法向量,则⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,即⎩⎨⎧-y -z =0,-2x -2z =0,可取n 1=(-1,-1,1).设n 2为平面A 1EF 的法向量,则⎩⎪⎨⎪⎧n 2·A 1E →=0,n 2·A 1F →=0,同理可取n 2=⎝ ⎛⎭⎪⎫12,2,1.设二面角A -EF -A 1的平面角为α,所以cos α=cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-77,则sin α=1-cos2α=42 7,所以二面角A-EF-A1的正弦值为42 7.探究提高 1.二面角的大小可以利用分别在两个半平面内与棱垂直的直线的方向向量的夹角(或其补角)或通过二面角的两个面的法向量的夹角求得,它等于两个法向量的夹角或其补角.2.利用向量法求二面角,必须能判定“所求二面角的平面角是锐角或钝角”,否则解法是不严谨的.【拓展练习3】(2020·沈阳一监)如图,已知△ABC为等边三角形,△ABD为等腰直角三角形,AB⊥BD.平面ABC⊥平面ABD,点E与点D在平面ABC的同侧,且CE∥BD,BD=2CE.点F为AD的中点,连接EF.(1)求证:EF∥平面ABC;(2)求二面角C-AE-D的余弦值.(1)证明取AB的中点为O,连接OC,OF,如图.∵O,F分别为AB,AD的中点,∴OF∥BD且BD=2OF.又CE∥BD且BD=2CE,∴CE∥OF且CE=OF,∴OF綊EC,则四边形OCEF为平行四边形,∴EF∥OC.又OC⊂平面ABC,EF⊄平面ABC,∴EF∥平面ABC.(2)解∵△ABC为等边三角形,O为AB的中点,∴OC⊥AB.∵平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,BD ⊥AB ,BD ⊂平面ABD ,∴BD ⊥平面ABC .又OF ∥BD ,∴OF ⊥平面ABC .以O 为坐标原点,分别以OA ,OC ,OF 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.不妨令正三角形ABC 的边长为2,则O (0,0,0),A (1,0,0),C (0,3,0),E (0,3,1),D (-1,0,2),∴AC→=(-1,3,0),AE →=(-1,3,1),AD →=(-2,0,2). 设平面AEC 的法向量为m =(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧AC →·m =-x 1+3y 1=0,AE →·m =-x 1+3y 1+z 1=0. 不妨令y 1=3,则m =(3,3,0). 设平面AED 的法向量为n =(x 2,y 2,z 2),则 ⎩⎪⎨⎪⎧AD →·n =-2x 2+2z 2=0,AE →·n =-x 2+3y 2+z 2=0. 令z 2=1,得n =(1,0,1). ∴cos 〈m ,n 〉=323×2=64.由图易知二面角C -AE -D 为钝角, ∴二面角C -AE -D 的余弦值为-64. 考向四 利用空间向量求解探索性问题【典例4】 (2020·武汉调研)如图所示,在正方体ABCD -A 1B 1C 1D 1中,点O 是AC 与BD 的交点,点E 是线段OD 1上的一点.(1)若点E 为OD 1的中点,求直线OD 1与平面CDE 所成角的正弦值;(2)是否存在点E ,使得平面CDE ⊥平面CD 1O ?若存在,请指出点E 的位置,并加以证明;若不存在,请说明理由. 解 (1)不妨设正方体的棱长为2.以D 为坐标原点,分别以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),D 1(0,0,2),C (0,2,0),O (1,1,0). 因为E 为OD 1的中点, 所以E ⎝ ⎛⎭⎪⎫12,12,1.则OD 1→=(-1,-1,2),DE →=⎝ ⎛⎭⎪⎫12,12,1,DC →=(0,2,0).设p =(x 0,y 0,z 0)是平面CDE 的法向量, 则⎩⎪⎨⎪⎧p ·DE→=0,p ·DC →=0,即⎩⎪⎨⎪⎧12x 0+12y 0+z 0=0,2y 0=0,取x 0=2,则y 0=0,z 0=-1,所以p =(2,0,-1)为平面CDE 的一个法向量. 设直线OD 1与平面CDE 所成角为θ, 所以sin θ=|cos 〈OD 1→,p 〉|=|OD 1→·p ||OD 1→||p |=|-1×2+(-1)×0+2×(-1)|(-1)2+(-1)2+22×22+(-1)2=23015, 即直线OD 1与平面CDE 所成角的正弦值为23015.(2)存在,且点E 为线段OD 1上靠近点O 的三等分点.理由如下. 假设存在点E ,使得平面CDE ⊥平面CD 1O .同第(1)问建立空间直角坐标系,易知点E 不与点O 重合,设D 1E →=λEO →,λ∈[0,+∞),OC →=(-1,1,0),OD 1→=(-1,-1,2). 设m =(x 1,y 1,z 1)是平面CD 1O 的法向量, 则⎩⎪⎨⎪⎧m ·OC →=0,m ·OD 1→=0,即⎩⎨⎧-x 1+y 1=0,-x 1-y 1+2z 1=0,取x 1=1,则y 1=1,z 1=1,所以m =(1,1,1)为平面CD 1O 的一个法向量.因为D 1E →=λEO →,所以点E 的坐标为⎝⎛⎭⎪⎫λ1+λ,λ1+λ,21+λ, 所以DE →=⎝ ⎛⎭⎪⎫λ1+λ,λ1+λ,21+λ. 设n =(x 2,y 2,z 2)是平面CDE 的法向量, 则⎩⎪⎨⎪⎧n ·DE→=0,n ·DC →=0,即⎩⎪⎨⎪⎧λ1+λx 2+λ1+λy 2+21+λz 2=0,2y 2=0,取x 2=1,则y 2=0,z 2=-λ2,所以n =⎝ ⎛⎭⎪⎫1,0,-λ2为平面CDE 的一个法向量. 因为平面CDE ⊥平面CD 1O ,所以m ⊥n . 则m ·n =0,所以1-λ2=0,解得λ=2.所以当D 1E →EO →=2,即点E 为线段OD 1上靠近点O 的三等分点时,平面CDE ⊥平面CD 1O .探究提高 1.空间向量最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.但注意空间坐标系建立的规范性及计算的准确性,否则容易出现错误.2.空间向量求解探索性问题:(1)假设题中的数学对象存在(或结论成立)或暂且认可其中的一部分结论;(2)在这个前提下进行逻辑推理,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标(或参数)是否有解,是否有规定范围内的解”等.若由此推导出矛盾,则否定假设;否则,给出肯定结论.【拓展练习4】 (2019·北京卷)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,P A =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且PF PC =13.(1)求证:CD ⊥平面P AD ; (2)求二面角F -AE -P 的余弦值;(3)设点G 在PB 上,且PG PB =23.判断直线AG 是否在平面AEF 内,说明理由. (1)证明 因为P A ⊥平面ABCD ,CD ⊂平面ABCD ,所以P A ⊥CD . 又因为AD ⊥CD ,P A ∩AD =A ,P A ,AD ⊂平面P AD , 所以CD ⊥平面P AD .(2)解 过点A 作AD 的垂线交BC 于点M . 因为P A ⊥平面ABCD ,AM ,AD ⊂平面ABCD , 所以P A ⊥AM ,P A ⊥AD .建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2).因为E 为PD 的中点, 所以E (0,1,1).所以AE→=(0,1,1),PC →=(2,2,-2),AP →=(0,0,2). 所以PF→=13PC →=⎝ ⎛⎭⎪⎫23,23,-23, 所以AF→=AP →+PF →=⎝ ⎛⎭⎪⎫23,23,43. 设平面AEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,即⎩⎪⎨⎪⎧y +z =0,23x +23y +43z =0. 令z =1,则y =-1,x =-1. 于是n =(-1,-1,1).又因为平面P AD 的一个法向量为p =(1,0,0), 所以cos 〈n ,p 〉=n ·p |n ||p |=-33.由题知,二面角F -AE -P 为锐角,所以其余弦值为33. (3)解 直线AG 在平面AEF 内,理由如下: 因为点G 在PB 上,且PG PB =23,PB →=(2,-1,-2), 所以PG→=23PB →=⎝ ⎛⎭⎪⎫43,-23,-43, 所以AG→=AP →+PG →=⎝ ⎛⎭⎪⎫43,-23,23. 由(2)知,平面AEF 的一个法向量n =(-1,-1,1), 所以AG →·n =-43+23+23=0.又点A ∈平面AEF ,所以直线AG 在平面AEF 内.【专题拓展练习】一、单选题1.已知三棱锥O -ABC ,点M ,N 分别为AB ,OC 的中点,且,,OA a OB b OC c ===,用,,a b c 表示MN ,则MN 等于( )A .()12b c a +- B .()12a b c ++ C .()12a b c -+D .()12c a b --【答案】D 【详解】MN MA AO ON =++1122BA OA OC =-+ ()1122OA OB OA OC =--+ 111222OA OB OC =--+()12c a b =--. 故选:D2.在棱长为1的正方体1111ABCD A B C D -中,,M N 分别为111,BD B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥,则下列说法正确的是( )A .点P 可以是棱1BB 的中点 B .线段MP 3C .点P 的轨迹是正方形D .点P 轨迹的长度为2+5【答案】D 【详解】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,因为该正方体的棱长为1,,M N 分别为111,BD B C 的中点, 则()0,0,0D ,111,,222M ⎛⎫ ⎪⎝⎭,1,1,12N ⎛⎫⎪⎝⎭,()0,1,0C , 所以1,0,12CN ⎛⎫=⎪⎝⎭,设(),,P x y z ,则111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,因为MP CN ⊥, 所以1110222x z ⎛⎫-+-= ⎪⎝⎭,2430x z +-=,当1x =时,14z =;当0x =时,34z =; 取11,0,4E ⎛⎫ ⎪⎝⎭,11,1,4F ⎛⎫ ⎪⎝⎭,30,1,4G ⎛⎫ ⎪⎝⎭,30,0,4H ⎛⎫ ⎪⎝⎭,连接EF ,FG ,GH ,HE ,则()0,1,0EF GH ==,11,0,2EH FG ⎛⎫==- ⎪⎝⎭, 所以四边形EFGH 为矩形,则0EF CN ⋅=,0EH CN ⋅=,即EF CN ⊥,EH CN ⊥, 又EFEH E =,且EF ⊂平面EFGH ,EH ⊂平面EFGH ,所以CN ⊥平面EFGH , 又111,,224EM ⎛⎫=-⎪⎝⎭,111,,224MG ⎛⎫=- ⎪⎝⎭,所以M 为EG 中点,则M ∈平面EFGH , 所以,为使MP CN ⊥,必有点P ∈平面EFGH ,又点P 在正方体的表面上运动,所以点P 的轨迹为四边形EFGH , 因此点P 不可能是棱1BB 的中点,即A 错; 又1EF GH ==,52EH FG ==,所以EF EH ≠,则点P 的轨迹不是正方形; 且矩形EFGH 的周长为522252+⨯=+,故C 错,D 正确; 因为点M 为EG 中点,则点M 为矩形EFGH 的对角线交点,所以点M 到点E 和点G 的距离相等,且最大,所以线段MP 的最大值为52,故B 错. 3.在空间四边形ABCD 中,AB CD AC DB AD BC ⋅+⋅+⋅=( ) A .-1 B .0 C .1 D .不确定【答案】B 【详解】 如图,令,,AB a AC b AD c ===, 则AB CD AC DB AD BC ⋅+⋅+⋅,()()()a cb b ac c b a =⋅-+⋅-+⋅-,0a c a b b a b c c b c a =⋅-⋅+⋅-⋅+⋅-⋅=.故选:B4.如图,在四棱锥P ABCD -中,底面ABCD 为矩形.PA ⊥底面,2,4ABCD PA AB AD ===.E 为PC 的中点,则异面直线PD 与BE 所成角的余弦值为( )A .35B .3010C .1010D .31010【答案】B 【详解】以A 点为坐标原点,AB 为x 轴,AD 为y 轴,AP 为z 轴建立空间直角坐标系如下图所示:则()2,0,0B ,()1,2,1E ,()002P ,,,()0,4,0D , ()1,2,1BE =-∴,()0,4,2PD =-,设异面直线PD 与BE 所成角为θ,则630cos 10625PD BE PD BEθ⋅===⨯⋅. 5.已知四棱锥,-P ABCD 底面是边长为2的正方形,PAD △是以AD 为斜边的等腰直角三角形,AB ⊥平面PAD ,点E 是线段PD 上的动点(不含端点),若线 AB 段上存在点F (不含端点),使得异面直线PA 与 EF 成30的角,则线段PE 长的取值范围是( )A .202⎛⎫ ⎪ ⎪⎝⎭, B .603⎛⎫⎪ ⎪⎝⎭, C .222⎛⎫⎪ ⎪⎝⎭, D .623,⎛⎫⎪⎝⎭【答案】B 【详解】由PAD △是以AD 为斜边的等腰直角三角形,AB ⊥平面PAD ,取AD 中点G ,建立如图空间直角坐标系,依题意(0,0,0),(1,0,0),(1,0,0),(1,2,0),(0,0,1)G A D B P -,设(1,,0)F y ,,设()()1,0,1,0,DE xDP x x x ===,01x <<,故()1,0,E x x -,()2,,EF x y x =--又()1,0,1PA =-,异面直线PA 与 EF 成30的角,故cos30PA EF PA EF ⋅=⋅︒,即()2223222x y x =-++即()222213y x =--+,01x <<,故220,3y ⎡⎫∈⎪⎢⎣⎭,又02y <<,故60y ⎛∈ ⎝⎭,. 故选:B.6.已知二面角l αβ--,其中平面的一个法向量()1,0,1m =-,平面β的一个法向量()0,1,1n =-,则二面角l αβ--的大小可能为( )A .60︒B .120︒C .60︒或120︒D .30【答案】C 【详解】11cos ,222m n m n m n ⋅-<>===-⨯,所以,120m n <>=,又因为二面角的大小与法向量夹角相等或互补, 所以二面角的大小可能是60或120. 故选:C7.已知向量(,,)x y z a a a a =,(,,)x y z b b b b =,{},,i j k 是空间中的一个单位正交基底.规定向量积的行列式计算:()()(),,yz xy xz y z z y z x x z x y y x xy z yz xyxz xyz ij ka a a a a a ab a b a b i a b a b j a b a b k a a a b b b b b b b b b ⎛⎫⨯=-+-+-==-⎪ ⎪⎝⎭其中行列式计算表示为a b ad bc c d=-,若向量(2,1,4),(3,1,2),AB AC ==则AB AC ⨯=( )A .(4,8,1)---B .(1,4,8)--C .(2,8,1)--D .(1,4,8)---【答案】C 【详解】由题意得()()()()1241+4322+21132,8,1AB AC i j k ⨯=⨯-⨯⨯-⨯⨯-⨯=--, 故选:C.8.长方体1111ABCD A B C D -,110AB AA ==,25AD =,P 在左侧面11ADD A 上,已知P 到11A D 、1AA 的距离均为5,则过点P 且与1A C 垂直的长方体截面的形状为( )A .六边形B .五边形C .四边形D .三角形【答案】B 【详解】以D 为坐标原点建立如图所示的空间直角坐标系,则()()()120,0,5,25,0,10,0,10,0P A C ,()125,10,10AC ∴=--, 设截面与11A D 交于(),0,10Q Q x ,则()20,0,5Q PQ x =-,()12520500Q AC PQ x ∴⋅=---=,解得18Qx =,即()18,0,10Q , 设截面与AD 交于(),0,0M M x ,则()20,0,5M PM x =--,()12520500M AC PM x ∴⋅=--+=,解得22Mx =,即()22,0,0M , 设截面与AB 交于()25,,0N N y ,则()3,,0N MN y =,1253100N AC MN y ∴⋅=-⨯+=,解得7.5Ny =,即()25,7.5,0N , 过Q 作//QF MN ,交11B C 于F ,设(),10,10F F x ,则()18,10,0F QF x =-, 则存在λ使得QF MN λ=,即()()18,10,03,7.5,0F x λ-=,解得22F x =,故F 在线段11B C 上,过F 作//EF QM ,交1BB 于E ,设()25,10,E E z ,则()3,0,10E EF z =--,则存在μ使得EF QM μ=,即()()3,0,104,0,10E z μ--=-,解得 2.5E z =,故E 在线段1BB 上,综上,可得过点P 且与1A C 垂直的长方体截面为五边形QMNEF . 故选:B.9.在四面体ABCD 中,6AB =,3BC =,4BD =,若ABD ∠与ABC ∠互余,则()BA BC BD ⋅+的最大值为( )A .20B .30C .40D .50【答案】B 【详解】设ABD α∠=,可得2ABC πα∠=-,则α为锐角,在四面体ABCD 中,6AB =,3BC =,4BD =, 则()cos cos 2BA BC BD BA BC BA BD BA BC BA BD παα⎛⎫⋅+=⋅+⋅=⋅-+⋅ ⎪⎝⎭()18sin 24cos 30sin αααϕ=+=+,其中ϕ为锐角,且4tan 3ϕ=. 02πα<<,则2πϕαϕϕ<+<+,所以,当2παϕ+=时,()BA BC BD ⋅+取得最大值30.10.已知正方体1111ABCD A B C D -的棱长为1,点E 是底面ABCD 上的动点,则()111CE CA D B -⋅的最大值为( )A .22B .1C .2D .6【答案】B 【详解】以点D 为原点,1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,则111(0,0,1),(1,1,1),(1,0,1),D B A设(,,0)E x y ,其中[],0,1x y ∈,则()()11111,,1,1,1,0CE CA A E x y D B -==--=, 所以111()11CE CA D B x y -⋅=+-≤,等号成立的条件是(1,1,0)E ,故其最大值为1, 故选:B .11.如图,在底面为正方形的四棱锥P-ABCD 中,已知PA ⊥平面ABCD ,且PA =AB .若点M 为PD 中点,则直线CM 与PB 所成角的大小为( )A .60°B .45°C .30°D .90°【答案】C 【详解】如图所示:以A 为坐标原点,以AB ,AD ,AP 为单位向量建立空间直角坐标系A xyz -,设1PA =,则()0,0,0A ,()1,1,0C ,110,,22M ⎛⎫⎪⎝⎭,()0,0,1P ,()1,0,0B , 故()1,0,1PB =-,111,,22MC ⎛⎫=- ⎪⎝⎭,故1132cos ,21111144PB MC PB MC PB MC+⋅===⋅+⋅++, 由异面直线夹角的范围是(]0,90︒︒,故直线CM 与PB 所成角的大小为30. 故选:C.12.如图,在正四面体ABCD 中,,,2BE EC CF FD DG GA ===,记平面EFG 与平面BCD 、平面ACD 、平面ABD ,所成的锐二面角分别为α、β、γ,则( )A .αβγ>>B .αγβ>>C .βαγ>>D .γαβ>>【答案】A【详解】 解:(空间向量法)因为,,2BE EC CF FD DG GA ===,所以E 、F 分别为BC 、CD 的中点,G 为AD 上靠近A 的三等分点,取BD 的中点M ,连接CM ,过A 作AO ⊥平面BCD ,交CM 于点O ,在平面BCD 中过O 作//ON BD ,交CD 于N ,设正四面体ABCD 的棱长为2,则33OM =,233CO =,22222326233OA AC OC ⎛⎫=-=-= ⎪ ⎪⎝⎭, 以O 为原点,OC 为x 轴,ON 为y 轴,OA 为z 轴,建立空间直角坐标系,26A ⎛ ⎝⎭,31,0B ⎛⎫- ⎪ ⎪⎝⎭,23C ⎫⎪⎝⎭,3D ⎛⎫ ⎪⎝⎭,31,02E ⎫-⎪⎝⎭,31,062F ⎛⎫ ⎪⎝⎭,3146,939G ⎛- ⎝⎭,(0,1,0)EF =,53546,8691EG ⎛⎫=- ⎪ ⎪⎝⎭,232633AC ⎛=- ⎝⎭,32633AD ⎛=-- ⎝⎭,3261,33AB ⎛⎫=--- ⎪⎝⎭,设平面EFG 的一个法向量为()1,,n x y z =,则110n EF n EG ⎧⋅=⎪⎨⋅=⎪⎩,即05354606y x y z =⎧⎪⎨+=⎪⎩,不妨令1z =,则18,0,125n ⎛⎫= ⎪ ⎪⎝⎭,同理可计算出平面BCD 、平面ACD 、平面ABD 的一个法向量分别为2(0,0,1)n =,()32,6,1n =,4(22,0,1)n =-,则可得1212517co 1s 5n n n n α⋅==⋅,1313717co 1s 5n n n n β⋅==⋅,14149cos 1751n n n n γ⋅==⋅,所以cos cos cos αβγ<<,又cos y x =在()0.x π∈上递减,所以αβγ>>, 故选:A.13.在正四棱锥P ABCD -中,1PA PB PC PD AB =====,点Q ,R 分别在棱AB ,PC 上运动,当||QR 达到最小值时,||||PQ CQ 的值为( ) A .7010B .355C .3510D .705【答案】A 【详解】以P 在底面的投影O 为坐标原点,建立如图所示的坐标系,设1(,,0)2Q a ,(,,)R m n q因为211(0(,0),22P C -,,112(,22PC =-, 又因为R 在PC 上,PR PC λ=所以(,m m q -=,11(,),22λλ-, 所以R 11(,2222λλ=--+,所以2222111222QR a λλ⎛⎛⎫⎛⎫=--+-+ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭221324a a λλλ=+-++ 因为[]11,,0,122a λ⎡⎤∈-∈⎢⎥⎣⎦设2213()24f a a a λλλ=+-++,2213()24g a a λλλλ=+-++ 对其求导()2f a a λ'=-,1()22g a λλ'=-+当二个导数同时为0时,取最小值,即20a λ-=,1202a λ-+=所以11,36a λ==时取最小值,所以1121,,,1,,02623PQ CQ ⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭ 所以PQCQ==10,所以当||QR 达到最小值时,||||PQ CQ 的值为10. 14.如图所示,正方体1111ABCD A B C D -的棱长为1,E 、F 、G 分别为BC 、1CC 、1BB 的中点,则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C .平面AEF 截正方体所得的截面面积为1D .点C 和点G 到平面AEF 的距离相等 【答案】B 【详解】以D 点为坐标原点,DA 、DC 、1DD 为x ,y ,z 轴建系,则(000)D ,,、(100)A ,,、()010C ,,、1(101)A ,,、1(001)D ,,、 1(10)2E ,,、1(01)2F ,,,1(11)2G ,,, 则()1001DD =,,、1112AF ⎛⎫=- ⎪⎝⎭,,,则112DD AF ⋅=, ∴直线1D D 与直线AF 不垂直,A 错误;则11012A G ⎛⎫=- ⎪⎝⎭,,,1102AE ⎛⎫=- ⎪⎝⎭,,,1112AF ⎛⎫=- ⎪⎝⎭,,, 设平面AEF 的法向量为()n x y z =,,,则10021002x y AE n AF n x y z ⎧-+=⎪⎧⋅=⎪⎪⇒⎨⎨⋅=⎪⎪⎩-++=⎪⎩,令2x =,则1y =,2z =,则(212)n =,,,10AG n ⋅=,∴直线1A G 与平面AEF 平行,B 正确; 易知四边形1AEFD 为平面AEF 截正方体所得的截面,且1D F 、DC 、AE 共点于H ,15D H AH ==,12AD =,∴121232(5)()222AD H S ∆=⨯⨯-=,则113948AD HAEFD S S =⋅=四边形,C 错误; (110)AC =-,,,点C 到平面AEF 的距离113AC n d n⋅==, 1012AG ⎛⎫= ⎪⎝⎭,,,点G 到平面AEF 的距离223AG n d n ⋅==,则12d d ≠,D 错误;故选:B .15.如图所示,1111ABCD A B C D -是棱长为6的正方体,E 、F 分别是棱AB 、BC 上的动点,且AE BF =.当1A 、E 、F 、1C 共面时,平面1A DE 与平面1C DF 所成锐二面角的余弦值为( )A .15B .12C .32D .65【答案】B 【详解】以点D 为原点建立如图所示的空间直角坐标系,则1(606)A ,,、(000)D ,,、1(066)C ,,,由题意知:当(630)E ,,、(360)F ,,时,1A 、E 、F 、1C 共面, 设平面1A DE 的法向量为1111()n x y z =,,,1(606)DA =,,,(630)DE =,,, 则1111111660{630n DA x z n DE x y ⋅=+=⋅=+=,取11x =,解得1(121)n =--,,,设平面1C DF 的法向量为2222()n x y z =,,,1(066)DC =,,,(360)DF =,,, 则2122222660{360n DC y z n DF x y ⋅=+=⋅=+=,取22x =,解得2(211)n =-,,,设平面1A DE 与平面1C DF 所成锐二面角为θ,则1212121cos cos 266n n n n n n θ⋅====⋅⋅,, ∴平面1A DE 与平面1C DF 所成锐二面角的余弦值为12, 故选:B.二、解答题16.在三棱柱111ABC A B C -中,1AB AC ==,13AA =AB AC ⊥,1B C ⊥平面ABC ,E 是1B C 的中点.(1)求证:平面1AB C ⊥平面11ABB A ; (2)求直线AE 与平面11AAC C 所成角的正弦值. 【详解】(1)由1B C ⊥平面ABC ,AB 平面ABC ,得1AB B C ⊥,又AB AC ⊥,1CB AC C =,故AB ⊥平面1AB C ,AB 平面11ABB A ,故平面11ABB A ⊥平面1AB C .(2)以C 为原点,CA 为x 轴,1CB 为z 轴,建立如图所示空间直角坐标系, 则()0,0,0C ,()1,0,0A ,()1,1,0B 又2BC =113BB AA ==故11CB =,()10,0,1B ,10,0,2E ⎛⎫⎪⎝⎭,()1,0,0CA = ()111,1,1AA BB ==--,11,0,2AE ⎛⎫=- ⎪⎝⎭设平面11AAC C 的一个法向量为(),,n x y z =,则100n CA n AA ⎧⋅=⎪⎨⋅=⎪⎩,即00x x y z =⎧⎨--+=⎩,令1y =,则1z =, ()0,1,1n =, 设直线AE 与平面11AAC C 所成的角为θ,故1102sin 1214n AE n AEθ⋅===⨯+,即直线AE 与平面11AAC C 所成角的正弦值为1010.17.如图1,矩形ABCD 中,3AB BC =,将矩形ABCD 折起,使点A 与点C 重合,折痕为EF ,连接AF 、CE ,以AF 和EF 为折痕,将四边形ABFE 折起,使点B 落在线段FC 上,将CDE △向上折起,使平面DEC ⊥平面FEC ,如图2.(1)证明:平面ABE ⊥平面EFC ;(2)连接BE 、BD ,求锐二面角A BE D --的正弦值. 【详解】(1)证明:在平面ABCD 中,AF =FC ,BF +FC 3AB , 设3AB a =,则3BC a =,设BF =x ,在BAF △中,()22233x a a x +=-,解得x a =,则2AF FC a ==, 因为点B 落在线段FC 上,所以BC DE a ==,所以BE FC ⊥, 又AB BF ⊥即AB CF ⊥,AB BE B =,,AB BE ⊂平面ABE ,所以CF ⊥平面ABE ,由CF ⊂平面EFC 可得平面ABE ⊥平面EFC ;(2)以F 为原点,FC 为x 轴,过点F 平行BE 的方向作为作y 轴,过点F 垂直于平面EFC 的方向作为z 轴,建立如图所示空间直角坐标系,则()()()()2,0,0,0,0,0,3,0,,0,0C a F E a a B a ,()0,3,0BE a =, 易得平面ABE 的一个法向量为()2,0,0FC a =,作DG EC ⊥于G , 因为平面DEC ⊥平面FEC ,所以DG ⊥平面EFC ,则5334a G a ⎛⎫ ⎪ ⎪⎝⎭,53334a a D a ⎛ ⎝⎭,13334a a BD a ⎛= ⎝⎭,设平面DBE 的一个法向量为(),,n x y z =,则3013330442n BE ay a an BD ax y z ⎧⋅==⎪⎨⋅=++=⎪⎩,令3z =(3n =-, 因为12239cos ,13239n FC n FC a n FC⋅--===⋅⋅,所以锐二面角A -BE -D 223913113⎛⎫--= ⎪ ⎪⎝⎭. 18.如图,在三梭柱111ABC A B C -中,侧面11AA B B ,11AAC C 均为菱形,12AA =,1160ABB ACC ∠=∠=︒,D 为AB 的中点.(Ⅰ)求证:1//AC 平面1CDB ;(Ⅱ)若60BAC ∠=︒,求直线1AC 与平面11BB C C 所成角的正弦值. 【详解】解:(Ⅰ)连结1BC ,与1B C 交于点O ,连结OD , 四边形11BB C C 是平行四边形,O 为1B C 中点,D 为AB 中点,得1//AC OD ,又OD ⊂平面1CDB ,故1//AC 平面1CDB ;(Ⅱ)方法一:由12AB AC ==,12AC AB ==,且O 为1B C ,1BC 的中点, 得1AO BC ⊥,1AO B C ⊥,11B C BC =, 又1BC ,1CB 为平面11BB C C 内两条相交直线,得AO ⊥平面11BB C C ,故1AC B ∠即为直线1AC 与平面11BB C C 所成的角; 由60BAC ∠=︒,2AB AC ==,2BC =,得四边形11BB C C 为菱形,又11B C BC =,故四边形11BB C C 为正方形,122BC =则1ABC 为等腰直角三角形,且12BAC π∠=,故14AC B π∠=,12sin 2AC B ∠=, 因此,直线1AC 与平面11BB C C 所成角的正弦值为22.方法二:以D 为原点,分别以射线DB ,1DB ,CD 为x 轴,y 轴,z 轴的正半轴,建立空间直角坐标系O xyz -,则()0,0,0D ,()1,0,0A -,()1,0,0B ,()13,0A -,()13,0B , 由60BAC ∠=︒,2AB AC ==,ABC 为正三角形, 故CD AB ⊥,又1B D AB ⊥,所以AB ⊥平面1CDB , 设()0,,C y z ,由2CA =,123CA =,得(22223,38,y z y z ⎧+=⎪⎨+=⎪⎩即36,3y z ⎧=⎪⎪⎨⎪=⎪⎩,故3260,33C ⎛- ⎝⎭, 由11B C BC ,得12326C ⎛- ⎝⎭,所以12326AC ⎛= ⎝⎭,()11,3,0BB =-,3261,,33BC ⎛⎫=-- ⎪ ⎪⎝⎭; 设平面11BB C C 的一个法向量为()111,,n x y z =,由10,0,n BB n BC ⎧⋅=⎨⋅=⎩得1111130,33260,x y x y z ⎧-=⎪⎨+-=⎪⎩可取()3,1,2n =,设直线1AC 与平面11BB C C 所成角为θ, 则1112sin cos ,2AC n AC n AC nθ⋅===, 因此,直线1AC 与平面11BB C C 所成角的正弦值为22. 19.如图,在三棱柱111ABC A B C -中,侧面11ABB A 和11BCC B 都是正方形,平面11ABB A ⊥平面11BCC B ,,D E 分别为1BB ,AC 的中点.(1)求证://BE 平面1A CD .(2)求直线1B E 与平面1A CD 所成角的正弦值. 【详解】(1)证明:取1A C 中点F ,连接DF ,EF , ∵,E F 分别为1,AC A C 的中点,∴1//EF AA ,且112EF AA =,又四边形11ABB A 是正方形,∴11//BB AA 且11BB AA =, 即1//EF BB 且112EF BB =,又∵D 为1BB 中点,∴//EF BD 且EF BD =,所以四边形EFDB 为平行四边形,所以//BE DF ,又BE ⊄平面1A CD ,DF ⊂平面1A CD ,所以//BE 平面1A CD .(2)由题意,1,,BA BC BB 两两垂直,所以以B 为原点建立如图所示的空间直角坐标系,设12BA BC BB ===,则11(0,2,0),(1,0,1),(2,0,0),(0,1,0),(0,2,2)B E C D A . ,11(1,2,1),(2,1,0),(2,2,2)B E CD AC =-=-=-,设平面 1A CD 的法向量为(),,m x y z =, 则100AC m CD m ⎧⋅=⎨⋅=⎩,即222020x y z x y -++=⎧⎨-+=⎩,得()1,2,1m =- 设直线1B E 与平面1A CD 所成角为θ,1111412sin cos ,366B E m B E mB E mθ, 所以直线1B E 与平面1A CD 所成角的正弦值为23.。
立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的.( )(2)平面的单位法向量是唯一确定的.( )(3)若两平面的法向量平行,则两平面平行.( )(4)若两直线的方向向量不平行,则两直线不平行.( )(5)若a ∥b ,则a 所在直线与b 所在直线平行.( )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( )1.下列各组向量中不平行的是( )A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.已知平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为______________.4.若A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(x ,y ,z ),则x ∶y ∶z =________.题型一 证明平行问题例1 (2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ;(2)是否存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.题型二证明垂直问题例2如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC—A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC =2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角.(1)求证:CM∥平面PAD;(2)求证:平面PAB⊥平面PAD.题型三解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.如图所示,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A 组 专项基础训练1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A .相交B .平行C .在平面D .平行或在平面3.已知A (4,1,3),B (2,-5,1),C (3,7,-5),则平行四边形ABCD 的顶点D 的坐标是( )A .(2,4,-1)B .(2,3,1)C .(-3,1,5)D .(5,13,-3)4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为( )A .60°B .45°C .90°D .以上都不正确6.已知平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1)B .(23,23,1)C .(22,22,1) D .(24,24,1) 12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,若α⊥β,则t 等于( )A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.14.如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.(1)求证:EF⊥CD;(2)在平面PAD求一点G,使GF⊥平面PCB,并证明你的结论.。
知识归纳:立体几何中的向量方法1.直线的方向向量:我们把直线l 上的向量以及与共线的向量叫做直线l 的方向向量.2.平面的法向量:如果表示向量a 的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作α⊥,如果α⊥,那么向量叫做平面α的法向量.给定一个点,以向量为法向量的平面是完全确定的.3.空间向量解决立体几何问题的“三步曲”:(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及到的点、直线、平面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(3)把向量的运算结果“翻译”成相应的几何意义.4.用向量研究空间线面关系,设空间两条直线21,l l 的方向向量分别为21,e e ,两个平面21,αα的法向量分别为21,n n ,则有如下结论5.用向量法求线线角:AB 与CD 的夹角和AB 与CD 的夹角相等或互补.公式为cos ,||||AB CDAB CD AB CD ⋅<>=.6.法向量求线面角:设平面β的斜线l 与平面β所成的角为α1,斜线l 与平面β的法向量所成角α2,则α1与α2互余或与α2的补角互余.求出斜线与平面的法向量所成的角后,即可求出斜线与平面所成的角的大小.公式为cos ,||||AB nAB n AB n ⋅<>=.7.法向量求面面角:一个二面角的平面角α1与这个二面角的两个半平面的法向量所成的角α2相等或互补.求出两平面的法向量所成的角后,即可求出二面角的大小.公式为121212cos ,||||n n n n n n ⋅<>=.8.向量法求异面直线间的距离:设分别以这两异面直线上任意两点为起点和终点的向量为,与这两条异面直线都垂直的向量为,则两异面直线间的距离是在方向上的正射影向量的模.公式为d 9.向量法求点到平面的距离:设分别以平面外一点P 与平面内一点M 为起点和终点的向量为,平面的法向量为,则P 到平面的距离d 等于在方向上正射影向量的模.公式为||n d =。
基础知识・自主学习I要点梳理知识冋顾理消救材1.空间向量与空间角的关系(1)已知异面直线11, 12的方向向量分别为S i, S2,当0<< Si, S2>< ,直线11与12的夹角等于〈S i, S2〉当n< < Si, S z>< n时,直线l1与l2的夹角等于n—< S1, S2 >.⑵已知平面n和n的法向量分别为n1和敗,当0<< n1, n2>< ,平面n与n的夹角等于〈n i, n2〉n当2< < n 1,敗〉^ n时,平面n与n的夹角等于兀―〈n i,n2>.⑶已知直线I的方向向量为S,平面n的法向量为n, 则直线l与平面n的夹角sin 0= |cos〈 s, n > |.2.距离公式点到直线的距离公式:d= . |PA|2—|P A S of.点到平面的距离公式:d= |PA n o|.I夯基释疑夯实基础突破疑砒1.判断下面结论是否正确(请在括号中打“V”或“X”(1)两直线的方向向量所成的角就是两条直线所成的角.(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.(3)两个平面的法向量所成的角是这两个平面的夹角.n(4)两异面直线夹角的范围是(0,刁,直线与平面所成角的范围是⑸直线I的方向向量与平面a的法向量夹角为120 °则I和a所成角为30°2.已知二面角a—I —B的大小是n, m, n是异面直线,且m丄a, n丄伏则m,3n所成的角n B.nnC.2nD.6|OP n| |n ||— 2— 6 + 2| =2,故选 B.• cos 〈 n , a >又I 与a 所成角记为 0,即 sin = |cos 〈 n , a >4 5133答案 B解析 ■/ m 丄a, n 丄B,•••异面直线m , n 所成的角的补角与二面角 a-1- B 互补.又•••异面直线所成角的范围为(0,彳, • m , n 所成的角为33.在空间直角坐标系 Oxyz 中,平面OAB 的一个法向量为n = (2, — 2,1),已知点P( — 1,3,2), 则点P 到平面OAB 的距离d 等于 ()A . 4B . 2C . 3D . 1答案 B解析 P 点到平面OAB 的距离为4.若平面a 的一个法向量为n = (4,1,1),直线l 的一个方向向量为 a = (— 2, — 3,3),则I 与 a 所成角的正弦值为 _______________________ . 答案解析 •/ na =— 8— 3 + 3 = — 8, |n |=“ 16+ 1 + 1 = 3 2, |a |= ” ‘4+ 9 + 9 = .22,n a ―84^/11|n| |a |= 3 2X 22=—335 . P 是二面角a — AB — B 棱上的一点,分别在平面a B 上引射线PM 、PN ,如果/ BPM =/ BPN = 45° / MPN = 60° 那么平面 a 与B 的夹角为 _________ . 答案 90° 解析不妨设PM = a , PN = b ,如图,A作ME 丄AB 于E , NF 丄AB 于F ,•••/ EPM = / FPN = 45° •PE =, PF = -22b ,E为CC i的中点,则异面直线B.嚅C並C. 103 10D.^思维启迪本题可以通过建立空间直角坐标系,利用向量BC I、AE所成的角来求. 答案B解析建立坐标系如图,则A(1,0,0),E(0,2,1),B(1,2,0),C i(0,2,2). BC i= (—1,0,2),Al= (—i,2,i),cos〈BC i, AE >BC i A E 30D,G/Hi/I11111/E C y|BC I||AE|10 -求解,而两异面直线所成角的范围是,两向量的夹角a的范围是[0, n,所以要注意二者的区别与联系,应有cos 0= |cos a|.已知直四棱柱ABCD —A1B1C1D1中,底面ABCD 为正方形,AA1= 2AB, E 为AA i的中点,则异面直线BE与CD i所成角的余弦值为10 D.;—> —> —> —> —> —>EM FN = (PM —PE) (PN—PF)=PM PN —PM PF —PE PN+PE PF=abcos 60 —ax^bcos 45 —乎abcos 45 +^axab ab—辿 + ab= 0O 1 O 5••• EM丄FN , •••平面a与B的夹角为90°题型分类・深度剖析题型一求异面直线所成的角【例 1 长方体ABCD —A I B I C I D I中,AB= AA i= 2, AD = 1,BC i与AE所成角的余弦值为所以异面直线BC i与AE所成角的余弦值为誉.思维升华用向量方法求两条异面直线所成的角,是通过两条直线的方向向量的夹角来1B.5答案C解析如图,以D为坐标原点建立如图所示空间直角坐标系.设AA i = 2AB = 2,则B(1,1,0), E(1,0,1), C(0,1,0), D i(0,0,2),•-BE = (0,- 1,1),••• cos 〈 BE , C D 1 >1 +2 = 3后2 • 5= 10题型二求直线与平面所成的角[例 2】如图,已知四棱锥 P — ABCD 的底面为等腰梯形, AB // CD ,AC 丄BD ,垂足为H , PH 是四棱锥的高,E 为AD 的中点. (1) 证明:PE 丄BC ;(2) 若/ APB = /ADB = 60 °求直线PA 与平面PEH 所成角的正弦值.思维启迪:平面的法向量是利用向量方法解决位置关系或夹角的关键,本题可通过建立 坐标系,利用待定系数法求出平面PEH 的法向量.(1)证明 以H 为原点,HA , HB , HP 所在直线分别为x , y , z 轴, 线段HA 的长为单位长度,建立空间直角坐标系(如图),则 A(1,0,0) , B(0,1,0).设 C(m,0,0), P(0,0, n) (m<0, n>0),则 D(0, m,0), E ;,罗,0 . 可得 PE = 2,罗,-n , BC = (m ,- 1,0).因为 PE BC = m — m + 0 = 0,所以 PE 丄 BC.⑵解由已知条件可得 m = —_3故 C -于,0 0 , D 0,—于,0 , E J ,*, 0,P(0,0,1). 设n = (x , y , n H E = 0, 则Sgx -吕=0,』HP = 0, Z= 0.C D i = (0,- 1,2),yAC 丄BD,BC= 1 ,AD = AA1= 3.因此可以取n = (1, - 3, 0).又PA= (1,0, - 1), 所以|cos < F A, n〉1=乎.一迈所以直线PA与平面PEH所成角的正弦值为丁.思维升华利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.虽21,1 汙― (2013 湖南)如图,在直棱柱ABCD —A1B1C1D1中,AD // BC,/ BAD = 90°(1) 证明:AC 丄B1D;(2) 求直线B1C1与平面ACD1所成角的正弦值.方法一(1)证明如图,因为BB1丄平面ABCD , AC 平面ABCD,所以AC丄BB1.又AC丄BD,所以AC丄平面BB1D, 而B1D 平面BB1D,所以AC丄B1D.⑵解因为B1C1 // AD,所以直线B1C1与平面ACD1所成的角等于直线AD与平面ACD1所成的角(记为9).如图,连接A1D,因为棱柱ABCD —A1B1C1D1是直棱柱,且 / B1A1D1= / BAD = 90°从而Rt △ ABC s Rt △ DAB,故AB = DA =BCAB,所以A i B i丄平面ADD I A I,从而A i B i丄AD i.又AD = AA i= 3,所以四边形ADD i A i是正方形.于是A i D丄AD i,故AD i丄平面A i B i D,于是AD i丄B i D. 由⑴知,AC丄B i D,所以B i D丄平面ACD i. 故/ ADB i= 90°—0,在直角梯形ABCD中,因为AC丄BD,所以/ BAC = Z ADB.即AB= , DA BC = 3.连接AB i,易知△ AB i D 是直角三角形,且B I D2= BB2+ BD2= BB?+ AB2+ AD2= 2i,即B i D = 2i.AD 3 vf2i在Rt△ AB i D 中,cos Z ADB i= =21 = ^^,即cos(90 ° 0= 从而sin 0=一即直线B i C i与平面ACD i所成角的正弦值为一尹.方法二⑴证明易知,AB,AD,AA i两两垂直.如图,以 A 为坐标原点,AB,AD,AA i所在直线分别为x轴,y轴,z轴建立空间直角坐标系.设AB= t,则相关各点的坐标为A(0,0,0),B(t,0,0),B i(t,0,3),C(t,i,0),C i(t,i,3),D(0,3,0),D i(0,3,3).从而E h D = (—1,3,—3),AC= (t,i,0),BD = (—t,3,0).因为AC丄BD,所以A C E B D = —t2+ 3 + 0= 0,解得t= .3或t =—,3(舍去).于是B T D = (—.3,3,—3),AC= ( . 3,i,0),因为AC B i D = —3+ 3 + 0= 0,(2)解 由 AC = CB =-^AB 得, 以C 为坐标原点,CA 的方向为 方向,CC 1的方向为z 轴正方向,AC 丄 BC.x 轴正方向,CB 的方向为y 轴正建立如图所示的空间直角坐标系sin 0= |cos 〈 n , B 1C 1 > |=n B 1C 1|n | |E h C 1| _ .3_ .21=7= 7即直线B 1C 1与平面ACD 1所成角的正弦值为21 7题型三求两个平面的夹角【例3】(2013课标全国II )如图,直三棱柱 ABC - A 1B 1C 1 中,J 2AB , BB 1 的中点,AA 1 = AC = CB =-^AB. (1) 证明:BC 1 〃 平面 A 1CD ;(2) 求平面A 1CD 与平面A 1CE 夹角的正弦值.思维启迪 根据题意知/ ACB = 90°故CA 、CB 、C®两两垂直,可以 C 为原点建立空 间直角坐标系,利用向量求两个平面的夹角.(1)证明 连接AC 1交A 1C 于点F ,则F 为AC 1的中点. 又D 是AB 的中点,连接DF ,则BC 1 // DF . 因为DF 平面A 1CD , BC 「平面A 1CD , 所以BC 1 //平面A 1CD.所以AC 丄B i D ,即AC 丄B i D.⑵解 由⑴知,AD i = (0,3,3), AC= ( 3, 1,0), B i C i = (0,1,0).设n = (x , y , z)是平面ACD i 的一个法向量, n A C = 0, 3x + y = 0,则$,即丫n AD i = 03y+3z= 0,令 x = 1,则 n = (1, -3, 3).设直线B 1C 1与平面ACD 1所成角为0,则D ,C|C可取m = (2,i,—2).从而cos〈n, m> ~~,故sin〈 n, m>6 3 .Cxyz.设CA= 2,贝U D(1,1,0), E(0,2,1), A i(2,0,2),CD = (1,1,0), CE = (0,2,1), CA i= (2,0,2).设n= (x i, y i, z i)是平面A i CD的法向量,n CD = 0, x i + y i = 0,则即可取n= (i, - i,—i).n CA i= 0, 2xi+ 2zi =0.同理,设m是平面A i CE的法向量,m CE = 0, 则Tm CA i= 0.所以平面A i CD与平面A i CE夹角的正弦值为思维升华求平面间的夹角最常用的方法就是分别求出两个平面的法向量,然后通过两n 个平面的法向量的夹角得到所求角的大小,但要注意平面间的夹角的范围为[0,刁.吕I」H如图,在圆锥PO中,已知PO= 2, O O的直径AB= 2,C是;的中点,D为AC的中点.(1)证明:平面POD丄平面FAC;(2)求平面ABF与平面ACF夹角的余弦值.(1)证明如图,以O为坐标原点,OB, OC, OF所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则O(0,0,0), A( —1,0,0),B(1,0,0), C(0,1,0), P(0,0, 2), D(—2, 2 0).设n i = (x i, y i, z i)是平面POD的一个法向量,则由n i OD = 0, n i OP = 0,lie —2xi + 2y i=,得2 2 (■:;'2 z i= 0.所以平面ABP与平面ACP夹角的余弦值为10 5所以z i = 0, x i = y i,取y i = 1,得n i = (1,1,0).设n2=(X2, y2, Z2)是平面PAC的一个法向量,则由n2 PA= 0, n2 PC= 0,| —X2—■.”'2Z2= 0,得y2 —:;.;2z2= 0.所以X2=—2z2, y2= ,2z2.取z> = 1,得n2= (—2, 2, 1).因为n 1 n2= (1,1,0) (—2, 2, 1)= 0,所以m丄n2•从而平面POD丄平面PAC.⑵解因为y轴丄平面FAB,所以平面PAB的一个法向量为n3= (0,1,0).由(1)知,平面PAC的一个法向量为n2= ( —2, 2, 1). 设向量n2和n3的夹角为0,则C0S 9=|器3|=€=甲.题型四求空间距离【例4 已知正方形ABCD的边长为4, CG丄平面ABCD , CG = 2, E, F分别是AB, AD的中点,则点C到平面GEF的距离为___________ .思维启迪所求距离可以看作CG在平面GEF的法向量的投影.答案*解析建立如图所示的空间直角坐标系Cxyz,n=(1,1,3)所以点C到平面GEF的距离为d=嘗6 11 11则CG = (0,0,2),由题意易得平面GEF的一个法向量为思维升华求点面距一般有以下三种方法:②等体积法;③向量法.其1.①作点到面的垂线,点到垂足的距离即为点到平面的距离; 中向量法在易建立空间直角坐标系的规则图形中较简便.亍心讥IY4 (2012大纲全国改编)已知直四棱柱 ABCD — A I B I C I D I 中,底面 ABCD 为正 方形,AB = 2, CC 1 = 2 2, E 为C®的中点,则点 A 到平面BED 的距离为 ()A . 2 B. 3C. ,2D . 1答案 D解析 以D 为原点,DA 、DC 、DD i 所在直线分别为 x 轴、y 轴、z 轴建立空间直角坐标系 (如图),贝U D(0,0,0), A(2,0,0), B(2,2,0), C(0,2,0), C i (0,2,2 .2), E(0,2 ,,2).设n = (x , y , z)是平面BED 的法向量.n BD = 2x + 2y = 0 则S T.DE = 2y+V2z = 0取y = 1,贝U n = (— 1,1, — .2)为平面BED 的一个法向量. 又 D A = (2,0,0),•••点A 到平面BED 的距离是|n D A|l— 1x 2+ 0+ 0||n |'.;—12+ 12+ — ,22=答题按板系列8利用空间向量求角典例:(12分)(2013江西)如图,四棱锥 P — ABCD 中,PA 丄平面 ABCD , E 为BD 的中点,G 为PD 的中点,△ DABDCB , EA = EB = AB = 1 , PA = 3,连接 CE 并延长交 AD 于F.6G⑴求证:AD丄平面CFG ;(2)求平面BCP与平面DCP夹角的余弦值.思维启迪(1)可利用判定定理证明线面垂直;(2)利用AD、AP、AB两两垂直建立空间直角坐标系,求两个平面的法向量,利用向量夹角求两个平面BCP、DCP夹角的余弦值.规范解答(1)证明在厶ABD中,因为E为BD的中点,所以EA= EB = ED = AB= 1 ,n故/ BAD = 2,n3'/ ABE = / AEB =-因为△ DAB也厶DCB,所以△ EABECB ,n从而有 / FED = Z BEC = Z AEB =-,3所以Z FED = Z FEA. [2分] 故EF 丄AD , AF = FD ,又因为PG = GD,所以FG // FA.又FA丄平面ABCD ,[4分] 所以GF丄AD,故AD丄平面CFG. [6分]⑵解以A为坐标原点建立如图所示的坐标系,[9分] [10 分][12 分]则 A(0,0,0) , B(1,0,0), C 号,于,0 ,D(0, ,3, 0), P 0, 0, 2 , 故BC =扌冷,0, Cp = -2,设平面BCP 的法向量为 n i = (X i , y i , Z i ),n i CP = 0 则 -n i BC = 0令 y i = — ,3,贝V X i = 3, Z i = 2, n i = (3,— 3, 2). 同理求得面DCP 的法向量为n 2= (i ,,3, 2),从而平面BCP 与平面DCP 夹角0的余弦值为 ,I n i n 2|4 卫cos Fsg n 2〉= |n i ||n 2= 4X 2=〒利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾•查看关键点、易错点和答题规范.温馨提醒 (1)利用向量求角是高考的热点,几乎每年必考,主要是突出向量的工具性作用.GD—3电I 2, 2,0. [8分](2) 本题易错点是在建立坐标系时不能明确指出坐标原点和坐标轴,导致建系不规范.(3) 将向量的夹角转化成空间角时,要注意根据角的概念和图形特征进行转化,否则易错.思想方法・感悟提高方法与技巧1 .用向量来求空间角,各类角都可以转化为向量的夹角来计算.2 .求点到平面的距离,若用向量知识,则离不开以该点为端点的平面的斜线段.失误与防范1 .利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.2 .求点到平面的距离,有时利用等体积法求解可能更方便.B i D 和CD i 所成的角( )、选择题1.已知正方体ABCD — A i B i C i D i 如图所示,则直线为 A . 60 ° B . 45 ° C . 30 ° D . 90 °答案 D解析 以A 为原点,AB 、AD 、AA i 所在直线分别为x , y , z 轴建立空间直角坐标系,设正方体边长为i ,则射线CD i 、B i D 的方向向量分别是 CD i = (-i,O,i),•••直线B i D 和CD i 所成的角为90°2 .如图,四棱锥 S — ABCD 的底面为正方形,SD 丄底面ABCD ,则下列 结论中不正确的是 ()A . AC 丄 SB B . AB //平面 SCDC . SA 与平面SBD 所成的角等于 SC 与平面SBD 所成的角 D . AB 与SC 所成的角等于DC 与SA 所成的角 答案 D解析 •••四边形ABCD 是正方形,• AC 丄BD. 又••• SD 丄底面 ABCD , • SD 丄AC.其中SD A BD = D , • AC 丄平面SDB ,从而 AC 丄SB. 故A 正确;易知 B 正确;设 AC 与DB 交于O 点,连接SO.则SA 与平面SBD 所成的角为/ ASO , SC 与平面SBD 所成的角为/ CSO ,练出高分A 组专项基础训练 (时间:40分钟)B i D = (— i,i ,i),COS 〈 CD i , B i D >i + 0— i 2X- 3= 0,SA. i2nB.nnC.4nD.6答案B解析如图所示:iS ABC = 2 X ■. 3 X•.::.;: 3 X. nsin 3=3“ 34A: 2B.3 C逅C. 3答案解析以A为原点建立如图所示的空间直角坐标系Axyz,设棱长为i,1则A i(0,0,i), E i , 0, 2 , D(0,i,0),Eft •-心=(0,i, —i) , A T E= i, 0, —2 ,设平面A i ED的一个法向量为n i= (i, y, z), y—z= 0 ,则i|i —2z= 0 ,y= 2,z= 2..n i= (1,2,2).•••平ABCD 的一个法向量为2n2= (0,0,i) , . cos〈n i ,血〉=23.所以平面A i ED与平面ABCD夹角的余弦值为2 3.在四面体P —ABC中,PA, PB, PC两两垂直,设PA = PB= PC = a,则点P到平面ABC又0A= OC, SA= SC,.•./ ASO= / CSO.故C正确;由排除法可知选 D.93. (2013山东)已知三棱柱ABC —A i B i C i的侧棱与底面垂直,体积为4底面是边长为.3的正三角形•若P为底面A i B i C i的中心,则PA与平面ABC所成角的大小为()VABC—A i B i C i = S\BC X OP = 3-43 X OP = 4, /. OP = _ 3. 又OA= ~2^X ,3X1= i, tan/ OAP = OA = .3,—/ 兀/ n又0< / OAP<2, OAP = 3.2 3余弦值为在正方体ABCD —A i B i C i D i中,点E为BB i的中点,则平面A i ED与平面ABCD夹角的的距离为A•身 B.fa C.3 D. 6a答案B解析根据题意,可建立如图所示的空间直角坐标系Pxy z,则P(0,0,0),A(a,O,O),B(0,a,0),C(0,0,a).过点P作PH丄平面ABC,交平面ABC于点H,则PH的长即为点P到平面ABC的距离.PA = PB= PC, ••• H ABC 的外心.又•••△ ABC为正三角形,• H ABC的重心,可得H点的坐标为(3,3,3)• PH - ... 3- 02+ a - 0 2+ 3 - 0 2詔a.•••点P到平面ABC的距离为-^a.二、填空题6. 已知两平面的法向量分别为_______________________________ m = (0,1,0), n= (0,1,1),则两平面夹角的大小为 ____________________________________________ 答案n4m n 2 n解析cos〈m, n>=丽厂T,•〈m,n>=;.•两平面夹角的大小为n7. 如图所示,在三棱柱ABC—A i B i C i中,AA i丄底面ABC, AB = BC= AA i,/ ABC = 90°点E、F分别是棱AB、BB i的中点,则直线EF和BC i所成的角是_________ .答案60°解析以BC为x轴,BA为y轴,BB i为z轴,建立空间直角坐标系. 设AB = BC = AA i = 2,则C i(2,0,2), E(0,i,0), F(0,0,i),则E F = (0,- i,i), B C i= (2,0,2),•- EF BC i= 2,RBcos〈E F, B C1> 2 _ 1 -,2X2*2—2,答案3,5 i0解析以A为坐标原点,AB、AD、AA i所在直线分别为x轴、y轴、z轴建立空间直角坐标系,如图所示,小i i则A i(0,0,i),E(i,0,2),F(2, i,0), D i(0,i,i).• A?E_ (1,0,—2), A?D i_ (0,1,0).设平面A i D i E的一个法向量为n_ (x, y, z),n A T E _ 0, 则n A i D i_ 0,1x —2z_ 0, 即2y_ 0.••• EF和BC i所成的角为60°8. 正方体ABCD —A i B i C i D i的棱长为1 , E、F分别为BB「CD的中点,则点F到平面AQ i E的距离为________令z_ 2,贝y x_ 1..・.n_ (1,0,2).又心_ (2, 1, —1),•••点F到平面A i D i E的距离为T1_ 心n I_〔2 —2|_ d_|n| _ 5 _10 .三、解答题9. 如图,四棱锥P—ABCD中,PD丄平面ABCD , PA与平面ABD所成的角为60°,在四边形ABCD 中,/ ADC _/ DAB _ 90° AB _ 4,CD _ 1 , AD _ 2.(1) 建立适当的坐标系,并写出点B, P的坐标;(2) 求异面直线PA与BC所成的角的余弦值.解(1)建立如图空间直角坐标系,•••/ ADC _ Z DAB _ 90°AB_ 4, CD_ 1, AD _ 2,a • A(2,0,0), C(0,1,0), B(2,4,0)..13 13,•异面直线PA与BC所成的角的余弦值为.13 13 .由PD丄平面ABCD,得/ FAD为PA与平面ABCD所成的角,•••/ FAD = 60°在Rt△ FAD 中,由AD = 2,得PD = 2.3, • P(0,0,2 . 3).—> ——>(2) •/ FA = (2,0,- 2 3), BC= (- 2,- 3,0),• cos〈PA, BC〉2 X - 2 + 0X -3 + - 2^3 X 04 .1310. (2013天津)如图,四棱柱ABCD - A1B1C1D1中,侧棱A1A丄底面ABCD , AB // DC , AB 丄AD , AD = CD = 1 , AA1 = AB= 2, E 为棱AA1的中点.(1) 证明:B1C1 丄CE;(2) 求二面角B1 - CE - C1的正弦值;(3) 设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为¥,求线段AM的长.方法一如图,以点A为原点,以AD, AA1, AB所在直线为x轴, y轴,z轴建立空间直角坐标系,依题意得A(0,0,0), B(0,0,2) ,C(1,0,1),B1(0,2,2), C1(1,2,1), E(0,1,0).(1)证明易得B?C1 = (1,0, - 1), CE= ( - 1,1, - 1),于是B1C1C E =0,所以B1C1丄CE.(2)解B1C = (1 , - 2, - 1).设平面BQE的法向量m= (x, y, z),m B1C= 0, ]x-2y-z= 0,则即消去x,得y+ 2z= 0,不妨令z= 1,可得一个法m CE = 0, -x+ y-z=°.向量为m= (- 3,- 2,1).由(1)知,B1C1 丄CE,又CC1 丄B1C1,可得B1C1 丄平面CEC1, 故BQ1= (1,0,—1)为平面于是cos 〈 m, B i C i 〉 m B i C i|m | |B i C i |从而 sin 〈m , B ?C i 〉=亠尹sin 0= |cos 〈 AM , AB 〉|= AM AB||AM| |A B|于是-6,解得匸*(负值舍去), CEC i 的一个法向量.所以二面角B i - CE - C i 的正弦值为亡尹 ⑶解 AE =(o,i,o ), E C i =(i,i,i ),设E M = ?E C i =(入入为,o w 庄i ,有AM = AE + EM 可取AB = (0,0,2)为平面ADD i A i 的一个法向量.设B 为直线AM 与平面ADD i A i 所成的角,则所以AM = 2.方法二(1)证明因为侧棱CC i丄底面A i B i C i D i, B i C i平面A i B i C i D i,所以CC i丄B i C i.经计算可得B i E = .5, B i C i= .2, EC i=v3,从而B i E2= B i C i+ EC i,所以在△ B i EC i中,B i C i丄C i E,又CC i, C i E 平面CC i E, CC i Q C i E = C i,所以B i C i丄平面CC i E,又CE平面CC i E,故B i C i丄CE.⑵解过B i作B i G丄CE于点G,连接C i G.由⑴知,B i C i丄CE,故CE丄平面B i C i G,得CE丄C i G , 所以/ B i GC i为二面角B i-CE —C i的平面角.在Rt △ B1C1G 中, B i G ='42 3即二面角B i—CE —C i的正弦值为亠号.⑶解连接D i E,过点M作MH丄ED i于点H ,可得MH丄平面ADD i A i,连接AH , AM , 则/ MAH为直线AM与平面ADD i A i所成的角.设AM = x,从而在Rt△ AHM中,有在Rt△ C i D i E 中,C i D i = i, ED i = , 2,得EH = ,2MH = 3X.在厶AEH 中,/ AEH = i35° AE = i,由AH2= AE2+ EH2—2AE EHcos i35 °得珞(=i+9/+承整理得5x2— 2 2x— 6 = 0,解得x = ■, 2(负值舍去).所以线段AM的长为.2.所以sin / B i GC i =• cos〈F D i, OE >〔+ 2=VT55 • 3= 5B组专项能力提升(时间:30分钟)1.过正方形ABCD的顶点A作线段PA丄平面ABCD ,若AB= PA,则平面ABP与平面CDP的夹角大小为A. 30°B. 45°C. 60°D. 90°答案B解析建立如图所示的空间直角坐标系,设AB= PA= 1,知A(0,0,0) , B(1,0,0), D(0,1,0), C(1,1,0), P(0,0,1)由题意得,AD丄平面ABP,设E为PD的中点,连接AE,贝U AE丄PD ,又••• CD丄平面PAD, ••• AE丄CD,又PD A CD = D, • AE 丄平面CDP.• AD = (0,1,0), AE = (0, 2 , 2)分别是平面ABP、平面CDP的法向量,而〈AD, AE〉= 45°•平面ABP与平面CDP的夹角大小为45° 2 .在棱长为2的正方体ABCD —A i B i C i D i中,0是底面ABCD的中点,E, F分别是CC i,AD的中点,那么异面直线0E和FD i所成的角的余弦值等于 _____________ .答案严5解析以D为原点,分别以DA、DC、DD i为x轴、y轴、z轴建立空间直角坐标系,•F(1,0,O), D i(0,0,2), O(1,1,0), E(0,2,1),•F D i= (—1,0,2),OE = (—1,1,1),3. ________________________________________________________________________ 设正方体ABCD —A i B i C i D i的棱长为2,则点D i到平面A i BD的距离是_________________________DA I =(2,0,2), DB =(2,2,0),设平面A I BD的一个法向量n = (x, y, z),n DA I=2X+ 2z= 0 则S T .n DB = 2x+ 2y= 0令x= 1,贝U n= (1, - 1,- 1),•••点D1到平面A1BD的距离为.ID^A1 n| 2 23d |n| .3 3 .4. 如图,在底面为直角梯形的四棱锥P—ABCD中,AD // BC,Z ABC=90° PA丄平面ABCD , PA = 3, AD = 2, AB = 2羽,BC= 6.(1)求证:BD丄平面PAC;(2)求平面BPD与平面ABD的夹角.(1)证明如图,建立空间直角坐标系,则A(0,0,0) , B(2 3, 0,0),C(2 .3, 6,0), D(0,2,0), P(0,0,3),• A P =(0,0,3), A C = (2西,6,0), BD = (- 2亞,2,0).•- BD AP = 0, BD AC= 0.• BD 丄AP, BD 丄AC.又••• FA Q AC= A, • BD丄平面FAC.⑵解设平面ABD的法向量为m= (0,0,1), 平面PBD的法向量为n = (x, y, z),则n BD = 0, n BP = 0.答案2333解析如图建立空间直角坐标系,则D I(0,0,2) , A i(2,0,2), D(0,0,0), B(2,2,0), D1A1 = (2,0,0),••• BP = (- 2 3, 0,3), •••-2 3x+ 2y= 0,-2 3x+ 3z= 0, 丫=晶,解得\ =塑Z= 丁x.令x= .3,则n= ( .3, 3,2),m-n 1• cos〈 m, n > = ----- =一|m||n| 2•••平面BPD与平面ABD的夹角为60°(3)证明:在线段 5. (2013北京)如图,在三棱柱 ABC — A i B i C i 中,AAQ I C 是边长为4的正方形.平面 ABC 丄平面AA 1C 1C , AB = 3, BC = 5.(1)求证:AA i 丄平面ABC ;⑵求平面A 1BC 1与平面BB 1C 1夹角的余弦值;BD BC 1上存在点D ,使得AD 丄A 1B ,并求 的值. BC 1(1)证明 在正方形 AA 1C 1C 中,A 1A 丄AC.又平面ABC 丄平面AA 1C 1C ,且平面ABC 门平面AA 1C 1C = AC , ••• 丄平面 ABC.(2)解 在厶ABC 中,AC = 4, AB = 3, BC = 5,••• BC 2 = AC 2+ AB 2, AB 丄AC•以A 为坐标原点,建立如图所示空间直角坐标系 Axyz. A 1(0,0,4), B(0,3,0), C 1(4,0,4), B 1(0,3,4), A 1C 1= (4,0,0), A 1B = (0,3 , — 4), B 1C 1 = (4 , — 3,0) , BB 1 = (0,0,4). 设平面 A 1BC 1的法向量 n 1= (X 1 , y 1 , Z 1),平面 B 1BC 1的法向量n 2= (X 2 , y ,Z 2).A 1C 1 n 1 = 0 , 4x 1 = 0• \AB m= 0 脚-4乙=0•取向量 n 1= (0,4,3)f _B 1C 1 n 2= 0, 4x 2 — 3y 2 = 0,由S _ ? $^B _1 n 2= 0 -4z2= °.取向量 n 2= (3,4,0), m n 2 16 16…cos 〈 n 1, n 2〉= 1 1 1 . = = cl2 |n 1| |n 2| 5X 5 25'由题意知二面角 A 1 — BC 1 — B 1为锐角,•平面A 1BC 1与平面BB 1C 1夹角的余弦值为 黒 25 ⑶证明 设D(x , y , z)是直线BC 1上一点,且BD =疋_1.• (x , y — 3, z) = X 4,— 3,4),3— 3 X, 4 A 解得 x = 4 入 y = 3 — 3 入 z = 4 X — AD = (4 人又 AD 丄A i B , ••• 0+ 3(3 — 3R — 16X= 09 BD 9则X=旦,因此BD =— 则 A 25 '因此 BC i 25.。
2021年高考理科数学一轮复习:题型全归纳与高效训练突破专题8.6 立体几何中的向量方法目录一、考点全归纳1.两条异面直线所成角的求法设a,b分别是两异面直线l1,l2的方向向量,则设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,a与n的夹角为β,则sin θ=|cos β|=|a·n||a||n|.3.求二面角的大小(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.(2)如图①①,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【常用结论】 利用空间向量求距离 (1)两点间的距离设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB →|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. (2)点到平面的距离如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO →|=|AB →·n ||n |.二 题型全归纳题型一 异面直线所成的角【题型要点】用向量法求异面直线所成角的一般步骤 (1)选择三条两两垂直的直线建立空间直角坐标系.(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量. (3)利用向量的夹角公式求出向量夹角的余弦值.(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.【易错提醒】注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,就是此异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.【例1】如图,在四棱锥P ABCD 中,P A ①平面ABCD ,底面ABCD 是菱形,AB =2,①BAD =60°.(1)求证:BD ①平面P AC ;(2)若P A =AB ,求PB 与AC 所成角的余弦值. 【解析】(1)证明:因为四边形ABCD 是菱形, 所以AC ①BD .因为P A ①平面ABCD ,所以P A ①BD . 又因为AC ∩P A =A ,所以BD ①平面P AC . (2)设AC ∩BD =O .因为①BAD =60°,P A =AB =2,所以BO =1,AO =CO = 3.如图,以O 为坐标原点,建立空间直角坐标系Oxyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0). 所以PB →=(1,3,-2),AC →=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=⎪⎪⎪⎪⎪⎪PB →·AC →|PB →||AC →|=622×23=64.即PB 与AC 所成角的余弦值为64. 【例2】.如图,在三棱锥P ABC 中,P A ①底面ABC ,①BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ①平面BDE ;(2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. 【解析】:如图,以A 为原点,分别以AB →,AC →,AP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE →=(0,2,0),DB →=(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·DE →=0,n ·DB →=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨设z =1,可取n =(1,0,1).又MN →=(1,2,-1),可得MN →·n =0. 因为MN ①平面BDE , 所以MN ①平面BDE .(2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ), 进而可得NH →=(-1,-2,h ),BE →=(-2,2,2).由已知,得|cos 〈NH →,BE →〉|=|NH →·BE →||NH →||BE →|=|2h -2|h 2+5×23=721,整理得10h 2-21h +8=0,解得h =85或h =12.所以,线段AH 的长为85或12.题型二 直线与平面所成的角【题型要点】(1)利用向量求直线与平面所成的角有两个思路:①分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);①通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.(2)若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2. 【易错提醒】求解直线和平面所成角,要注意直线的方向向量与平面法向量的夹角和所求角之间的关系,线面角的正弦值等于两向量夹角的余弦值的绝对值.【例1】(2020·深圳模拟)如图,四棱锥P -ABCD 中,底面ABCD 为菱形,PD =PB ,H 为PC 上的点,过AH 的平面分别交PB ,PD 于点M ,N ,且BD ①平面AMHN .(1)证明:MN ①PC ;(2)设H 为PC 的中点,P A =PC =3AB ,P A 与平面ABCD 所成的角为60°,求AD 与平面AMHN 所成角的正弦值.【解析】:(1)证明:如图①,连接AC 交BD 于点O ,连接PO .因为四边形ABCD 为菱形,所以BD ①AC ,且O 为BD 的中点. 因为PD =PB ,所以PO ①BD ,因为AC ∩PO =O ,且AC ,PO ①平面P AC ,所以BD ①平面P AC . 因为PC ①平面P AC ,所以BD ①PC .因为BD ①平面AMHN ,且平面AMHN ∩平面PBD =MN ,所以BD ①MN , 所以MN ①PC .(2)由(1)知BD ①AC 且PO ①BD , 因为P A =PC ,且O 为AC 的中点, 所以PO ①AC ,所以PO ①平面ABCD ,因为P A 与平面ABCD 所成的角为①P AO ,所以①P AO =60°,所以AO =12P A ,PO =32P A .因为P A =3AB ,所以BO =36P A .以O 为坐标原点,OA →,OD →,OP →的方向分别为x 轴,y 轴,z 轴的正方向,建立如图①所示的空间直角坐标系,记P A =2,则O (0,0,0),A (1,0,0),B ⎝⎛⎭⎫0,-33,0,C (-1,0,0),D ⎝⎛⎭⎫0,33,0,P (0,0,3),H ⎝⎛⎭⎫-12,0,32, 所以BD →=⎝⎛⎭⎫0,233,0,AH →=⎝⎛⎭⎫-32,0,32,AD →=⎝⎛⎭⎫-1,33,0. 设平面AMHN 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BD →=0,n ·AH →=0,即⎩⎨⎧233y =0,-32x +32z =0,令x =2,解得y =0,z =23,所以n =(2,0,23)是平面AMHN 的一个法向量. 记AD 与平面AMHN 所成角为θ,则sin θ=|cos 〈n ,AD →〉|=⎪⎪⎪⎪⎪⎪n ·AD →|n ||AD →|=34.所以AD 与平面AMHN 所成角的正弦值为34. 【例2】如图,在几何体ACD -A 1B 1C 1D 1中,四边形ADD 1A 1与四边形CDD 1C 1均为矩形,平面ADD 1A 1①平面CDD 1C 1,B 1A 1①平面ADD 1A 1,AD =CD =1,AA 1=A 1B 1=2,E 为棱AA 1的中点.(1)证明:B 1C 1①平面CC 1E ;(2)求直线B 1C 1与平面B 1CE 所成角的正弦值.【解析】(1)证明:因为B 1A 1①平面ADD 1A 1,所以B 1A 1①DD 1, 又DD 1①D 1A 1,B 1A 1∩D 1A 1=A 1,所以DD 1①平面A 1B 1C 1D 1, 又DD 1①CC 1,所以CC 1①平面A 1B 1C 1D 1. 因为B 1C 1①平面A 1B 1C 1D 1,所以CC 1①B 1C 1.因为平面ADD 1A 1①平面CDD 1C 1,平面ADD 1A 1∩平面CDD 1C 1=DD 1,C 1D 1①DD 1, 所以C 1D 1①平面ADD 1A 1.经计算可得B 1E =5,B 1C 1=2,EC 1=3,从而B 1E 2=B 1C 21+EC 21,所以在①B 1EC 1中,B 1C 1①C 1E .又CC 1,C 1E ①平面CC 1E ,CC 1∩C 1E =C 1,所以B 1C 1①平面CC 1E . (2)如图,以点A 为坐标原点,建立空间直角坐标系,依题意得A (0,0,0),C (1,0,1),B 1(0,2,2),C 1(1,2,1),E (0,1,0),则CE →=(-1,1,-1),B 1C →=(1,-2,-1).设平面B 1CE 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·B 1C →=0,m ·CE →=0,即⎩⎪⎨⎪⎧x -2y -z =0,-x +y -z =0,消去x 得y +2z =0, 不妨设z =1,可得m =(-3,-2,1)为平面B 1CE 的一个法向量, 易得B 1C 1→=(1,0,-1),设直线B 1C 1与平面B 1CE 所成角为θ,则sin θ=|cos 〈m ,B 1C 1→〉|=⎪⎪⎪⎪⎪⎪m ·B 1C 1→|m |·|B 1C 1→|=⎪⎪⎪⎪⎪⎪-414×2=277, 故直线B 1C 1与平面B 1CE 所成角的正弦值为277.题型三 二面角【题型要点】利用向量计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐(钝)二面角.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.【易错提醒】:判断二面角的平面角是锐角还是钝角,可结合图形进行.【例1】(2020·深圳模拟)已知四棱锥PABCD,底面ABCD为菱形,PD=PB,H为PC上的点,过AH的平面分别交PB,PD于点M,N,且BD①平面AMHN.(1)证明:MN①PC;(2)当H为PC的中点,P A=PC=3AB,P A与平面ABCD所成的角为60°,求AD与平面AMHN所成角的正弦值.【解析】(1)证明:连接AC、BD且AC∩BD=O,连接PO.因为ABCD为菱形,所以BD①AC,因为PD=PB,所以PO①BD,因为AC∩PO=O且AC、PO①平面P AC,所以BD①平面P AC,因为PC①平面P AC,所以BD①PC,因为BD①平面AMHN,且平面AMHN∩平面PBD=MN,所以BD①MN,MN①平面P AC,所以MN ①P C.(2)由(1)知BD ①AC 且PO ①BD , 因为P A =PC ,且O 为AC 的中点, 所以PO ①AC ,所以PO ①平面ABCD , 所以P A 与平面ABCD 所成的角为①P AO , 所以①P AO =60°,所以AO =12P A ,PO =32P A ,因为P A =3AB ,所以BO =36P A . 以OA →,OD →,OP →分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设P A =2,所以O (0,0,0),A (1,0,0),B (0,-33,0),C (-1,0,0),D (0,33,0),P (0,0,3),H (-12,0,32),所以BD →=(0,233,0),AH →=(-32,0,32),AD →=(-1,33,0).设平面AMHN 的法向量为n =(x ,y ,z ), 所以⎩⎪⎨⎪⎧n ·BD →=0,n ·AH →=0,即⎩⎨⎧233y =0,-32x +32z =0,令x =2,则y =0,z =23,所以n =(2,0,23),设AD 与平面AMHN 所成角为θ,所以sin θ=|cos 〈n ,AD →〉|=|n ·AD →|n ||AD →||=34. 所以AD 与平面AMHN 所成角的正弦值为34. 【例2】图1是由矩形ADEB ,Rt①ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,①FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ①平面BCGE ;(2)求图2中的二面角B -CG -A 的大小.【解析】:(1)证明:由已知得AD ①BE ,CG ①BE ,所以AD ①CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ①BE ,AB ①BC ,故AB ①平面BCGE .又因为AB ①平面ABC ,所以平面ABC ①平面BCGE .(2)作EH ①BC ,垂足为H .因为EH ①平面BCGE ,平面BCGE ①平面ABC ,所以EH ①平面ABC .由已知,菱形BCGE 的边长为2,①EBC =60°,可求得BH =1,EH = 3. 以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H xyz , 则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CG →·n =0AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取为m =(0,1,0),所以cos n ,m =n ·m |n ||m |=32. 因此二面角B CG A 的大小为30°.题型四 利用空间向量求距离【题型要点】求解点到平面的距离可直接转化为求向量在平面的法向量上的射影的长.如图,设点P 在平面α外,n 为平面α的法向量,在平面α内任取一点Q ,则点P 到平面α的距离d =|PQ →·n ||n |.【易错提醒】该题中的第(2)问求解点到平面的距离时,利用了两种不同的方法——等体积法与向量法,显然向量法直接简单,不必经过过多的逻辑推理,只需代入坐标准确求解即可.【例1】(2020·云南师范大学附属中学3月月考)如图,在直三棱柱ABC A 1B 1C 1中,①ABC 是边长为2的正三角形,AA 1=26,D 是CC 1的中点,E 是A 1B 1的中点.(1)证明:DE ①平面A 1BC;(2)求点A 到平面A 1BC 的距离.【解析】 (1)证明:如图取A 1B 的中点F ,连接FC ,FE .因为E ,F 分别是A 1B 1,A 1B 的中点,所以EF ①BB 1,且EF =12BB 1. 又在平行四边形BB 1C 1C 中,D 是CC 1的中点,所以CD ①BB 1,且CD =12BB 1,所以CD ①EF ,且CD =EF . 所以四边形CFED 是平行四边形,所以DE ①CF .因为DE ①/平面A 1BC ,CF ①平面A 1BC ,所以DE ①平面A 1BC .(2)法一:(等体积法)因为BC =AC =AB =2,AA 1=26,三棱柱ABC A 1B 1C 1为直三棱柱,所以V 三棱锥A 1-ABC =13S ①ABC ×AA 1=13×34×22×26=2 2. 又在①A 1BC 中,A 1B =A 1C =27,BC =2,BC 边上的高h = A 1B 2-⎝⎛⎭⎫12BC 2=33,所以S ①A 1BC =12BC ·h =3 3. 设点A 到平面A 1BC 的距离为d ,则V 三棱锥A -A 1BC =13S ①A 1BC ×d =13×33×d =3d . 因为V 三棱锥A 1-ABC =V 三棱锥A -A 1BC ,所以22=3d ,解得d =263, 所以点A 到平面A 1BC 的距离为263. 法二:(向量法)由题意知,三棱柱ABC A 1B 1C 1是正三棱柱.取AB 的中点O ,连接OC ,OE .因为AC =BC ,所以CO ①AB .又平面ABC ①平面ABB 1A 1,平面ABC ∩平面ABB 1A 1=AB ,所以CO ①平面ABB 1A 1.因为O 为AB 的中点,E 为A 1B 1的中点,所以OE ①AB ,所以OC ,OA ,OE 两两垂直.如图,以O 为坐标原点,以OA ,OE ,OC 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C (0,0,3),A (1,0,0),A 1(1,26,0),B (-1,0,0).则BA 1→=(2,26,0),BC →=(1,0,3).设平面A 1BC 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ①BA 1→,n ①BC →,可得⎩⎪⎨⎪⎧n ·BA 1→=2x +26y =0,n ·BC →=x +3z =0, 整理得⎩⎨⎧x +6y =0,x +3z =0,令x =6,则y =-1,z =- 2. 所以n =(6,-1,-2)为平面A 1BC 的一个法向量.而BA →=(2,0,0),所以点A 到平面A 1BC 的距离d =|BA →·n ||n |=6×26+1+2=263. 【例2】如图,①BCD 与①MCD 都是边长为2的正三角形,平面MCD ①平面BCD ,AB ①平面BCD ,AB =23,求点A 到平面MBC 的距离.【答案】见解析【解析】:如图,取CD 的中点O ,连接OB ,OM ,因为①BCD 与①MCD 均为正三角形,所以OB ①CD ,OM ①CD ,又平面MCD ①平面BCD ,平面MCD ∩平面BCD =CD ,OM ①平面MCD ,所以MO ①平面BCD .以O 为坐标原点,直线OC ,BO ,OM 分别为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz .因为①BCD 与①MCD 都是边长为2的正三角形,所以OB =OM =3,则O (0,0,0),C (1,0,0),M (0,0,3),B (0,-3,0),A (0,-3,23),所以BC →=(1,3,0).BM →=(0,3,3).设平面MBC 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ①BC →,n ①BM →得⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎨⎧x +3y =0,3y +3z =0, 取x =3,可得平面MBC 的一个法向量为n =(3,-1,1).又BA →=(0,0,23),所以所求距离为d =|BA →·n ||n |=2155.三、高效训练突破一、选择题1.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( )A .120°B .60°C .30°D .60°或30°【答案】C【解析】设直线l 与平面α所成的角为β,直线l 与平面α的法向量的夹角为γ.则sin β=|cos γ|=|cos 120°|=12. 又0°≤β≤90°,①β=30°.2.在正方体A 1B 1C 1D 1ABCD 中,AC 与B 1D 所成角大小为( )A.π6B.π4C.π3D.π2 【答案】D【解析】建立如图所示的空间直角坐标系设正方体边长为1,则A (0,0,0), C (1,1,0),B 1(1,0,1),D (0,1,0). ①AC →=(1,1,0),B 1D →=(-1,1,-1),①AC →·B 1D →=1×(-1)+1×1+0×(-1)=0,①AC →①B 1D →,①AC 与B 1D 所成的角为π2. 3.如图,在空间直角坐标系中有直三棱柱ABC A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.55B.53C.255D.35【答案】A 【解析】设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=-2×0+2×2+1×(-1)0+4+1·4+4+1=15=55. 4.将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图,AC ︵长为2π3,A 1B 1︵长为π3,其中B 1与C 在平面AA 1O 1O 的同侧.则异面直线B 1C 与AA 1所成的角的大小为( )A.π6 B .π4C.π3D .π2【答案】B 【解析】:.以O 为坐标原点建系如图则A (0,1,0),A 1(0,1,1),B 1⎝⎛⎭⎫32,12,1,C ⎝⎛⎭⎫32,-12,0. 所以AA 1→=(0,0,1),B 1C →=(0,-1,-1),所以cos 〈AA 1→,B 1C →〉=AA 1→·B 1C →|AA 1→||B 1C →|=0×0+0×(-1)+1×(-1)1×02+(-1)2+(-1)2=-22, 所以〈AA 1→,B 1C →〉=3π4,所以异面直线B 1C 与AA 1所成的角为π4.故选B. 5.如图,已知长方体ABCD A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成的角的正弦值为( )A.33535B .277 C.33 D .24 【答案】A.【解析】:如图以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0),所以DC 1→=(0,3,1),D 1E →=(1,1,-1),D 1C →=(0,3,-1).设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E →=0,n ·D 1C →=0,即⎩⎪⎨⎪⎧x +y -z =0,3y -z =0,即⎩⎪⎨⎪⎧x =2y ,z =3y ,取y =1,得n =(2,1,3). 因为cos 〈DC 1→,n 〉=DC 1→·n |DC 1→|·|n |=(0,3,1)·(2,1,3)10×14=33535,所以DC 1与平面D 1EC 所成的角的正弦值为33535,故选A. 6.二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217.则该二面角的大小为( )A .150°B .45°C .60°D .120°【答案】C.【解析】:如图所示二面角的大小就是〈AC →,BD →〉.因为CD →=CA →+AB →+BD →,所以CD →2=CA →2+AB →2+BD →2+2(CA →·AB →+CA →·BD →+AB →·BD →)=CA →2+AB →2+BD →2+2CA →·BD →,所以CA →·BD →=12[(217)2-62-42-82]=-24.因此AC →·BD →=24,cos 〈AC →,BD →〉=AC →·BD →|AC →||BD →|=12, 又〈AC →,BD →〉①[0°,180°],所以〈AC →,BD →〉=60°,故二面角为60°.7.已知斜四棱柱ABCD A 1B 1C 1D 1的各棱长均为2,①A 1AD =60°,①BAD =90°,平面A 1ADD 1①平面ABCD ,则直线BD 1与平面ABCD 所成的角的正切值为( ) A.34B.134C.3913D.393 【答案】C【解析】取AD 中点O ,连接OA 1,易证A 1O ①平面ABCD .建立如图所示的空间直角坐标系得B (2,-1,0),D 1(0,2,3),BD 1→=(-2,3,3),平面ABCD 的一个法向量为n =(0,0,1),设BD 1与平面ABCD 所成的角为θ,①sin θ=|BD 1→·n ||BD 1→||n |=34,①tan θ=3913. 8.如图,在四棱锥P ABCD 中,四边形ABCD 为平行四边形,且BC ①平面P AB ,P A ①AB ,M 为PB 的中点,P A =AD =2.若AB =1,则二面角B AC M 的余弦值为( )A.66B.36C.26D.16【答案】A【解析】因为BC ①平面P AB ,P A ①平面P AB ,所以P A ①BC ,又P A ①AB ,且BC ∩AB =B ,所以P A ①平面ABCD .以点A 为坐标原点,分别以AB ,AD ,AP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系A xyz .则A (0,0,0),C (1,2,0),P (0,0,2),B (1,0,0),M ⎝⎛⎭⎫12,0,1,所以AC →=(1,2,0),AM →=⎝⎛⎭⎫12,0,1,求得平面AMC 的一个法向量为n =(-2,1,1),又平面ABC 的一个法向量AP →=(0,0,2),所以cos 〈n ,AP →〉=n ·AP →|n ||AP →|=24+1+1×2=16=66. 所以二面角B AC M 的余弦值为66. 9.设正方体ABCD A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( )A.32B.22 C.223 D.233【答案】D【解析】如图建立坐标系则D 1(0,0,2),A 1(2,0,2),B (2,2,0),D 1A 1→=(2,0,0),DB →=(2,2,0),DA 1→=(2,0,2).设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=0,n ·DB →=0,①⎩⎪⎨⎪⎧2x +2z =0,2x +2y =0,令z =1,得n =(-1,1,1). ①D 1到平面A 1BD 的距离d =|D 1A 1→·n ||n |=23=233. 二、填空题1.如图,正三棱柱ABC A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为________.【答案】:35【解析】:设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1(0,3,2),F (1,0,1),E ⎝⎛⎭⎫12,32,0,G (0,0,2),B 1F →=(1,-3,-1),EF →=⎝⎛⎭⎫12,-32,1,GF →=(1,0,-1). 设平面GEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧EF →·n =0,GF →·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =(1,3,1)为平面GEF 的一个法向量,所以|cos 〈n ,B 1F →〉|=|1-3-1|5×5=35, 所以B 1F 与平面GEF 所成角的正弦值为35. 2.如图,平面ABCD ①平面ABEF ,四边形ABCD 是正方形,四边形ABEF 是矩形,且AF =12AD =a ,G 是EF 的中点,则GB 与平面AGC 所成角的正弦值为________.【答案】63【解析】如图以A 为原点建立空间直角坐标系,则A (0,0,0),B (0,2a ,0),C (0,2a ,2a ),G (a ,a ,0),AG →=(a ,a ,0),AC →=(0,2a ,2a ),BG →=(a ,-a ,0),设平面AGC 的法向量为n 1=(x 1,y 1,1),由⎩⎪⎨⎪⎧AG →·n 1=0AC →·n 1=0①⎩⎪⎨⎪⎧ax 1+ay 1=02ay 1+2a =0①⎩⎪⎨⎪⎧x 1=1y 1=-1①n 1=(1,-1,1).sin θ=|BG →·n 1||BG →||n 1|=2a 2a ×3=63. 3.已知正四棱锥S ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 与SD 所成角的余弦值为________.【答案】33 【解析】以两对角线AC 与BD 的交点O 作为原点,以OA ,OB ,OS 所在直线分别为x ,y ,z 轴建立空间直角坐标系设边长为2,则有O (0,0,0),A (2,0,0),B (0,2,0),S (0,0,2),D (0,-2,0),E ⎝⎛⎭⎫0,22,22, AE →=⎝⎛⎭⎫-2,22,22,SD →=(0,-2,-2), |cos AE →,SD →|=|AE →·SD →||AE →||SD →|=22×3=33, 故AE 与SD 所成角的余弦值为33. 4.在正四棱柱ABCD A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于________.【答案】23【解析】以D 为坐标原点,建立空间直角坐标系,如图设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB →=0,n ·DC 1→=0,所以有⎩⎪⎨⎪⎧x +y =0,y +2z =0, 令y =-2,得平面BDC 1的一个法向量n =(2,-2,1).设CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,DC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·DC →|n ||DC →|=23. 5.(2020·汕头模拟)在底面是直角梯形的四棱锥S ABCD 中,①ABC =90°,AD ①BC ,SA ①平面ABCD ,SA=AB =BC =1,AD =12,则平面SCD 与平面SAB 所成锐二面角的余弦值是________. 【答案】63 【解析】如图所示建立空间直角坐标系,则依题意可知,D ⎝⎛⎭⎫12,0,0,C (1,1,0),S (0,0,1),可知AD →=⎝⎛⎭⎫12,0,0是平面SAB 的一个法向量.设平面SCD 的一个法向量n =(x ,y ,z ),因为SD →=⎝⎛⎭⎫12,0,-1,DC →=⎝⎛⎭⎫12,1,0,所以⎩⎪⎨⎪⎧n ·SD →=0,n ·DC →=0,即⎩⎨⎧x 2-z =0,x 2+y =0.令x =2,则有y =-1,z =1,所以n =(2,-1,1).设平面SCD 与平面SAB 所成的锐二面角为θ,则cos θ=|AD →·n ||AD →||n |=12×2+0×(-1)+0×1⎝⎛⎭⎫122×22+(-1)2+12=63. 6.(2020·北京模拟)如图所示,四棱锥P ABCD 中,PD ①底面ABCD ,底面ABCD 是边长为2的正方形,PD =2,E 是棱PB 的中点,M 是棱PC 上的动点,当直线P A 与直线EM 所成的角为60°时,那么线段PM 的长度是________.【答案】542 【解析】如图建立空间直角坐标系,则A (2,0,0),P (0,0,2),B (2,2,0),①AP →=()-2,0,2,①E 是棱PB 的中点,①E (1,1,1),设M (0,2-m ,m ),则EM →=()-1,1-m ,m -1,①||cos 〈AP →,EM →〉=⎪⎪⎪⎪⎪⎪⎪⎪AP →·EM →|AP →||EM →|=||2+2()m -1221+2(m -1)2=12, 解得m =34,①M ⎝⎛⎭⎫0,54,34, ①PM =2516+2516=54 2. 三 解答题1.如图所示,菱形ABCD 中,①ABC =60°,AC 与BD 相交于点O ,AE ①平面ABCD ,CF ①AE ,AB =AE =2.(1)求证:BD ①平面ACFE ;(2)当直线FO 与平面BED 所成的角为45°时,求异面直线OF 与BE 所成角的余弦值的大小.【答案】见解析【解析】:(1)证明:因为四边形ABCD 是菱形,所以BD ①AC .因为AE ①平面ABCD ,BD ①平面ABCD ,所以BD ①AE .又因为AC ∩AE =A ,AC ,AE ①平面ACFE .所以BD ①平面ACFE .(2)以O 为原点,OA ,OB 所在直线分别为x 轴,y 轴,过点O 且平行于CF 的直线为z 轴(向上为正方向),建立空间直角坐标系,则B (0,3,0),D (0,-3,0),E (1,0,2),F (-1,0,a )(a >0),OF →=(-1,0,a ).设平面EBD 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·OB →=0,n ·OE →=0,即⎩⎨⎧3y =0,x +2z =0, 令z =1,则n =(-2,0,1),由题意得sin 45°=|cos 〈OF →,n 〉|=|OF →·n ||OF →||n |=|2+a |a 2+1·5=22, 解得a =3或a =-13(舍去). 所以OF →=(-1,0,3),BE →=(1,-3,2),cos 〈OF →,BE →〉=-1+610×8=54, 故异面直线OF 与BE 所成角的余弦值为54. 2.(2020·湖北十堰4月调研)如图,在三棱锥P -ABC 中,M 为AC 的中点,P A ①PC ,AB ①BC ,AB =BC ,PB =2,AC =2,①P AC =30°.(1)证明:BM ①平面P AC ;(2)求二面角B -P A -C 的余弦值.【答案】:见解析(1)证明:因为P A ①PC ,AB ①BC ,所以MP =MB =12AC =1, 又MP 2+MB 2=BP 2,所以MP ①MB .因为AB =BC ,M 为AC 的中点,所以BM ①AC ,又AC ∩MP =M ,所以BM ①平面P AC .(2)法一:取MC 的中点O ,连接PO ,取BC 的中点E ,连接EO ,则OE ①BM ,从而OE ①AC .因为P A ①PC ,①P AC =30°,所以MP =MC =PC =1.又O 为MC 的中点,所以PO ①AC .由(1)知BM ①平面P AC ,OP ①平面P AC ,所以BM ①PO .又BM ∩AC =M ,所以PO ①平面ABC .以O 为坐标原点,OA ,OE ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图所示,由题意知A ⎝⎛⎭⎫32,0,0,B ⎝⎛⎭⎫12,1,0,P ⎝⎛⎭⎫0,0,32,BP →=⎝⎛⎭⎫-12,-1,32,BA →=(1,-1,0), 设平面APB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BP →=-12x -y +32z =0,n ·BA →=x -y =0,令x =1,得n =(1,1,3)为平面APB 的一个法向量,易得平面P AC 的一个法向量为π=(0,1,0),cos 〈n ,π〉=55, 由图知二面角B -P A -C 为锐角,所以二面角B -P A -C 的余弦值为55. 法二:取P A 的中点H ,连接HM ,HB ,因为M 为AC 的中点,所以HM ①PC ,又P A ①PC ,所以HM ①P A .由(1)知BM ①平面P AC ,则BH ①P A ,所以①BHM 为二面角B -P A -C 的平面角.因为AC =2,P A ①PC ,①P AC =30°,所以HM =12PC =12. 又BM =1,则BH =BM 2+HM 2=52, 所以cos①BHM =HM BH =55,即二面角B -P A -C 的余弦值为55. 3.(2020·合肥模拟)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ①平面ABCD ,DE ①平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ①平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值.【答案】:见解析(1)证明:连接AC ,交BD 于点N ,连接MN ,则N 为AC 的中点,又M 为AE 的中点,所以MN ①EC .因为MN ①平面EFC ,EC ①平面EFC ,所以MN ①平面EFC .因为BF ,DE 都垂直底面ABCD ,所以BF ①DE .因为BF =DE ,所以四边形BDEF 为平行四边形,所以BD ①EF .因为BD ①平面EFC ,EF ①平面EFC ,所以BD ①平面EFC .又MN ∩BD =N ,所以平面BDM ①平面EFC .(2)因为DE ①平面ABCD ,四边形ABCD 是正方形,所以DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D xyz .设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4),所以DB →=(2,2,0),DM →=(1,0,2),设平面BDM 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB →=0,n ·DM →=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0. 令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量.因为AE →=(-2,0,4),设直线AE 与平面BDM 所成的角为θ,则sin θ=|cos 〈n ·AE →〉|=⎪⎪⎪⎪⎪⎪n ·AE →|n |·|AE →|=4515, 所以直线AE 与平面BDM 所成角的正弦值为4515.。
知识图谱-利用向量方法求线线角与线面角-利用向量方法求二面角-利用向量方法求距离直线与直线的夹角直线与平面的夹角向量法求二面角含有参数的二面角求法点到点线面的距离线与线面的距离第03讲_立体几何中的向量方法错题回顾利用向量方法求线线角与线面角知识精讲一.用向量方法求线线角与线面角1.两条异面直线所成的角(1)定义:设是两条异面直线,过空间任一点作直线,则与所夹的锐角或直角叫做所成的角;(2)范围:两异面直线所成的角的取值范围是;(3)向量求法:设直线的方向向量为,其夹角为,则有.2.直线与平面所成的角(1)定义:直线与平面所成的角,是指直线与它在这个平面内的射影所成的角;(2)斜线和它在平面内的射影所成的角,是斜线和这个平面内所有直线所称角中最小的角;(3)范围:直线和平面所成角的取值范围是;(4)向量求法:设直线的方向向量为,平面的法向量为,直线与平面所成的角为,与的夹角为,则有或,此外还可以根据定义得到直线与平面所成的角如下图:.三点剖析一.方法点拨1.在用向量法求两条直线的夹角时,如果两条直线方向向量的夹角余弦值是负数时,则取绝对值,要正数,因为两条直线的夹角范围是.2.在用向量法求直线与平面的夹角时,如果算出的是负值时,则线面角的正弦值也需要取正值.题模精讲题模一直线与直线的夹角例1.1、已知是异面直线,,且,则所成的角是( )B、A、C、D、例1.2、如图,在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,A B=,BC=1,PA=2,E为PD的中点.(Ⅰ)求直线AC与PB所成角的余弦值;(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.例1.3、如图所示,正四面体的高的中点为的中点为.(1)求证:两两垂直;(2)求.题模二直线与平面的夹角例2.1、若斜线段的长度是它在平面内的射影长的倍,则与所成角的正切值为__________.例2.2、直三棱柱中,底面是等腰直角三角形,,侧棱,分别是的中点,点在平面上的射影是.求与平面所成角的大小(结果用正弦值表示).例2.3、已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.(Ⅰ)证明:CM⊥SN;(Ⅱ)求SN与平面CMN所成角的大小.例2.4、如图,在三棱锥中,底面,,为的中点,为的中点,,.(1)求证:平面;(2)求与平面成角的正弦值;(3)设点在线段上,且,平面,求实数的值.随堂练习随练1.1、若异面直线的方向向量分别是,则异面直线与的夹角的余弦值等于( )A、B、C、D、随练1.2、在棱长为1的正方体中,分别是的中点,在棱上,且,的中点,应用空间向量方法求解下列问题。
立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量确实定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数*,y ,使v =*v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打"√〞或"×〞)(1)直线的方向向量是唯一确定的.()(2)平面的单位法向量是唯一确定的.()(3)假设两平面的法向量平行,则两平面平行.()(4)假设两直线的方向向量不平行,则两直线不平行.()(5)假设a ∥b ,则a 所在直线与b 所在直线平行.()(6)假设空间向量a 平行于平面α,则a 所在直线与平面α平行.()1.以下各组向量中不平行的是()A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则以下点P 中,在平面α的是()A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.AB →=(1,5,-2),BC →=(3,1,z ),假设AB →⊥BC →,BP →=(*-1,y ,-3),且BP ⊥平面ABC ,则实数*,y ,z 分别为______________.4.假设A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(*,y ,z ),则*∶y ∶z =________.题型一 证明平行问题例1(2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?假设存在,求出λ的值;假设不存在,说明理由.题型二 证明垂直问题例2 如下图,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .如下图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ;(2)求证:平面PAB ⊥平面PAD .题型三 解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,假设存在,求出点P的位置,假设不存在,请说明理由.如下图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)假设SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.假设存在,求SE∶EC的值;假设不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A组专项根底训练1.假设直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交2.假设AB→=λCD→+μCE→,则直线AB与平面CDE的位置关系是()A.相交B.平行C.在平面D.平行或在平面3.A(4,1,3),B(2,-5,1),C(3,7,-5),则平行四边形ABCD的顶点D的坐标是() A.(2,4,-1) B.(2,3,1)C.(-3,1,5) D.(5,13,-3)4.a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),假设a,b,c三向量共面,则实数λ等于()A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为()A .60°B .45°C .90°D .以上都不正确6.平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB=12PD .证明:平面PQC ⊥平面DCQ . 10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为()A .(1,1,1)B .(23,23,1) C .(22,22,1) D .(24,24,1)12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,假设α⊥β,则t 等于()A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN→的实数λ有________个.14.如下图,直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 求一点G ,使GF ⊥平面PCB ,并证明你的结论.。
讲义:立体几何中的向量方法及二面角的平面角求法总结一、几种角的范围1、 _________________________________ 二面角平面角的范围:2、 _________________________________ 线面角的范围:3、 _________________________________ 直线倾斜角范围:4、异面直线夹角范围:_______________5、向量夹角范围:_________________二、立体几何中的向量方法1.三个重要向量(1)直线的方向向量:直线的方向向量是指和这条直线平行(或重合)的向量,一条直线的方向向量有 ______ .(2)平面的法向量:直线I丄平面a取直线I的方向向量,则这个向量叫做平面a的法向量.显然一个平面的法向量有 ____ ,它们是共线向量.(3)直线的正法向量:直线L:Ax+By+C=O的正法向量为n=(A,B).2.直线的方向向量与平面的法向量在确定直线和平面位置关系中的应用(1)直线l i的方向向量为u 1= (a i, b i, c i),直线l2的方向向量为比=(a2, b2, C2).女口果丨1 //丨2,那么U1 // U2? 5=右2? _____________________________ ;女口果丨1丄l2, 那么U1丄U2? U1 U2= 0? ________________⑵直线I的方向向量为u= (a1, b1, C1),平面a的法向量为n= (a2, b2, C2).若I // a 贝U u 丄n? u n = 0? _________________若I 丄a 贝U u // n? u = k n? _____________________(3)平面a的法向量为U1 = (a1, b1, C1),平面B的法向量为u2= (a2, b2, C2).若all B U1 / U2? U1 = k u2? (a1, b1, G)=_________ ;若a丄B 贝y U1 丄U2? U1 U2= 0? ____________________3.利用空间向量求空间角(1)求两条异面直线所成的角:设a, b分别是两异面直线I1, I2的方向向量,则(2) 求直线与平面所成的角:设直线I 的方向向量为a ,平面a 的法向量为n ,直线I 与平面a 所成的角为 0,则 si nA |cos 〈 a , n > |=(3) 求二面角的大小:(I )若 AB , CD 分别是二面角a — I — B 的两个半平面内与棱I 垂直的异面直线,则二面角的大 小就是向量AB , CD 的夹角(如图①所示).(H )设n i , n 2分别是二面角a — I — B 的两个半平面a, B 的法向量,贝U 向量n i 与n 2的夹角(或其补角)的大小就是二面角的大小(如图②③).4. 求点面距:平面a 外一点P 到平面a 的距离为:其中n 为平面a 的法向量,PQ 为平面a 的斜线,Q 为斜足 5. 平面法向量的求法设出平面的一个法向量n = (x , y , z),利用其与该平面内的两个不共线向量垂直,即数量积为 0, 列出方程组,两个方程,三个未知数,此时给其中一个变量恰当赋值,求出该方程组的一个非零 解,即得到这个法向量的坐标.注意,赋值不同得到法向量的坐标也不同, 法向量的坐标不唯一. 6. 射影面积公式:二面角的平面角为 a ,则cos a=7. 利用空间向量求角要注意的问题(1)异面直线所成的角、直线和平面所成的角、二面角都可以转化成空间向量的夹角来求.⑵空间向量的夹角与所求角的范围不一定相同,如两向量的夹角范围是[0, n,两异面直线所成的角的范围是o , n . (3)用平面的法向量求二面角时,二面角的大小与两平面法向量的夹角有相等和互补两种情况 .三、二面角的平面角的求法1、定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角 ,这条直线叫做二面角的棱,这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线d=② ③所成的角的大小就是二面角的平面角。
3.2.1 直线的方向向量及平面的法向量1.用向量表示直线的位置条件直线l上一点A表示直线l方向的向量a(即直线l的□01方向向量)形式在直线l上取AB→=a,那么对于直线l上任意一点P,一定存在实数t使得AP→=□02tAB→作用定位置点A和向量a可以确定直线的位置定点可以具体表示出l上的任意一点(1)通过平面α上的一个定点和两个向量来确定条件平面α内两条□03相交直线的方向向量a,b和交点O形式对于平面α上任意一点P,存在有序实数对(x,y),使得OP→=□04x a+y b(2)通过平面α上的一个定点和法向量来确定平面的法向量□05直线l⊥α,直线l的方向向量,叫做平面α的法向量确定平面位置过点A,以向量a为法向量的平面是完全确定的3.空间中平行、垂直关系的向量表示设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,v,则线线平行l∥m⇔□06a∥b⇔□07a=k b(k∈R)线面平行l∥α⇔□08a⊥u⇔□09a·u=0面面平行α∥β⇔□10u∥v⇔□11u=k v(k∈R)线线垂直 l ⊥m ⇔□12a ⊥b ⇔□13a ·b =0 线面垂直 l ⊥α⇔□14a ∥u ⇔□15a =λu (λ∈R ) 面面垂直 α⊥β⇔□16u ⊥v ⇔□17u ·v =01.判一判(正确的打“√”,错误的打“×”)(1)直线上任意两个不同的点A ,B 表示的向量AB →都可作为该直线的方向向量.( ) (2)若向量n 1,n 2为平面α的法向量,则以这两个向量为方向向量的两条不重合直线一定平行.( )(3)若平面外的一条直线的方向向量与平面的法向量垂直,则该直线与平面平行.( ) (4)若两条直线平行,则它们的方向向量的方向相同或相反.( ) 答案 (1)√ (2)√ (3)√ (4)√ 2.做一做(请把正确的答案写在横线上)(1)若点A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量的坐标可以是________.(2)已知a =(2,-4,-3),b =(1,-2,-4)是平面α内的两个不共线向量.如果n =(1,m ,n )是α的一个法向量,那么m =________,n =________.(3)(教材改编P 104T 2)设平面α的法向量为(1,3,-2),平面β的法向量为(-2,-6,k ),若α∥β,则k =________.(4)已知直线l 1,l 2的方向向量分别是v 1=(1,2,-2),v 2=(-3,-6,6),则直线l 1,l 2的位置关系为________.答案 (1)(2,4,6) (2)120 (3)4 (4)平行探究1 点的位置向量与直线的方向向量例1 (1)若点A ⎝ ⎛⎭⎪⎫-12,0,12,B ⎝ ⎛⎭⎪⎫12,2,72在直线l 上,则直线l 的一个方向向量为( )A.⎝ ⎛⎭⎪⎫13,23,1B.⎝ ⎛⎭⎪⎫13,1,23C.⎝ ⎛⎭⎪⎫23,13,1D.⎝ ⎛⎭⎪⎫1,23,13(2)已知O 为坐标原点,四面体OABC 的顶点A (0,3,5),B (2,2,0),C (0,5,0),直线BD ∥CA ,并且与坐标平面xOz 相交于点D ,求点D 的坐标.[解析] (1)AB →=⎝ ⎛⎭⎪⎫12,2,72-⎝ ⎛⎭⎪⎫-12,0,12=(1,2,3),⎝ ⎛⎭⎪⎫13,23,1=13(1,2,3)=13AB →,又因为与AB →共线的非零向量都可以作为直线l 的方向向量.故选A.(2)由题意可设点D 的坐标为(x,0,z ), 则BD →=(x -2,-2,z ),CA →=(0,-2,5).∵BD ∥CA ,∴⎩⎪⎨⎪⎧x -2=0,z =5,∴⎩⎪⎨⎪⎧x =2,z =5,∴点D 的坐标为(2,0,5). [答案] (1)A (2)见解析 拓展提升求点的坐标:可设出对应点的坐标,再利用点与向量的关系,写出对应向量的坐标,利用两向量平行的充要条件解题.【跟踪训练1】 已知点A (2,4,0),B (1,3,3),在直线AB 上有一点Q ,使得AQ →=-2QB →,求点Q 的坐标.解 由题设AQ →=-2QB →,设Q (x ,y ,z ),则(x -2,y -4,z )=-2(1-x,3-y,3-z ),∴⎩⎪⎨⎪⎧x -2=-2(1-x ),y -4=-2(3-y ),z =-2(3-z ),解得⎩⎪⎨⎪⎧x =0,y =2,∴Q (0,2,6).z =6,探究2 求平面的法向量例2 如图,ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,求平面SCD 与平面SBA 的法向量.[解]∵AD ,AB ,AS 是三条两两垂直的线段,∴以A 为原点,分别以AD →,AB →,AS →的方向为x 轴、y 轴、z 轴的正方向建立坐标系,则A (0,0,0),D ⎝ ⎛⎭⎪⎫12,0,0,C (1,1,0),S (0,0,1),AD →=⎝ ⎛⎭⎪⎫12,0,0是平面SAB 的法向量,设平面SCD 的法向量n =(1,λ,u ),则n ·DC →=(1,λ,u )·⎝ ⎛⎭⎪⎫12,1,0=12+λ=0,∴λ=-12.n ·DS →=(1,λ,u )·⎝ ⎛⎭⎪⎫-12,0,1=-12+u =0,∴u =12,∴n =⎝⎛⎭⎪⎫1,-12,12. 综上,平面SCD 的一个方向向量为n =⎝⎛⎭⎪⎫1,-12,12,平面SBA 的一个法向量为AD →=⎝ ⎛⎭⎪⎫12,0,0.拓展提升设直线l 的方向向量为u =(a 1,b 1,c 1),平面α的法向量v =(a 2,b 2,c 2),则l ⊥α⇔u ∥v ⇔u =k v ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2,其中k ∈R ,平面的法向量的求解方法:①设出平面的一个法向量为n =(x ,y ,z ).②找出(或求出)平面内的两个不共线的向量的坐标:a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).③依据法向量的定义建立关于x ,y ,z 的方程组⎩⎪⎨⎪⎧n ·a =0,n ·b =0.④解方程组,取其中的一个解,即得法向量,由于一个平面的法向量有无数多个,故可在方程组的解中取一个最简单的作为平面的法向量.【跟踪训练2】 在正方体ABCD -A 1B 1C 1D 1中,求证:DB 1→是平面ACD 1的一个法向量.证明 设正方体的棱长为1,分别以DA →,DC →,DD 1→为单位正交基底建立如图所示的空间直角坐标系,则DB 1→=(1,1,1),AC →=(-1,1,0),AD 1→=(-1,0,1).于是有DB 1→·AC →DB 1→⊥AC →,即DB 1⊥AC . 同理,DB 1⊥AD 1,又AC ∩AD 1=A ,所以DB 1⊥平面ACD 1,从而是平面ACD 1的一个法向量. 探究3 利用方向向量、法向量判断线、面 关系例3 (1)设a ,b 分别是不重合的直线l 1,l 2的方向向量,根据下列条件判断l 1与l 2的位置关系:①a =(2,3,-1),b =(-6,-9,3); ②a =(5,0,2),b =(0,4,0); ③a =(-2,1,4),b =(6,3,3).(2)设u ,v 分别是不同的平面α,β的法向量,根据下列条件判断α,β的位置关系: ①u =(1,-1,2),v =⎝ ⎛⎭⎪⎫3,2,-12;②u =(0,3,0),v =(0,-5,0); ③u =(2,-3,4),v =(4,-2,1).(3)设u 是平面α的法向量,a 是直线l 的方向向量(l ⊄α),根据下列条件判断α和l 的位置关系:①u =(2,2,-1),a =(-3,4,2); ②u =(0,2,-3),a =(0,-8,12); ③u =(4,1,5),a =(2,-1,0).[解] (1)①因为a =(2,3,-1),b =(-6,-9,3),所以a =-13b ,所以a ∥b ,所以l 1∥l 2.②因为a =(5,0,2),b =(0,4,0),所以a ·b =0, 所以a ⊥b ,所以l 1⊥l 2.③因为a =(-2,1,4),b =(6,3,3),所以a 与b 不共线,也不垂直,所以l 1与l 2的位置关系是相交或异面.(2)①因为u =(1,-1,2),v =⎝⎛⎭⎪⎫3,2,-12,所以u ·v =3-2-1=0,所以u ⊥v ,所以α⊥β.②因为u =(0,3,0),v =(0,-5,0),所以u =-35v ,所以u ∥v ,所以α∥β.③因为u =(2,-3,4),v =(4,-2,1).所以u 与v 既不共线,也不垂直,所以α,β相交.(3)①因为u =(2,2,-1),a =(-3,4,2),所以u ·a =-6+8-2=0, 所以u ⊥a ,所以直线l 和平面α的位置关系是l ∥α.②因为u =(0,2,-3),a =(0,-8,12),所以u =-14a ,所以u ∥a ,所以l ⊥α.③因为u =(4,1,5),a =(2,-1,0),所以u 和a 不共线也不垂直,所以l 与α斜交. 拓展提升利用向量判断线、面关系的方法(1)两直线的方向向量共线(垂直)时,两直线平行(垂直);否则两直线相交或异面. (2)直线的方向向量与平面的法向量共线时,直线和平面垂直;直线的方向向量与平面的法向量垂直时,直线在平面内或线面平行;否则直线与平面相交但不垂直.(3)两个平面的法向量共线(垂直)时,两平面平行(垂直);否则两平面相交但不垂直.【跟踪训练3】 根据下列条件,判断相应的线、面位置关系: (1)直线l 1,l 2的方向向量分别为a =(1,-3,-1),b =(8,2,2); (2)平面α,β的法向量分别是u =(1,3,0),v =(-3,-9,0);(3)直线l 的方向向量,平面α的法向量分别是a =(1,-4,-3),u =(2,0,3); (4)直线l 的方向向量,平面α的法向量分别是a =(3,2,1),u =(-1,2,-1). 解 (1)因为a =(1,-3,-1),b =(8,2,2),所以a ·b =8-6-2=0,所以a ⊥b ,所以l 1⊥l 2.(2)因为u =(1,3,0),v =(-3,-9,0),所以v =-3u ,所以v ∥u ,所以α∥β. (3)因为a =(1,-4,-3),u =(2,0,3),所以a ≠k u (k ∈R )且a ·u ≠0,所以a 与u 既不共线也不垂直,即l 与α相交但不垂直.(4)因为a =(3,2,1),u =(-1,2,-1),所以a ·u =-3+4-1=0,所以a ⊥u ,所以l ⊂α或l ∥α.1.空间中一条直线的方向向量有无数个.2.线段中点的向量表达式:对于AP →=tAB →,当t =12时,我们就得到线段中点的向量表达式.设点M 是线段AB 的中点,则OM →=12(OA →+OB →),这就是线段AB 中点的向量表达式.,求出向量的横、纵、竖坐标是具有某种关系的,而不是具体的值,可设定某个坐标为常数,再表示其他坐标.(1)设n 是平面α的一个法向量,v 是直线l 的方向向量,则v ⊥n 且l 上至少有一点A ∉α,则l ∥α.(2)根据线面平行的判定定理:“如果平面外直线与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量.(3)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线向量确定的平面必定平行,因此要证明平面外一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.(1)在一个平面内找到两个不共线的向量都与另一个平面的法向量垂直,那么这两个平面平行.(2)利用平面的法向量,证明面面平行,即如果a ⊥平面α,b ⊥平面β,且a ∥b ,那么α∥β.1.若平面α,β的法向量分别为a =⎝ ⎛⎭⎪⎫12,-1,3,b =(-1,2,-6),则( ) A .a ∥β B .α与β相交但不垂直 C .α⊥β D .α∥β或α与β重合 答案 D解析 ∵b =-2a ,∴b ∥a ,∴α∥β或α与β重合.2.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=2,E ,F 分别是平面A 1B 1C 1D 1,平面BCC 1B 1的中心,以点A 为原点,建立如图所示的空间直角坐标系,则直线EF 的方向向量可以是( )A.⎝ ⎛⎭⎪⎫1,0,22B .(1,0,2) C .(-1,0,2) D .(2,0,-2) 答案 D解析 由已知得E (1,1,2),F ⎝ ⎛⎭⎪⎫2,1,22,所以|EF →|=⎝⎛⎭⎪⎫2,1,22-(1,1,2)=⎝⎛⎭⎪⎫1,0,-22,结合选项可知,直线EF 的方向向量可以是(2,0,-2).3.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的一个单位法向量是( ) A.⎝⎛⎭⎪⎫33,33,-33 B.⎝ ⎛⎭⎪⎫33,-33,33 C.⎝ ⎛⎭⎪⎫-33,33,33 D.⎝ ⎛⎭⎪⎫-33,-33,-33 答案 D解析 由AB →=(-1,1,0),AC →=(-1,0,1),结合选项,验证知应选D.4.若直线l ∥α,且l 的方向向量为(2,m,1),平面α的法向量为⎝ ⎛⎭⎪⎫1,12,2,则m =________.答案 -8解析 因为直线l ∥α,所以直线l 的方向向量与平面α的法向量垂直,所以(2,m,1)·⎝⎛⎭⎪⎫1,12,2=2+m 2+2=0,解得m =-8.5.在正方体ABCD -A 1B 1C 1D 1中,P 是DD 1的中点,O 为底面ABCD 的中心,求证:OB →1是平面PAC 的法向量.证明 建立空间直角坐标系如右图所示,不妨设正方体的棱长为2,则A (2,0,0),P (0,0,1),C (0,2,0),B 1(2,2,2),O (1,1,0),于是OB 1→=(1,1,2),AC →=(-2,2,0),AP →=(-2,0,1),∴OB 1→·AC →=-2+2=0,OB 1→·AP →=-2+2=0. ∴OB 1→⊥AC →,OB 1→⊥AP →,即OB 1⊥AC ,OB 1⊥AP . ∵AC ∩AP =A ,∴OB 1⊥平面PAC ,即OB 1→是平面PAC 的法向量.。