氮化处理
- 格式:doc
- 大小:44.00 KB
- 文档页数:5
氮化处理的作用氮化处理是一种常见的金属表面处理方法,它可以通过在金属表面形成一层氮化物膜来改善金属的性能。
氮化处理可以提高金属的硬度、耐磨性、耐腐蚀性、抗氧化性等方面的性能,因此被广泛应用于航空、航天、汽车、机械等领域。
氮化处理的原理是将金属通过高温气氛中的氮气反应,形成氮化物膜。
氮化处理的方法主要有氨气法、离子氮化法、真空氮化法等。
其中,氨气法是最为常见的一种氮化处理方法,它可以在较低的温度下完成氮化处理,而且成本相对较低。
氮化处理可以改善金属的硬度,这是由于金属表面形成了一层硬度较高的氮化物膜。
氮化物膜可以提高金属的耐磨性,使得金属表面不易受到磨损和划伤。
同时,氮化处理还可以提高金属的耐腐蚀性和抗氧化性,使得金属表面不易受到腐蚀和氧化。
这些优点使得氮化处理被广泛应用于机械零件、汽车零件、工具刀具等领域。
氮化处理还可以提高金属的表面质量。
通过氮化处理,金属表面可以形成一层均匀的薄膜,这可以使得金属表面更加光滑、细致。
这对于一些需要高精度的机械零件非常重要,可以提高机械零件的加工精度和稳定性。
氮化处理还可以改善金属的电学性能。
由于氮化物膜具有一定的导电性,因此可以用于改善金属的电学性能。
例如,在电子元器件中,氮化处理可以用于提高金属导线的导电性能,从而提高元器件的性能。
尽管氮化处理具有很多优点,但也存在一些限制和缺陷。
例如,氮化处理的温度和时间需要严格控制,否则容易导致氮化物膜的不均匀和脆性。
同时,氮化处理的成本相对较高,需要专门的设备和技术。
因此,在选择氮化处理时,需要考虑到成本和效果之间的平衡。
氮化处理是一种非常重要的金属表面处理方法,它可以通过在金属表面形成一层氮化物膜来改善金属的性能。
氮化处理可以提高金属的硬度、耐磨性、耐腐蚀性、抗氧化性等方面的性能,被广泛应用于机械、汽车、电子等领域。
光中氮化处理光中氮化是一种常用的表面处理方法,通过这种方法可以在材料表面形成一层致密、坚硬、耐磨的氮化层,从而提高材料的硬度、耐蚀性和耐磨性。
光中氮化被广泛应用于航空航天、机械制造、汽车制造等领域。
光中氮化是一种高温技术,通常在1000℃以上的温度下进行。
在光中氮化过程中,材料表面与氮气发生化学反应,生成氮化物。
同时,光中氮化还会引起材料的晶格结构变化,从而改变材料的物理性质。
光中氮化的主要原理是通过高温激活氮原子,使其进入材料的表面,并与材料原子形成化学键。
这种化学键的形成使得材料表面变得坚硬耐磨,并具有较高的耐蚀性。
光中氮化具有很多优点。
首先,与传统表面处理方法相比,光中氮化可以在相对较低的温度下进行,不会导致材料的变形和损坏。
其次,光中氮化可以在短时间内完成,并且处理后的材料表面质量良好,具有一定的光学透过率。
此外,光中氮化还可以对材料进行局部处理,只对需要处理的区域进行氮化,从而提高处理的效率和精度。
光中氮化可以应用于多种材料的表面处理,例如钢、铁、铝、镁等金属材料,以及陶瓷、玻璃等非金属材料。
在航空航天领域,光中氮化可以用于增强航空发动机叶片的耐磨性和耐腐蚀性,提高发动机的使用寿命和性能。
在机械制造领域,光中氮化可以应用于切削工具、模具等零部件的表面处理,提高零部件的使用寿命和切削性能。
在汽车制造领域,光中氮化可以用于汽车发动机的缸套、汽缸盖等零部件的表面处理,提高零部件的耐磨性和耐蚀性。
光中氮化的技术参数和处理条件对于处理效果非常重要。
首先,温度是一个关键参数,过低的温度会导致氮化层的质量下降,过高的温度则会导致材料的变形和损坏。
其次,氮气的流量和压力也需要精确控制,以保证氮原子能够充分进入材料的表面。
此外,处理时间和处理环境的纯净度也会对处理效果产生影响。
在实际应用中,光中氮化常常和其他表面处理方法结合使用,以获得更好的处理效果。
例如,可以在光中氮化之前,先对材料进行化学清洗和机械处理,以去除杂质和提高表面光洁度。
热处理工艺中的氮化处理及其应用热处理工艺是一种通过加热和冷却来改变物体性质的方法,常用于金属材料的加工和改进。
在热处理工艺中,氮化处理作为一种重要的方法广泛应用于各个领域。
本文将全面介绍氮化处理的基本原理、方法和应用。
一、氮化处理的基本原理氮化处理是通过在金属材料表面引入氮元素,改变表面组织结构和性能来提高材料的硬度、耐磨性和耐腐蚀性能。
氮化处理的基本原理是在高温下,金属表面与氮气反应生成金属氮化物。
在这个过程中,氮气分子离解为氮离子,在金属表面上与金属原子结合形成金属氮化物层。
二、氮化处理的方法1. 氨气氮化法氨气氮化法是最常用的氮化处理方法之一。
该方法根据加工要求,在特定的气氛中将金属材料加热到一定温度,使其表面发生化学反应。
氮气气氛中的氨气将与金属表面反应生成金属氮化物。
2. 盐浴氮化法盐浴氮化法是将金属材料浸入特殊的盐浴中进行氮化处理。
盐浴中含有氮气和金属氨基化物,通过加热使盐浴中的氮浸入金属材料表面,形成金属氮化物层。
3. 等离子氮化法等离子氮化法是利用等离子体的高温和高能量对金属材料进行表面处理。
等离子体中存在大量的活性氮离子,可以使金属表面迅速地与氮元素结合形成金属氮化物层。
三、氮化处理的应用1. 工具材料氮化处理可以提高工具材料的硬度和耐磨性,延长其使用寿命。
在切削工具、钻头、刀具等制造中广泛应用氮化处理技术,使工具具备更好的切削性能和耐久性。
2. 模具材料氮化处理可以显著提高模具材料的硬度、耐磨性和耐蚀性,使其能够承受更高的工作负荷和更复杂的加工环境。
在塑料模具、压铸模具和冲压模具等制造中广泛应用氮化处理技术,提高模具的使用寿命和稳定性。
3. 表面涂层氮化处理可用作一种表面涂层技术,通过在金属表面形成一层坚硬的金属氮化物,提高材料的耐磨、耐蚀和耐高温性能。
在汽车、航空航天和船舶等领域应用广泛,用于加强金属材料的表面保护。
4. 天然石墨的改性氮化处理可以用于改性天然石墨的制备。
氮化处理后的天然石墨具有较高的硬度和耐磨性,可用于电池、润滑材料和导热材料等领域。
氮化处理流程范文氮化处理是一种常见的表面处理方法,可以提高材料的硬度、耐磨性和耐腐蚀性,适用于钢材、铸铁、不锈钢等材料。
下面就氮化处理的流程进行详细介绍,以期加深对氮化处理的理解。
氮化处理是通过将材料置于氨气或氨气与氮气混合气体中,使材料表面发生化学反应,将氨和氮渗入材料表面形成氮化层。
氮化处理主要分为氨气氮化和离子氮化两种方法。
一、氨气氮化处理流程:1.定制硬化淬火:在进行氮化处理之前,先对材料进行硬化淬火处理,以提高材料的强度和硬度。
2.清洗处理:将材料浸入去油洗涤剂中,进行清洗处理,去除表面的油污和杂质,以保证氮化过程中的稳定性。
3.废气处理:安装废气处理设备,将产生的废气进行收集和处理,以减少环境污染。
4.加热:将清洗后的材料放入氮化炉中,然后升温至适当的处理温度,一般在700°C以上。
5.氨气处理:向氮化炉中通入氨气,控制氨气的流量和温度,在一定的时间内使氨气和材料发生反应,使氮渗入材料表面。
这个过程称为氨化。
6.沉淀相转变:经过氨化处理后的材料表面形成了高浓度的氮化层,此时需要将材料迅速冷却,使氮化层发生一定的相转变,使其结构稳定。
7.清洗处理:将经过氮化处理的材料从炉中取出,进行冷却后再次进行清洗处理,去除残留的氨气和杂质。
8.除碳处理:部分材料在氮化过程中会增碳,此时可以采取一些特殊的处理方法,如碳调质等,以减少氮化层的脆性和残余应力。
9.表面处理:对氮化层进行必要的表面处理,如打磨、抛光等,提高氮化层的平整度和光洁度。
10.质检与包装:对经过氮化处理的材料进行质检,测试氮化层的厚度和硬度,以确保处理质量。
最后将材料进行包装,准备出厂。
二、离子氮化处理流程:1.清洗处理:将材料进行清洗处理,去除表面的油污和杂质。
2.加热:将清洗后的材料放入离子氮化设备中,进行预热处理,提高材料的温度。
3.离子氮化:将材料表面暴露在离子源中,引入离子氮化气体,通过高压高温的离子轰击,使氨和氮渗入材料表面,形成氮化层。
氮化处理工艺氮化处理(Nitriding)是钢件对热处理外表面保护和强度改进的一种杀伤性表面处理,它是通过向钢件外表面通过气体渗入氮化物,来改变外表面层的组织结构,提升钢的硬度、耐久性和耐腐蚀性来实现的。
一、氮化处理原理氮化处理是一种表面强化处理技术,利用热处理温度下可结合钢表面进行化学反应生成金属氮化物混合物而实现,氮化物层具有很高的抗摩擦性、耐磨损性,很好的热韧性和抗腐蚀能力,这种处理可以满足磨损和耐腐蚀性需求,从而提高材料的性能与使用寿命。
二、氮化处理的类型1. 蒸汽氮化:也叫做温化氮化,是将空气中的氮分子通过蒸汽的形式放入钢材材料,适用于碱金属基体的氮化处理,能够制得一层较厚、硬度高、耐磨损性强、表面因含有少量氧化物而深灰色的氮化层;2. 气体氮化:主要利用蒸气冷凝或被氧化型非金属基体金属与空气中的氮化物进行反应,使金属表面形成一层深灰色、光滑、耐腐蚀的氮化层;3. 等离子氮化:它是利用等离子体技术,在低温条件下,以一种比压控制的低温的等离子体处理,使钢的表面形成一层由高分子组成的氮化膜;4.溅射氮化:溅射氮化是利用金属氮化物的表面溅射技术,将氮化物的单体的离子溅到钢的表面,使钢的表面形成氮化膜。
三、氮化处理的优缺点优点:1. 氮化处理可大大改善表面硬度,使其具有更好的耐磨性,延长使用寿命;2. 氮化处理可防止表面腐蚀,提高耐腐蚀性,使其具有更好的热韧性;3. 氮化处理可提高表面的抗冲击力,使其对冲击有更佳的表现;4. 氮化处理可改善表面质量,从而改善产品的外观,使其具有增加市场竞争力。
缺点:1. 氮化处理产生的氮化层膜残留不容易去除,容易在表面形成洼槽;2. 氮化处理时有些钢材表面温度过高,容易引起表面碳化、氢化;3. 氮化处理依赖设备质量,操作环境,控制体系等,不稳定;4. 氮化处理成本较高,工艺复杂度高。
四、氮化处理的注意事项1. 氮化处理的钢材材质需符合实际需求;2. 氮化处理室环境要求干净,过度脏污有可能导致产品质量不稳定;3. 氮化处理温度要控制在可接受的范围,保温时间也要适当,以免影响外观品质;4. 氮化处理后的表面要加以小心的处理,以保证表面硬度。
氮化处理氮化处理是指一种在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。
经氮化处理的制品具有优异的耐磨性、耐疲劳性、耐蚀性及耐高温的特性。
目录1基本简介2基本类型3技术流程4相关技术1基本简介2基本类型3技术流程4相关技术1 基本简介编辑本段传统的合金钢料中之铝、铬、钒及钼元素对渗氮甚有帮助。
这些元素在渗氮温度中,与初生态的氮原子接触时,就生成安定的氮化物。
尤其是钼元素,不仅作为生成氮化物元素,亦作为降低在渗氮温度时所发生的脆性。
其他合金钢中的元素,如镍、铜、硅、锰等,对渗氮特性并无多大的帮助。
一般而言,如果钢料中含有一种或多种的氮化物生成元素,氮化后的效果比较良好。
其中铝是最强的氮化物元素,含有0.85~1.5%铝的渗氮结果最佳。
在含铬的铬钢而言,如果有足够的含量,亦可得到很好的效果。
但没有含合金的碳钢,因其生成的渗氮层很脆,容易剥落,不适合作为渗氮钢。
2 基本类型编辑本段(1)含铝元素的低合金钢(标准渗氮钢)(2)含铬元素的中碳低合金钢SAE 4100,4300,5100,6100,8600,8700,9800系。
(3)热作模具钢(含约5%之铬)SAE H11 (SKD – 61)H12,H13(4)肥粒铁及麻田散铁系不锈钢SAE 400系(5)奥斯田铁系不锈钢SAE 300系(6)析出硬化型不锈钢17 - 4PH,17 – 7PH,A – 286等含铝的标准渗氮钢,在氮化后虽可得到很高的硬度及高耐磨的表层,但其硬化层亦很脆。
相反的,含铬的低合金钢硬度较低,但硬化层即比较有韧性,其表面亦有相当的耐磨性及耐束心性。
因此选用材料时,宜注意材料之特征,充分利用其优点,俾符合零件之功能。
至于工具钢如H11(SKD61)D2(SKD – 11),即有高表面硬度及高心部强度。
3 技术流程编辑本段渗氮前的零件表面清洗大部分零件,可以使用气体去油法去油后立刻渗氮。
部分零件也需要用汽油清洗比较好,但在渗氮前之最后加工方法若采用抛光、研磨、磨光等,即可能产生阻碍渗氮的表面层,致使渗氮后,氮化层不均匀或发生弯曲等缺陷。
氮化处理的作用一、氮化处理的概念和原理1.1 氮化处理的定义氮化处理,又称为氮化物处理,是指通过在材料表面加入氮元素,形成氮化物层并改善材料性能的一种表面处理方法。
1.2 氮化处理的原理通过将材料置于含氮化合物的气氛中,在高温下进行热处理,使氮离子与材料表面元素发生化学反应,形成氮化物层。
这种氮化物层具有优异的硬度、耐磨性和高温性能,能够有效改善材料的表面性能。
二、氮化处理的应用领域2.1 金属材料的氮化处理2.1.1 钢铁材料的氮化处理氮化处理可显著提高钢铁材料的硬度和耐磨性,使其适用于高切削速度和高负荷条件下的工具和零件制造。
2.1.2 铝合金的氮化处理氮化处理可在铝合金表面形成坚硬的氮化物层,显著提高其硬度和耐磨性,同时保持铝合金的轻质和高强度特性,广泛应用于航空航天和汽车工业。
2.2 陶瓷材料的氮化处理2.2.1 碳化硅陶瓷的氮化处理氮化处理可改善碳化硅陶瓷的高温性能和耐磨性,使其在航空航天、能源和化学工业等领域得到广泛应用。
2.2.2 氧化铝陶瓷的氮化处理氮化处理可增强氧化铝陶瓷的硬度和强度,提高其抗压强度和磨损性能,适用于高负荷和高温环境下的工程应用。
2.3 半导体材料的氮化处理2.3.1 硅的氮化处理氮化硅是一种重要的半导体材料,氮化处理可提高硅晶体的机械硬度和电性能,广泛用于微电子和光电器件的制造。
2.3.2 氮化镓的氮化处理氮化处理可形成氮化镓薄膜,提高其应变和禁带宽度,使其在射频和光电器件中具有更好的性能。
三、氮化处理的优点和局限性3.1 优点•提高材料的硬度和耐磨性;•增强材料的高温性能和抗氧化性能;•改善材料的电性能和光学性能;•增加材料的化学稳定性和生物相容性。
3.2 局限性•氮化处理过程复杂,对设备要求较高;•氮化层的厚度和成分控制较为困难;•高温处理可能引起材料变形或开裂;•氮化处理对于非金属材料应用较为有限。
四、氮化处理的工艺方法和设备4.1 工艺方法•氨气氮化法:将材料置于氨气气氛中,在高温下与氮化反应产生氮化物层。
氮化处理的优缺点
氮化处理是一种表面处理方法,通过在材料表面形成氮化物层,从而改善材料的硬度、耐磨性、耐腐蚀性等特性。
它的优点主要包括:
1. 提高硬度:氮化处理能显著提高材料的硬度,使其具有较好的耐磨性和耐腐蚀性,从而延长材料的使用寿命。
2. 提高表面质量:氮化处理能改善材料的表面光洁度和平滑度,减小表面粗糙度,从而提高材料的表面质量。
3. 增加材料的强度:氮化处理可以增加材料的抗拉强度、抗压强度和抗弯强度,提高材料的机械性能。
4. 节约材料成本:相比于其他提高材料性能的方法,氮化处理可以在较低的温度和压力条件下进行,不需复杂的设备和工艺,节约了材料成本。
然而,氮化处理也存在一些缺点:
1. 局限性:氮化层只存在于材料表面,对于大尺寸或复杂形状的零部件来说,处理效果会受到限制。
而且,氮化层也不适用于所有材料,对于某些材料而言,氮化处理可能不适用或效果不佳。
2. 表面脆性:虽然氮化处理能提高材料的硬度和强度,但同时也会增加材料的脆性。
这就需要在设计和使用过程中特别注意,
避免材料的断裂和损坏。
3. 加工复杂性:氮化处理需要进行预处理和后续处理,涉及到高温高压的条件,加工工艺相对复杂。
这可能会带来额外的时间和成本。
综上所述,氮化处理具有提高硬度、改善表面质量和增加强度等优点,但同时也存在局限性、表面脆性和加工复杂性等缺点。
因此,在实际应用时需要综合考虑材料性能需求和处理成本,选择合适的表面处理方式。
表面氮化+氧化处理
表面氮化和氧化处理是指将材料表面暴露在氮化和氧化反应条件下,以改善材料的表面性能和功能。
氮化处理是指在高温和氮气环境下,使材料表面与氮气发生反应,形成氮化物层。
氮化物层具有较高的硬度和耐磨性,可以提高材料的耐蚀性、耐高温性和耐磨性等性能。
氮化处理常用于金属、陶瓷和硬质合金等材料的表面改性。
氧化处理是指在高温和氧气环境下,使材料表面与氧气发生反应,形成氧化物层。
氧化物层可以提高材料的耐腐蚀性、耐高温性和绝缘性能。
氧化处理常用于金属、玻璃和陶瓷等材料的表面改性。
表面氮化+氧化处理常用于提高材料的综合性能,例如增强材料的耐腐蚀性、硬度和耐磨性。
该处理方法在航空航天、汽车制造、电子器件等领域具有广泛应用。
氮化处理的作用
氮化处理是一种表面处理技术,它可以在金属表面形成一层氮化物膜,从而提高金属的硬度、耐磨性、耐腐蚀性和抗疲劳性能等。
该技术被
广泛应用于机械制造、汽车工业、航空航天等领域。
具体来说,氮化处理的作用主要有以下几个方面:
1. 提高硬度:通过氮化处理,可在金属表面形成一层硬度极高的氮化
物膜,从而提高金属的硬度。
例如,在不锈钢上进行氮化处理后,其
硬度可以提高2-3倍。
2. 提高耐磨性:由于氮化物膜具有很好的抗磨损特性,因此经过氮化
处理的金属具有更好的耐磨性能。
这对于机械制造行业尤为重要,在
重载或高速运转环境下使用的零部件如轴承、齿轮等都需要具备良好
的耐磨性能。
3. 提高耐腐蚀性:经过氮化处理后,金属表面形成了一层致密、均匀
且不易被腐蚀的氮化物膜,从而提高了金属的耐腐蚀性能。
这对于汽
车工业和航空航天行业尤为重要,因为这些领域中的零部件需要在恶
劣环境下工作,如高温、高压、酸碱等。
4. 提高抗疲劳性能:由于氮化物膜具有良好的硬度和耐磨性,因此经过氮化处理后的金属材料具有更好的抗疲劳性能。
这对于机械制造行业尤为重要,在高频震动或往复运动下使用的零部件如弹簧、摆杆等都需要具备良好的抗疲劳性能。
总之,氮化处理是一种非常重要的表面处理技术,它可以大大提高金属材料的硬度、耐磨性、耐腐蚀性和抗疲劳性能等多方面特性。
随着科技不断进步和应用领域不断扩大,氮化处理技术将会得到更广泛的应用和发展。
表面氮化处理的工艺流程和工艺参数下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!一、工艺流程。
1. 预处理:清洗,将待处理的零件放入清洗槽中,用有机溶剂或碱性清洗剂去除表面的油污、锈迹和其他杂质。
氮化处理对金属材料表面粗糙度的影响分析氮化处理是一种在金属材料表面形成氮化物层的表面处理方法,广泛应用于金属材料的防护和改性领域。
氮化处理可以显著改变金属材料的表面性质,包括表面硬度、耐磨性、耐蚀性等,并且对金属材料表面粗糙度也有一定的影响。
本文将对氮化处理对金属材料表面粗糙度的影响进行详细的分析。
首先,氮化处理会降低金属材料表面的粗糙度。
氮化处理后的金属材料表面会形成一层致密且光滑的氮化物膜,可以填充金属表面的微小裂纹和孔洞,从而降低表面的粗糙度。
此外,氮化物膜的形成还可以减少金属材料表面的摩擦系数,使其更加光滑。
因此,经过氮化处理后的金属材料表面粗糙度会显著降低。
其次,氮化处理还可以改善金属材料表面的平整度。
氮化处理过程中,氮化物膜会紧密地附着在金属材料表面,并填充凹凸不平的表面结构。
这样可以填平金属材料表面的微小凹陷,特别是在金属材料表面存在大量的裂纹和孔洞时,氮化处理可以使其表面更加平整。
通过改善金属材料表面的平整度,氮化处理可以提高金属材料的工作性能,减少金属材料在工作过程中的应力集中和疲劳寿命的降低。
此外,氮化处理还可以增强金属材料的耐磨性。
氮化物膜具有良好的硬度和耐磨性,可以使金属材料表面形成一层坚硬的保护层,提高金属材料的耐磨性能。
经过氮化处理的金属材料表面硬度明显提高,可以有效地抵抗表面磨损、划伤和腐蚀等问题。
因此,经过氮化处理后的金属材料表面不仅具有较低的粗糙度,而且具备更好的耐磨性能。
然而,氮化处理也可能引入新的表面粗糙度。
在氮化处理过程中,渗氮剂会渗入金属材料表面,并与金属元素发生反应形成氮化物。
这个过程可能会引起表面形貌的变化,例如产生新的凹陷、突起等。
因此,氮化处理可能导致金属材料表面产生新的粗糙度,特别是在处理参数不当或处理过程发生异常时。
因此,在进行氮化处理时,需要仔细控制处理参数,确保处理结果的表面粗糙度要符合实际需求。
综上所述,氮化处理对金属材料表面粗糙度有显著的影响。
资料│你必须知道的氮化处理的五大优点氮化处理是表面热处理的一种,表面渗氮,使表面有一定的硬度。
氮化处理又称为扩散渗氮。
氮化处理五大优点一、高硬度和高耐磨性对38CrMoAlA等氮化钢制零件,氮化后的表层硬度可以提高到HV1000~1200,相当于HRC70左右。
这显然是一般淬火或渗碳淬火处理达不到的。
尤其宝贵的是,这种高硬度可在500℃左右长期保持不下降。
由于硬度高,耐磨性也很好,能抗各种类型的磨损。
二、较高的疲劳强度氮化后,零件表面形成的各种氮化物相的比容比铁大,因此氮化后表面产生了较大的残余压应力。
表层残作压应力的存在,能部分地抵消在疲劳载荷下产生的拉就力,延缓疲劳破坏过程,使疲劳强度显著提高。
同时氮化还使工件的缺口敏感性降低。
一般合金钢氮化后,疲劳极限可提高25%~35%;有缺口的试样,可提高2~3倍。
三、较高的抗咬合性能一些承受高速相对滑动的零件很容易发生卡死或擦伤,而氮化零件在短时间缺乏润滑或过热的条件下,仍能保持高硬度,具有较高的抗咬合性能。
四、较高的抗蚀性氮化后零件表面形成了一层致密的化学稳定性较高的氮化物层,显著地提高了抗腐蚀性能,并能抵抗大气、自来水、水蒸气、苯、油污、弱减性溶液的腐蚀,保持了良好的抗蚀性。
五、变形小且具有规律性因为氮化温度低,一般为480~580℃,升降温速度又很慢,零件心部也无组织转变,仍保持调质状态的组织,所以氮化后的零件变形很小,而且变形的规律可以掌握和控制。
由NM气体(H2S等)使氮化前产品的表面呈现活性化,在氮化处理的同时,使硫化物在产品表面扩散。
通过使产品最表面生成硫黄化合物(硫化鉄),提高初期的适应性及摩耗特性(通过固体润滑作用)。
全电脑控制,组织、硬度和氮化层均匀且重复性好。
气体浸硫氮化的特征: 气体浸硫氮化(Multinite)的使用原料是N2、NH3及NM气体;氮化的温度在400~620 ℃;处理时间在3~5小时。
使用气体浸硫氮化有耐磨性、耐烧性、耐咬合性、疲劳强度、耐蚀性、制振性良好的优点。
氮化处理工艺 -回复
氮化处理工艺是指将材料表面暴露在氮气环境中,通过热处理使氮原子渗透到材料表层形成氮化层的一种表面处理技术。
氮化处理可以提高材料的硬度、耐磨性、耐腐蚀性和高温性能,同时还可以改善材料的表面光洁度和抗氧化性能。
常见的氮化处理工艺包括气体氮化、盐浴氮化和离子氮化等。
气体氮化是将材料置于高温高氮气氛中进行处理,通过热扩散使氮原子渗透到材料表层形成氮化层。
盐浴氮化是将材料浸泡在含有氮化剂的盐浴中加热处理,使氮原子渗透到材料表层。
离子氮化则是通过在真空中向材料表面轰击氮离子,使氮原子从离子束中沉积到材料表面。
氮化处理可以应用于各种材料,包括金属、陶瓷和塑料等。
它被广泛应用于工业领域,如航空航天、汽车、机械制造等。
氮化处理可以提高材料的硬度和耐磨性,延长材料的使用寿命,同时还可以改善材料的表面品质和耐蚀性能。
需要指出的是,氮化处理是一项复杂的工艺,需要控制好处理温度、氮气浓度和处理时间等参数,以确保处理效果的稳定性和一致性。
金属氮化处理种类及用途金属氮化处理是一种通过在金属表面形成氮化物层来改善金属材料性能的方法。
通过金属氮化处理可以显著提高金属材料的硬度、耐磨性、耐蚀性和高温性能,从而提高材料的使用寿命和性能稳定性。
下面将介绍金属氮化处理的常见种类及其用途。
1. 气体氮化处理:气体氮化处理是最常见的金属氮化处理方法之一。
该方法是通过在金属表面暴露于含有氮气的高温气氛中,使金属与氮气发生化学反应,生成氮化物层。
常用的气体氮化方法有氨气氮化、氮气氮化等。
气体氮化处理可以显著提高金属材料的硬度和耐磨性,常用于汽车发动机零部件、刀具、模具等领域。
2. 离子氮化处理:离子氮化处理是采用离子源将氮离子注入到金属材料表面形成氮化层的方法。
离子氮化处理可以使金属材料的表面硬度显著提高,克服了气体氮化处理中氮化层产生的低温和低速的不足。
常用的离子氮化方法有直流离子氮化、脉冲离子氮化等。
离子氮化处理可以应用于机械设备的运动部件、航空发动机部件等对耐磨性和耐腐蚀性要求较高的场合。
3. 真空氮化处理:真空氮化处理是将金属材料置于真空环境中,在较高温度下通过注入氮气或氨气完成金属表面氮化的过程。
真空氮化处理可以避免气体氮化过程中金属材料表面的氧化和碳氮共渗等问题,保证氮化层的纯度和均匀性。
真空氮化处理常用于精密仪器、光学器件等领域,用于提高材料表面的硬度、光学透过率和耐蚀性。
4. 浸渗氮化处理:浸渗氮化处理是一种将金属材料浸渍于含有氮化物的盐溶液中,使氮化物在金属材料表面反应沉积而成的方法。
浸渗氮化处理具有工艺简单、成本低、操作方便等优点,常用于大型工件的表面处理。
浸渗氮化处理适用于金属钢铁材料的氮化处理,常用于汽车发动机缸套、轴承、齿轮等领域。
总的来说,金属氮化处理可以显著提高金属材料的硬度、耐磨性、耐腐蚀性和高温性能,广泛应用于汽车、航空航天、机械制造等领域。
不同的金属氮化处理方法根据具体应用的要求选择,以满足不同材料在不同环境下的使用需求。
氮化处理的缺陷及原因分析氮化处理是一种常用的表面改性技术,通过在材料表面形成氮化物层,可以显著提高材料的硬度、耐磨性和耐腐蚀性。
然而,氮化处理也存在一些缺陷,主要包括氢脆、表面粗糙度增加、残余应力和起皱等问题。
下面将对这些缺陷及其原因进行分析。
首先是氢脆问题。
氮化处理过程中,常常将材料暴露在高温、高压的氨气环境中。
氨气分解产生的氢原子能够渗透到材料晶界内,并且与晶界处的金属原子发生化学反应形成金属氢化物,从而降低材料的延展性和韧性,导致氢脆现象。
此外,氮化处理过程中产生的高温还会导致材料结构的相变,从而进一步增加氢脆的可能性。
其次是表面粗糙度增加问题。
在氮化处理过程中,常常需要使用高能量的离子束轰击材料表面,以便使氮原子能够较好地渗透到材料内部。
然而,离子束轰击过程中会引发表面的物理损伤,如表面微裂纹和孔洞,从而导致表面粗糙度增加。
此外,热处理过程中也会导致材料的表面产生残余应力,进一步影响表面的光洁度和平整度。
第三是残余应力问题。
氮化处理通常需要在高温条件下进行,材料在高温下受热膨胀系数与氮化物的热膨胀系数不同,导致材料表面与内部产生应力差。
由于氮化物层形成的表面硬度较高,而材料内部的硬度较低,这种应力差会导致材料的残余应力增加。
残余应力的存在会降低材料的断裂韧性和疲劳寿命,从而对材料的力学性能产生不利影响。
最后是起皱问题。
氮化处理过程中,离子束轰击材料表面时会导致离子束的能量在表面部分集中,从而引发材料表面的局部熔化和准液态化现象。
当局部熔化后的材料重新凝固时,由于凝固速率的不均匀性,会引起材料表面形成起皱或凹凸不平的现象。
这种起皱现象不仅会降低材料的外观质量,还会对材料的接合性和耐磨性产生负面影响。
综上所述,氮化处理的缺陷主要包括氢脆、表面粗糙度增加、残余应力和起皱等问题。
这些缺陷的产生主要是由于氮化处理过程中的高温、高压环境以及离子束轰击等因素引起的。
为了解决这些问题,可以采取一些方法,如降低处理温度和压力、优化离子束轰击参数等,以提高氮化处理的效果和降低缺陷产生的可能性。
氮化的作用和工艺要求
氮化是一种工艺过程,通过在材料表面引入氮元素来改变其表面性质。
氮化常用于金属和合金的处理,其作用和工艺要求如下:
作用:
1.硬度增加:氮化可以显著提高材料表面的硬度和耐磨性,使其更耐用和耐磨损。
2.耐腐蚀性提高:经过氮化处理后的材料表面通常具有更好的抗腐蚀性能,更耐高温、耐腐蚀。
3.改善表面摩擦性能:氮化可以改善材料的表面润滑性能,降低摩擦系数。
4.提高导热性和电性能:在某些情况下,氮化处理可以提高材料的导热性和电性能。
工艺要求:
1.温度和时间控制:氮化过程通常需要在高温下进行,要求温度和时间能够精确控制。
常见的氮化方法包括气体氮化和盐浴氮化,它们的工艺条件略有不同。
2.氮气气氛:在气体氮化过程中,氮气气氛的控制是至关重要的。
材料暴露在氮气中,氮原子渗透到材料表面形成氮化层。
3.材料表面准备:在进行氮化处理之前,材料的表面通常需要经过清洁和抛光等处理,以确保氮原子能够充分渗透并均匀分布在表面。
4.冷却和处理后工艺:氮化完成后,通常需要适当的冷却和后续处理,如淬火、回火等,以保证材料具有理想的性能和结构。
5.工艺环境控制:控制氮化过程的工艺环境,包括气氛、压力、温度和处理时间等,对于确保氮化效果至关重要。
氮化是一种有效的材料表面处理方法,可以显著改善材料的性能,但需要在合适的工艺条件下进行,以确保所需的性能提升。
氮化处理是指一种在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。
经氮化处理的制品具有优异的耐磨性、耐疲劳性、耐蚀性及耐高温的特性。
本文源自宁波奇威金属科技材料运用研究所,刘先生 131 23 822 600氮化引;常见有液体渗氮、气体渗氮、离子渗氮。
氮化处理又称为扩散渗氮。
气体渗氮在1923年左右,由德国人Fry首度研究发展并加以工业化。
由于经本法处理的制品具有优异的耐磨性、耐疲劳性、耐蚀性及耐高温,其应用范围逐渐扩大。
例如钻头、螺丝攻、挤压模、压铸模、鍜压机用鍜造模、螺杆、连杆、曲轴、吸气及排气活门及齿轮凸轮等均有使用。
二、氮化用钢简介传统的合金钢料中之铝、铬、钒及钼元素对渗氮甚有帮助。
这些元素在渗氮温度中,与初生态的氮原子接触时,就生成安定的氮化物。
尤其是钼元素,不仅作为生成氮化物元素,亦作为降低在渗氮温度时所发生的脆性。
其他合金钢中的元素,如镍、铜、硅、锰等,对渗氮特性并无多大的帮助。
一般而言,如果钢料中含有一种或多种的氮化物生成元素,氮化后的效果比较良好。
其中铝是最强的氮化物元素,含有0.85~1.5%铝的渗氮结果最佳。
在含铬的铬钢而言,如果有足够的含量,亦可得到很好的效果。
但没有含合金的碳钢,因其生成的渗氮层很脆,容易剥落,不适合作为渗氮钢。
一般常用的渗氮钢有六种如下:(1)含铝元素的低合金钢(标准渗氮钢)(2)含铬元素的中碳低合金钢 SAE 4100,4300,5100,6100,8600,8700,9800系。
(3)热作模具钢(含约5%之铬) SAE H11 (SKD – 61)H12,H13 (4)肥粒铁及麻田散铁系不锈钢 SAE 400系(5)奥斯田铁系不锈钢 SAE 300系(6)析出硬化型不锈钢 17 - 4PH,17 – 7PH,A – 286等含铝的标准渗氮钢,在氮化后虽可得到很高的硬度及高耐磨的表层,但其硬化层亦很脆。
相反的,含铬的低合金钢硬度较低,但硬化层即比较有韧性,其表面亦有相当的耐磨性及耐束心性。
氮化真空热处理
氮化真空热处理是一种利用高温下材料的晶粒长大和组织改变来提高材料性能的方法。
以下是其主要特点:
1. 真空条件:氮化处理通常在真空条件下进行,这样可避免氧化并提高材料表面的洁净度。
在氮化处理过程中,金属表面的活性被激活,从而增强了与氮原子的反应能力。
2. 高温处理:在高温下,材料的晶粒会长大,晶粒界会粘结,从而提高耐磨性、耐腐蚀性等性能指标。
3. 氮化处理:将金属材料放入含氮气氛中进行加热处理,使一定的氮原子扩散并渗入钢件表面,形成富氮硬化层,提高材料硬度、耐疲劳性等特性。
4. 辉光放电:真空离子渗氮过程中,通过辉光放电产生的活性N离子轰击并仅加热钢铁零件表面,发生化学反应生成氮化物实现硬化的。
5. 温度控制:氮化热处理过程中需要精确控制温度和各种气体的送入量,以达到所需的渗层深和硬度等特性。
6. 多种用途:氮化热处理适用于多种金属材料,如钢铁、铝合金等,广泛应用于汽车、航空航天、石油化工等领域。
总之,氮化真空热处理是一种有效的表面处理技术,能够显著提高金属材料的性能和耐久性。
氮化处理
氮化处理是指一种在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。
经氮化处理的制品具有优异的耐磨性、耐疲劳性、耐蚀性及耐高温的特性。
目录
1简介
2技术流程
1. 2.1 渗氮前的零件表面清洗
2. 2.2 渗氮炉的排除空气
3. 2.3 氨的分解率
4. 2.4 冷却
3气体氮化
4液体氮化
5离子氮化
6相关标准
1简介
传统的合金钢料中之铝、铬、钒及钼元素对渗氮甚有帮助。
这些元素在渗氮温度中,与初生态的氮原子接触时,就生成安定的氮化物。
尤其是钼元素,不仅作为生成氮化物元素,亦作为降低在渗氮温度时所发生的脆性。
其他合金钢中的元素,如镍、铜、硅、锰等,对渗氮特性并无多大的帮助。
一般而言,如果钢料中含有一种或多种的氮化物生成元素,氮化后的效果比较良好。
其中铝是最强的氮化物元素,含有0.85~1.5%铝的渗氮结果最佳。
在含铬的铬钢而言,如果有足够的含量,亦可得到很好的效果。
但没有含合金的碳钢,因其生成的渗氮层很脆,容易剥落,不适合作为渗氮钢。
一般常用的渗氮钢有六种如下:
(1)含铝元素的低合金钢(标准渗氮钢)
(2)含铬元素的中碳低合金钢SAE 4100,4300,5100,6100,8600,8700,9800系。
(3)热作模具钢(含约5%之铬)SAE H11 (SKD – 61)H12,H13
(4)铁素体及马氏体系不锈钢SAE 400系
(5)奥氏体系不锈钢SAE 300系
(6)析出硬化型不锈钢17 - 4PH,17 – 7PH,A – 286等
含铝的标准渗氮钢,在氮化后虽可得到很高的硬度及高耐磨的表层,但其硬化层亦很脆。
相反的,含铬的低合金钢硬度较低,但硬化层即比较有韧性,其表面亦有相当的耐磨性及耐束心性。
因此选用材料时,宜注意材料之特征,充分利用其优点,俾符合零件之功能。
至于工具钢如H11(SKD61)D2(SKD – 11),即有高表面硬度及高心部强度。
2技术流程
渗氮前的零件表面清洗
大部分零件,可以使用气体去油法去油后立刻渗氮。
部分零件也需要用汽油清洗比较好,但在渗氮前之最后加工方法若采用抛光、研磨、磨光等,即可能产生阻碍渗氮的表面层,致使渗氮后,氮化层不均匀或发生弯曲等缺陷。
此时宜采用下列二种方法之一去除表面层。
第一种方法在渗氮前首先以气体去油。
然后使用氧化铝粉将表面作abrasive cleaning 。
第二种方法即将表面加以磷酸皮膜处理(phosphate coating)。
渗氮炉的排除空气
将被处理零件置于渗氮炉中,并将炉盖密封后即可加热,但加热至150℃以前须作炉内排除空气工作。
排除炉内的主要功用是防止氨气分解时与空气接触而发生爆炸性气体,及防止被处理物及支架的表面氧化。
其所使用的气体即有氨气及氮气二种。
排除炉内空气的要领如下:
①被处理零件装妥后将炉盖封好,开始通无水氨气,其流量尽量可能多。
②将加热炉之自动温度控制设定在150℃并开始加热(注意炉温不能高于150℃)。
③炉中之空气排除至10%以下,或排出之气体含90%以上之NH3时,再将炉温升高至渗氮温度。
氨的分解率
渗氮是铺及其他合金元素与初生态的氮接触而进行,但初生态氮的产生,即因氨气与加热中的钢料接触时钢料本身成为触媒而促进氨之分解。
虽然在各种分解率的氨气下,皆可渗氮,但一般皆采用15~30%的分解率,并按渗氮所需厚度至少保持4~10小时,处理温度即保持在520℃左右。
冷却
大部份的工业用渗氮炉皆具有热交换机,以期在渗氮工作完成后加以急速冷却加热炉及被处理零件。
即渗氮完成后,将加热电源关闭,使炉温降低约50℃,然后将氨的流量增加一倍后开始启开热交换机。
此时须注意观察接在排气管上玻璃瓶中,是否有气泡溢出,以确认炉内之正压。
等候导入炉中的氨气安定后,即可减少氨的流量至保持炉中正压为止。
当炉温下降至150℃以下时,即使用前面所述之排除炉内气体法,导入空气或氮气后方可启开炉盖。
3气体氮化
气体氮化系于1923年由德国AF ry 所发表,将工件置于炉内,利NH3气直接输进500~550℃的氮化炉内,保持20~100小时,使NH3气分解为原子状态的(N)气与(H)气而进行渗氮处理,在使钢的表面产生耐磨、耐腐蚀之化合物层为主要目的,其厚度约为0.02~0.02m/m,其性质极硬Hv 1000~1200,又极脆,NH3之分解率视流量的大小与温度的高低而有所改变,流量愈大则分解度愈低,流量愈小则分解率愈高,温度愈高分解率愈高,温度愈低分解率亦愈低,NH3气在570℃时经热分解如下:
NH3 →〔N〕Fe + 3/2 H2
经分解出来的N,随而扩散进入钢的表面形成。
相的Fe2 - 3N气体渗氮,一般缺点为硬化层薄而氮化处理时间长。
气体氮化因分解NH3进行渗氮效率低,故一般均固定选用适用于氮化之钢种,如含有Al,Cr,Mo等氮化元素,否则氮化几无法进行,一般使用有JIS、SACM1新JIS、SACM645及SKD61以强韧化处理又称调质因Al,Cr,Mo等皆为提高变态点温度之元素,故淬火温度高,回火温度亦较普通之构造用合金钢高,此乃在氮化温度长时间加热之间,发生回火脆性,故预先施以调质强韧化处理。
NH3气体氮化,因为时间长表面粗糙,硬而较脆不易研磨,而且时间长不经济,用于塑胶射出形机的送料管及螺旋杆的氮化。
4液体氮化
液体软氮化主要不同是在氮化层里之有Fe3Nε相,Fe4Nr相存在而不含Fe2Nξ相氮化物,ξ相化合物硬脆在氮化处理上是不良于韧性的氮化物,液体软氮化的方法是将被处理工件,先除锈,脱脂,预热后再置于氮化坩埚内,坩埚内是以TF – 1为主盐剂,被加温到
560~600℃处理数分至数小时,依工件所受外力负荷大小,而决定氮化层深度,在处理中,必须在坩埚底部通入一支空气管以一定量之空气氮化盐剂分解为CN或CNO,渗透扩散至工作表面,使工件表面最外层化合物8~9%wt的N及少量的C及扩散层,氮原子扩散入α – Fe基地中使钢件更具耐疲劳性,氮化期间由于CNO之分解消耗,所以不断要在6~8小时处理中化验盐剂成份,以便调整空气量或加入新的盐剂。
液体软氮化处理用的材料为铁金属,氮化后的表面硬度以含有Al,Cr,Mo,Ti元素者硬度较高,而其含金量愈多而氮化深度愈浅,如炭素钢Hv 350~650,不锈钢Hv 1000~1200,氮化钢Hv 800~1100。
液体软氮化适用于耐磨及耐疲劳等汽车零件,缝衣机、照相机等如气缸套处理,气门阀处理、活塞筒处理及不易变形的模具处。
采用液体软氮化的国家,西欧各国、美国、苏俄、日本。
5离子氮化
此一方法为将一工件放置于氮化炉内,预先将炉内抽成真空达10-2~10-3 Torr(㎜Hg)后导入N2气体或N2 + H2之混合气体,调整炉内达1~10 Torr,将炉体接上阳极,工件接上阴极,两极间通以数百伏之直流电压,此时炉内之N2气体则发生光辉放电成正离子,向工作表面移动,在瞬间阴极电压急剧下降,使正离子以高速冲向阴极表面,将动能转变为气能,使得工件表面温度得以上升,因氮离子的冲击后将工件表面打出Fe.C.O.等元素飞溅出来与氮离子结合成FeN,由此氮化铁逐渐被吸附在工件上而产生氮化作用,离子氮化在基本上是采用氮气,但若添加碳化氢系气体则可作离子软氮化处理,但一般统称离子氮化处理,工件表面氮气浓度可改变炉内充填的混合气体(N2 + H2)的分压比调节得之,纯离子氮化时,在工作表面得单相的r′(Fe4N)组织含N量在5.7~6.1%wt,厚层在10μn
以内,此化合物层强韧而非多孔质层,不易脱落,由于氮化铁不断的被工件吸附并扩散至内部,由表面至内部的组织即为FeN →Fe2N →Fe3N→Fe4N顺序变化,单相ε(Fe3N)含N量在5.7~11.0%wt,单相ξ(Fe2N)含N量在11.0~11.35%wt,离子氮化首先生成r相再添加碳化氢气系时使其变成ε相之化合物层与扩散层,由于扩散层的增加对疲劳强度的增加有很多助。
而蚀性以ε相最佳。
离子氮化处理的度可从350℃开始,由于考虑到材质及其相关机械性质的选用处理时间可由数分钟以致于长时间的处理,本法与过去利用热分解方化学反应而氮化的处理法不同,本法系利用高离子能之故,过去认为难处理的不锈钢、钛、钴等材料也能简单的施以优秀的表面硬化处理。
6相关标准
GB/T11354-2005 钢铁零件渗氮层深度测定和金相组织检验
GB/T18177-2008 钢件的气体渗氮
HB/Z79-1995 航空结构钢及不锈钢渗氮工艺说明书
JB/T6956-2007 钢铁件的离子渗氮
JB/T8491.5-2008 机床零件热处理技术条件5渗氮、氮碳共渗JB/T9172-1999 齿轮渗氮、氮碳共渗工艺及质量控制
JB/T9173-1999 齿轮碳氮共渗工艺及质量控制
QJ2539.3-1993 化学热处理钢的气体渗氮
CB3385-1991 钢铁零件渗氮层深度测定方法。