解析几何中参数范围问题的求解策略
- 格式:doc
- 大小:268.00 KB
- 文档页数:2
解析几何中求参数取值范围的5种常用方法解析几何中求参数取值范围的5种常用方法及经典例题详细解析:一、利用曲线方程中变量的范围构造不等式曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法.例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0),A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0)求证:-a2-b2a ≤ x0 ≤ a2-b2a分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解.(x1≠x2)代入椭圆方程,作差得: y2-y1x2-x1 解: 设A,B坐标分别为(x1,y1),(x2,y2),=-b2a2 •x2+x1 y2+y1又∵线段AB的垂直平分线方程为y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 )令y=0得 x0=x1+x22 •a2-b2a2又∵A,B是椭圆x2a2 + y2b2 = 1 上的点∴-a≤x1≤a,-a≤x2≤a,x1≠x2 以及-a≤x1+x22 ≤a∴ -a2-b2a ≤ x0 ≤ a2-b2a例2 如图,已知△OFQ的面积为S,且OF•FQ=1,若 12 < S <2 ,求向量OF与FQ的夹角θ的取值范围.分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题.解: 依题意有∴tanθ=2S∵12 < S <2 ∴1< tanθ<4又∵0≤θ≤π∴π4 <θ< p>例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是()A a<0B a≤2C 0≤a≤2D 0<2< p>分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解.解: 设Q( y024 ,y0)由|PQ| ≥a得y02+( y024 -a)2≥a2 即y02(y02+16-8a)≥0∵y02≥0 ∴(y02+16-8a)≥0即a≤2+ y028 恒成立又∵ y02≥0而 2+ y028 最小值为2 ∴a≤2 选( B )二、利用判别式构造不等式在解析几何中,直线与曲线之间的位置关系,可以转化为一元二次方程的解的问题,因此可利用判别式来构造不等式求解.例4设抛物线y2 = 8x的准线与x轴交于点Q,若过点Q的直线L与抛物线有公共点,则直线L的斜率取值范围是()A [-12 ,12 ]B [-2,2]C [-1,1]D [-4,4]分析:由于直线l与抛物线有公共点,等价于一元二次方程有解,则判别式△≥0解:依题意知Q坐标为(-2,0),则直线L的方程为y = k(x+2)由得 k2x2+(4k2-8)x+4k2 = 0∵直线L与抛物线有公共点∴△≥0 即k2≤1 解得-1≤k≤1 故选(C)例5 直线L: y = kx+1与双曲线C: 2x2-y2 = 1的右支交于不同的两点A、B,求实数k的取值范围.分析:利用直线方程和双曲线方程得到x的一元二次方程,由于直线与右支交于不同两点,则△>0,同时,还需考虑右支上点的横坐标的取值范围来建立关于k的不等式.解:由得(k2-2)x2 +2kx+2 = 0∵直线与双曲线的右支交于不同两点,则解得 -2<-2< p>三、利用点与圆锥曲线的位置关系构造不等式曲线把坐标平面分成三个区域,若点P(x0,y0)与曲线方程f(x,y)=0关系:若P 在曲线上,则f(x0,y0)=0;若P在曲线内,则f(x0,y0)<0;若P在曲线外,则f(x0,y0)>0;可见,平面内曲线与点均满足一定的关系。
解析几何中参数取值范围问题求解策略
田宝运; 牛本富
【期刊名称】《《中学数学研究》》
【年(卷),期】2003(000)009
【摘要】解析几何中求参数范围问题,一直是高中数学教学的重点与难点,也是各类考试的热点.它所涉及的内容丰富、综合性强.本文就解析几何中如何确定参数取值范围,给出以下几种解答策略,供参考.策略一、分层讨论法对参数的一切可取值,按一定的逻辑分类,进行分析、讨论,最后总结归纳使问题得到解决,这是一种最基本的确定参数取值范围的方法.例1 试就 k 的变化范围讨论方程 x^2/(4-k)+(k-
2)y^2=1+k 所表示的曲线形状.解:(1)当 k>4时,原方程化为x^2/(4-
k)(1+k)+y^2/(k+1/k-2)=1.(*)
【总页数】3页(P26-28)
【作者】田宝运; 牛本富
【作者单位】山东省沂南县第一中学276300
【正文语种】中文
【中图分类】G633.603
【相关文献】
1.例谈解析几何参数取值范围问题的求解方法 [J], 吴建涛
2.解析几何中参数取值范围问题求解策略 [J], 田宝运;牛本富
3.解析几何中参数取值范围求解策略 [J], 田宝运;王秀珍;袁玉风
4.以数释形精入微以形助数达直观——例析解析几何取值范围问题的基本求解策略 [J], 蔡海涛
5.也谈解析几何参数取值范围问题的求解策略 [J], 尚兴琴
因版权原因,仅展示原文概要,查看原文内容请购买。
解析⼏何中参数取值范围问题(精)解析⼏何中参数取值范围问题⼀.学习⽬标:1、掌握求参数取值范围的基本思路与⽅法,会解决⼀些简单的求参数取值问题;2、了解双参数问题的求解思路。
⼆.思想⽅法技巧1.利⽤数形结合思想求解:挖掘参数的⼏何意义,转化为直线斜率、距离等问题求解; 2.通过建⽴参数的不等式求解:(1)利⽤题设中已有的不等关系建⽴不等式;(2)利⽤判别式建⽴不等式(3)利⽤图形特征建⽴不等式 3.双参数问题求解策略:建⽴参数的不等式、⽅程的混合组,通过消元转化为⼀元不等式,或转化为求函数值域问题求解。
4、分类讨论思想的运⽤三.基础训练1.已知两点A (-3,4).B (3,2),过点P (2,-1)的直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是()A .[1,3]-B .(1,3)-C .(,1][3,)-∞-?+∞D .(,1)(3,)-∞-?+∞2.直线y kx =与双曲线221169x y -=不相交,则k 的取值范围是 3.已知直线l 过点),(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是()(A )),(2222-(B )),(22-(C )),(4242-(D )),(8181-⼆.典型例题1.若直线y=x+b 与曲线21y x -=恰有⼀个公共点,则有b 的取值范围是。
2.双曲线1422=+ky x 的离⼼率为e ,且e ∈(1,2)则k 的范围是________。
3.若直线y x b =+与曲线224(0)x y y +=≥有公共点,则b 的取值范围是()A . [2,2]-B . [0,2]C .D . [-4.直线y=kx -2与焦点在x 轴上的椭圆1522=+my x 恒有公共点,求m 的取值范围5.已知椭圆C :2214x y += 和直线:2l y x m =+,椭圆C 上存在两个不同的点A 、B 关于直线l 对称,求m 的取值范围三.巩固练习1.若平⾯上两点A (-4,1),B (3,-1),直线2+=kx y 与线段AB 恒有公共点,则k 的取值范围是。
解析几何中的取值范围问题
在解析几何中,取值范围问题是非常重要的一个部分。
一般来说,我们需要根据题意来确定自变量的取值范围,进而求解函数的值域或图像。
下面是一些常见的取值范围问题的解决方法:
1. 明确函数的定义域:在求解函数值域时,我们需要明确函数的定义域。
通常情况下,函数的定义域是求解域的子集,但也可能会出现定义域不包含求解域的情况。
2. 分析函数的导数:在求解函数值域时,我们可以利用函数的导数来确定其值域。
一般情况下,函数的导数在区间端点处取值为零,但在一些特殊情况下,导数可能不为零。
3. 利用不等式来确定取值范围:在解析几何中,我们经常利用不等式来确定自变量的取值范围。
例如,利用均值不等式、柯西不等式、排序不等式等。
4. 利用几何图形来确定取值范围:在解析几何中,几何图形是非常重要的一部分。
我们可以通过几何图形来直观理解自变量的取值范围,进而求解函数的值域或图像。
在实际应用中,取值范围问题是非常常见的。
因此,我们需要熟练掌握各种取值范围问题的解决方法,并能够灵活运用这些方法来解决实际的问题。
拓展:
在解析几何中,还有一种非常重要的取值范围问题,那就是参数方程的取值范围问题。
一般来说,参数方程的取值范围取决于参数的取值。
我们需要根据题意来确定参数的取值范围,进而求解参数方程的值域或图像。
在求解参数方程的值域或图像时,我们可以利用参数方程的导数和不等式等方法来确定其取值范围。
解析几何中求参数取值范围的5种常用方法解析几何中求参数取值范围的5种常用方法及经典例题详细解析:一、利用曲线方程中变量的范围构造不等式曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法.例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0),A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0,0)求证:-a2-b2a ≤ x0 ≤ a2-b2a分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解.(x1≠x2)代入椭圆方程,作差得: y2-y1x2-x1 解: 设A,B坐标分别为(x1,y1),(x2,y2),=-b2a2 •x2+x1 y2+y1又∵线段AB的垂直平分线方程为y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 )令y=0得 x0=x1+x22 •a2-b2a2又∵A,B是椭圆x2a2 + y2b2 = 1 上的点∴-a≤x1≤a,-a≤x2≤a,x1≠x2 以及-a≤x1+x22 ≤a∴ -a2-b2a ≤ x0 ≤ a2-b2a例2 如图,已知△OFQ的面积为S,且OF•FQ=1,若 12 < S <2 ,求向量OF与FQ的夹角θ的取值范围.分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题.解: 依题意有∴tanθ=2S∵12 < S <2 ∴1< tanθ<4又∵0≤θ≤π∴π4 <θ< p>例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是()A a<0B a≤2C 0≤a≤2D 0<2< p>分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解.解: 设Q( y024 ,y0)由|PQ| ≥a得y02+( y024 -a)2≥a2 即y02(y02+16-8a)≥0∵y02≥0 ∴(y02+16-8a)≥0即a≤2+ y028 恒成立又∵ y02≥0而 2+ y028 最小值为2 ∴a≤2 选( B )二、利用判别式构造不等式在解析几何中,直线与曲线之间的位置关系,可以转化为一元二次方程的解的问题,因此可利用判别式来构造不等式求解.例4设抛物线y2 = 8x的准线与x轴交于点Q,若过点Q的直线L与抛物线有公共点,则直线L的斜率取值范围是()A [-12 ,12 ]B [-2,2]C [-1,1]D [-4,4]分析:由于直线l与抛物线有公共点,等价于一元二次方程有解,则判别式△≥0解:依题意知Q坐标为(-2,0),则直线L的方程为y = k(x+2)由得 k2x2+(4k2-8)x+4k2 = 0∵直线L与抛物线有公共点∴△≥0 即k2≤1 解得-1≤k≤1 故选(C)例5 直线L: y = kx+1与双曲线C: 2x2-y2 = 1的右支交于不同的两点A、B,求实数k的取值范围.分析:利用直线方程和双曲线方程得到x的一元二次方程,由于直线与右支交于不同两点,则△>0,同时,还需考虑右支上点的横坐标的取值范围来建立关于k的不等式.解:由得(k2-2)x2 +2kx+2 = 0∵直线与双曲线的右支交于不同两点,则解得 -2<-2< p>三、利用点与圆锥曲线的位置关系构造不等式曲线把坐标平面分成三个区域,若点P(x0,y0)与曲线方程f(x,y)=0关系:若P 在曲线上,则f(x0,y0)=0;若P在曲线内,则f(x0,y0)<0;若P在曲线外,则f(x0,y0)>0;可见,平面内曲线与点均满足一定的关系。
解析河北迁安一中 汪昌武 邮编 064400在解析几何中,求参数的取值范围是高考重点考查内容之一。
求参数的取值范围的关键是构建不等关系,现就构造不等关系提供如下方法: 1. 判别式法例1. 曲线()222:10x C y a a-=>与直线:1l x y +=相交于不同两点B A 、。
求双曲线离心率的取值范围。
解:双曲线222:1x C y a-=与直线:l x y + 211220x x a ⎛⎫-+-= ⎪⎝⎭依条件得得22021a a <<≠且 又c e a a=== )2e ⎛∴∈⋃+∞⎝⎭说明:解本题的关键是抓住直线与圆锥曲线有两个不同交点,构造关于a 的不等关系,从而达到求e 得范围的目的。
2. 重要不等式法 例2.椭圆()222210x y a b ab+=>>两焦点为12,F F ,M 是椭圆上一点,且满足120F M F M =。
求椭圆离心率e 的范围。
解:由120F M F M = 得122F M F π∠=,在12Rt F M F 中,22212||||4F M F M c+= 又有椭圆定义 12||||2F M F M a +=()212222212||||4||||22F M F M c F M F M a+∴=+≥=,12e ∴≤<。
说明:解本题的关键是构造a ,b ,c 基本量的不等关系。
3. 比对法例3.求使抛物线()2:10C y ax a =-≠上有不同两点关于直线:0l x y +=对称。
求实数a 的取值范围。
解:设()11,A x y , ()22,B x y 是C 上关于:0l x y +=对称的两点,易知0a >,()00,M x y 是A ,B 的中点。
则有2111y ax =-,2221y ax =- 两式相减得()()121212y y a x x x x -=-+ 又12121y y x x -=- 且 1202x x x +=021ax ∴=, 012x a=, 012y a=-。
高考解析几何题求参数取值范围的九种途径解析几何中确定参数的取值范围是一类转为常见的探索性问题,历年高考试题中也常出现此类问题。
由于不少同学在处理这类问题时无从下手,不知道确定参数范围的函数关系或不等关系从何而来,下面通过一些实例介绍这类问题形成的几个背景及相应的解法,期望对同学们的备考有所帮助。
背景之一:题目所给的条件利用题设条件能沟通所求参数与曲线上点的坐标或曲线的特征参数之间的联系,建立不等式或不等式组求解。
这是求范围问题最显然的一个背景。
例1:椭圆),0(12222为半焦距c b c a by a x >>>=+的焦点为F 1、F 2,点P(x , y )为其上的动点,当∠F 1PF 2为钝角时,点P 的横坐标的取值范围是___。
解:设P(x 1, y ),∠F 1PF 2是钝角⇔cos ∠F 1PF 2 =||||2||||||212212221PF PF F F PF PF ⋅-+222212221)(||||||0y c x F F PF PF ++⇔<+⇔<2)(c x -+22224y x c y +⇔<+22222222222)(x ab ac x a a b x c -⇔<-+⇔<)(2222222b c c a x b c -<⇔-< 2222b c ca xbc c a -<<--⇔。
说明:利用∠F 1PF 2为钝角,得到一个不等式是解题的关键。
把本题特殊化就可以得到某年全国高考题理科第14题:椭圆14922=+y x 的焦点为F 1、F 2,点P 为其上的动点,当∠F 1PF 2为钝角时,点P 横坐标的取值范围是__________。
(答案为 x 553(-∈,)553)背景之二:曲线自身的范围圆、椭圆、双曲线及抛物线都有自身的范围,如椭圆a by a x (12222=+>b>0)中,x ,10],,[],,[<<-∈-∈e b b y a a ,利用这些范围是确定参数范围的途径之一。
解析几何中参数范围问题的求解策略
解析几何中确定参数的取值范围是一类转为常见的探索性问题,历年高考试题中也常出现此类问题。
很多同学在处理这类问题时无从下手,不知道确定参数范围的函数关系或不等关系从何而来,下面我通过一些实例介绍这类问题形成的几个背景及相应的解法,希望同学们能有所收获。
背景之一:题目所给的条件
利用题设条件能沟通所求参数与曲线上点的坐标或曲线的特征参数之间的联系,建立不等式或不等式组求解。
这是求范围问题最显然的一个背景。
例1、椭圆),0(1
22
22为半焦距c b c a b
y a x >>>=+的焦点为F 1、F 2,点
P (x , y )为其上的动点,当∠F 1PF 2为钝角时,点P 的横坐标的取值范围是___。
例2、已知梯形ABCD 中,AB =2CD ,点E 分有向线段AC 所成的比为λ,
双曲线过点C 、D 、E 三点,且以A 、B 为焦点。
当4
3
32≤≤λ时,求双曲线离心
率e 的取值范围。
背景之二:曲线自身的范围
圆、椭圆、双曲线及抛物线都有自身的范围,如椭圆a b
y a x (122
22=+>b >0)
中,x ,10],,[],,[<<-∈-∈e b b y a a ,利用这些范围是确定参数范围的途
径之一。
例3、设点P 到点M (-1,0)、N (1,0)距离之差为2m ,到x 轴、y 轴距离之比为2,求m 的取值范围。
例4、设椭圆
11
22
=++y m x 的两个焦点是F 1(-c , 0)与F 2(c , 0) (c > 0),且椭圆上存在一点P ,使得直线PF 1与PF 2垂直。
(1)求实数m 的取值范围;
(2)设l 相应于焦点F 2的准线,直线PF 2与l 相交于Q ,若
32|
|2-=PF QF ,
求直线PF 2的方程。
背景之三:二次方程有解的条件
直线和圆锥曲线的关系,是解析几何中最常见的关系,它们联立消元后所得的判别式非负是直线和圆锥曲线有公共点的充要条件;若有限制条件,则还应考虑根的分布情况等,这是确定参数取值范围的一个常见背景。
例5、给定双曲线x 2
-2
2
y = 1,过点B (1,1)能否作直线l ,使l 与所给双曲
线交于P 1及P 2,且点B 是线段P 1P 2的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由。
例6、已知直线1:+=kx y l 与双曲线12:2
2=-y x C 的右支交于不同的两点A 、B 。
(1)求实数k 的取值范围;
(2)是否存在实数k ,使得以线段AB 为直径的圆经过曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由。
背景之四:已知变量的范围
利用题中给出的某个已知变量的范围,或由已知条件求出某个变量的范围,然后找出这个变量与欲求的参变量之间的关系,进而求解。
1、双参数中知道其中一个参数的范围;
例7、已知双曲线的中心在原点,右顶点为A (1, 0),点P 、Q 在双曲线的右支上,点M (m , 0)到直线AP 的距离为1。
(1)若直线AP 的斜率为k ,且]3,3
3
[||∈k ,求实数m 的取值范围; (2)当12+=
m 时,APQ ∆的内心恰好是点M ,求此双曲线的方程。
例8、给定抛物线x y C 4:2=,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点。
(1)设l 的斜率为1,求与的夹角的大小;
(2)设]9,4[,∈=λλ若,求l 在y 轴上截距m 的变化范围。
2、双参数中的范围均未知 例9、设双曲线)0(1:
2
22
>=-a y a
x C 与直线1:=+y x l 相交于不同的两点A 、B 。
(1)求双曲线C 的离心率e 的取值范围;
(2)设直线l 与y 轴的交点为P ,且12
5
=,求a 的值。
例10、直线1+=kx y 与双曲线122=-y x 的左支交于A 、B 两点,直线l 经过点)0,2(-和AB 的中点,求直线l 在y 轴上的截距b 的取值范围。
背景之五:点在圆锥曲线内部或外部的充要条件
如果我们规定圆锥曲线包含焦点的区域称为圆锥曲线的内部,同时坐标平面被圆锥曲线所划分的另一部分称为圆锥曲线的外部,则不难写出点在内(外)部的充要条件同,以这些充要条件为背景的范围问题利用上述不等式即可获解。
例11、已知椭圆13
4:2
2=+y x C ,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点P ,Q 关于该直线对称。
背景之六:三角形两边之和大于第三边
椭圆或双曲线上一点与它们的两个焦点的构成一个三角形,具有这一背景的问题往往可以利用三角形两边之和大于第三边产生的不等式来确定参数的范围。
例12、已知双曲线),(12222+
∈=-R b a b
y a x 的左、右两个焦点分别为F 1、
F 2,左准线为l ,在双曲线的左支上存在点P ,使|PF 1|是P 到l 的距离d 与|PF 2|
的等比中项,求离心率e 的取值范围。
背景之七:参数的几何意义
解析几何是一门数与形相结合的学科,其中许多的变量都有十分明显的几何意义,以此为背景的范围问题只要抓住了参数的几何意义都可以达到目的。
例13、椭圆C 的上准线是抛物线y x 42-=的准线,且C 经过这条抛物线的焦点,椭圆的离心率2
1
=e ,求椭圆的长半轴a 的范围。
背景之八:平均值不等式
解析几何的本质是用代数方法研究图形的几何性质。
利用代数基本不等式是求范围的又一方法。
例14、已知直线l 过定点A (3, 0),倾斜角为α,试求α的范围,使得曲线
2:x y C =的所有弦都不能被直线l 垂直平分。
背景之九:目标函数的值域
要确定变量k 的范围,可先建立以k 为函数的目标函数)(t f k =,从而使这种具有函数背景的范围问题迎刃而解。
例15、),(y x P 是椭圆)0(122
22>>=+b a b
y a x 上任一点,F 1、F 2是两个焦
点,求|PF 1|·|PF 2|的取值范围。
例16、如图,P 是抛物线2
2
1:x y C =
上一点,直线l 过点P 且与抛物线C 交于另一点Q 。
(1)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程;
(2)若直线l 不过原点且x 轴交于点S ,与y 轴交于点T ,试求|
||
|||||SQ ST SP ST +的取值范围。