必修五第二章数列全章练习题(含答案)
- 格式:docx
- 大小:216.61 KB
- 文档页数:42
高一数学必修五第二章试题——数列一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列3,5,9,17,33,…的通项公式a n等于()A.2n B.2n+1 C.2n-1 D.2n+12.记等差数列的前n项和为S n,若S2=4,S4=20,则该数列的公差d=() A.2 B.3 C.6 D.73.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为()A.49 B.50 C.51 D.524.在等差数列{a n}中,若a1+a2+a3=32,a11+a12+a13=118,则a4+a10=()A.45 B.50 C.75 D.605.公差不为零的等差数列{a n}的前n项和为S n.若a4是a3与a7的等比中项,S8=32,则S10等于()A.18 B.24 C.60 D.906.等比数列{a n}的通项为a n=2·3n-1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n},那么162是新数列{b n}的()A.第5项B.第12项C.第13项D.第6项7.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.54钱B.43钱C.32钱D.53钱8.已知{a n}是等差数列,a3=5,a9=17,数列{b n}的前n项和S n=3n,若a m=b1+b4,则正整数m等于()A.29 B.28 C.27 D.269.在各项均为正数的等比数列{a n}中,a1=2且a2,a4+2,a5成等差数列,记S n 是数列{a n }的前n 项和,则S 5=( )A .32B .62C .27D .8110.已知数列{a n }前n 项和为S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 15+S 22-S 31的值是( )A .13B .-76C .46D .7611.已知函数f (x )=⎩⎨⎧2x -1,x ≤0,f (x -1)+1,x >0,把方程f (x )=x 的根按从小到大的顺序排列成一个数列{a n },则该数列的通项公式为( )A .a n =n (n -1)2(n ∈N *)B .a n =n (n -1)(n ∈N *)C .a n =n -1(n ∈N *)D .a n =n -2(n ∈N *)12.已知数列{a n }满足a n +1+(-1)n a n =2n -1,S n 为其前n 项和,则S 60=( )A .3690B .1830C .1845D .3660二、填空题(本大题共4小题,每小题5分,共20分)13.已知数列{a n }中,a 1=10,a n +1=a n -12,则它的前n 项和S n 的最大值为________.14.已知等比数列{a n }为递增数列,若a 1>0,且2(a n +a n +2)=5a n +1,则数列{a n }的公比q =________.15.在数列{a n }中,a 1=1,a 2=2,且a n +2-a n =1+(-1)n (n ∈N *),则a 1+a 2+…+a 51=________.16.某企业为节能减排,用9万元购进一台新设备用于生产,第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加3万元,该设备每年生产的收入均为21万元.设该设备使用了n (n ∈N *)年后,盈利总额达到最大值(盈利总额等于总收入减去总成本),则n 等于________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)设a ,b ,c 是实数,3a ,4b ,5c 成等比数列,且1a ,1b ,1c 成等差数列,求a c +c a 的值.18.(本小题满分12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列;(2)求数列{b n }的通项公式.19.(本小题满分12分)已知数列{a n }满足a 1=1,a 2=3,a n +2=3a n +1-2a n (n ∈N *).(1)证明:数列{a n +1-a n }是等比数列;(2)求数列{a n }的通项公式.20.(本小题满分12分)2010年4月14日,冰岛南部艾雅法拉火山喷发,弥漫在欧洲上空多日的火山灰严重影响欧洲多个国家的机场正常运营.由于风向,火山灰主要飘落在该火山口的东北方向与东南方向之间的地区.假设火山喷发停止后,需要了解火山灰的飘散程度,为了测量的需要,现将距离火山喷口中心50米内的扇形面记为第1区、50米至100米的扇环面记为第2区、…、50(n -1)米至50n 米的扇环面记为第n 区,若测得第1区的火山灰每平方米的平均质量为1吨、第2区每平方米的平均质量较第1区减少了2%、第3区较第2区又减少了2%,依此类推,问:(1)离火山口1225米处的火山灰大约为每平方米多少千克?(结果精确到1千克)(2)第几区内的火山灰总质量最大?提示:当n较大时,可用(1-x)n≈1-nx进行近似计算.21.(本小题满分12分)设数列{a n}的前n项和为S n=2n2,数列{b n}为等比数列,且a1=b1,b2(a2-a1)=b1.(1)求数列{a n}和{b n}的通项公式;(2)设c n=a nb n,求数列{c n}的前n项和T n.22.(本小题满分12分)已知a1=2,点(a n,a n+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,….(1)证明:数列{lg (1+a n)}是等比数列;(2)设T n=(1+a1)·(1+a2)…(1+a n),求T n;(3)记b n=1a n+1a n+2,求数列{b n}的前n项和S n,并证明S n<1.一、选择题1.答案 B解析 由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n =2n +1.(或特值法,当n =1时只有B 项符合.)2.答案 B解析 S 4-S 2=a 3+a 4=20-4=16,∴a 3+a 4-S 2=(a 3-a 1)+(a 4-a 2)=4d =16-4=12,∴d =3. 3.答案 D解析 ∵2a n +1-2a n =1,∴a n +1-a n =12.∴数列{a n }是首项a 1=2,公差d =12的等差数列.∴a 101=2+12×(101-1)=52.4.答案 B解析 ∵a 1+a 2+a 3=3a 2=32,a 11+a 12+a 13=3a 12=118,∴3(a 2+a 12)=150,即a 2+a 12=50,∴a 4+a 10=a 2+a 12=50.5.答案 C解析 由a 24=a 3a 7得(a 1+3d )2=(a 1+2d )(a 1+6d ),即2a 1+3d =0. ①又S 8=8a 1+562d =32,则2a 1+7d =8. ②由①②,得d =2,a 1=-3.所以S 10=10a 1+902d =60.故选C .6.答案 C解析 162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项.7.答案 B解析 依题意设甲、乙、丙、丁、戊所得钱分别为a -2d ,a -d ,a ,a +d ,a +2d ,则由题意可知,a -2d +a -d =a +a +d +a +2d ,即a =-6d ,又a -2d +a -d +a +a +d +a +2d =5a =5,∴a =1,则a -2d =a -2×⎝ ⎛⎭⎪⎫-a 6=43a =43.故选B . 8.答案 A解析 因为{a n }是等差数列,a 9=17,a 3=5,所以6d =17-5,得d =2,a n =2n -1.又因为S n =3n ,所以当n =1时,b 1=3,当n ≥2时,S n -1=3n -1,b n =3n -3n -1=2·3n -1,由a m =b 1+b 4,得2m -1=3+54,得m =29,故选A .9.答案 B解析 设各项均为正数的等比数列{a n }的公比为q ,又a 1=2,则a 2=2q ,a 4+2=2q 3+2,a 5=2q 4,∵a 2,a 4+2,a 5成等差数列,∴4q 3+4=2q +2q 4,∴2(q 3+1)=q (q 3+1),由q >0,解得q =2,∴S 5=2(1-25)1-2=62.故选B . 10.答案 B解析 ∵S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),∴S 14=7×(1-5)=-28,a 15=60-3=57,S 22=11×(1-5)=-44,S 30=15×(1-5)=-60,a 31=124-3=121,∴S 15=S 14+a 15=29,S 31=S 30+a 31=61.∴S 15+S 22-S 31=29-44-61=-76.故选B .11.答案 C解析 令2x -1=x (x ≤0),易得x =0.当0<x ≤1时,由已知得f (x -1)+1=x ,即2x -1-1+1=2x -1=x ,则x =1.当1<x ≤2时,由已知得f (x )=x ,即f (x -1)+1=x ,即f (x -2)+1+1=x ,故2x -2+1=x ,则x =2.因此,a 1=0,a 2=1,a 3=2,结合各选项可知该数列的通项公式为a n =n -1(n ∈N *).故选C .12.答案 B解析 ①当n 为奇数时,a n +1-a n =2n -1,a n +2+a n +1=2n +1,两式相减得a n +2+a n =2;②当n 为偶数时,a n +1+a n =2n -1,a n +2-a n +1=2n +1,两式相加得a n +2+a n =4n ,故S 60=a 1+a 3+a 5+…+a 59+(a 2+a 4+a 6+…+a 60) =2×15+(4×2+4×6+…+4×58)=30+4×450=1830.故选B .二、填空题13.答案 105解析 ∵a n +1-a n =-12,∴d =-12,又a 1=10,∴a n =-n 2+212(n ∈N *).∵a 1=10>0,d =-12<0,设从第n 项起为负数,则-n 2+212<0(n ∈N *).∴n >21,于是前21项和最大,最大值为S 21=105.14.答案 2解析 ∵{a n }是递增的等比数列,且a 1>0,∴q >1.又∵2(a n +a n +2)=5a n +1,∴2a n +2a n q 2=5a n q .∵a n ≠0,∴2q 2-5q +2=0,∴q =2或q =12(舍去),∴公比q 为2.15.答案 676解析 当n 为正奇数时,a n +2-a n =0,又a 1=1,则所有奇数项都是1;当n 为正偶数时,a n +2-a n =2,又a 2=2,则所有偶数项是首项和公差都是2的等差数列,所以a 1+a 2+…+a 51=(a 1+a 3+…+a 51)+(a 2+a 4+…+a 50)=26a 1+25a 2+25×242×2=676.16.答案 7解析 设该设备第n 年的运营费用为a n 万元,则数列{a n }是以2为首项,3为公差的等差数列,则a n =3n -1.设该设备使用n 年的运营费用总和为T n ,则T n =n (2+3n -1)2=32n 2+12n . 设n 年的盈利总额为S n ,则S n =21n -⎝ ⎛⎭⎪⎫32n 2+12n -9=-32n 2+412n -9. 由二次函数的性质可知,当n =416时,S n 取得最大值,又n ∈N *,故当n =7时,S n 取得最大值.三、解答题17.解 ∵3a ,4b ,5c 成等比数列,∴16b 2=15ac . ① ∵1a ,1b ,1c 成等差数列,∴2b =1a +1c . ②由①,得4b 2·15ac =64. ③将②代入③,得1a +1c 2·15ac =64,∴1a 2+1c 2+2ac ac =6415.∴c a +a c =3415.18.解 (1)证明:∵a 1=S 1,a n +S n =n , ①∴a 1+S 1=1,得a 1=12.又a n +1+S n +1=n +1, ②由①②两式相减得2(a n +1-1)=a n -1,即a n +1-1a n -1=12,也即c n +1c n=12, 故数列{c n }是等比数列.(2)∵c 1=a 1-1=-12,∴c n =-12n ,a n =c n +1=1-12n ,a n -1=1-12n -1. 故当n ≥2时,b n =a n -a n -1=12n -1-12n =12n . 又b 1=a 1=12也适合上式,∴b n =12n .19.解 (1)证明:∵a n +2=3a n +1-2a n ,∴a n +2-a n +1=2(a n +1-a n ),∴a n +2-a n +1a n +1-a n =2. ∵a 1=1,a 2=3,∴{a n +1-a n }是以a 2-a 1=2为首项,2为公比的等比数列.(2)由(1)得a n +1-a n =2n ,∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+2+1=2n -1.故数列{a n }的通项公式为a n =2n -1. 20.解 (1)设第n 区的火山灰为每平方米a n 千克, 依题意,数列{a n }为等比数列,且a 1=1000(千克), 公比q =1-2%=0.98,∴a n =a 1×q n -1=1000×0.98n -1.∵离火山口1225米处的位置在第25区, ∴a 25=1000×(1-0.02)24≈1000×(1-24×0.02)=520,即离火山口1225米处的火山灰大约为每平方米520千克.(2)设第n 区的火山灰总质量为b n 千克,且该区的火山灰总质量最大. 依题意,第n 区的面积为14π{(50n )2-[50(n -1)]2}=625π(2n -1), ∴b n =625π(2n -1)×a n .依题意得⎩⎨⎧ b n ≥b n -1,b n ≥b n +1,解得49.5≤n ≤50.5.∵n ∈N *,∴n =50,即第50区的火山灰总质量最大. 21.解 (1)当n =1时,a 1=S 1=2;当n ≥2时,a n =S n -S n -1=2n 2-2(n -1)2=4n -2, ∵当n =1时,a 1=4-2=2也适合上式, ∴{a n }的通项公式为a n =4n -2,即{a n }是a 1=2,公差d =4的等差数列.设{b n }的公比为q ,则b 1qd =b 1,∴q =14.故b n =b 1q n -1=2×14n -1. 即{b n }的通项公式为b n =24n -1. (2)∵c n =a n b n=4n -224n -1=(2n -1)4n -1, ∴T n =c 1+c 2+…+c n =1+3×41+5×42+…+(2n -1)4n -1, 4T n =1×4+3×42+5×43+…+(2n -3)4n -1+(2n -1)4n .两式相减,得3T n =-1-2(41+42+43+…+4n -1)+(2n -1)4n =13[(6n -5)4n+5],∴T n =19[(6n -5)4n +5].22.解 (1)证明:由已知a n +1=a 2n +2a n ,∴a n +1+1=(a n +1)2,∴lg (1+a n +1)=2lg (1+a n ),∴{lg (1+a n )}是公比为2的等比数列.(2)由(1)知lg (1+a n )=2n -1·lg (1+a 1)=2n -1·lg 3=lg 32n -1,∴1+a n =32n -1,∴T n =(1+a 1)(1+a 2)…(1+a n )=320·321·322·…·32n -1=31+2+22+…+2n -1=32n -1.(3)∵点(a n ,a n +1)在函数f (x )=x 2+2x 的图象上, ∴a n +1=a 2n +2a n ,∴a n +1=a n (a n +2).∴1a n +1=12⎝ ⎛⎭⎪⎫1a n -1a n +2,∴1a n +2=1a n -2a n +1, ∴b n =1a n +1a n +2=1a n +1a n -2a n +1=2⎝ ⎛⎭⎪⎫1a n -1a n +1. ∴S n =b 1+b 2+…+b n=2⎝ ⎛ 1a 1-1a 2+1a 2-1a 3+…+ ⎭⎪⎫1a n -1a n +1 =2⎝ ⎛⎭⎪⎫1a 1-1a n +1. ∵a n =32n -1-1,a 1=2,a n +1=32n -1,∴S n =1-232n -1. 32n -1>32-1=8>2,∴0<232n -1<1.∴S n <1.。
第二章测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.S n 是数列{a n }的前n 项和,log 2S n =n (n =1,2,3,…),那么数列{a n }( )A.是公比为2的等比数列B.是公差为2的等差数列C.是公比为12的等比数列 D.既非等差数列也非等比数列解析 由log 2S n =n ,得S n =2n ,a 1=S 1=2,a 2=S 2-S 1=22-2=2,a 3=S 3-S 2=23-22=4,…由此可知,数列{a n }既不是等差数列,也不是等比数列. 答案 D2.一个数列{a n },其中a 1=3,a 2=6,a n +2=a n +1-a n ,则a 5=( ) A.6 B.-3 C.-12D.-6解析 a 3=a 2-a 1=6-3=3, a 4=a 3-a 2=3-6=-3, a 5=a 4-a 3=-3-3=-6. 答案 D3.首项为a 的数列{a n }既是等差数列,又是等比数列,则这个数列前n 项和为( )A.a n -1B.naC.a nD.(n -1)a解析 由题意,知a n =a (a ≠0),∴S n =na . 答案 B4.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }的前7项和为( )A.63B.64C.127D.128解析 a 5=a 1q 4=q 4=16,∴q =2. ∴S 7=1-271-2=128-1=127.答案 C5.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)的值等于( )A.-8B.8C.-98D.98 解析 a 2-a 1=-1-(-9)3=83, b 22=(-1)×(-9)=9,∴b 2=-3, ∴b 2(a 2-a 1)=-3×83=-8. 答案 A6.在-12和8之间插入n 个数,使这n +2个数组成和为-10的等差数列,则n 的值为( )A.2B.3C.4D.5解析 依题意,得-10=-12+82(n +2), ∴n =3. 答案 B7.已知{a n }是等差数列,a 4=15,S 5=55,则过点P (3,a 3),Q (4,a 4)的直线的斜率为( )A.4B.14C.-4D.-14解析由a 4=15,S 5=55,得⎩⎪⎨⎪⎧a 1+3d =15,5a 1+5×42d =55.解得⎩⎨⎧a 1=3,d =4.∴a 3=a 4-d =11.∴P (3,11),Q (4,15).k PQ =15-114-3=4.答案 A8.等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19=( ) A.55 B.95 C.100D.190解析 S 19=a 1+a 192×19=a 3+a 172×19=102×19=95.答案 B9.S n 是等差数列{a n }的前n 项和,若a 2+a 4+a 15是一个确定的常数,则在数列{S n }中也是确定常数的项是( )A.S 7B.S 4C.S 13D.S 16解析 a 2+a 4+a 15=a 1+d +a 1+3d +a 1+14d =3a 1+18d =3(a 1+6d )=3a 7,∴a 7为常数.∴S 13=a 1+a 132×13=13a 7为常数. 答案 C10.等比数列{a n }中,a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62,则通项是( )A.2n -1B.2nC.2n +1D.2n +2解析 ∵a 2+a 3+a 4+a 5+a 6=q (a 1+a 2+a 3+a 4+a 5), ∴62=q ×31,∴q =2.∴S 5=a 1(1-25)1-2=31.∴a 1=1,∴a n =2n -1. 答案 A11.已知等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使其前n 项和S n 取得最大值的自然数n 是( )A.4或5B.5或6C.6或7D.不存在解析 由d <0知,{a n }是递减数列,∵|a 3|=|a 9|,∴a 3=-a 9,即a 3+a 9=0. 又2a 6=a 3+a 9=0,∴a 6=0. ∴S 5=S 6且最大. 答案 B12.若a ,b ,c 成等比数列,则方程ax 2+bx +c =0( ) A.有两个不等实根 B.有两相等的实根 C.无实数根 D.无法确定解析 a ,b ,c 成等比数列,∴b 2=ac >0. 而Δ=b 2-4ac =ac -4ac =-3ac <0. ∴方程ax 2+bx +c =0无实数根. 答案 C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.2,x ,y ,z,18成等比数列,则x =________.解析 设公比为q ,则由2,x ,y ,z,18成等比数列.得18=2q 4,∴q =±3.∴x =2q =±2 3.答案 ±2 314.若数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n ,0≤a n ≤1,a n -1,a n >1,且a 1=67,则a 2013=________.解析 由题意,得a 1=67,a 2=127,a 3=57,a 4=107,a 5=37,a 6=67,a 7=127,…,∴a 2013=a 3=57.答案 5715.一个数列的前n 项和为S n =1-2+3-4+…+(-1)n +1n ,则S 17+S 33+S 50=____________.解析 S 17=-8+17=9,S 33=-16+33=17,S 50=-25,∴S 17+S 33+S 50=1.答案 116.设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________.解析 S 4a 4=a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫124⎝⎛⎭⎪⎫1-12a 1⎝ ⎛⎭⎪⎫123=15. 答案 15三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1·S n ,n ∈N *.(1)求a 1,a 2,并求数列{a n }的通项公式; (2)求数列{na n }的前n 项和.解 (1)令n =1,得2a 1-a 1=a 21,即a 1=a 21,∵a 1≠0,∴a 1=1,令n =2,得2a 2-1=S 2=1+a 2,解得a 2=2. 当n ≥2时,由2a n -1=S n,2a n -1=S n -1两式相减得2a n -2a n -1=a n ,即a n =2a n -1, 于是数列{a n }是首项为1,公比为2的等比数列, 即a n =2n -1.∴数列{a n }的通项公式为a n =2n -1. (2)由(1)知,na n =n ·2n -1.记数列{n ·2n -1}的前n 项和为B n ,于是 B n =1+2×2+3×22+…+n ×2n -1,① 2B n =1×2+2×22+3×23+…+n ×2n .② ①-②得-B n =1+2+22+…+2n -1-n ·2n =2n -1-n ·2n . 从而B n =1+(n -1)·2n .18.(12分)已知等比数列{a n },首项为81,数列{b n }满足b n =log 3a n ,其前n 项和为S n .(1)证明{b n }为等差数列;(2)若S 11≠S 12,且S 11最大,求{b n }的公差d 的范围. 解 (1)证明:设{a n }的公比为q , 则a 1=81,a n +1a n=q ,由a n >0,可知q >0,∵b n +1-b n =log 3a n +1-log 3a n =log 3a n +1a n =log 3q (为常数),∴{b n }是公差为log 3q 的等差数列.(2)由(1)知,b 1=log 3a 1=log 381=4, ∵S 11≠S 12,且S 11最大,∴⎩⎨⎧b 11≥0,b 12<0,即⎩⎨⎧b 1+10d ≥0,b 1+11d <0.⎩⎪⎨⎪⎧d ≥-b 110=-25,d <-b111=-411.∴-25≤d <-411.19.(12分)等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)证明:1S 1+1S 2+…+1S n<34.解 (1)设{a n }的公差为d ,{b n }的公比为q ,则d >0,q ≠0,a n =3+(n -1)d ,b n =q n -1,依题意有⎩⎨⎧b 2S 2=(6+d )q =64,b 3S 3=(9+3d )q 2=960.解得⎩⎨⎧d =2,q =8,或⎩⎪⎨⎪⎧d =-65,q =403,(舍去).故a n =2n +1,b n =8n -1.(2)证明:由(1)知S n =3+2n +12×n =n (n +2),1S n =1n (n +2)=12⎝ ⎛⎭⎪⎪⎫1n -1n +2, ∴1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n (n +2)=12⎝ ⎛⎭⎪⎪⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝ ⎛⎭⎪⎪⎫1+12-1n +1-1n +2 =34-2n +32(n +1)(n +2)∵2n +32(n +1)(n +2)>0 ∴1S 1+1S 2+…+1S n<34. 20.(12分)等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解 (1)设{a n }的公比为q ,由已知,得16=2q 3,解得 q =2,∴a n =a 1q n -1=2n .(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32.设{b n }的公差为d ,则有⎩⎨⎧b 1+2d =8,b 1+4d =32,解得⎩⎨⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28. 所以数列{b n }的前n 项和S n =n (-16+12n -28)2=6n 2-22n . 21.(12分)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .解 (1)由S n =2n 2+n ,得当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=4n -1.∴a n =4n -1(n ∈N *). 由a n =4log 2b n +3=4n -1,得b n =2n -1(n ∈N *). (2)由(1)知a n ·b n =(4n -1)·2n -1,n ∈N *, ∴T n =3+7×2+11×22+…+(4n -1)×2n -1, 2T n =3×2+7×22+…+(4n -5)×2n -1+(4n -1)×2n .∴2T n -T n =(4n -1)×2n -[3+4(2+22+…+2n -1]=(4n -5)2n +5.故T n =(4n -5)2n +5.22.(12分)已知数列{a n }满足a 1=1,a n -2a n -1-2n -1=0(n ∈N *,n ≥2).(1)求证:数列{a n2n }是等差数列; (2)若数列{a n }的前n 项和为S n ,求S n .解 (1)∵a n -2a n -1-2n -1=0,∴a n 2n -a n -12n -1=12, ∴{a n 2n }是以12为首项,12为公差的等差数列.(2)由(1),得a n 2n =12+(n -1)×12,∴a n =n ·2n -1, ∴S n =1·20+2·21+3·22+…+n ·2n -1① 则2S n =1·21+2·22+3·23+…+n ·2n ② ①-②,得 -S n =1+21+22+…+2n -1-n ·2n =1·(1-2n )1-2-n ·2n =2n -1-n ·2n ,∴S n =(n -1)·2n +1.。
数列练习题_附答案强⼒推荐⼈教版数学⾼中必修5习题第⼆章数列1.{a n }是⾸项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ).A .667B .668C .669D .6702.在各项都为正数的等⽐数列{a n }中,⾸项a 1=3,前三项和为21,则a 3+a 4+a 5=( ).A .33B .72C .84D .1893.如果a 1,a 2,…,a 8为各项都⼤于零的等差数列,公差d ≠0,则( ).A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8<a 4+a 5D .a 1a 8=a 4a 54.已知⽅程(x 2-2x +m )(x 2-2x +n )=0的四个根组成⼀个⾸项为41的等差数列,则|m -n |等于( ).A .1B .43C .21D . 83 5.等⽐数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ).A .81B .120C .168D .1926.若数列{a n }是等差数列,⾸项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成⽴的最⼤⾃然数n 是( ).A .4 005B .4 006C .4 007D .4 0087.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等⽐数列, 则a 2=( ).A .-4B .-6C .-8D .-108.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59S S =( ). A .1 B .-1 C .2 D .21 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等⽐数列,则212b a a 的值是( ).A .21B .-21C .-21或21D .4110.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ).A .38B .20C .10D .9⼆、填空题11.设f (x )=221+x ,利⽤课本中推导等差数列前n 项和公式的⽅法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为 .12.已知等⽐数列{a n }中,(1)若a 3·a 4·a 5=8,则a 2·a 3·a 4·a 5·a 6=.(2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6=.(3)若S 4=2,S 8=6,则a 17+a 18+a 19+a 20= .13.在38和227之间插⼊三个数,使这五个数成等⽐数列,则插⼊的三个数的乘积为. 14.在等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则此数列前13项之和为 .15.在等差数列{a n }中,a 5=3,a 6=-2,则a 4+a 5+…+a 10= .16.设平⾯内有n 条直线(n ≥3),其中有且仅有两条直线互相平⾏,任意三条直线不过同⼀点.若⽤f (n )表⽰这n 条直线交点的个数,则f (4)=;当n >4时,f (n )=.三、解答题17.(1)已知数列{a n }的前n 项和S n =3n 2-2n ,求证数列{a n }成等差数列.(2)已知a 1,b 1,c 1成等差数列,求证a c b +,b a c +,cb a +也成等差数列.18.设{a n }是公⽐为 q 的等⽐数列,且a 1,a 3,a 2成等差数列.(1)求q 的值;(2)设{b n }是以2为⾸项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,⽐较S n 与b n 的⼤⼩,并说明理由.19.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n n 2 S n (n =1,2,3…).求证:数列{nS n }是等⽐数列.第⼆章数列参考答案⼀、选择题1.C解析:由题设,代⼊通项公式a n =a 1+(n -1)d ,即2 005=1+3(n -1),∴n =699.2.C解析:本题考查等⽐数列的相关概念,及其有关计算能⼒.设等⽐数列{a n }的公⽐为q (q >0),由题意得a 1+a 2+a 3=21,即a 1(1+q +q 2)=21,⼜a 1=3,∴1+q +q 2=7.解得q =2或q =-3(不合题意,舍去),∴a 3+a 4+a 5=a 1q 2(1+q +q 2)=3×22×7=84.3.B .解析:由a 1+a 8=a 4+a 5,∴排除C .⼜a 1·a 8=a 1(a 1+7d )=a 12+7a 1d ,∴a 4·a 5=(a 1+3d )(a 1+4d )=a 12+7a 1d +12d 2>a 1·a 8.4.C解析:解法1:设a 1=41,a 2=41+d ,a 3=41+2d ,a 4=41+3d ,⽽⽅程x 2-2x +m =0中两根之和为2,x 2-2x +n =0中两根之和也为2,∴a 1+a 2+a 3+a 4=1+6d =4,∴d =21,a 1=41,a 4=47是⼀个⽅程的两个根,a 1=43,a 3=45是另⼀个⽅程的两个根.∴167,1615分别为m 或n ,∴|m -n |=21,故选C .解法2:设⽅程的四个根为x 1,x 2,x 3,x 4,且x 1+x 2=x 3+x 4=2,x 1·x 2=m ,x 3·x 4=n .由等差数列的性质:若+s =p +q ,则a +a s =a p +a q ,若设x 1为第⼀项,x 2必为第四项,则x 2=47,于是可得等差数列为41,43,45,47,∴m =167,n =1615,∴|m -n |=21. 5.B解析:∵a 2=9,a 5=243,25a a =q 3=9243=27,∴q =3,a 1q =9,a 1=3,∴S 4=3-13-35=2240=120. 6.B解析:解法1:由a 2 003+a 2 004>0,a 2 003·a 2 004<0,知a 2 003和a 2 004两项中有⼀正数⼀负数,⼜a 1>0,则公差为负数,否则各项总为正数,故a 2 003>a 2 004,即a 2 003>0,a 2 004<0.∴S 4 006=2+006400641)(a a =2+006400420032)(a a >0,∴S 4 007=20074·(a 1+a 4 007)=20074·2a 2 004<0,故4 006为S n >0的最⼤⾃然数. 选B .解法2:由a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,同解法1的分析得a 2 003>0,a 2 004<0,∴S 2 003为S n 中的最⼤值.∵S n 是关于n 的⼆次函数,如草图所⽰,∴2 003到对称轴的距离⽐2 004到对称轴的距离⼩,∴20074在对称轴的右侧.根据已知条件及图象的对称性可得4 006在图象中右侧零点B 的左侧,4 007,4 008都在其右侧,S n >0的最⼤⾃然数是4 006.7.B解析:∵{a n }是等差数列,∴a 3=a 1+4,a 4=a 1+6,⼜由a 1,a 3,a 4成等⽐数列,∴(a 1+4)2=a 1(a 1+6),解得a 1=-8,∴a 2=-8+2=-6.(第6题)8.A 解析:∵59S S =2)(52)(95191a a a a ++=3559a a ??=59·95=1,∴选A . 9.A解析:设d 和q 分别为公差和公⽐,则-4=-1+3d 且-4=(-1)q 4,∴d =-1,q 2=2,∴212b a a -=2q d -=21. 10.C解析:∵{a n }为等差数列,∴2n a =a n -1+a n +1,∴2n a =2a n ,⼜a n ≠0,∴a n =2,{a n }为常数数列,⽽a n =1212--n S n ,即2n -1=238=19,∴n =10.⼆、填空题11.23.解析:∵f (x )=221+x ,∴f (1-x )=2211+-x =x x 2222?+=x x 22221+,∴f (x )+f (1-x )=x 221++x x 22221+?=x x 222211+?+=x x 22)22(21++=22.设S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6),则S =f (6)+f (5)+…+f (0)+…+f (-4)+f (-5),∴2S =[f (6)+f (-5)]+[f (5)+f (-4)]+…+[f (-5)+f (6)]=62,∴S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)=32.12.(1)32;(2)4;(3)32.解析:(1)由a 3·a 5=24a ,得a 4=2,∴a 2·a 3·a 4·a 5·a 6=54a =32.(2)9136)(324222121==+=+q q a a a a ,∴a 5+a 6=(a 1+a 2)q 4=4.(3)2=+=+++=2=+++=4444821843214q qS S a a a S a a a a S ,∴a 17+a 18+a 19+a 20=S 4q 16=32.13.216.解析:本题考查等⽐数列的性质及计算,由插⼊三个数后成等⽐数列,因⽽中间数必与38,227同号,由等⽐中项的中间数为22738?=6,∴插⼊的三个数之积为38×227×6=216. 14.26.解析:∵a 3+a 5=2a 4,a 7+a 13=2a 10,∴6(a 4+a 10)=24,a 4+a 10=4,∴S 13=2+13131)(a a =2+13104)(a a =2413?=26. 15.-49.解析:∵d =a 6-a 5=-5,∴a 4+a 5+…+a 10 =2+7104)(a a =25++-755)(d a d a =7(a 5+2d )=-49.16.5,21(n +1)(n -2).解析:同⼀平⾯内两条直线若不平⾏则⼀定相交,故每增加⼀条直线⼀定与前⾯已有的每条直线都相交,∴f (k )=f (k -1)+(k -1).由f (3)=2,f (4)=f (3)+3=2+3=5,f (5)=f (4)+4=2+3+4=9,……f (n )=f (n -1)+(n -1),相加得f (n )=2+3+4+…+(n -1)=21(n +1)(n -2).三、解答题17.分析:判定给定数列是否为等差数列关键看是否满⾜从第2项开始每项与其前⼀项差为常数.证明:(1)n =1时,a 1=S 1=3-2=1,当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5,n =1时,亦满⾜,∴a n =6n -5(n ∈N*).⾸项a 1=1,a n -a n -1=6n -5-[6(n -1)-5]=6(常数)(n ∈N*),∴数列{a n }成等差数列且a 1=1,公差为6.(2)∵a 1,b 1,c 1成等差数列,∴b 2=a 1+c1化简得2ac =b (a +c ). a c b ++cb a +=ac ab a c bc +++22=ac c a c a b 22+++)(=ac c a 2+)(=2++2)()(c a b c a =2·bc a +,∴a c b +,b a c +,cb a +也成等差数列. 18.解:(1)由题设2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q ,∵a 1≠0,∴2q 2-q -1=0,∴q =1或-21.(2)若q =1,则S n =2n +21-)(n n =23+2n n .当n ≥2时,S n -b n =S n -1=22+1-))((n n >0,故S n >b n .若q =-21,则S n =2n +21-)(n n (-21)=49+-2n n .当n ≥2时,S n -b n =S n -1=4-11-)0)((n n ,故对于n ∈N +,当2≤n ≤9时,S n >b n ;当n =10时,S n =b n ;当n ≥11时,S n <b n .19.证明:∵a n +1=S n +1-S n ,a n +1=nn 2+S n ,∴(n +2)S n =n (S n +1-S n ),整理得nS n +1=2(n +1) S n ,所以1+1+n S n =n S n 2.故{n S n }是以2为公⽐的等⽐数列.。
(数学5必修)第二章:数列[基础训练A 组] 一、选择题1.在数列55,34,21,,8,5,3,2,1,1x 中,x 等于( ) A .11 B .12 C .13 D .142.等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于( ) A .66B .99C .144D .2973.等比数列{}n a 中, ,243,952==a a 则{}n a 的前4项和为( ) A .81 B .120 C .168 D .192 4.12+与12-,两数的等比中项是( ) A .1 B .1- C .1± D .21 5.已知一等比数列的前三项依次为33,22,++x x x ,那么2113-是此数列的第( )项A .2B .4C .6D .86.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( )A .513B .512C .510D .8225二、填空题1.等差数列{}n a 中, ,33,952==a a 则{}n a 的公差为______________。
2.数列{n a }是等差数列,47a =,则7s =_________ 3.两个等差数列{}{},,n n b a ,327......2121++=++++++n n b b b a a a n n 则55b a=___________.4.在等比数列{}n a 中, 若,75,393==a a 则10a =___________.5.在等比数列{}n a 中, 若101,a a 是方程06232=--x x 的两根,则47a a ⋅-=___________.6.计算3log 33...3n=___________.三、解答题1.成等差数列的四个数的和为26,第二数与第三数之积为40,求这四个数。
新课标数学必修5第2章数列单元试题一、选择题(本大题共10小题,每小题3分,共30分)1.在正整数100至500之间能被11整除的个数为()A.34 B.35 C.36 D.37考查等差数列的应用.【解析】观察出100至500之间能被11整除的数为110、121、132、…它们构成一个等*,Nn∈≤36.4,·11=11n+99,由a≤500,解得n差数列,公差为11,数a=110+(n-1)nn∴n≤36.【答案】C2-1(n≥1),则a+a+a+a+a=12.在数列{a}中,a,a=a等于()54n+112nn31A.-1 B.1 C.0 D.2考查数列通项的理解及递推关系.2-1=(a+1)(=aaa-1),【解析】由已知:nn+1nn∴a=0,a=-1,a=0,a=-1.5342【答案】A 3.{a}是等差数列,且a+a+a=45,a+a+a=39,则a+a+a的值是()9432n78156A.24 B.27 C.30 D.33考查等差数列的性质及运用.【解析】a+a+a,a+a+a,a+a+a成等差数列,故a+a+a=2×39-45=33.932394576168【答案】D2f(n)?n*)且f(1)=2,则f(20(n∈N+14.设函数f(x)满足f(n)=)为()2192 D..105 B.97 C95 A.考查递推公式的应用.1?1?f(1)?f(2)??2?1?2)(2??f(3)?fn??)f(n=f【解析】(n+1)-2?2? ?1?1919)??f(20)?f(?2?1?.1)=97(20)=95+f20)-f(1)=…(1+2++19)(f相加得f(2B【答案】*)(n≥3=0-6,a,公差d∈N)的最大值为(,则n中,已知5.等差数列{a}a=n1n8 D.B.6 C.7 A.5考查等差数列的通项.6?+1 n(n-1)d=0=-a【解析】=a+(n1)d,即-6+1n d*.=7d=1时,n取最大值n∵d∈N,当C【答案】2 }从首项到第几项的和最大()=6.设a-n,则数列+10n+11{a nn项.第10项或11项D12C项10A.第项B.第11 .第考查数列求和的最值及问题转化的能力.2 S<0a>0a=0a)-(+1-(n-=【解析】由an+10+11=n)n11,得,而,,S=.1110121011n【答案】C7.已知等差数列{a}的公差为正数,且a·a=-12,a+a=-4,则S为()20n4763A.180 B.-180 C.90 D.-90考查等差数列的运用.2+4xxa联立,即,a是方程4与a·a=-12【解析】由等差数列性质,a+a=a+a=-77674333-12=0的两根,又公差d>0,∴a>aa=2,a=-6,从而得a=-10,d=2,S=180.?2033771【答案】A 8.现有200根相同的钢管,把它们堆放成正三角形垛,要使剩余的钢管尽可能的少,那么剩余钢管的根数为()A.9 B.10 C.19 D.29考查数学建模和探索问题的能力.n(n?1)<200.【解析】1+2+3+…+n<200,即220?19 根.n=20时,剩余钢管最少,此时用去=190显然2【答案】B9.由公差为d的等差数列a、a、a…重新组成的数列a+a,a+a,a+a…是()611524233A.公差为d的等差数列B.公差为2d的等差数列C.公差为3d的等差数列D.非等差数列考查等差数列的性质.【解析】(a+a)-(a+a)=(a-a)+(a-a)=2d.(a+a)-(a+a)=(a-3456422235151a)+(a-a)=2d.依次类推.562【答案】B10.在等差数列{a}中,若S=18,S=240,a=30,则n的值为()-49nnn A.14 B.15 C.16 D.17考查等差数列的求和及运用.9(a?a)91??2(a+4d)=4.【解析】S=18=a+a=491912)n(a?a n1.=16n=240S+4d=2,又a=a+4d.∴=a∴-nn4n12∴n=15.【答案】B二、填空题(本大题共4小题,每小题4分,共16分)2a2*n),则是这个数列的第_________项.(n∈N=1.在数列11{a}中,a,a=+1nn1a?27n考查数列概念的理解及观察变形能力.111111+,∴{}是以=1【解析】由已知得=为首项,公差d=的等差数列.aaaa221n1?nn1221=1+(n-1),∴a=∴=,∴n=6.n a?172n n【答案】612.在等差数列{a}中,已知S=10,S=100,则S .=_________11010100n考查等差数列性质及和的理解.?a+a=-2.(a+a)=-90=45S-S=a+a+…+a(a+a)=45【解析】11010010011010011111110121(a+a)×110=-=S110.11011102【答案】-11013.在-9和3之间插入n个数,使这n+2个数组成和为-21的等差数列,则n=_______.考查等差数列的前n项和公式及等差数列的概念.(n?2)(?9?3),∴n=5.【解析】-21=25【答案】Sa2n n11=_________.,若=,则、14.等差数列{a},{b}的前n项和分别为ST nnnn bT3n?111n 考查等差数列求和公式及等差中项的灵活运用.(a?a)21(a?a)211211aS2?2121221121???.==【解】(b?b)21(b?b)bT3?21?13212112121112221 【答案】32三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分8分)若等差数列5,8,11,…与3,7,11,…均有100项,问它们有多少相同的项?考查等差数列通项及灵活应用.【解】设这两个数列分别为{a}、{b},则a=3n+2,b=4n-1,令a=b,则3k+2=4m-1.mnnnnk∴3k=3(m-1)+m,∴m被3整除.*),则k=4p-1=3p(p∈N.设m∵k、m∈[1,100].则1≤3p≤100且1≤p≤25.∴它们共有25个相同的项.16.(本小题满分10分)在等差数列{a}中,若a=25且S=S,求数列前多少项和最大.179n1考查等差数列的前n项和公式的应用.9?(9?1)17(17?1)d=1725+×25+d ×S【解】∵S=,a=25,∴9191722n(n?1)2+169.-13)n(-n,∴d解得=-2S=25+2)=-(n2由二次函数性质,故前13项和最大.注:本题还有多种解法.这里仅再列一种.由d=-2,数列a为递减数列.n a=25+(n-1)(-2)≥0,即n≤13.5.n∴数列前13项和最大.2-5nn+4,问.17(本小题满分12分)数列通项公式为a=n(1)数列中有多少项是负数?(2)n为何值时,a有最小值?并求出最小值.n考查数列通项及二次函数性质.2-5n+4<0,解得1<na【解】(1)由为负数,得n<4.n*项.3项和第2项为负数,分别是第2,即数列有3或=2n,故N∈n∵.59522)-,∴对称轴为n=n+4=(n-=2.(2)∵a=n5 -5n242*2-5×2+4=-2.或n=3时,a 有最小值,最小值为2又∵n∈N,故当n=2n18.(本小题满分12分)甲、乙两物体分别从相距70 m的两处同时相向运动,甲第一分钟走2 m,以后每分钟比前1分钟多走1 m,乙每分钟走5 m.(1)甲、乙开始运动后,几分钟相遇.(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1 m,乙继续每分钟走5 m,那么开始运动几分钟后第二次相遇?考查等差数列求和及分析解决问题的能力.n(n?1)+51次相遇,依题意得2n+n=70 【解】(1)设n分钟后第22+13n-140=0,解得:n=7,n=-20(舍去)整理得:n∴第1次相遇在开始运动后7分钟.n(n?1)+5n+n=3×70 (2)设n分钟后第2次相遇,依题意有:222+13n-6×70=0,解得:n=15或n整理得:n=-28(舍去)第2次相遇在开始运动后15分钟.1.a=n≥2),(n项和为S,且满足a+2S·S=019.(本小题满分12分)已知数列{a}的前1nnnnn1-21}是等差数列;)求证:{ (1S n(2)求a表达式;n222<1.b +…n≥2),求证:b++b(3)若b=2(1-n)a(nn23n考查数列求和及分析解决问题的能力.【解】(1)∵-a=2SS,∴-S+S=2SS(n≥2)1nn1nn1nnn---11111-=2,又==2,∴{}是以S≠0,∴2为首项,公差为2的等差数列.n aSSSS11nnn1?11=2+(n-1)2=2n,∴S= (2)由(1)n Sn2n1当n≥2 时,a=S-S=-1nnn-)n?1(2n1?(n?1)?12?=a S=,∴n=1时,a=?n1112?-(n?2)?2n(n-1)?1 a=-(1n))由((32)知b=2nn n111111222++…++b=…+<++…+ bb ∴+n32222n)(n?1n332?21?2.111111)+(-)+…+(-)=1-(=1-<1.nn1?n322.。
北京市西城区教辅资料-学习探究诊断-高中数学必修五全册练习和参考答案第二章:数列测试三 数列Ⅰ 学习目标1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式),了解数列是一种特殊的函数.2.理解数列的通项公式的含义,由通项公式写出数列各项.3.了解递推公式是给出数列的一种方法,能根据递推公式写出数列的前几项.Ⅱ 基础训练题一、选择题1.数列{a n }的前四项依次是:4,44,444,4444,…则数列{a n }的通项公式可以是( ) (A)a n =4n (B)a n =4n (C)a n =94(10n-1) (D)a n =4×11n2.在有一定规律的数列0,3,8,15,24,x ,48,63,……中,x 的值是( ) (A)30 (B)35 (C)36 (D)42 3.数列{a n }满足:a 1=1,a n =a n -1+3n ,则a 4等于( ) (A)4 (B)13 (C)28 (D)43 4.156是下列哪个数列中的一项( ) (A){n 2+1} (B){n 2-1} (C){n 2+n } (D){n 2+n -1} 5.若数列{a n }的通项公式为a n =5-3n ,则数列{a n }是( ) (A)递增数列 (B)递减数列 (C)先减后增数列 (D)以上都不对 二、填空题6.数列的前5项如下,请写出各数列的一个通项公式:(1)n a ,,31,52,21,32,1 =________;(2)0,1,0,1,0,…,a n =________.7.一个数列的通项公式是a n =122n n .(1)它的前五项依次是________; (2)0.98是其中的第________项.8.在数列{a n }中,a 1=2,a n +1=3a n +1,则a 4=________. 9.数列{a n }的通项公式为)12(3211n a n (n ∈N *),则a 3=________.10.数列{a n }的通项公式为a n =2n 2-15n +3,则它的最小项是第________项. 三、解答题11.已知数列{a n }的通项公式为a n =14-3n .(1)写出数列{a n }的前6项; (2)当n ≥5时,证明a n <0.12.在数列{a n }中,已知a n =312 n n (n ∈N *).(1)写出a 10,a n +1,2n a ; (2)7932是否是此数列中的项?若是,是第几项?13.已知函数xx x f 1)(,设a n =f (n )(n ∈N +). (1)写出数列{a n }的前4项;(2)数列{a n }是递增数列还是递减数列?为什么?测试四 等差数列Ⅰ 学习目标1.理解等差数列的概念,掌握等差数列的通项公式,并能解决一些简单问题. 2.掌握等差数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等差关系,并能体会等差数列与一次函数的关系.Ⅱ 基础训练题一、选择题1.数列{a n }满足:a 1=3,a n +1=a n -2,则a 100等于( ) (A)98 (B)-195 (C)-201 (D)-1982.数列{a n }是首项a 1=1,公差d =3的等差数列,如果a n =2008,那么n 等于( ) (A)667 (B)668 (C)669 (D)670 3.在等差数列{a n }中,若a 7+a 9=16,a 4=1,则a 12的值是( ) (A)15 (B)30 (C)31 (D)644.在a 和b (a ≠b )之间插入n 个数,使它们与a ,b 组成等差数列,则该数列的公差为( )(A)n a b (B)1 n a b (C)1 n a b (D)2n ab 5.设数列{a n }是等差数列,且a 2=-6,a 8=6,S n 是数列{a n }的前n 项和,则( ) (A)S 4<S 5 (B)S 4=S 5 (C)S 6<S 5 (D)S 6=S 5 二、填空题6.在等差数列{a n }中,a 2与a 6的等差中项是________.7.在等差数列{a n }中,已知a 1+a 2=5,a 3+a 4=9,那么a 5+a 6=________. 8.设等差数列{a n }的前n 项和是S n ,若S 17=102,则a 9=________.9.如果一个数列的前n 项和S n =3n 2+2n ,那么它的第n 项a n =________.10.在数列{a n }中,若a 1=1,a 2=2,a n +2-a n =1+(-1)n (n ∈N *),设{a n }的前n 项和是S n ,则S 10=________. 三、解答题11.已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.求数列{a n }的通项公式.12.等差数列{a n }的前n 项和为S n ,已知a 10=30,a 20=50.(1)求通项a n ;(2)若S n =242,求n .13.数列{a n }是等差数列,且a 1=50,d =-0.6.(1)从第几项开始a n <0;(2)写出数列的前n 项和公式S n ,并求S n 的最大值.Ⅲ 拓展训练题14.记数列{a n }的前n 项和为S n ,若3a n +1=3a n +2(n ∈N *),a 1+a 3+a 5+…+a 99=90,求S 100.测试五 等比数列Ⅰ 学习目标1.理解等比数列的概念,掌握等比数列的通项公式,并能解决一些简单问题. 2.掌握等比数列的前n 项和公式,并能应用公式解决一些简单问题.3.能在具体的问题情境中,发现数列的等比关系,并能体会等比数列与指数函数的关系.Ⅱ 基础训练题一、选择题1.数列{a n }满足:a 1=3,a n +1=2a n ,则a 4等于( )(A)83 (B)24 (C)48 (D)542.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5等于( ) (A)33 (B)72 (C)84 (D)189 3.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3等于( )(A)4(B)23 (C)916 (D)3 4.在等比数列{a n }中,若a 2=9,a 5=243,则{a n }的前四项和为( ) (A)81 (B)120 (C)168 (D)1925.若数列{a n }满足a n =a 1q n -1(q >1),给出以下四个结论: ①{a n }是等比数列; ②{a n }可能是等差数列也可能是等比数列; ③{a n }是递增数列; ④{a n }可能是递减数列.其中正确的结论是( ) (A)①③ (B)①④ (C)②③ (D)②④ 二、填空题6.在等比数列{a n }中,a 1,a 10是方程3x 2+7x -9=0的两根,则a 4a 7=________. 7.在等比数列{a n }中,已知a 1+a 2=3,a 3+a 4=6,那么a 5+a 6=________. 8.在等比数列{a n }中,若a 5=9,q =21,则{a n }的前5项和为________. 9.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为________.10.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q =________. 三、解答题11.已知数列{a n }是等比数列,a 2=6,a 5=162.设数列{a n }的前n 项和为S n .(1)求数列{a n }的通项公式; (2)若S n =242,求n .12.在等比数列{a n }中,若a 2a 6=36,a 3+a 5=15,求公比q .13.已知实数a ,b ,c 成等差数列,a +1,b +1,c +4成等比数列,且a +b +c =15,求a ,b ,c .Ⅲ 拓展训练题14.在下列由正数排成的数表中,每行上的数从左到右都成等比数列,并且所有公比都等于q ,每列上的数从上到下都成等差数列.a ij 表示位于第i 行第j 列的数,其中a 24=81,a 42=1,a 54=5.(1)求q 的值;(2)求a ij 的计算公式.测试六 数列求和Ⅰ 学习目标1.会求等差、等比数列的和,以及求等差、等比数列中的部分项的和. 2.会使用裂项相消法、错位相减法求数列的和.Ⅱ 基础训练题一、选择题1.已知等比数列的公比为2,且前4项的和为1,那么前8项的和等于( ) (A)15 (B)17 (C)19 (D)21 2.若数列{a n }是公差为21的等差数列,它的前100项和为145,则a 1+a 3+a 5+…+a 99的值为( ) (A)60 (B)72.5 (C)85 (D)1203.数列{a n }的通项公式a n =(-1)n -1·2n (n ∈N *),设其前n 项和为S n ,则S 100等于( ) (A)100 (B)-100 (C)200 (D)-200 4.数列)12)(12(1n n 的前n 项和为( )(A)12 n n (B)122 n n (C)24 n n (D)12 n n5.设数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2=a n +3(n =1,2,3,…),则S 100等于( ) (A)7000 (B)7250 (C)7500 (D)14950 二、填空题 6.nn11341231121 =________.7.数列{n +n21}的前n 项和为________. 8.数列{a n }满足:a 1=1,a n +1=2a n ,则a 21+a 22+…+a 2n =________. 9.设n ∈N *,a ∈R ,则1+a +a 2+…+a n =________. 10.n n 21813412211=________. 三、解答题11.在数列{a n }中,a 1=-11,a n +1=a n +2(n ∈N *),求数列{|a n |}的前n 项和S n .12.已知函数f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n (n ∈N *,x ∈R ),且对一切正整数n 都有f (1)=n 2成立.(1)求数列{a n }的通项a n ;(2)求13221111 n n a a a a a a .13.在数列{a n }中,a 1=1,当n ≥2时,a n =12141211 n ,求数列的前n 项和S n .Ⅲ 拓展训练题14.已知数列{a n }是等差数列,且a 1=2,a 1+a 2+a 3=12.(1)求数列{a n }的通项公式;(2)令b n =a n x n (x ∈R ),求数列{b n }的前n 项和公式.测试七 数列综合问题Ⅰ 基础训练题一、选择题1.等差数列{a n }中,a 1=1,公差d ≠0,如果a 1,a 2,a 5成等比数列,那么d 等于( ) (A)3 (B)2 (C)-2 (D)2或-2 2.等比数列{a n }中,a n >0,且a 2a 4+2a 3a 5+a 4a 6=25,则a 3+a 5等于( ) (A)5 (B)10 (C)15 (D)20 3.如果a 1,a 2,a 3,…,a 8为各项都是正数的等差数列,公差d ≠0,则( ) (A)a 1a 8>a 4a 5 (B)a 1a 8<a 4a 5 (C)a 1+a 8>a 4+a 5 (D)a 1a 8=a 4a 54.一给定函数y =f (x )的图象在下列图中,并且对任意a 1∈(0,1),由关系式a n +1=f (a n )得到的数列{a n }满足a n +1>a n (n ∈N *),则该函数的图象是( )5.已知数列{a n }满足a 1=0,1331n n n a a a (n ∈N *),则a 20等于( ) (A)0 (B)-3(C)3(D)23 二、填空题6.设数列{a n }的首项a 1=41,且.,,41,211为奇数为偶数n a n a a n nn 则a 2=________,a 3=________. 7.已知等差数列{a n }的公差为2,前20项和等于150,那么a 2+a 4+a 6+…+a 20=________. 8.某种细菌的培养过程中,每20分钟分裂一次(一个分裂为两个),经过3个小时,这种细菌可以由1个繁殖成________个.9.在数列{a n }中,a 1=2,a n +1=a n +3n (n ∈N *),则a n =________.10.在数列{a n }和{b n }中,a 1=2,且对任意正整数n 等式3a n +1-a n =0成立,若b n 是a n 与a n +1的等差中项,则{b n }的前n 项和为________. 三、解答题11.数列{a n }的前n 项和记为S n ,已知a n =5S n -3(n ∈N *).(1)求a 1,a 2,a 3;(2)求数列{a n }的通项公式; (3)求a 1+a 3+…+a 2n -1的和. 12.已知函数f (x )=422x (x >0),设a 1=1,a 21 n ·f (a n )=2(n ∈N *),求数列{a n }的通项公式.13.设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0.(1)求公差d 的范围;(2)指出S 1,S 2,…,S 12中哪个值最大,并说明理由.Ⅲ 拓展训练题14.甲、乙两物体分别从相距70m 的两地同时相向运动.甲第1分钟走2m ,以后每分钟比前1分钟多走1m ,乙每分钟走5m . (1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?15.在数列{a n }中,若a 1,a 2是正整数,且a n =|a n -1-a n -2|,n =3,4,5,…则称{a n }为“绝对差数列”.(1)举出一个前五项不为零的“绝对差数列”(只要求写出前十项); (2)若“绝对差数列”{a n }中,a 1=3,a 2=0,试求出通项a n ; (3)*证明:任何“绝对差数列”中总含有无穷多个为零的项.测试八 数列全章综合练习Ⅰ 基础训练题一、选择题1.在等差数列{a n }中,已知a 1+a 2=4,a 3+a 4=12,那么a 5+a 6等于( ) (A)16 (B)20 (C)24 (D)36 2.在50和350间所有末位数是1的整数和( ) (A)5880 (B)5539 (C)5208 (D)48773.若a ,b ,c 成等比数列,则函数y =ax 2+bx +c 的图象与x 轴的交点个数为( ) (A)0 (B)1 (C)2 (D)不能确定 4.在等差数列{a n }中,如果前5项的和为S 5=20,那么a 3等于( ) (A)-2 (B)2 (C)-4 (D)45.若{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( ) (A)4012 (B)4013 (C)4014 (D)4015 二、填空题6.已知等比数列{a n }中,a 3=3,a 10=384,则该数列的通项a n =________. 7.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和S 20=________. 8.数列{a n }的前n 项和记为S n ,若S n =n 2-3n +1,则a n =________.9.等差数列{a n }中,公差d ≠0,且a 1,a 3,a 9成等比数列,则1074963a a a a a a =________.10.设数列{a n }是首项为1的正数数列,且(n +1)a 21 n -na 2n +a n +1a n =0(n ∈N *),则它的通项公式a n =________. 三、解答题11.设等差数列{a n }的前n 项和为S n ,且a 3+a 7-a 10=8,a 11-a 4=4,求S 13.12.已知数列{a n }中,a 1=1,点(a n ,a n +1+1)(n ∈N *)在函数f (x )=2x +1的图象上.(1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n ;(3)设c n =S n ,求数列{c n }的前n 项和T n .13.已知数列{a n }的前n 项和S n 满足条件S n =3a n +2.(1)求证:数列{a n }成等比数列; (2)求通项公式a n .14.某渔业公司今年初用98万元购进一艘渔船,用于捕捞,第一年需各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元.(1)写出该渔船前四年每年所需的费用(不包括购买费用);(2)该渔船捕捞几年开始盈利(即总收入减去成本及所有费用为正值)?(3)若当盈利总额达到最大值时,渔船以8万元卖出,那么该船为渔业公司带来的收益是多少万元?Ⅱ 拓展训练题 15.已知函数f (x )=412x (x <-2),数列{a n }满足a 1=1,a n =f (-11 n a )(n ∈N *).(1)求a n ;(2)设b n =a 21 n +a 22 n +…+a 212 n ,是否存在最小正整数m ,使对任意n ∈N *有b n <25m 成立?若存在,求出m 的值,若不存在,请说明理由.16.已知f 是直角坐标系平面xOy 到自身的一个映射,点P 在映射f 下的象为点Q ,记作Q=f (P ).设P 1(x 1,y 1),P 2=f (P 1),P 3=f (P 2),…,P n =f (P n -1),….如果存在一个圆,使所有的点P n (x n ,y n )(n ∈N *)都在这个圆内或圆上,那么称这个圆为点P n (x n ,y n )的一个收敛圆.特别地,当P 1=f (P 1)时,则称点P 1为映射f 下的不动点.若点P (x ,y )在映射f 下的象为点Q (-x +1,21y ). (1)求映射f 下不动点的坐标;(2)若P 1的坐标为(2,2),求证:点P n (x n ,y n )(n ∈N *)存在一个半径为2的收敛圆.北京市西城区教辅资料-学习探究诊断-高中数学必修五全册练习和参考答案第二章 数列测试三 数列一、选择题1.C 2.B 3.C 4.C 5.B 二、填空题6.(1)12n a n (或其他符合要求的答案) (2)2)1(1n n a (或其他符合要求的答案)7.(1)2625,1716,109,54,21 (2)7 8.67 9.15110.4提示:9.注意a n 的分母是1+2+3+4+5=15.10.将数列{a n }的通项a n 看成函数f (n )=2n 2-15n +3,利用二次函数图象可得答案. 三、解答题11.(1)数列{a n }的前6项依次是11,8,5,2,-1,-4;(2)证明:∵n ≥5,∴-3n <-15,∴14-3n <-1, 故当n ≥5时,a n =14-3n <0.12.(1)31,313,31092421102 n n a n n a a n n ; (2)7932是该数列的第15项. 13.(1)因为a n =n -n1,所以a 1=0,a 2=23,a 3=38,a 4=415;(2)因为a n +1-a n =[(n +1)11n ]-(n -n1)=1+)1(1 n n又因为n ∈N +,所以a n +1-a n >0,即a n +1>a n .所以数列{a n }是递增数列.测试四 等差数列一、选择题1.B 2.D 3.A 4.B 5.B 二、填空题6.a 4 7.13 8.6 9.6n -1 10.35 提示:10.方法一:求出前10项,再求和即可;方法二:当n 为奇数时,由题意,得a n +2-a n =0,所以a 1=a 3=a 5=…=a 2m -1=1(m ∈N *).当n 为偶数时,由题意,得a n +2-a n =2,即a 4-a 2=a 6-a 4=…=a 2m +2-a 2m =2(m ∈N *).所以数列{a 2m }是等差数列. 故S 10=5a 1+5a 2+2)15(5 ×2=35. 三、解答题11.设等差数列{a n }的公差是d ,依题意得.242344,7211d a d a 解得 .2,31d a ∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +1. 12.(1)设等差数列{a n }的公差是d ,依题意得.5019,30911d a d a 解得 .2,121d a ∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +10.(2)数列{a n }的前n 项和S n =n ×12+2)1( n n ×2=n 2+11n , ∴S n =n 2+11n =242,解得n =11,或n =-22(舍).13.(1)通项a n =a 1+(n -1)d =50+(n -1)×(-0.6)=-0.6n +50.6.解不等式-0.6n +50.6<0,得n >84.3. 因为n ∈N *,所以从第85项开始a n <0.(2)S n =na 1+2)1( n n d =50n +2)1( n n ×(-0.6)=-0.3n 2+50.3n .由(1)知:数列{a n }的前84项为正值,从第85项起为负值, 所以(S n )max =S 84=-0.3×842+50.3×84=2108.4.14.∵3a n +1=3a n +2,∴a n +1-a n =32, 由等差数列定义知:数列{a n }是公差为32的等差数列. 记a 1+a 3+a 5+…+a 99=A ,a 2+a 4+a 6+…+a 100=B , 则B =(a 1+d )+(a 3+d )+(a 5+d )+…+(a 99+d )=A +50d =90+3100. 所以S 100=A +B =90+90+3100=21331. 测试五 等比数列一、选择题1.B 2.C 3.A 4.B 5.D 提示:5.当a 1=0时,数列{a n }是等差数列;当a 1≠0时,数列{a n }是等比数列; 当a 1>0时,数列{a n }是递增数列;当a 1<0时,数列{a n }是递减数列. 二、填空题6.-3 7.12 8.279 9.216 10.-2 提示:10.分q =1与q ≠1讨论.当q =1时,S n =na 1,又∵2S n =S n +1+S n +2,∴2na 1=(n +1)a 1+(n +2)a 1, ∴a 1=0(舍).当q ≠1,S n =q q a n 1)1(1.又∵2S n =S n +1+S n +2,∴2×q q a n 1)1(1=qq a q q a n n 1)1(1)1(2111,解得q =-2,或q =1(舍).三、解答题11.(1)a n =2×3n -1; (2)n =5. 12.q =±2或±21. 13.由题意,得.15)1()4)(1(,22c b a b c a b c a ,解得 852c b a ,或1511c b a .14.(1)设第4列公差为d ,则161381165252454a a d . 故a 44=a 54-d =41161165 ,于是q 2=414244 a a .由于a ij >0,所以q >0,故q =21. (2)在第4列中,a i 4=a 24+(i -2)d =i i 161)2(16181 .由于第i 行成等比数列,且公比q =21, 所以,a ij =a i 4·q j -4=j j i i )21()21(1614 . 测试六 数列求和一、选择题1.B 2.A 3.B 4.A 5.C 提示:1.因为a 5+a 6+a 7+a 8=(a 1+a 2+a 3+a 4)q 4=1×24=16, 所以S 8=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)=1+16=17. 2.参考测试四第14题答案.3.由通项公式,得a 1+a 2=a 3+a 4=a 5+a 6=…=-2,所以S 100=50×(-2)=-100.4.)121121(21)5131(21)311(21)12)(12(1531311 n n n n12)]121121()5131()311[(21n nn n . 5.由题设,得a n +2-a n =3,所以数列{a 2n -1}、{a 2n }为等差数列, 前100项中奇数项、偶数项各有50项,其中奇数项和为50×1+24950 ×3=3725,偶数项和为50×2+24950 ×3=3775, 所以S 100=7500. 二、填空题 6.11 n 7.1212)1( n n n 8.31(4n -1) 9.)1,0(,11)1(,1)0(,11a a aa a n a n 且 10.n n n22121提示: 6.利用n n nn 111化简后再求和.8.由a n +1=2a n ,得21 nn a a ,∴221n n a a =4,故数列{a 2n }是等比数列,再利用等比数列求和公式求和.10.错位相减法.三、解答题11.由题意,得a n +1-a n =2,所以数列{a n }是等差数列,是递增数列.∴a n =-11+2(n -1)=2n -13,由a n =2n -13>0,得n >213. 所以,当n ≥7时,a n >0;当n ≤6时,a n <0.当n ≤6时,S n =|a 1|+|a 2|+…+|a n |=-a 1-a 2-…-a n =-[n ×(-11)+2)1( n n ×2]=12n -n 2; 当n ≥7时,S n =|a 1|+|a 2|+…+|a n |=-a 1-a 2-…-a 6+a 7+a 8+…+a n =(a 1+a 2+…+a n )-2(a 1+a 2+…+a 6) =n ×(-11)+2)1( n n ×2-2[6×(-11)+256 ×2]=n 2-12n +72.S n = )7(,7212)6(,1222n n n n n n (n ∈N *).12.(1)∵f (1)=n 2,∴a 1+a 2+a 3+…+a n =n 2. ①所以当n =1时,a 1=1;当n ≥2时,a 1+a 2+a 3+…+a n -1=(n -1)2 ② ①-②得,a n =n 2-(n -1)2=2n -1.(n ≥2) 因为n =1时,a 1=1符合上式. 所以a n =2n -1(n ∈N *). (2))12)(12(153131********* n n a a a a a a n n)121121(21)5131(21)311(21 n n )]121121()5131()311[(21 n n 12)1211(21n nn . 13.因为)2(212211)211(1214121111n a n n n n . 所以)212()212()212(11221 n n n a a a S)212121()1(2112 n n112122211)211(2112 n n n n .14.(1)a n =2n ;(2)因为b n =2nx n ,所以数列{b n }的前n 项和S n =2x +4x 2+…+2nx n . 当x =0时,S n =0;当x =1时,S n =2+4+…+2n =2)22(n n =n (n +1); 当x ≠0且x ≠1时,S n =2x +4x 2+…+2nx n ,xS n =2x 2+4x 3+…+2nx n +1;两式相减得(1-x )S n =2x +2x 2+…+2x n -2nx n +1, 所以(1-x )S n =2x x x n 1)1(-2nx n +1,即x nx x x x S n n n 12)1()1(212. 综上,数列{b n }的前n 项和)1(,12)1()1(2)1(),1(12x xnx x x x x n n S n n n测试七 数列综合问题一、选择题1.B 2.A 3.B 4.A 5.B 提示:5.列出数列{a n }前几项,知数列{a n }为:0,-3,3,0,-3,3,0….不难发现循环规律,即a 1=a 4=a 7=…=a 3m -2=0; a 2=a 5=a 8=…=a 3m -1=-3;a 3=a 6=a 9=…=a 3m =3. 所以a 20=a 2=-3. 二、填空题6.41;21 7.85 8.512 9.23n 2-23n +2 10.2[1-(31)n ]三、解答题11.(1)643,163,43321a a a . (2)当n =1时,由题意得a 1=5S 1-3,所以a 1=43; 当n ≥2时,因为a n =5S n -3, 所以a n -1=5S n -1-3;两式相减得a n -a n -1=5(S n -S n -1)=5a n , 即4a n =-a n -1. 由a 1=43≠0,得a n ≠0. 所以411 n n a a (n ≥2,n ∈N *).由等比数列定义知数列{a n }是首项a 1=43,公比q =-41的等比数列. 所以.)41(431n n a (3)a 1+a 3+…+a 2n -1=)1611(541611)1611(43n n . 12.由a 21 n ·f (a n )=2,得242221n n a a , 化简得a 21 n -a 2n =4(n ∈N *).由等差数列定义知数列{a 2n }是首项a 21=1,公差d =4的等差数列. 所以a 2n =1+(n -1)×4=4n -3.由f (x )的定义域x >0且f (a n )有意义,得a n >0. 所以a n =34 n .13.(1)06011201213211301112211211113112d a d a d a S d a S ,又a 3=a 1+2d =12 a 1=12-2d ,∴030724d d ,故724 <d <-3.(2)由(1)知:d <0,所以a 1>a 2>a 3>…>a 13.∵S 12=6(a 1+a 12)=6(a 6+a 7)>0,S 13=213(a 1+a 13)=13a 7<0, ∴a 7<0,且a 6>0,故S 6为最大的一个值. 14.(1)设第n 分钟后第1次相遇,依题意有2n +2)1( n n +5n =70, 整理得n 2+13n -140=0.解得n =7,n =-20(舍去). ∴第1次相遇是在开始运动后7分钟.(2)设第n 分钟后第2次相遇,依题意有2n +2)1( n n +5n =3×70, 整理得n 2+13n -420=0.解得n =15,n =-28(舍去). ∴第2次相遇是在开始运动后15分钟.15.(1)a 1=3,a 2=1,a 3=2,a 4=1,a 5=1,a 6=0,a 7=1,a 8=1,a 9=0,a 10=1.(答案不唯一)(2)因为在绝对差数列{a n }中,a 1=3,a 2=0,所以该数列是a 1=3,a 2=0,a 3=3,a 4=3,a 5=0,a 6=3,a 7=3,a 8=0,….即自第1项开始,每三个相邻的项周期地取值3,0,3,所以,0,3,3332313n n n aa a (n =0,1,2,3,…).(3)证明:根据定义,数列{a n }必在有限项后出现零项,证明如下:假设{a n }中没有零项,由于a n =|a n -1-a n -2|,所以对于任意的n ,都有a n ≥1,从而 当a n -1>a n -2时,a n =a n -1-a n -2≤a n -1-1(n ≥3); 当a n -1<a n -2时,a n =a n -2-a n -1≤a n -2-1(n ≥3); 即a n 的值要么比a n -1至少小1,要么比a n -2至少小1. 令c n =),(),(212221212n n n n n n a a a a a a (n =1,2,3,…).则0<c n ≤c n -1-1(n =2,3,4,…).由于c 1是确定的正整数,这样减少下去,必然存在某项c n <0, 这与c n >0(n =1,2,3,…)矛盾,从而{a n }必有零项.若第一次出现的零项为第n 项,记a n -1=A (A ≠0),则自第n 项开始,每三个相邻的项周期地取值0,A ,A ,即,,,023133A aA a a k n k n k n (k =0,1,2,3,…). 所以绝对差数列{a n }中有无穷多个为零的项.测试八 数列全章综合练习一、选择题1.B 2.A 3.A 4.D 5.C 二、填空题6.3·2n -3 7.180 8.a n = )2(,42)1(,1n n n 9.7610.a n =n 1(n ∈N *)提示:10.由(n +1)a 21 n -na 2n +a n +1a n =0,得[(n +1)a n +1-na n ](a n +1+a n )=0,因为a n >0,所以(n +1)a n +1-na n =0,即11n na a n n , 所以nn n a a a a a a a n n n 11322112312 .三、解答题 11.S 13=156.12.(1)∵点(a n ,a n +1+1)在函数f (x )=2x +1的图象上,∴a n +1+1=2a n +1,即a n +1=2a n .∵a 1=1,∴a n ≠0,∴nn a a 1=2, ∴{a n }是公比q =2的等比数列,∴a n =2n -1.(2)S n =1221)21(1 n n . (3)∵c n =S n =2n -1,∴T n =c 1+c 2+c 3+…+c n =(2-1)+(22-1)+…+(2n -1)=(2+22+…+2n )-n =n n21)21(2=2n +1-n -2. 13.当n =1时,由题意得S 1=3a 1+2,所以a 1=-1;当n ≥2时,因为S n =3a n +2, 所以S n -1=3a n -1+2;两式相减得a n =3a n -3a n -1, 即2a n =3a n -1.由a 1=-1≠0,得a n ≠0.所以231n n a a(n ≥2,n ∈N *). 由等比数列定义知数列{a n }是首项a 1=-1,公比q =23的等比数列. 所以a n =-(23)n -1. 14.(1)设第n 年所需费用为a n (单位万元),则a 1=12,a 2=16,a 3=20,a 4=24. (2)设捕捞n 年后,总利润为y 万元,则y =50n -[12n +2)1( n n ×4]-98=-2n 2+40n -98. 由题意得y >0,∴2n 2-40n +98<0,∴10-51<n <10+51. ∵n ∈N *,∴3≤n ≤17,即捕捞3年后开始盈利. (3)∵y =-2n 2+40n -98=-2(n -10)2+102, ∴当n =10时,y 最大=102.即经过10年捕捞盈利额最大,共盈利102+8=110(万元). 15.(1)由a n =f (-11 n a ),得411221 nn a a (a n +1>0), ∴{21n a }为等差数列,∴21na =211a +(n -1)·4. ∵a 1=1,∴a n =341 n (n ∈N *).(2)由1815411412122221n n n a a a b n n n n , 得b n -b n +1=)981281()581281(981581141 n n n n n n n )98)(28(7)58)(28(3n n n n∵n ∈N *,∴b n -b n +1>0,∴b n >b n +1(n ∈N *),∴{b n }是递减数列. ∴b n 的最大值为451423221a ab . 若存在最小正整数m ,使对任意n ∈N *有b n <25m成立, 只要使b 1=254514m即可,∴m >970. ∴对任意n ∈N *使b n <25m成立的最小正整数m =8.16.(1)解:设不动点的坐标为P 0(x 0,y 0),由题意,得0000211y y x x ,解得21x ,y 0=0, 所以此映射f 下不动点为P 0(21,0). (2)证明:由P n +1=f (P n ),得n n n n y y x x 21111,所以x n +1-21=-(x n -21),y n +1=21y n . 因为x 1=2,y 1=2, 所以x n -21≠0,y n ≠0, 所以21,1212111n n n n y y x x . 由等比数列定义,得数列{x n -21}(n ∈N *)是公比为-1, 首项为x 1-21=23的等比数列, 所以x n -21=23×(-1)n -1,则x n =21+(-1)n -1×23.同理y n =2×(21)n -1.所以P n (21+(-1)n -1×23,2×(21)n -1).设A (21,1),则|AP n |=212])21(21[)23( n .因为0<2×(21)n -1≤2, 所以-1≤1-2×(21)n -1<1,所以|AP n |≤1)23(2 <2. 故所有的点P n (n ∈N *)都在以A (21,1)为圆心,2为半径的圆内,即点P n (x n ,y n )存在一个半径为2的收敛圆.单元测试二 数列一、选择题1.在等差数列{a n }中,若a 2=3,a 6=11,则a 4等于( ) (A)5 (B)6 (C)7 (D)9 2.在正项等比数列{a n }中,若a 4a 5=6,则a 1a 2a 7a 8等于( ) (A)6 (B)12 (C)24 (D)363.等差数列{a n }的公差不为零,首项a 1=1,a 2是a 1和a 5的等比中项,则数列{a n }的公差等于( ) (A)1 (B)2 (C)-1 (D)-2 4.若数列{a n }是公比为4的等比数列,且a 1=2,则数列{log 2a n }是( ) (A)公差为2的等差数列 (B)公差为lg2的等差数列(C)公比为2的等比数列 (D)公比为lg2的等比数列 5.等比数列{a n }的前n 项和记为S n ,若S 4=2,S 8=6,则S 12等于( ) (A)8 (B)10 (C)12 (D)146.{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,用S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( ) (A)21 (B)20 (C)19 (D)187.如果数列{a n }(a n ∈R )对任意m ,n ∈N *满足a m +n =a m ·a n ,且a 3=8,那么a 10等于( ) (A)1024 (B)512 (C)510 (D)256 8.设f (n )为正整数n (十进制)的各数位上的数字的平方之和,例如f (123)=12+22+32=14.记a 1=f (2009),a k +1=f (a k ),k =1,2,3,…则a 2009等于( ) (A)85 (B)16 (C)145 (D)58 二、填空题9.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=________.10.在等差数列{a n }中,a 2,a 11是方程x 2-3x -5=0的两根,则a 5+a 8=________.11.设等比数列{a n }的公比21q ,前n 项和为S n ,则44a S =________.12.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则a 5=______;前8项的和S 8=______.(用数字作答)13.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则6q =________.14.设等比数列{a n }的前n 项和为S n ,若a 1=1,S 6=4S 3,则a 4=________. 三、解答题15.在等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }前n 项和S n .16.设等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列.(1)求{a n }的公比q ; (2)若a 1-a 3=3,求S n .17.已知三个数成等差数列,它们的和为30,如果第一个数减去5,第二个数减去4,第三个数不变,则所得三个数组成等比数列,求这三个数.18.已知函数f (x )=a 1x +a 2x 2+a 3x 3+…+a n x n (x ∈R ,n ∈N *),且对一切正整数n 都有f (1)=n 2成立.(1)求数列{a n }的通项a n ;(2)求13221111 n n a a a a a a .19.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2.(1)设b n =a n +1-2a n ,证明数列{b n }是等比数列;(2)求数列{a n }的通项公式.单元测试二 数列一、选择题1.C 2.D 3.B 4.A 5.D 6.B 7.A 8.D二、填空题9.13 10.3 11.15 12.16,255 13.-9 14.3三、解答题15.解:设{a n }的公差为d ,则05316)6)(2(1111d a d a d a d a , 即 d a d da a 41612812121, 解得 ,2,81d a 或,2,81d a . 因此S n =-8n +n (n -1)=n (n -9),或S n =8n -n (n -1)=-n (n -9).16.解:(1)依题意有a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2),由于a 1≠0,故2q 2+q =0,又q ≠0,从而q =21. (2)由已知可得a 1-a 1(21 )2=3, 故a 1=4,从而S n =])21(1[38)21(1])21(1[4n n . 17.解:设这三个数为a -d ,a ,a +d ,则(a -d )+a +(a +d )=30,解得a =10.又由(a -d -5)(a +d )=(a -4)2,解得d =2,或-7.所以三个数为8,10,12,或17,10,3.18.解:(1)由题意,得a 1+a 2+a 3+…+a n =n 2. ①所以当n =1时,a 1=1;当n ≥2时,a 1+a 2+a 3+…+a n -1=(n -1)2 ②①-②得,a n =n 2-(n -1)2=2n -1.(n ≥2)因为n =1时,a 1=1符合上式,所以a n =2n -1(n ∈N *). (2))12)(12(153131********* n n a a a a a a n n )121121(21)5131(21)311(21 n n )]121121()5131()311[(21 n n 12)1211(21n n n . 19.解:(1)由a 1=1及S n +1=4a n +2,得a 1+a 2=4a 1+2,a 2=3a 1+2=5,∴b 1=a 2-2a 1=3. 由S n +1=4a n +2, ……………①得当n ≥2时,有S n =4a n -1+2 ……………② ①-②得a n +1=4a n -4a n -1,∴a n +1-2a n =2(a n -2a n -1), 又因为b n =a n +1-2a n ,∴b n =2b n -1,所以{b n }是首项b 1=3,公比为2的等比数列. (2)由(1)可得b n =a n +1-2a n =3·2n -1,所以432211 n n n n a a , 所以数列{n n a 2}是首项为21,公差为43的等差数列. 所以n n a 2=414343)1(21 n n ,a n =(3n -1)·2n -2.。
1bT,已知数列a 8,是,表16.(8分)已知数列{}n a 是等差数列,25618a a =,=;数列{}n b 的前n 项和是n T ,且n T +12n b =1.(1)求数列{}n a 的通项公式;(2)求证:数列{}n b 是等比数列.17.(9分)设{}n a 是公比为 的等比数列,且132,,a a a 成等差数列. (1)求 的值;(2)设{}n b 是以2为首项, 为公差的等差数列,其前 项和为n S ,当 时,比较n S 与n b 的大小,并说明理由.18.(9分)设数列{}n a 和{}n b 满足116a b ==,224a b ==, 333a b ==, 且数列{}1n n a a +-*()n ∈N 是等差数列,数列{}2n b -*()n ∈N 是等比数列.(1)求数列{}n a 和{}n b 的通项公式;(2)是否存在 ,使10,2k k a b ⎛⎫-∈ ⎪⎝⎭?若存在,求出 的值;若不存在,说明理由.19.(12分)设1a =1,2a =53,2n a +=531n a +-23n a *()n ∈N .(1)令1n n n b a a +=-*()n ∈N ,求数列{}n b 的通项公式;(2)求数列{}n na 的前n 项和n S .20.(12分)将数列{}n a 中的所有项按每一行比上一行多一项的规则排成如下数表: 1a23a a 456a a a 78910a a a a ……记表中的第一列数1247,,,a a a a ,…构成的数列为{}n b ,111b a ==.n S 为数列{}n b 的前n 项和,且满足22nn n nb b S S -=1(n ≥2).(1)证明数列1n S ⎧⎫⎨⎬⎩⎭成等差数列,并求数列{}n b 的通项公式;(2)上表中,若从第3行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数,当81a =-491时,求上表中第k (k ≥3)行所有项的和.第2章数列本章练测答题纸得分:一、填空题1. ;2. ;3.;4. ;5. ;6. ;7. ;8. ;9. ;10. ;11. ;12. ;13. ;14. ;二、解答题15.16.17.18.19.20.第2章 数列 本章练测参考答案一、填空题1.-6解析:∵{}n a 是等差数列,∴31414,6a a a a =+=+.又由134,.a a a 成等比数列, ∴2111(4)(6)a a a +=+,解得18a =-,∴2826a =-+=-.2.21解析:设 和 分别为公差和公比,则-4=-1+3 且-4=(-1) 4, ∴ =-1, 2=2,∴212b a a -=2q d -=21.q <解析:设三边长为2,,,a aq aq 则222,,,a aq aq a aq aq aq aq a ⎧+>⎪+>⎨⎪+>⎩即22210,10,10,q q q q q q ⎧--<⎪-+>⎨⎪+->⎩得,q q q q <<⎪⎪∈⎨⎪⎪><⎪⎩Rq <. 4.锐角解析:由题意知374,4a a =-=,所以7324a a d -==,故 ;因为361,93b b ==,所以3q ==,故 .又 ,故 , , 都是锐角.5.40解析:设公差为d ,则1165,72121,a d a d +=⎧⎨+=⎩解得12,31.d a ⎧⎪⎨⎪⎩==故101104540S a d =+=. 6. 解析:因为数列{}n a 为等比数列,设公比为 ,则12n n a q-=.因为数列{}1n a +也是等比数列,则22121122212(1)(1)(1)22(12)01n n n n n n n n n n n n n a a a a a a a a a a a a a q q q +++++++++=++⇒+=++⇒+=⇒+-=⇒=即2n a =,所以2n S n =.7.2002 解析:认识信息,理解理想数的意义,有20025014984995002501,5004984995002004500321500321=+++++⨯∴++++=a a a a a a a a .8.23解析:∵221)(+=xx f ,∴221)1(1+=--x x f =xx2222⋅+=x x22221+, ∴xx f x f 221)1()(+=-++x x 22221+⋅=x x222211+⋅+=x x 22)22(21++=22. 设 , 则 = ,∴ = = 2, ∴ = = 2.9.(1)32;(2)4;(3)32 解析:(1)由=⋅53a a 24a ,得24=a ,∴325465432==⋅⋅⋅⋅a a a a a a . (2)9136)(324363242221214321=⇒⎪⎩⎪⎨⎧=+=+⇒⎩⎨⎧=+=+q q a a a a a a a a ,,,∴,)(442165=+=+q a a a a 10.2 解析:由824=-a a ,可得公差 = ,再由2653=+a a ,可得11=a ,故S n = +2 ( -1)=2 2- ,∴nn n T n 1212-=-=,要使得n T ,只需 即可,故 的最小值为2, 11.4 解析:42222=≥+=+xyxy xy y x cd b a )()()(.12.10 解析:100110011001991100100()45,0.9,0.4,2S a a a a a a a a d =+=+=+=+-= 104.0250)(25099199531=⨯=+=++++a a a a a a . 13.216 解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与38,227同号,由等比中项的定义知中间数为22738⋅=6,∴插入的三个数之积为38×227×6=216. 14.5;21( +1)( -2) 解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴ ( )= ( -1)+( -1). 由 (3)=2,(4)= (3)+3=2+3=5, (5)= (4)+4=2+3+4=9, ……( )= ( -1)+( -1),相加得 ( )=2+3+4+…+( -1)=21( +1)( -2).二、解答题15.解:设这三个数分别为,,a a aq q .由题意,得3512,222,a a aq a q ⎧=⎪⎨-+-=⎪⎩解得8,2a q =⎧⎨=⎩或8,1.2a q =⎧⎪⎨=⎪⎩所以这三个数为4,8,16或16,8,4.16.(1)解:设{}n a 的公差为d ,则116,418,a d a d +=⎧⎨+=⎩解得12,4.a d =⎧⎨=⎩∴24(1)42n a n n =+-=-.(2)证明:当n =1时,11b T =,由11112T b +=,得123b =;当n ≥2时,∵112n n T b =-,11112n n T b --=-,,∴111()2n n n n T T b b ---=-.∴11()2n n n b b b -=-.∴113n n b b -=..∴ 数列{}n b 是以23为首项,13为公比的等比数列.17.解:(1)由题意知2 3= 1+ 2,即2 1 2= 1+ 1 ,∵ 1≠0,∴2 2- -1=0,∴ =1或-21. (2)若 =1,则n S =2 +21-)(n n =23+2nn .当 ≥2时,n S -n b =1n S -=22+1-))((n n >0,故n S >n b .若 =-21,则n S =2 +21-)(n n (-21)=49+-2n n .当 ≥2时,n S -n b =1n S -=4-11-)0)((n n ,故对于 ∈ ,当2≤ ≤9时,n S >n b ;当 =10时,n S =n b ;当 ≥11时,n S <n b .18.解:(1)由题意得:[])()()1()(1223121a a a a n a a a a n n ----+-=-+ =3)1(2-=-+-n n , 所以 =-+-+=-+=--)4()5()4(21n n a n a a n n n上式对1=n 也成立.所以927212+-=n n a n , 311121)21()42(4)22)(2(2---=⨯=---=-n n n n b b b b ,所以3)21(2-+=n n b .(2)设3232)21(7272121292721---+-=⎪⎭⎫⎝⎛--+-=-=k k k k k k k k k b a c . 当3,2,1=k 时,0=k c ;当4≥k 时,21)21(47)274(21)21(47)27(2134232=-⎥⎦⎤⎢⎣⎡+-≥-⎥⎦⎤⎢⎣⎡+-=--k k k c , 故不存在正整数k 使⎪⎭⎫⎝⎛∈-21,0k k b a .19.解:(1)因为1211115222()3333n n n n n n n n n b a a a a a a a b ++++++=-=--=-=,所以数列{}n b 是首项为12123b a a =-=,公比为23的等比数列,所以2(1,2)3nn b n ⎛⎫⎪⎝⎭==,. (2)由123nn n n b a a +⎛⎫=-= ⎪⎝⎭,得11111212222()()()213333n n n n n n n n a a a a a a a a -++-⎡⎤⎛⎫⎛⎫⎛⎫-=-+-++-=+++=-⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. 因为11a =,所以12323nn a +⎛⎫=- ⎪⎝⎭.所以123(1,2,)3n n n a n -=-=.设数列1123n n n --⎧⎫⋅⎨⎬⎩⎭的前n 项和为n T ,则21222123333n n T n -⎛⎫⎛⎫=+⨯+⨯++ ⎪ ⎪⎝⎭⎝⎭,①23222222333333nn T n ⎛⎫⎛⎫⎛⎫=+⨯+⨯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.② ①-②,得2112222221313333333n n n nn T n n -⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-=--⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. 所以122(3)29139333n nn n n n T n -⎡⎤+⋅⎛⎫⎛⎫=--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦. 所以11213(3)223(123(1)1823n n n n n n S a a na n T n n +-+⋅=+++=++++-=++-)2.20.解:(1)由已知,当n ≥2时,221nn n nb b S S =-. 又因为1n n n b S S --=,所以1212()1()n n n n n n S S S S S S ---=--,即112()1n n n n S S S S ---=-,所以11112n n S S --=. 又因为1111S b a ===,所以数列1n S ⎧⎫⎨⎬⎩⎭是首项为1,公差为12的等差数列.由上可知1111(1)22n n n S +=+-=,即21n S n +=. 所以当n ≥2时,12221(1)n n n b S S n n n n -=-++-=-=. 因此1,1,2, 2.(1)n n b n n n =⎧⎪⎨-≥⎪+⎩= (2)设题表中从第3行起,每行的公比都为q ,且0q >.因为1+2+ (12)12×132=78,所以表中第1行至第12行共含有数列{}n a 的前78项. 故81a 在表中第13行第3列,因此28113491a b q ==-. 又13b =-213×14,所以q =2.记表中第k (k ≥3)行所有项的和为S ,则(1)2122(12)1(1)12(1)k k k k b q S q k k k k --=-⋅=--+-+=(k ≥3).。
高一数学必修5第二章数列单元测试及答案班级 姓名 座号一、选择题(每小题6分)1、数列1,-3,5,-7,9,…的一个通项公式为( )A .12-=n a nB .)12()1(--=n a n nC .)21()1(n a n n --=D .)12()1(+-=n a n n2、等比数列2,4,8,16,…的前n 项和为( )A .121-+nB .22-nC .n 2D .221-+n3、等比数列{}n a 中,已知112733n a a q ===,,,则n 为( )A .3B .4C .5D .64、等比数列{}n a 中,9696==a a ,,则3a 等于( )A .3B .23C .916D .45、若数列{}n a 中,n a =43-3n ,则n S 最大值n= ( )A .13B .14C .15D .14或156、等差数列{}n a 的首项11=a ,公差0≠d ,假如521a a a 、、成等比数列,那么等于()A .3B .2C .-2D .2±7、等差数列{}n a 的前m 项的和是30,前2m 项的和是100,则它的前3m 项的和是( )A .130B .170C .210D .2608、 数列{a n }的通项公式是a n =1(1)n n +(n ∈N*),若前n 项的和为1011,则项数n 为( )A .12B .11C .10D .9二、填空题(每小题6分)9、等差数列{}n a 中,n S =40,1a =13,d =-2 时,n =______________ 10、{}a n 为等差数列,14739a a a ++=,25833a a a ++=,=++a a a 963 _______11、在等差数列{}n a 中,35791120a a a a a ++++=,则113a a += __________12、在数列{}n a 中,11a =,且关于任意自然数n ,都有1n n a a n +=+,则100a =______三、解答题13、(本题10分)求数列11111,2,3,424816…的前n 项和。
高中数学必修5数列习题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学必修5数列习题及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学必修5数列习题及答案的全部内容。
第二章 数列一、选择题1.设S n 是等差数列{a n }的前n 项和,若 63S S =错误!,则126S S =( ). A .错误! B .错误! C .错误! D .错误!2.数列{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 6=b 7,则有( ). A .a 3+a 9<b 4+b 10B .a 3+a 9≥b 4+b 10C .a 3+a 9≠b 4+b 10D .a 3+a 9与b 4+b 10的大小不确定3.在等差数列{a n }中,若a 1 003+a 1 004+a 1 005+a 1 006=18,则该数列的前 2 008项的和为( ).A .18 072B .3 012C .9 036D .12 0484.△ABC 中,a ,b ,c 分别为∠A ,∠B ,∠C 的对边,如果a ,b ,c 成等差数列, ∠B =30°,△ABC 的面积为23,那么b =( ).A .231+ B .1+3 C .232+ D .2+35.过圆x 2+y 2=10x 内一点(5,3)有k 条弦的长度组成等差数列,且最小弦长为数列的首项a 1,最大弦长为数列的末项a k ,若公差d ∈⎥⎦⎤⎢⎣⎡2131 ,,则k 的取值不可能是( ). A .4 B .5 C .6 D .76.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( ). A .15B .30C .31D .647.在等差数列{a n }中,3(a 2+a 6)+2(a 5+a 10+a 15)=24,则此数列前13项之和为( ). A .26B .13C .52D .1568.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于( ). A .160B .180C .200D .2209.在等比数列{a n }中,a 1=2,前n 项和为S n ,若数列{a n +1}也是等比数列,则S n 等于( ).A .2n +1-2 B .3n C .2n D .3n-110.已知{a n }是等比数列,a 2=2,a 5=41,则a 1a 2+a 2a 3+…+a n a n +1=( ).A .16(1-4-n) B .16(1-2-n) C .332(1-4-n)D .332(1-2-n)二、填空题11.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q 的值为 。
第13课时等比数列的概念及通项公式知识点一等比数列的定义1.数列m,m,m,…一定( )A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列C.是等差数列,但不一定是等比数列D.既是等差数列,又是等比数列答案 C解析当m=0时,数列是等差数列,但不是等比数列;当m≠0时,数列既是等差数列,又是等比数列.故选C.2.若正数a,b,c依次成公比大于1的等比数列,则当x>1 时,log a x,log b x,log c x( ) A.依次成等差数列B.依次成等比数列C.各项的倒数依次成等差数列D.各项的倒数依次成等比数列答案 C解析1log a x+1log c x=log x a+log x c=log x(ac)=log x b2=2log x b=2log b x,∴1log a x,1log b x,1log c x成等差数列.知识点二等比数列的通项公式3.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n年后这批设备的价值为( )A.na(1-b%) B.a(1-nb%)C.a(1-b%)n D.a[1-(b%)n]答案 C解析依题意可知第一年后的价值为a(1-b%),第二年后的价值为a(1-b%)2,依此类推形成首项为a(1-b%),公比为1-b%的等比数列,则可知n年后这批设备的价值为a(1-b %)n .故选C .4.在等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( ) A .16 B .27 C .36 D .81 答案 B解析 由已知,得⎩⎪⎨⎪⎧a 1+a 2=1,a 3+a 4=9.∴q 2(a 1+a 2)=9,∴q 2=9.∵a n >0,∴q =3. ∴a 4+a 5=q (a 3+a 4)=3×9=27.知识点三 等比数列的证明5.已知数列{a n }的首项a 1=t >0,a n +1=3a n 2a n +1,n ∈N *,若t =35,求证1a n-1是等比数列并求出{a n }的通项公式.解 由题意知a n >0,1a n +1=2a n +13a n , 1a n +1=13a n +23, 1a n +1-1=131a n -1,1a 1-1=23, 所以数列1a n -1是首项为23,公比为13的等比数列.1a n -1=2313n -1=23n ,a n =3n3n +2.知识点四 等比中项及应用6.已知一等比数列的前三项依次为x ,2x +2,3x +3,那么-1312是此数列的第________项( )A .2B .4C .6D .8 答案 B解析 由x ,2x +2,3x +3成等比数列,可知(2x +2)2=x (3x +3),解得x =-1或-4,又当x =-1时,2x +2=0,这与等比数列的定义相矛盾.∴x =-4.∴该数列是首项为-4,公比为32的等比数列,其通项a n =-4×32n -1,由-4×32n -1=-1312,得n =4.7.若互不相等的实数a ,b ,c 成等差数列,a 是b ,c 的等比中项,且a +3b +c =10,则a 的值是( )A .1B .-1C .-3D .-4 答案 D解析 由题意,得⎩⎪⎨⎪⎧2b =a +c ,a 2=bc ,a +3b +c =10,解得a =-4,b =2,c =8.8.在等比数列{a n }中,若a 4a 5a 6=27,则a 3与a 7的等比中项是________. 答案 ±3解析 由等比中项的定义知a 25=a 4a 6,∴a 35=27. ∴a 5=3,∴a 1q 4=3,∴a 3a 7=a 21q 8=32,因此a 3与a 7的等比中项是±3.易错点一 忽略对等比中项符号的讨论9.若1,x ,y ,z ,16这五个数成等比数列,则y 的值为( ) A .4 B .-4 C .±4 D.2易错分析 对于本题的求解,若仅注意到y 是1与16的等比中项,会很快得出y 2=16,进一步得出y =±4,从而导致错解.答案 A解析 由于⎩⎪⎨⎪⎧x 2=1·y ,y 2=1×16⇒y =4,故选A .易错点二 忽略等比数列中公比可正可负10.已知一个等比数列的前4项之积为116,第2项与第3项的和为2,则这个等比数列的公比为________.易错分析 本题易错设四个数分别为a q 3,a q,aq ,aq 3公比为q 2相当于规定了这个等比数列各项要么同正,要么同负而错算出公比为3±22.答案 3±22或-5±2 6解析 设这4个数为a ,aq ,aq 2,aq 3(其中aq ≠0),由题意得⎩⎪⎨⎪⎧a ·aq ·aq 2·aq 3=116,aq +aq 2=2,所以⎩⎪⎨⎪⎧a 2q 3=±14,a 2q +q 22=2.所以a 2q 3a 2q +q 22=±18, 整理得q 2-6q +1=0或q 2+10q +1=0, 解得q =3±22或q =-5±26.一、选择题1.若等比数列{a n }满足a n a n +1=16n,则公比为( ) A .2 B .4 C .8 D .16 答案 B解析 由a n a n +1=16n ,知a 1a 2=16,a 2a 3=162,后式除以前式得q 2=16,∴q =±4.∵a 1a 2=a 21q =16>0,∴q >0,∴q =4.2.在数列{a n }中,a 1=1,点(a n ,a n +1)在直线y =2x 上,则a 4的值为( ) A .7 B .8 C .9 D .16 答案 B解析 ∵点(a n ,a n +1)在直线y =2x 上,∴a n +1=2a n .∵a 1=1≠0,∴a n ≠0.∴{a n }是首项为1,公比为2的等比数列,∴a 4=1×23=8.3.已知等比数列a 1,a 2,…a 8各项为正,且公比q ≠1,则( ) A .a 1+a 8=a 4+a 5 B .a 1+a 8<a 4+a 5 C .a 1+a 8>a 4+a 5D .a 1+a 8与a 4+a 5大小关系不能确定 答案 C解析 由题意可知,a 1>0,q >0,a 1+a 8-a 4-a 5=a 1(1+q 7-q 3-q 4)=a 1[1-q 3-q 4(1-q 3)]=a 1[(1-q 3)(1-q 4)]>0.∴a 1+a 8>a 4+a 5.故选C .4.一个数分别加上20,50,100后得到的三个数成等比数列,其公比为( ) A .53 B .43 C .32 D .12 答案 A解析 设这个数为x ,则(50+x )2=(20+x )·(100+x ),解得x =25.∴这三个数分别为45,75,125,公比q 为7545=53.5.在如下表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a +b +c 的值为( )A .1B .2C .3D .98答案 D解析 按题意要求,每一横行成等差数列,每一纵列成等比数列填表如图,故a =12,b =38,c =14,则a +b +c =98.故选D .二、填空题6.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________. 答案5-12解析 设该直角三角形的三边分别为a ,aq ,aq 2(q >1),则(aq 2)2=(aq )2+a 2,∴q 2=5+12.较小锐角记为θ,则sin θ=1q 2=5-12. 7.我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何”其意思为“今有人持金出五关,第1关收税金12,第2关收税金13,第3关收税金14,第4关收税金15,第5关收税金16,5关所收税金之和,恰好1斤重,设这个人原本持金为x ,按此规律通过第8关”,则第8关需收税金为________.答案172x 解析 第1关收税金:12x ;第2关收税金:13⎝ ⎛⎭⎪⎫1-12x =12×3x ;第3关收税金:14⎝ ⎛⎭⎪⎫1-12-16x =13×4x ;…,可得第8关收税金:18×9x ,即172x . 8.各项均为正数的等比数列{a n }中,a 2-a 1=1.当a 3取最小值时,数列{a n }的通项公式a n =________.答案 2n -1解析 设等比数列的公比为q (q >0), 由a 2-a 1=1,得a 1(q -1)=1,所以a 1=1q -1. a 3=a 1q 2=q 2q -1=1-1q 2+1q(q >0), 而-1q 2+1q =-⎝ ⎛⎭⎪⎫1q -122+14, ①当q =2时①式有最大值14,所以当q =2时a 3有最小值4. 此时a 1=1q -1=12-1=1. 所以数列{a n }的通项公式a n =2n -1.故答案为2n -1.三、解答题9.等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解 (1)设{a n }的公比为q , 由已知得16=2q 3,解得q =2, ∴a n =a 1qn -1=2n.(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32,设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8,b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28, ∴数列{b n }的前n 项和S n =n -16+12n -2=6n 2-22n .10.数列{a n }满足a 1=-1,且a n =3a n -1-2n +3(n =2,3,…). (1)求a 2,a 3,并证明数列{a n -n }是等比数列; (2)求a n .解 (1)a 2=3a 1-2×2+3=-4,a 3=3a 2-2×3+3=-15.下面证明{a n -n }是等比数列: 证明:由a n =3a n -1-2n +3可得a n -n =3[a n -1-(n -1)],因为a 1-1=-2≠0,所以a n -n ≠0, 所以a n +1-n +a n -n=3a n -n ++3-n +a n -n=3a n -3na n -n=3(n =1,2,3,…). 又a 1-1=-2,所以{a n -n }是以-2为首项,3为公比的等比数列. (2)由(1)知a n -n =-2·3n -1,所以a n =n -2·3n -1.。
10. 已知{}n a 为等差数列,1a +3a +5a =105,246a a a ++=99.以n S 表示{}n a 的前n 项和,则使得n S 达到最大值的n 是( )A.21B.20C.19D. 18 11. 已知数列{}n a 的前n 项和n S 满足1,1==++a S S S m n m n ,那么=10a ( )A.1B.9C.10D.55 12. 已知等比数列{}n a 满足0,1,2,n a n >=,且25252(3)n n a a n -⋅=≥,则当1n ≥时,2123221log log log n a a a -+++=( )A. (21)n n -B. 2(1)n +C. 2nD. 2(1)n - 二、填空题13. 设等差数列{}n a 的前n 项和为n S .若972S =,则249a a a ++=_______________. 14. 在等比数列{}n a 中,若公比q=4,且前3项之和等于21,则该数列的通项公式=n a _____________.15. 设数列{}n a 中,1211++==+n a a a n n ,,则通项=n a _____________.16. 设{}n a 为公比1>q 的等比数列,若ɑ2019和ɑ2020是方程03842=+-x x 的两根,则 ɑ2020+ɑ2021 =_____________. 三、解答题17. 已知{}n a 为等比数列,320,2423=+=a a a ,求{}n a 的通项公式.18. 已知{}n a 为等差数列,且36a =-,60a =. (Ⅰ)求{}n a 的通项公式;(Ⅰ)若等比数列{}n b 满足18b =-,2123b a a a =++,求{}n b 的前n 项和公式.19. 已知等差数列{}n a 满足3577,26a a a =+=,{}n a 的前n 项和为n S .(Ⅰ)求na 及n S ;(Ⅰ)求q 的值;(Ⅱ)若1a 与5a 的等差中项为18,n b 满足n n b a 2log 2=,求数列{}n b 的前n 项和.21. 成等差数列的三个正数之和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 中的543,,b b b .(Ⅰ)求数列{}n b 的通项公式;(Ⅰ)数列{}n b 的前n 项和为n S ,求证:数列⎭⎬⎫⎩⎨⎧+45n S 是等比数列.参考答案:二、填空题13. ___24____. 14. )(4*1N n n ∈-. 15. )(22*2N n n n ∈++. 16.______18______.三、解答题17.解:设等比数列{}n a 的公比为q ,则.2,23432q q a a qq a a ====.32022,32042=+∴=+q q a a 即.3131+=+q q解之得3=q 或.31=q当3=q 时,)(32*333N n q a a n n n ∈⨯==--;当31=q 时,)(32)31(2*3333N n q a a n n n n ∈=⨯==---. 18.解:(Ⅰ)设等差数列{}n a 的公差d .因为366,0a a =-=,所以.102,2,633136-=-===-=d a a d a a d 从而所以10(1)2212n a n n =-+-⋅=-.(Ⅱ)设等比数列{}n b 的公比为q .因为24,832121-=++=-=a a a b b ,所以824q -=-.即q =3.所以{}n b 的前n 项和公式为1(1)4(13)1n n n b q S q-==--. 19. 解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d..13,2626756=∴=+=a a a a由⎩⎨⎧=+==+=135721613d a a d a a 解得.231==d a ,12)1(1+=-+=∴n d n a a n ,.22)(21n n a a n S n n +=+=(Ⅱ)12+=n a n ,)1(412+=-∴n n a n ,⎪⎭⎫⎝⎛+-=+=11141)1(41n n n n b n .n n b b b T +++=∴ 21=)1113121211(41+-++-+-n n =)111(41+-n =4(1)nn +.所以数列{}n b 的前n 项和n T =4(1)nn + .20. 解:(Ⅰ)q p S a +-==211,23)2()44(122-=+--+-=-=p q p q p S S a , 25)44()69(233-=+--+-=-=p q p q p S S a ,由3122a a a +=得,25246-++-=-p q p p.0=∴q(Ⅱ)根据题意,5132a a a +=所以1a 与5a 的等差中项为183=a .由(Ⅰ)知.4,1825=∴=-p p 从而.8,10,221===d a a.68)1(1-=-+=∴n d n a a n.34log ,68log 222-=-==∴n b n b a n n n故.16216812)2(213434---⨯=⨯=⋅==n n n n n b因此,数列}{n b 是等比数列,首项21=b ,公比.16=q所以数列{}n b 的前n 项和qq b T n n --=1)1(121. 解:(Ⅰ)设成等差数列的三个正数分别为,,a d a a d -+, 依题意,得15, 5.a d a a d a -+++==解得 所以{}n b 中的345,,b b b 依次为7,10,18.d d -+依题意,有(7)(18)100,213d d d d -+===-解得或(舍去) 故{}n b 的10,5743==-=b d b ,公比2=q . 由22311152,52,.4b b b b =⋅=⋅=即解得所以{}n b 是以54为首项,2为以比的等比数列,其通项公式为1352524n n n b --=⋅=⋅. (Ⅱ)数列{}n b 的前n 项和25(12)5452124n n n S --==⋅--,即22545-⋅=+n n S所以1112555524, 2.542524n n n n S S S -+-+⋅+===⋅+因此55{}42n S +是以为首项,公比为2的等比数列.22.解: (Ⅰ)因为对任意的n N +∈,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图象上.所以得n n S b r =+,11a S b r ==+,b b r b r b S S a -=+-+=-=22122)()(,2323233)()(b b r b r b S S a -=+-+=-=,{}n a 为等比数列,3122a a a =∴.从而).1()()1(222-⋅+=-b b r b b b.1,10r b b b b +=-∴≠>且又 解得1r =-.(Ⅱ)当2=b 时,由(Ⅰ)知,12-=n n S .当2≥n 时,.22)12(22)12()12(11111-----=-=-=---=-=n n n n n n n n n S S a111=-=b a 满足上式,所以其通项公式为)(2*1N n a n n ∈=-.所以111114422n n n n n n n b a -++++===⨯ 234123412222n n n T ++=++++,………………(1) 3451212341222222n n n n n T +++=+++++……(2) )()(21-,得: 23451212111112222222n n n n T +++=+++++- 31211(1)112212212n n n -+⨯-+=+--12311422n n n +++=--. 所以113113322222n n n n n n T ++++=--=-.。
新人教A 版必修五第二章数列单元测试卷(带答案)(时间120分钟,满分150分)一、选择题(每小题5分,共计60分)1.,的一个通项公式是( )A. n a =B. n a =C. n aD. n a =2. 已知数列{}n a ,13a =,26a =,且21n n n a a a ++=-,则数列的第五项为( )A. 6B. 3-C. 12-D. 6-3. 2011是数列7,13,19,25,31,,中的第( )项.A. 332B. 333C. 334D. 3354. 在等差数列{}n a 中,若45076543=++++a a a a a ,则=+82a a ( )A.45B.75C. 180D.3005. 一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是( )A.-2B.-3C.-4D.-56. 在等差数列{a n }中,设公差为d ,若S 10=4S 5,则d a 1等于( ) A.21B.2C. 41D.47. 设数列{a n }和{b n }都是等差数列,其中a 1=25,b 1=75,且a 100+b 100=100,则数列{an +b n }的前100项之和是( )A.1000B.10000C.1100D.110008.已知等差数列{a n }的公差d =1,且a 1+a 2+a 3+…+a 98=137,那么a 2+a 4+a 6+…+a 98的值等于()A.97B.95C.93D.919.在等比数列{a n }中,a 1=1,q ∈R 且|q |≠1,若a m =a 1a 2a 3a 4a 5,则m 等于( )A.9B.10C.11D.1210. 公差不为0的等差数列{a n }中,a 2、a 3、a 6依次成等比数列,则公比等于( )A.21 B. 31 C.2 D.311. 若数列{a n }的前n 项和为S n =a n -1(a ≠0),则这个数列的特征是( )A.等比数列B.等差数列C.等比或等差数列D.非等差数列12. 等差数列{a n }和{b n }的前n 项和分别为S n 与Tn ,对一切自然数n ,都有n n T S =132+n n ,则55b a 等于( )A.32 B. 149 C. 3120 D. 1711 二、填空题(每小题4分,共计16分)13. 数列{a n }的前n 项和为S n =n 2+3n +1,则它的通项公式为 . 14. 已知{na 1}是等差数列,且a 2=2-1,a 4=2+1,则a 10= . 15. 在等比数列中,若S 10=10,S 20=30,则S 30= .16. 数列121,241,341,4161,…的前n 项和为 . 三、解答题:17.(本小题满分12分)已知等差数列{a n }中,S n =m ,S m =n (m ≠n ),求S m +n .18.(本题满分12分)设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0.求公差d 的取值范围.19. (本题满分12分)已知等差数列{a n }中,a 1=29,S 10=S 20,问这个数列的前多少项和最大?并求此最大值.20.(本题满分12分)设a 1=5,a n +1=2a n +3(n ≥1),求{a n }的通项公式.21.(本题满分12分)求和:1+54+257+…+1523--n n 22.(本题满分14分)已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1.(1)设b n =a n +1-2a n (n =1,2,…)求证{b n }是等比数列;(2)设c n =n n a 2(n =1,2…)求证{c n }是等差数列;(3)求数列{a n }的通项公式及前n 项和公式.数列单元质量检测题参考答案一、选择题1.B2.D3.D4.C5.C6.A7.B8.C9.C 10.D 11.C 12.B二、填空题13. ⎩⎨⎧≥+==22215n n n a n 14. -4772+ 15. 70 16. n n n 21222-++三、解答题17. 解析:设S n =pn 2+qnS n =pn 2+qn =m ; ①则S m =pm 2+qm =n ②①-②得:p(n 2-m 2)+q (n -m )=m -n 即p(m +n )+q =-1 (m ≠n ) ∴S m +n =p(m +n )2+q (m +n )=(m +n )[p(m +n )+q ]=-(m +n ).18. 解析:由S 12>0及S 13<0可得⎪⎪⎩⎪⎪⎨⎧〈⨯+〉⨯+021213130211121211d a d a2a 1+11d >0 24+7d >0即 又∵a 3=12,∴a 1=12-2d ∴a 1+6d <0 3+d <0∴-724<d <-3.19. 解析:设数列{a n }的公差为d∵S 10=S 20,∴10×29+2910⨯d =20×29+21920⨯d 解得d =-2∴a n =-2n +31设这个数列的前n 项和最大,a n ≥0 -2n +31≥0则需: 即a n +1≤0 -2(n +1)+31≤0∴14.5≤n ≤15.5∵n ∈N ,∴n =15∴当n =15时,S n 最大,最大值为S 15=15×29+21415⨯ (-2)=225.20. 解析:令a n =b n +k,则a n +1=b n +1+k ∴b n +1+k=2(b n +k)+3 即bn +1-2b n =k+3令k+3=0,即k=-3则an =b n -3,b n +1=2b n 这说明{b n }为等比数列,q =2 b 1=a 1-k=8,∴b n =8·2n -1=2n +2 ∴a n =2n +2-3.21. 解析:设S n =1+54+257+…+2523--n n +1523--n n ① 则51S n =51+254+357+…+1553--n n +n n 523- ② ①-②得:22. 解析:(1)∵S n +1=4a n +2 ①∴S n +2=4a n +1+2 ② ②-①得S n +2-S n +1=4a n +1-4a n (n =1,2,…)即a n +2=4a n +1-4a n , 变形,得an +2-2a n +1=2(a n +1-2a n )∵b n =a n +1-2a n (n =1,2,…)∴b n +1=2b n . 由此可知,数列{b n }是公比为2的等比数列;由S 2=a 1+a 2=4a 1+2,又a 1=1,得a 2=5故b 1=a 2-2a 1=3∴b n =3·2n -1. 将b n =3·2n -1代入,得c n +1-c n =43(n =1,2,…)由此可知,数列{cn }是公差为43的等差数列,它的首项c 1=,2121=a 311(3)(31)444n c n n =-=-∴a n =2n ·c n =(3n -1)·2n -2(n =1,2,…); 当n ≥2时,S n =4a n -1+2=(3n -4)·2n -1+2,由于S 1=a 1=1也适合于此公式, 所以所求{a n }的前n 项和公式是:S n =(3n -4)·2n -1+2.。
高中数学学习材料马鸣风萧萧*整理制作第二章 数列答案第1课时 数列的概念及其通项公式1.(1)21,81(2)6465,89 2.53.(1)n a n n )1(-=(2)n a n 2=(3)2n a n = (4)111+-=n n a n 4. 解:(1) n a =2n +1; (2) n a =)12)(12(2+-n n n ; (3) n a =2)1(1n-+; (4) 将数列变形为1+0, 2+1, 3+0, 4+1, 5+0, 6+1, 7+0, 8+1, ……,∴n a =n +2)1(1n-+; (5) 将数列变形为1×2, -2×3, 3×4, -4×5, 5×6,……,∴ n a =(-1)1+n n(n +1)5.(1)440,80208==a a(2)323是这个数列的第17项6.(1)21-=a 72-=a 103-=a 114-=a 105-=a(2)当4=n 时,取最小的值11-第2课时 数列的概念及其通项公式1.C2. 25-3.∵13a =,121n n a a +=+, ∴27a =,315a =,431a =,563a =, ∴121n n a +=-4.解:(1) 1a =0, 2a =1, 3a =4,4a =9, 5a =16,∴ n a =(n -1)2;(2) 1a =1,2a =32,3a =4221=, 4a =52, 5a =6231=, ∴ n a =12+n ; 5.(1)n n a 2=(2)3n a n =(3)2)1(2a b b a a nn --++=(4)n a n =(5))110(31)1(!--=+n n n a 6.设n a kn b =+,则31021k b k b +=⎧⎨+=⎩,解得21k b =⎧⎨=⎩,∴21()n a n n N *=+∈,∴20054011a =, 又∵2a ,4a ,6a ,8a ,即为5,9,13,17,…,∴41n b n =+第3课时 等差数列的概念和通项公式1.C2.A3.D4. C5.23n -6.87.10 8.39.由题意知27n a n =-,由2752n -=,得29.5n N *=∉,∴52不是该数列中的项.又由2727n k -=+解得7n k N *=+∈,∴27k +是数列{}n a 中的第7k +项.10. (1)445,2171==d a (2) 179=a第4课时 等差数列的概念和通项公式1. D2.B3. A4. 245. 26. 3:17.218. 解:∵ {a n }是等差数列∴ 1a +6a =4a +3a =9⇒3a =9-4a =9-7=2∴ d=4a -3a =7-2=5∴ 9a =4a +(9-4)d=7+5*5=32∴ 3a =2, 9a =329.解:当n ≥2时, (取数列{}n a 中的任意相邻两项1-n a 与n a (n ≥2))])1([)(1q n p q pn a a n n +--+=--p q p pn q pn =+--+=)(为常数∴{n a }是等差数列,首项q p a +=1,公差为p.10.∵(1)2f =,2()1(1)2f n f n ++=,∴1(1)()2f n f n +-=,∴{}()f n 是以2为首项,12为公差的等差数列,∴13()22f n n =+,∴(101)52f =. 第5课时 等差数列的概念和通项公式1.B2.C3.B4.D5.B6. 3:4:57. 1,5,11-或11,5,1-或6,5,16-或16,5,6-8.共40项;9.中间三个齿轮的齿数为16,20,2410.(1)每一行与每一列都成等差数列 (2)100,10020200a =第6课时等差数列的前n 项和(1)1. C2. D3. A4.B5.6(1)84(1,)n n n n N *=⎧⎨->∈⎩ 6.07.68. 8769.∵40.8a =,11 2.2a =,∴由1147a a d =+得0.2d =,∴51114010.2a a d =+= ∴5152805130293029303010.20.239322a a a a d ⨯⨯+++=+=⨯+⨯=. 10.0,121,1,n n a n n n N *=⎧=⎨->∈⎩ 第7课时等差数列的前n 项和(2)1. D 2. B 3. A 4. 401003-5. 66.247.16508.-1109. 147 10. ①∵121126767713113712()6()002130()1302S a a a a a a a S a a a ⎧=+=+>⎪+>⎧⎪⇔⎨⎨<⎩⎪=+=<⎪⎩,∴111211060212a d a d a d +>⎧⎪+<⎨⎪+=⎩ 解得,2437d -<<-,②由67700a a a +>⎧⎨<⎩6700a a >⎧⇒⎨<⎩, 又∵2437d -<<-∴{}n a 是递减数列, ∴1212,,,S S S 中6S 最大. 第8课时等差数列的前n 项和(3)1. A2.C3.A4.C5. B6. 113, -227. 208.209.前18、19项和相等且最大;n A 最大值略10. (1)第100行是199个数的和,这些数的和是10000(2)第n行的值2n第9课时 等比数列的概念和通项公式1.A2.D3. A4. C5.B6.152-± 7.102.510⨯ 8. 证明略 9. 9,6,4,2或25,-10,4,1810. 证明略 第10课时 等比数列的概念和通项公式1.D2.B3. A4. C5.46.152+ 7.5 8.①②③9. 平均每年至多只能减少8公顷10.(1)A1B1=a 5,A2B2=a 35, A3B3=a 955 (2) An Bn=a n 1)35(5-⋅ 第11课时 等比数列的概念和通项公式1. C2. B3. C4. C5.46.81,4096--或 7.3,(1)2,(2)n n n =⎧⎨⎩… 8. 20%9.∵在等比数列{}n a 中, 12a a +,34a a +,56a a +也成等比数列,∵12324a a +=,3436a a +=∴5636364324a a ⨯+== 10. 解:(1)a n +1 = S n +1 –S n221)2(81)2(81+-+=+n n a a , ∴8 a n +1 =221)2()2(+-++n n a a ,∴0)2()2(221=+--+n n a a ,∴(a n +1 + a n )(a n +1 – a n – 4)=0,∵a n ∈N *,∴a n +1 + a n ≠0,∴a n +1 – a n – 4=0,即a n +1 – a n = 4,∴数列{a n }是等差数列.(2)由a n +1 – a n = 4,由题知B n +1 = 5B n – 4 B n –1B n +1 – B n = 4(B n – B n –1)b n +1 = 4b n (n ≥2)又已知b 1 = 1,b 2 = 4.故{b n }是首项为1,公比为4的等比数列.a n =4n –1 (n ∈N +)第12课时 等比数列的前n 项和(1)1.B2.C3.D4.C5.B6.D7.3411288.21()12n n -+9.27 10.150,2⎛⎫+ ⎪ ⎪⎝⎭11. 由211128n n a a a a -==,又166n a a +=得, 1,n a a 是方程2661280x x -+=的两根,解这个方程得,1264n a a =⎧⎨=⎩或1642n a a =⎧⎨=⎩,由11n n a a q S q -=-得26q n =⎧⎨=⎩或126q n ⎧=⎪⎨⎪=⎩. 12.∵等比数列中k S ,2k k S S -,32k k S S -,……仍成等比数列,∴4S ,84S S -,128S S -,……也成等比数列,而17181920a a a a +++则是这个等比数列中的第5项,由42S =,86S =得844S S -=∴这个等比数列即是:2,4,8,16,32,……,∴1718192032a a a a +++=. 第13课时 等比数列的前n 项和(2)1.A2.B3.C4.A5.C6. 35 7. 8 8.解: ∵211211n n n n n a n =++⋅⋅⋅++++= )111(82122+-=+⋅=n n n n b n∴数列{bn}的前n 项和:)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n =)111(8+-n = 18+n n9.解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n a a a S n n 将其每一项拆开再重新组合得 )23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(n n +(分组求和) 当1≠a 时,2)13(1111n n aa S n n -+--= =2)13(11n n a a a n -+--- 10.解:设n n n n a n -+=++=111,则 11321211+++⋅⋅⋅++++=n n S n )1()23()12(n n -++⋅⋅⋅+-+-=11-+n第14课时 等比数列的前n 项和(3)1.D2.D3.C4.C5. A6. 31123n ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 7. 20468. 12(1)q +9.【解】∵ ⎩⎨⎧=+=+1854510811d a d a , 解得1a =5, d =3, ∴ n a =3n +2, n b =n a 2=3×n 2+2,n S =(3×2+2)+ (3×22+2)+ (3×32+2)+……+(3×n 2+2)=3·12)12(2--n +2n =7·n 2-6.(分组求和法) 10. 甲方案的总利润68.161≈S 万元乙方案的总利润56.162≈S 万元甲方案优第15课时 数列复习课练习(1)(1)C (2)A (3)B (4)D (5)D (6)-1(7)120 (8)54 (9)92(10)31n n --(11)① ,不能一次性还清贷款;②617.4万元(1231[1()]23n n a =-;1311(21)()443n n S n -=-+. 第16课时 数列复习课练习(2)(1)D .(2)C. (3)C. (4)B.(5)A.(6)C.(7)D.(8)3000.(9)10,11,12. (10)25.(11)提示:利用等差中项的概念.(12)提示:设()f x kx b =+求得()21f x x =-,(1)(2)(3)(4)(5)25f f f f f ++++=.第2章数列数列单元测试1、B2、 B3、 C4、 A5、 120°6、 10,37、 11,178、 12,18 3249、13,10(略)11、解:由⎩⎨⎧=++=,28,44322a a a a 得⎩⎨⎧=+=.24)1(,4211q q a q a 由0>n a 解出⎩⎨⎧==.2,21q a 所以833==+q a a nn . 12、(1)a n =-2m=10;(2)⎪⎩⎪⎨⎧≥+-≤≤+-=6n 40n 9n 5n 1n 9n S 22n ;(3)m=7 13、A 14、B 15、D 16、C 17、B 18、123n +- 19、12-n 20、5421、2 22、(3)63110f =++=;观察图4,不难发现第n 堆最底层(第一层)的乒乓球数123n a n =++++ (1)2n n +=,第n 堆的乒乓球总数相当于n 堆乒乓球的底层数之和,即123()n f n a a a a =++++222211(1)(1)(2)(123)2226n n n n n n +++=+++++⋅= 23、解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3.又10S n -1=a n -12+5a n -1+6(n ≥2),②由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2).当a 1=3时,a 3=13,a 15=73. a 1, a 3,a 15不成等比数列∴a 1≠3;当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3.24、(I )证明:2132,n n n a a a ++=-21112*2112(),1,3,2().n n n n n n n n a a a a a a a a n N a a ++++++∴-=-==-∴=∈-{}1n n a a +∴-是以21a a -2=为首项,2为公比的等比数列。
新课标数学必修5第2章数列单元试题(3)说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共100分,考试时间90分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分)1.设数列{a n }、{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,那么由a n +b n 所组成的数列的第37项值为( )A .0B .37C .100D .-37 考查等差数列的性质. 【解析】∵{a n }、{b n }为等差数列,∴{a n +b n }也为等差数列,设c n =a n +b n ,则c 1=a 1+b 1=100,而c 2=a 2+b 2=100,故d =c 2-c 1=0,∴c 37=100.【答案】C2.设{a n }为等差数列,则下列数列中,成等差数列的个数为( ) ①{a n 2} ②{pa n } ③{pa n +q } ④{na n }(p 、q 为非零常数) A .1 B .2 C .3 D .4 考查对等差数列的理解.【解析】{pa n }、{pa n +q }的公差为pd (设{a n }公差为d ),而{na n }、{a n 2}不符合等差数列定义.【答案】B3.在等差数列{a n }中,a 1>0,且3a 8=5a 13,则S n 中最大的是( ) A .S 21 B .S 20 C .S 11 D .S 10 考查数列和的理解.【解析】3a 8=5a 13⇒d =-392a 1<0. a n ≥0⇒n ≤20. 【答案】B4.在{a n }中,a 1=15,3a n +1=3a n -2(n ∈N *),则该数列中相邻两项的乘积为负数的项是( )A .a 21和a 22B .a 22和a 23C .a 23和a 24D .a 24和a 25 考查等差数列通项及运用.【解析】a n +1-a n =32,∴a n =15+(n -1)(-32)=3247n -.a n +1a n <0⇒31(45-2n )31(47-2n )<0⇒245<n <247.∴n =23.【答案】C5.若数列{a n }前n 项和S n =n 2-2n +3,则这个数列的前3项为( ) A .-1,1,3 B .2,1,0 C .2,1,3 D .2,1,6 考查通项及数列的和.【解析】a 1=S 1=2,又a 3=S 3-S 2=3. 【答案】C6.数列{a n }中,a n +1=nna a 31+,a 1=2,则a 4为( )A .58B .192 C .516 D .78 考查数列通项及变形. 【解析】11+n a =n a 1+3,∴n a 1=11a +3(n -1)=3n -25,∴a 4=192. 【答案】B7.设{a n }是等差数列,公差为d ,S n 是其前n 项和,且S 5<S 6, S 6=S 7>S 8.下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .S 6和S 7为S n 最大值 考查等差数列求和及综合分析能力. 【解析】∵S 5<S 6,S 6=S 7>S 8. 由S 6=S 7⇒a 7=0,S 7>S 8⇒d <0. 显然S 6=S 7且最大. 【答案】C8.在等差数列{a n }中,已知a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于( )A .-20B .-2021C .-2121 D .-22考查等差数列求和公式,通项公式的灵活运用.【解析】∵a 51+a 52+…+a 100=(a 1+a 2+…+a 50)+50×50d =2700. ∴d =1,S 50=50a 1+24950⨯×1⇒a 1=-2021. 【答案】B9.设f (n )=11+n +21+n +…+n21(n ∈N *),那么f (n +1)-f (n )等于( ) A .121+n B .221+nC .121+n +221+nD .121+n -221+n考查函数与数列概念、项与项数的代换. 【解析】f (n +1)=21+n +31+n +…+n 21+121+n +221+n . 【答案】D10.依市场调查结果预测某种家用商品以年初开始的n 个月内累积的需求量S n (万件).近似地满足S n =90n(21n -n 2-5),(n =1,2,…,12),则按此预测在本年度内,需求量超过1.5万件的月份是( )A .5月、6月B .6月、7日C .7月、8日D .8月、9日考查数列的求和和通项.【解析】第n 个月需求量a n =S n -S n -1=301(-n 2+15n +9), a n >1.5得301(-n 2+15n +9)>1.5. 解得:6<n <9,∴n =7或8.【答案】C第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分)11.等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项后余下的10项的平均值仍为5,则抽取的是第_________项.考查等差数列的性质和运用.【解析】由-5×11+21011⨯d =55,得d =2.由a n =5,a n =a 1+(n -1)d 得n =6. 【答案】612.在首项为31,公差为-4的等差数列中,与零最接近的项是_______. 考查等差数列通项及不等式基本知识.【解析】a n =35-4n .由⇒⎩⎨⎧≤--≥-0)1(4350435n n 7 843≤≤n 43得a 8=3,a 9=-1, ∴最接近的为a 9=-1.【答案】-113.在等差数列{a n }中,满足3a 4=7a 7.且a 1>0,S n 是数列{a n }前n 项的和,若S n 取得最大值,则n =_______.考查等差数列的前n 项和及运用.【解析】设公差为d ,得3(a 1+3d )=7(a 1+6d ),∴d =-334a 1<0,令a n >0. 解得n <437,即n ≤9时,a n >0.同理,n ≥10时,a n <0.∴S 9最大,故n =9. 【答案】914.已知f (n +1)=f (n )-41(n ∈N *)且f (2)=2,则f (101)=_______. 考查函数、数列的综合. 【解析】f (n +1)-f (n )=-41,f (n )可看作是公差为-41的等差数列,f (101)=f (2)+99d =-491. 【答案】-491三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分8分)在等差数列{a n }中,a 1=-60,a 17=-12. (1)求通项a n ,(2)求此数列前30项的绝对值的和. 考查等差数列的通项及求和. 【解】(1)a 17=a 1+16d ,即-12=-60+16d ,∴d =3,∴a n =-60+3(n -1)=3n -63. (2)由a n ≤0,则3n -63≤0⇒n ≤21,∴|a 1|+|a 2|+…+|a 30|=-(a 1+a 2+…+a 21)+(a 22+a 23+…+a 30)=(3+6+9+…+60)+(3+6+…+27)=2)603(+×20+2)273(+×9=765. 16.(本小题满分10分)设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列{nS n}的前n 项和,求T n . 考查等差数列基础知识及技巧、运算能力. 【解】设等差数列{a n }公差为d ,则S n =na 1+21n (n -1)d ∵S 7=7,S 15=75,∴⎩⎨⎧=+=+7510515721711d a d a ⇒⎩⎨⎧=+=+571311d a d a ∴a 1=-2,d =1,∴nS n =a 1+21(n -1)d =-2+21(n -1)∵11++n S n -n S n =21∴{nS n }为等差数列,其首项为-2,公差为21,∴T n =41n 2-49n .17.(本小题满分12分)设等差数列{a n }的前n 项和为S n ,已知a 3=12, S 12>0,S 13<0. (1)求公差d 的取值范围;(2)指出S 1,S 2,S 3…S 12中哪一个值最大?并说明理由. 考查数列的性质与最值、灵活变换能力. 【解】(1)依题意⎪⎪⎩⎪⎪⎨⎧<⨯+=>⨯+=②①021*******111212113112d a S d a S 即⎩⎨⎧<+>+06011211d a d a ,由a 3=a 1+2d =12得a 1=12-2d ,代入①②⇒-724<d <-3.(2)由d <0,可知a 1>a 2>…>a 12>a 13.因此若在1≤n ≤12中存在自然数n ,使a n >0,a n +1<0时,则S n 就是S 1,S 2…S 12中最大值由于⎪⎪⎩⎪⎪⎨⎧>=+=<=+=01220132121116131317S a a a S a a a∴在S 1,S 2…S 11,S 12中S 6的值最大.18.(本小题满分12分)已知f (x +1)=x 2-4,等差数列{a n }中,a 1=f (x -1), a 2=-23,a 3=f (x ).(1)求x 值;(2)求a 2+a 5+a 8+…+a 26的值.考查等差数列概念及求和,函数基本知识. 【解】(1)∵f (x -1)=(x -1-1)2-4=(x -2)2-4∴f (x )=(x -1)2-4,∴a 1=(x -2)2-4,a 3=(x -1)2-4 又a 1+a 3=2a 2,解得x =0或x =3.(2)∵a 1、a 2、a 3分别为0、-23、-3或-3、-23、0∴a n =-23(n -1)或a n =23(n -3) ①当a n =-23(n -1)时,a 2+a 5+…+a 26=29(a 2+a 26)=2351②当a n =23(n -3)时,a 2+a 5+…+a 26=29(a 2+a 26)=2297.19.(本小题满分12分)设两个方程x 2-x +a =0和x 2-x +b =0的四个根成首项为41的等差数列,求a +b 的值.考查等差数列与方程思想. 【解】不妨设a <b ,函数y =x 2-x +a 与y =x 2-x +b 的对称轴,开口大小均相同,如图所示.设数列为x 1、x 2、x 3、x 4,由已知x 1=41.∵x 1+x 4=1,∴x 4=43. 又∵x 4=x 1+3d ,∴43=41+3d ,∴d =61∴x 2=x 1+d =125,x 3=x 2+d =127∴a =x 1·x 4=163,b =x 2·x 3=125×127=14435,∴a +b =7231.。
第二章 数 列§2.1 数列的概念与简单表示法(一)一、基础过关1.数列23,45,67,89,…的第10项是( )A.1617B.1819C.2021 D.2223 2.数列{n 2+n }中的项不能是( )A .380B .342C .321D .306 3.数列1,3,6,10,…的一个通项公式是( )A .a n =n 2-n +1B .a n =n (n -1)2C .a n =n (n +1)2D .a n =n 2+14.已知数列12,23,34,45,…,那么0.94,0.96,0.98,0.99中属于该数列中某一项值的应当有( )A .1个B .2个C .3个D .4个5.在数列2,2,x,22,10,23,…中,x =______. 6.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数a n 与所搭三角形的个数n 之间的关系式可以是 ____________.7.写出下列数列的一个通项公式:(可以不写过程) (1)3,5,9,17,33,…; (2)23,415,635,863,…; (3)1,0,-13,0,15,0,-17,0,….8.已知数列{n (n +2)}:(1)写出这个数列的第8项和第20项;(2)323是不是这个数列中的项?如果是,是第几项? 二、能力提升9.数列0.3,0.33,0.333,0.333 3,…的一个通项公式a n 等于( )A.19(10n -1) B.13(10n -1) C.13(1-110n )D.310(10n -1) 10.设a n =1n +1+1n +2+1n +3+…+12n (n ∈N *),那么a n +1-a n 等于( )A.12n +1B.12n +2C.12n +1+12n +2D.12n +1-12n +211.由花盆摆成以下图案,根据摆放规律,可得第5个图形中的花盆数为________.12.在数列{a n }中,a 1=2,a 17=66,通项公式a n 是n 的一次函数.(1)求{a n }的通项公式; (2)88是否是数列{a n }中的项? 三、探究与拓展13.已知数列⎩⎨⎧⎭⎬⎫9n 2-9n +29n 2-1: (1)求这个数列的第10项;(2)98101是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内;(4)在区间⎝⎛⎭⎫13,23内有无数列中的项?若有,有几项?若没有,说明理由.答案1.C 2.C 3.C 4.C 5.6 6.a n =2n +1 7.解 (1)a n =2n +1. (2)a n =2n(2n -1)(2n +1).(3)a n =sinn π2n.8.解 (1)a n =n (n +2)=n 2+2n , ∴a 8=80,a 20=440.(2)由a n =n 2+2n =323,解得n =17. ∴323是数列{n (n +2)}中的项,是第17项. 9.C 10.D 11.6112.解 (1)设a n =kn +b ,则⎩⎪⎨⎪⎧ a 1=k +b =2a 17=17k +b =66解得⎩⎪⎨⎪⎧k =4b =-2. ∴a n =4n -2.(2)令a n =88,即4n -2=88,解得n =22.5∉N *. ∴88不是数列{a n }中的项.13.(1)解 设f (n )=9n 2-9n +29n 2-1=(3n -1)(3n -2)(3n -1)(3n +1)=3n -23n +1.令n =10,得第10项a 10=f (10)=2831. (2)解 令3n -23n +1=98101,得9n =300.此方程无正整数解,所以98101不是该数列中的项.(3)证明 ∵a n =3n -23n +1=1-33n +1,又n ∈N *,∴0<33n +1<1,∴0<a n <1.∴数列中的各项都在区间(0,1)内.(4)解 令13<a n =3n -23n +1<23,∴⎩⎪⎨⎪⎧3n +1<9n -69n -6<6n +2,∴⎩⎨⎧n >76n <83.∴当且仅当n =2时,上式成立,故区间⎝⎛⎭⎫13,23上有数列中的项,且只有一项为a 2=47.§2.1 数列的概念与简单表示法(二)一、基础过关1.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的第4项是( )A .1B.12C.34D.582.数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5等于 ( ) A.259B.2516C.6116D.3115 3.若a 1=1,a n +1=a n3a n +1,则给出的数列{a n }的第7项是( )A.116B.117C.119D.1254.由1,3,5,…,2n -1,…构成数列{a n },数列{b n }满足b 1=2,当n ≥2时,b n =ab n -1,则b 6的值是( )A .9B .17C .33D .655.已知数列{a n }满足:a 1=a 2=1,a n +2=a n +1+a n ,n ∈N *,则使a n >100的n 的最小值是________.6.已知数列{a n }满足a 1=-1,a n +1=a n +1n (n +1),n ∈N *,则通项公式a n =________.7.根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有多少个点.8.已知函数f (x )=2x -2-x ,数列{a n }满足f (log 2a n )=-2n . (1)求数列{a n }的通项公式; (2)证明:数列{a n }是递减数列. 二、能力提升9.已知数列{a n }满足a n +1=⎩⎨⎧2a n ⎝⎛⎭⎫0≤a n <12,2a n-1 ⎝⎛⎭⎫12≤a n<1.若a 1=67,则a 2 012的值为( )A.67B.57C.37D.1710.已知a n =n -98n -99,则这个数列的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C.a10,a9D.a10,a3011.已知数列{a n}满足:a n≤a n+1,a n=n2+λn,n∈N*,则实数λ的最小值是________.12.已知数列{a n}满足a1=12,a n a n-1=a n-1-a n,求数列{a n}的通项公式.三、探究与拓展13.设{a n}是首项为1的正项数列,且(n+1)a2n+1-na2n+a n+1a n=0(n=1,2,3,…),求{a n}的通项公式.答案1.B 2.C 3.C 4.C 5.12 6.-1n7.解 图(1)只有1个点,无分支;图(2)除中间1个点外,有两个分支,每个分支有1个点;图(3)除中间1个点外,有三个分支,每个分支有2个点;图(4)除中间1个点外,有四个分支,每个分支有3个点;…;猜测第n 个图中除中间一个点外,有n 个分支,每个分支有(n -1)个点,故第n 个图中点的个数为1+n (n -1)=n 2-n +1. 8.(1)解 因为f (x )=2x -2-x ,f (log 2a n )=-2n , 所以2log 2 a n -2-log 2a n =-2n ,a n -1a n=-2n ,所以a 2n +2na n -1=0,解得a n =-n ±n 2+1.因为a n >0,所以a n =n 2+1-n .(2)证明 a n +1a n =(n +1)2+1-(n +1)n 2+1-n =n 2+1+n (n +1)2+1+(n +1)<1.又因为a n >0,所以a n +1<a n , 所以数列{a n }是递减数列. 9.B 10.C 11.-312.解 ∵a n a n -1=a n -1-a n , ∴1a n -1a n -1=1. ∴1a n =1a 1+⎝⎛⎭⎫1a 2-1a 1+⎝⎛⎭⎫1a 3-1a 2+…+⎝⎛⎭⎫1a n -1a n -1=2+ 1111个n +++=n +1. ∴1a n =n +1,∴a n =1n +1. 13.解 ∵(n +1)a 2n +1-na 2n +a n a n +1=0,∴[(n +1)a n +1-na n ]·(a n +1+a n )=0, ∵a n >0,∴a n +a n +1>0, ∴(n +1)a n +1-na n =0. (n +1)a n +1-na n =0,∴na n =(n -1)a n -1=…=1×a 1=1, ∴na n =1,a n =1n .§2.2 等差数列(一)一、基础过关1.已知数列{a n }满足a 1=2,a n +1-a n +1=0,则数列的通项a n 等于( )A .n 2+1B .n +1C .1-nD .3-n 2.等差数列20,17,14,11,…中第一个负数项是( )A .第7项B .第8项C .第9项D .第10项3.若5,x ,y ,z,21成等差数列,则x +y +z 的值为( )A .26B .29C .39D .52 4.{a n }是首项a 1=1,公差d =3的等差数列,若a n =2 011,则n 等于( )A .671B .670C .669D .668 5.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( )A .15B .30C .31D .646.已知a =13+2,b =13-2,则a 、b 的等差中项是________. 7.等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,求n 的值.8.某市出租车的计价标准为1.2元/km ,起步价为10元,即最初的4 km(不含4 km)计费10元.如果某人乘坐该市的出租车去往14 km 处的目的地,且一路畅通,等候时间为0,那么需要支付多少车费? 二、能力提升9.一个首项为23,公差为整数的等差数列,第7项开始为负数,则它的公差是 ( ) A .-2B .-3C .-4D .-610.若m ≠n ,两个等差数列m 、a 1、a 2、n 与m 、b 1、b 2、b 3、n 的公差为d 1和d 2,则d 1d 2的值为________.11.一个等差数列{a n }中,a 1=1,末项a n =100(n ≥3),若公差为正整数,那么项数n 的取值有____种可能. 12.若1b +c ,1c +a ,1a +b是等差数列,求证:a 2,b 2,c 2成等差数列. 三、探究与拓展13.已知等差数列{a n }:3,7,11,15,….(1)135,4m +19(m ∈N *)是{a n }中的项吗?试说明理由.(2)若a p,a q(p,q∈N*)是数列{a n}中的项,则2a p+3a q是数列{a n}中的项吗?并说明你的理由.答案1.D 2.B 3.C 4.A 5.A 6.3 7.解 由a n =23n -13=33,解得n =50.8.解 根据题意,当该市出租车的行程大于或等于4 km 时,每增加1 km ,乘客需要支付1.2元.所以,可以建立一个等差数列{a n }来计算车费.令a 1=11.2,表示4 km 处的车费,公差d =1.2,那么,当出租车行至14 km 处时,n =11,此时需要支付车费a 11=11.2+(11-1)×1.2=23.2(元). 即需要支付车费23.2元. 9.C 10.4311.512.证明 ∵1b +c ,1c +a ,1a +b 是等差数列,∴1b +c +1a +b =2c +a. ∴(a +b )(c +a )+(b +c )(c +a )=2(a +b )(b +c ), ∴(c +a )(a +c +2b )=2(a +b )(b +c ),∴2ac +2ab +2bc +a 2+c 2=2ab +2ac +2bc +2b 2, ∴a 2+c 2=2b 2,∴a 2,b 2,c 2成等差数列. 13.解 a 1=3,d =4,a n =a 1+(n -1)d =4n -1. (1)令a n =4n -1=135,∴n =34, ∴135是数列{a n }中的第34项.令a n =4n -1=4m +19,则n =m +5∈N *. ∴4m +19是{a n }中的第m +5项. (2)∵a p ,a q 是{a n }中的项, ∴a p =4p -1,a q =4q -1.∴2a p +3a q =2(4p -1)+3(4q -1)=8p +12q -5=4(2p +3q -1)-1∈N *, ∴2a p +3a q 是{a n }中的第2p +3q -1项.§2.2 等差数列(二)一、基础过关1.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8的值等于( )A .45B .75C .180D .3002.设{a n}是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是() A.1 B.2 C.4 D.63.等差数列{a n}的公差d<0,且a2·a4=12,a2+a4=8,则数列{a n}的通项公式是() A.a n=2n-2 (n∈N*)B.a n=2n+4 (n∈N*)C.a n=-2n+12 (n∈N*)D.a n=-2n+10 (n∈N*)4.若a,b,c成等差数列,则二次函数y=ax2-2bx+c的图象与x轴的交点的个数为() A.0 B.1 C.2 D.1或25.设{a n}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13等于() A.120 B.105 C.90 D.756.在等差数列{a n}中,已知a1+a2+a3+a4+a5=20,那么a3=________.7.在等差数列{a n}中,已知a m=n,a n=m,求a m+n的值.8.成等差数列的四个数之和为26,第二个数与第三个数之积为40,求这四个数.二、能力提升9.一个等差数列的首项为a1=1,末项a n=41 (n≥3)且公差为整数,那么项数n的取值个数是() A.6 B.7C.8 D.不确定10.等差数列{a n}中,公差为12,且a1+a3+a5+…+a99=60,则a2+a4+a6+…+a100=______.11.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为14的等差数列,则|m-n|=______.12.已知数列{a n}满足a1=4,a n=4-4a n-1(n≥2),令b n=1a n-2.(1)求证:数列{b n}是等差数列;(2)求数列{a n}的通项公式.三、探究与拓展13.已知数列{a n}满足a1=15,且当n>1,n∈N*时,有a n-1a n=2a n-1+11-2a n,设b n=1a n,n∈N*.(1)求证:数列{b n}为等差数列.(2)试问a1a2是否是数列{a n}中的项?如果是,是第几项;如果不是,请说明理由.答案1.C 2.B 3.D 4.D 5.B 6.4 7.解 设公差为d ,则d =a m -a n m -n =n -m m -n=-1,从而a m +n =a m +(m +n -m )d =n +n ·(-1)=0.8.解 设这四个数为a -3d ,a -d ,a +d ,a +3d ,则由题设得 ⎩⎪⎨⎪⎧(a -3d )+(a -d )+(a +d )+(a +3d )=26,(a -d )(a +d )=40,∴⎩⎪⎨⎪⎧4a =26,a 2-d 2=40. 解得⎩⎨⎧a =132,d =32或⎩⎨⎧a =132,d =-32.所以这四个数为2,5,8,11或11,8,5,2. 9.B 10.85 11.1212.(1)证明 ∵a n =4-4a n -1 (n ≥2), ∴a n +1=4-4a n (n ∈N *).∴b n +1-b n =1a n +1-2-1a n -2=12-4a n-1a n -2=a n 2(a n -2)-1a n -2=a n -22(a n -2)=12.∴b n +1-b n =12,n ∈N *.∴{b n }是等差数列,首项为12,公差为12.(2)解 b 1=1a 1-2=12,d =12.∴b n =b 1+(n -1)d =12+12(n -1)=n2.∴1a n -2=n 2,∴a n =2+2n .13.(1)证明 当n >1,n ∈N *时,a n -1a n =2a n -1+11-2a n⇔1-2a n a n =2a n -1+1a n -1⇔1a n -2=2+1a n -1⇔1a n -1a n -1=4⇔b n -b n -1=4,且b 1=1a 1=5.∴{b n }是等差数列,且公差为4,首项为5.(2)解 由(1)知b n =b 1+(n -1)d =5+4(n -1)=4n +1. ∴a n =1b n =14n +1,n ∈N *.∴a 1=15,a 2=19,∴a 1a 2=145.令a n =14n +1=145,∴n =11.即a 1a 2=a 11,∴a 1a 2是数列{a n }中的项,是第11项.§2.3 等差数列的前n 项和(一)一、基础过关1.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k 等于( ) A .8 B .7C .6D .52.设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( )A .13B .35C .49D .633.含2n +1项的等差数列,其奇数项的和与偶数项的和之比为 ( )A.2n +1nB.n +1nC.n -1nD.n +12n4.已知等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10为 ( )A .-9B .-11C .-13D .-155.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36.则a 7+a 8+a 9等于( )A .63B .45C .36D .276.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________. 7.已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.8.已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n .二、能力提升9.一个等差数列的项数为2n ,若a 1+a 3+…+a 2n -1=90,a 2+a 4+…+a 2n =72,且a 1-a 2n=33,则该数列的公差是( )A .3B .-3C .-2D .-110.在项数为奇数的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则该数列有____项.11.已知等差数列{a n }中,|a 5|=|a 9|,公差d >0,则使得前n 项和S n 取得最小值时的正整 数n 的值是________.12.有一等差数列共有偶数项,它的奇数项之和与偶数项之和分别是24和30,若最后一项与第一项之差为212,试求此数列的首项、公差和项数.三、探究与拓展13.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足:a 3a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式a n ;(2)若数列{b n }是等差数列,且b n =S nn +c,求非零常数c .答案1.D 2.C 3.B 4.D 5.B 6.157.解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d . 由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n , 所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7.8.解 S n =-8n +n (n -1)=n (n -9), 或S n =8n -n (n -1)=-n (n -9). 9.B 10.21 11.6或712.解 设此数列的首项、公差和项数分别为a 1、d 和2k (k ∈N *),根据题意有⎩⎪⎨⎪⎧12k (a 1+a 2k -1)=24,12k (a 2+a 2k)=30,a 2k-a 1=212,解得a 1=32,d =32,k =4.∴首项为32,公差为32,项数为8.13.解 (1)设等差数列{a n }的公差为d ,且d >0. ∵a 3+a 4=a 2+a 5=22,又a 3a 4=117, ∴a 3,a 4是方程x 2-22x +117=0的两个根. 又公差d >0,∴a 3<a 4, ∴a 3=9,a 4=13.∴⎩⎪⎨⎪⎧ a 1+2d =9a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1d =4, ∴a n =4n -3.(2)由(1)知,S n =n ×1+n (n -1)2×4=2n 2-n ,∴b n =S nn +c =2n 2-n n +c.∴b 1=11+c ,b 2=62+c ,b 3=153+c .∵{b n }是等差数列,∴2b 2=b 1+b 3, ∴2c 2+c =0,∴c =-12 (c =0舍去).§2.3 等差数列的前n 项和(二)一、基础过关1.若数列{a n }的前n 项和S n =n 2-1,则a 4等于( )A .7B .8C .9D .17 2.已知数列{a n }的前n 项和S n =n 3,则a 5+a 6的值为( )A .91B .152C .218D .279 3.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( )A .1B .-1C .2D.12 4.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于( ) A.310B.13C.18D.195.数列{a n }的前n 项和为S n ,且S n =n 2-n (n ∈N *),则通项a n =________.6.设S n 为等差数列{a n }的前n 项和,若a 4=1,S 5=10,则当S n 取得最大值时,n 的值为________. 7.已知数列{a n }的前n 项和公式为S n =2n 2-30n . (1)求数列{a n }的通项公式a n ; (2)求S n 的最小值及对应的n 值. 8.设等差数列{a n }满足a 3=5,a 10=-9. (1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值. 二、能力提升9.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 为( )A .9B .8C .7D .610.设{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C.S9>S5D.S6与S7均为S n的最大值11.若数列{a n}是等差数列,首项a1>0,a2 003+a2 004>0,a2 003·a2 004<0,则使前n项和S n >0成立的最大自然数n是________.12.数列{a n}中,a1=8,a4=2,且满足a n+2-2a n+1+a n=0 (n∈N*).(1)求数列{a n}的通项公式;(2)设S n=|a1|+|a2|+…+|a n|,求S n.三、探究与拓展13.设等差数列{a n}的前n项和为S n,已知a3=12,且S12>0,S13<0.(1)求公差d的取值范围;(2)问前几项的和最大,并说明理由.答案1.A 2.B 3.A 4.A 5.2n -2 6.4或5 7.解 (1)∵S n =2n 2-30n , ∴当n =1时,a 1=S 1=-28.当n ≥2时,a n =S n -S n -1=(2n 2-30n )-[2(n -1)2-30(n -1)]=4n -32. ∴a n =4n -32,n ∈N +. (2)∵a n =4n -32, ∴a 1<a 2<…<a 7<0,a 8=0, 当n ≥9时,a n >0.∴当n =7或8时,S n 最小,且最小值为S 7=S 8=-112. 8.解 (1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得⎩⎪⎨⎪⎧ a 1+2d =5,a 1+9d =-9,可解得⎩⎪⎨⎪⎧a 1=9,d =-2,所以数列{a n }的通项公式为a n =11-2n . (2)由(1)知,S n =na 1+n (n -1)2d =10n -n 2.因为S n =-(n -5)2+25, 所以当n =5时,S n 取得最大值. 9.B 10.C 11.4 00612.解 (1)∵a n +2-2a n +1+a n =0. ∴a n +2-a n +1=a n +1-a n =…=a 2-a 1. ∴{a n }是等差数列且a 1=8,a 4=2, ∴d =-2,a n =a 1+(n -1)d =10-2n . (2)∵a n =10-2n ,令a n =0,得n =5. 当n >5时,a n <0;当n =5时,a n =0; 当n <5时,a n >0.∴当n >5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =S 5-(S n -S 5)=2S 5-S n =2·(9×5-25)-9n +n 2 =n 2-9n +40,当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =9n -n 2.∴S n =⎩⎪⎨⎪⎧9n -n 2 (n ≤5)n 2-9n +40 (n >5).13.解 (1)根据题意,得⎩⎨⎧12a 1+12×112d >0,13a 1+13×122d <0,a 1+2d =12,整理得:⎩⎪⎨⎪⎧2a 1+11d >0,a 1+6d <0,a 1+2d =12.解得:-247<d <-3.(2)∵d <0,∴a 1>a 2>a 3>…>a 12>a 13>…, 而S 13=13(a 1+a 13)2=13a 7<0,∴a 7<0.又S 12=12(a 1+a 12)2=6(a 1+a 12)=6(a 6+a 7)>0,∴a 6>0. ∴数列{a n }的前6项和S 6最大.习题课 等差数列1.已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为( ) A .12B .8C .6D .4 2.等差数列{a n }的前n 项和为S n ,若a 3+a 7+a 11=6,则S 13等于( )A .24B .25C .26D .27 3.在小于100的自然数中,所有被7除余2的数之和为( )A .765B .665C .763D .6634.若{a n }为等差数列,S n 为其前n 项和,若a 1>0,d <0,S 4=S 8,则S n >0成立的最大自然数n 为( )A .11B .12C .13D .145.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13等于( )A .120B .105C .90D .756.首项为-24的等差数列,从第10项起开始为正数,则公差d 的取值范围是________. 7.设数列{a n }是公差不为零的等差数列,S n 是数列{a n }的前n 项和,且S 23=9S 2,S 4=4S 2,求数列{a n }的通项公式.8.已知两个等差数列{a n }:5,8,11,…,{b n }:3,7,11,…,都有100项,试问它们有多少个共同的项? 二、能力提升9.在等差数列{a n }中,a 10<0,a 11>0,且|a 10|<a 11,S n 为{a n }的前n 项的和,则下列结论正确的是( )A .S 1,S 2,…,S 10都小于零,S 11,S 12,…都大于零B .S 1,S 2,…,S 5都小于零,S 6,S 7,…都大于零C .S 1,S 2,…,S 20都小于零,S 21,S 22,…都大于零D .S 1,S 2,…,S 19都小于零,S 20,S 21,…都大于零 10.在如下数表中,已知每行、每列中的数都成等差数列,11.等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使前n 项和S n 取得最大值的自然数n 是______. 12.设等差数列{a n }的首项a 1及公差d 都为整数,前n 项和为S n .(1)若a 11=0,S 14=98,求数列{a n }的通项公式;(2)若a 1≥6,a 11>0,S 14≤77,求所有可能的数列{a n }的通项公式. 三、探究与拓展13.设{a n }是公差不为零的等差数列,S n 是其前n 项和,满足a 22+a 23=a 24+a 25,S 7=7.(1)求数列{a n }的通项公式及前n 项和S n ;(2)试求所有的正整数m ,使得a m a m +1a m +2为数列{a n }中的项.答案1.B 2.C 3.B 4.A 5.B 6.83<d ≤37.解 设等差数列{a n }的公差为d ,由S n =na 1+n (n -1)2d 及已知条件得(3a 1+3d )2=9(2a 1+d ), ① 4a 1+6d =4(2a 1+d ).②由②得d =2a 1,代入①有a 21=49a 1, 解得a 1=0或a 1=49.当a 1=0时,d =0,舍去. 因此a 1=49,d =89.故数列{a n }的通项公式为 a n =49+(n -1)·89=49(2n -1).8.解 在数列{a n }中,a 1=5,公差d 1=8-5=3. ∴a n =a 1+(n -1)d 1=3n +2.在数列{b n }中,b 1=3,公差d 2=7-3=4, ∴b n =b 1+(n -1)d 2=4n -1. 令a n =b m ,则3n +2=4m -1, ∴n =4m 3-1.∵m 、n ∈N *,∴m =3k (k ∈N *),又⎩⎪⎨⎪⎧0<m ≤1000<n ≤100,解得0<m ≤75. ∴0<3k ≤75,∴0<k ≤25, ∴k =1,2,3, (25)∴两个数列共有25个公共项. 9.D 10.n 2+n 11.5或612.解 (1)由⎩⎪⎨⎪⎧S 14=98,a 11=0,得⎩⎪⎨⎪⎧14a 1+14×132d =98,a 1+10d =0,⎩⎪⎨⎪⎧a 1=20,d =-2.因此数列的通项a n =22-2n . (2)由⎩⎪⎨⎪⎧a 1≥6,a 11>0,S 14≤77.得⎩⎪⎨⎪⎧a 1≥6,a 1+10d >0,2a 1+13d ≤11.即⎩⎪⎨⎪⎧-2a 1≤-12, ①-2a 1-20d <0, ②2a 1+13d ≤11. ③由②+③得-7d <11,即d >-117.由①+③得13d ≤-1,即d ≤-113.于是-117<d ≤-113.又∵d ∈Z ,∴d =-1.将d =-1代入②③两式得10<a 1≤12. 又∵a 1∈Z , ∴a 1=11或a 1=12.∴所有可能的数列{a n }的通项公式是a n =12-n 和a n =13-n . 13.解 (1)由题意,设等差数列{a n }的通项公式为 a n =a 1+(n -1)d ,d ≠0.由a 22+a 23=a 24+a 25知2a 1+5d =0.① 又因为S 7=7,所以a 1+3d =1.② 由①②可得a 1=-5,d =2.所以数列{a n }的通项公式a n =2n -7, S n =na 1+n (n -1)2d =n 2-6n .(2)因为a m a m +1a m +2=(a m +2-4)(a m +2-2)a m +2=a m +2-6+8a m +2为数列{a n }中的项,故8a m +2为整数.又由(1)知a m +2为奇数,所以a m +2=2m -3=±1,即m =1,2. 经检验,符合题意的正整数只有m =2.§2.4 等比数列(一)一、基础过关1.在等比数列{a n }中,a 1=1,公比|q |≠1.若a m =a 1a 2a 3a 4a 5,则m 等于( )A .9B .10C .11D .122.已知a ,b ,c ,d 成等比数列,且曲线y =x 2-2x +3的顶点是(b ,c ),则ad 等于( ) A .3 B .2C .1D .-2 3.如果-1,a ,b ,c ,-9成等比数列,那么( )A .b =3,ac =9B .b =-3,ac =9C .b =3,ac =-9D .b =-3,ac =-94.一个数分别加上20,50,100后得到的三个数成等比数列,其公比为( )A.53B.43C.32D.125.若a ,b ,c 成等比数列,m 是a ,b 的等差中项,n 是b ,c 的等差中项,则a m +cn 等于( )A .4B .3C .2D .16.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =________. 7.已知等比数列{a n },若a 1+a 2+a 3=7,a 1a 2a 3=8,求a n .8.在四个正数中,前三个成等差数列,和为48,后三个成等比数列,积为8 000,求这四个数. 二、能力提升9.若正项等比数列{a n }的公比q ≠1,且a 3,a 5,a 6成等差数列,则a 3+a 5a 4+a 6等于( )A.5-12B.5+12C.12D .不确定10.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则a 2-a 1b 2的值是________.11.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则6q =________. 12.已知(b -c )log m x +(c -a )log m y +(a -b )log m z =0.(1)若a,b,c依次成等差数列且公差不为0,求证:x,y,z成等比数列;(2)若正数x,y,z依次成等比数列且公比不为1,求证:a,b,c成等差数列.三、探究与拓展13.互不相等的三个数之积为-8,这三个数适当排列后可成为等比数列,也可排成等差数列,求这三个数排成的等差数列.答案1.C 2.B 3.B 4.A 5.C 6.4·(32)n -17.解 由等比数列的定义知a 2=a 1q ,a 3=a 1q 2代入已知得,⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=7a 1·a 1q ·a 1q 2=8, 即⎩⎪⎨⎪⎧a 1(1+q +q 2)=7,a 31q 3=8, 即⎩⎪⎨⎪⎧a 1(1+q +q 2)=7, ①a 1q =2, ② 将a 1=2q 代入①得2q 2-5q +2=0,∴q =2或q =12,由②得⎩⎪⎨⎪⎧a 1=1q =2或⎩⎪⎨⎪⎧a 1=4,q =12.∴a n =2n-1或a n =23-n .8.解 设前三个数分别为a -d ,a ,a +d , 则有(a -d )+a +(a +d )=48,即a =16. 设后三个数分别为bq ,b ,bq ,则有bq·b ·bq =b 3=8 000,即b =20, ∴这四个数分别为m,16,20,n , ∴m =2×16-20=12,n =20216=25.即所求的四个数分别为12,16,20,25. 9.A 10.1211.-912.证明 (1)∵a ,b ,c 成等差数列且d ≠0, ∴b -c =a -b =-d ,c -a =2d , ∴(b -c )log m x +(c -a )log m y +(a -b )log m z =2d log m y -d log m x -d log m z =d (2log m y -log m x -log m z ) =d log m (y 2xz)=0.∵d ≠0,∴log m y 2xz =0,∴y 2xz =1.∴y 2=xz ,即x ,y ,z 成等比数列. (2)∵x ,y ,z 成等比数列,且公比q ≠1, ∴y =xq ,z =xq 2,∴(b -c )log m x +(c -a )log m y +(a -b )log m z =(b -c )log m x +(c -a )log m (xq )+(a -b )log m (xq 2)=(b -c )log m x +(c -a )log m x +(c -a )log m q +(a -b )log m x +2(a -b )log m q =(c -a )log m q +2(a -b )log m q =(a +c -2b )log m q =0, ∵q ≠1,∴log m q ≠0,∴a +c -2b =0,即a ,b ,c 成等差数列.13.解 设三个数为aq ,a ,aq ,∴a 3=-8,即a =-2,∴三个数为-2q,-2,-2q .(1)若-2为-2q 和-2q 的等差中项,则2q +2q =4,∴q 2-2q +1=0,q =1,与已知矛盾;(2)若-2q 为-2q 与-2的等差中项,则1q +1=2q ,2q 2-q -1=0,q =-12或q =1(舍去),∴三个数为4,1,-2;(3)若-2q 为-2q 与-2的等差中项,则q +1=2q ,∴q 2+q -2=0, ∴q =-2或q =1(舍去), ∴三个数为4,1,-2.综合(1)(2)(3)可知,这三个数排成的等差数列为 4,1,-2或-2,1,4.§2.4 等比数列(二)一、基础过关1.在等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( )A .16B .27C .36D .81 2.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于( )A .64B .81C .128D .2433.在由正数组成的等比数列{a n }中,若a 4a 5a 6=3,log 3a 1+log 3a 2+log 3a 8+log 3a 9的值为( ) A.43B.34C .2D .3434.已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6等于 ( )A .5 2B .7C .6D .425.设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程4x 2-8x +3=0的两根,则a 6+a 7=________.6.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列,则a 2=________. 7.已知数列{a n }成等比数列.(1)若a 2=4,a 5=-12,求数列{a n }的通项公式;(2)若a 3a 4a 5=8,求a 2a 3a 4a 5a 6的值.8.已知正项等比数列{a n }中,a 1a 5+2a 2a 6+a 3a 7=100,a 2a 4-2a 3a 5+a 4a 6=36.求数列{a n }的通项公式. 二、能力提升9.在正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7等于( )A.56B.65C.23D.3210.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8等于( )A .1+ 2B .1-2C .3+2 2D .3-2211.首项为3的等比数列的第n 项是48,第2n -3项是192,则n =________. 12.等比数列{a n }同时满足下列三个条件:①a 1+a 6=11 ②a 3·a 4=329 ③三个数23a 2,a 23,a 4+49依次成等差数列,试求数列{a n }的通项公式. 三、探究与拓展13.从盛满a (a >1)升纯酒精的容器里倒出1升然后添满水摇匀,再倒出1升混合溶液后又用水添满摇匀,如此继续下去,问:第n 次操作后溶液的浓度是多少?若a =2时,至少应倒几次后才能使酒精的浓度低于10%?答案1.B 2.A 3.A 4.A 5.18 6.-6 7.解 (1)由a 5=a 2q 3,得-12=4·q 3,所以q =-12.a n =a 2q n -2=4⎝⎛⎭⎫-12n -2. (2)由a 3a 5=a 24,得a 3a 4a 5=a 34=8.解得a 4=2.又因为a 2a 6=a 3a 5=a 24,所以a 2a 3a 4a 5a 6=a 54=25=32.8.解 a n =12×2n -1=2n -2或a n =32×⎝⎛⎭⎫12n -1=26-n . 9.D 10.C 11.512.解 由等比数列的性质知a 1a 6=a 3a 4=329,∴⎩⎪⎨⎪⎧a 1+a 6=11a 1·a 6=329, 解得⎩⎨⎧ a 1=13a 6=323或⎩⎨⎧ a 1=323a 6=13.当⎩⎨⎧a 1=13a 6=323时q =2,∴a n =13·2n -1.23a 2+a 4+49=329,2a 23=329, ∴23a 2,a 23,a 4+49成等差数列,∴a n =13·2n -1. 当⎩⎨⎧a 1=323a 6=13时q =12,a n =13·26-n ,23a 2+a 4+49≠2a 23, ∴不符合题意,故数列{a n }的通项公式为a n =13·2n -1.13.解 设开始的浓度为1,操作一次后溶液浓度a 1=1-1a,设操作n 次后溶液的浓度为a n .则操作n +1次后溶液的浓度为a n +1=a n (1-1a ),从而建立了递推关系.∴{a n }是以a 1=1-1a 为首项,公比为q =1-1a 的等比数列.∴a n =a 1q n -1=(1-1a)n ,即第n 次操作后酒精的浓度是(1-1a )n .当a =2时,由a n =(12)n <110,解得n ≥4.故至少应操作4次后才能使酒精浓度低于10%.§2.5 等比数列的前n 项和(一)一、基础过关1.已知等比数列{a n }的前n 项和为S n ,且a 1=-1,a 4=64,则S 4等于( )A .48B .49C .50D .512.在等比数列{a n }中,公比q 是整数,a 1+a 4=18,a 2+a 3=12,则此数列的前8项和为( ) A .513B .512C .511D .510 3.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2等于( )A .11B .5C .-8D .-11 4.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2等于( )A .2B .4C.152D.1725.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为________. 6.若等比数列{a n }中,a 1=1,a n =-512,前n 项和为S n =-341,则n 的值是________. 7.设等比数列{a n }的前n 项和为S n ,已知a 2=6,6a 1+a 3=30,求a n 和S n . 8.在等比数列{a n }中,已知S n =48,S 2n =60,求S 3n . 二、能力提升9.已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1等于( )A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n )D.323(1-2-n )10.设{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5等于( ) A.152B.314C.334D.17211.设等比数列{a n }的前n 项和为S n ,若a 1=1,S 6=4S 3,则a 4=________. 12.已知等比数列{a n }中,a 1=2,a 3+2是a 2和a 4的等差中项.(1)求数列{a n }的通项公式;(2)记b n =a n log 2a n ,求数列{b n }的前n 项和S n . 三、探究与拓展13.已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.答案1.D 2.D 3.D 4.C 5.13 6.107.解 当a 1=3,q =2时,a n =3×2n -1, S n =a 1(1-q n )1-q =3(1-2n )1-2=3(2n -1);当a 1=2,q =3时,a n =2×3n -1, S n =a 1(1-q n )1-q =2(1-3n )1-3=3n-1.8.解 因为S 2n ≠2S n ,所以q ≠1,由已知得⎩⎪⎨⎪⎧a 1(1-q n )1-q=48a 1(1-q2n )1-q=60①②②÷①得1+q n =54,即q n =14.③将③代入①得a 11-q=64,所以S 3n =a 1(1-q 3n )1-q =64×⎝⎛⎭⎫1-143=63. 9.C 10.B 11.312.解 (1)设数列{a n }的公比为q ,由题意知:2(a 3+2)=a 2+a 4,∴q 3-2q 2+q -2=0,即(q -2)(q 2+1)=0. ∴q =2,即a n =2·2n -1=2n . (2)b n =n ·2n ,∴S n =1·2+2·22+3·23+…+n ·2n .① 2S n =1·22+2·23+3·24+…+(n -1)·2n +n ·2n +1.②①-②得-S n =21+22+23+24+…+2n -n ·2n +1=-2-(n -1)·2n +1. ∴S n =2+(n -1)·2n +1. 13.解 (1)a n =2-n .(2)设数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和为S n ,即S n =a 1+a 22+…+a n2n -1,① 故S 1=1,S n 2=a 12+a 24+…+a n2n .②所以,当n >1时,①-②得 S n2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-(12+14+…+12n -1)-2-n 2n=1-(1-12n -1)-2-n 2n =n 2n .所以S n =n2n -1.当n =1时也成立.综上,数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和S n =n2n -1.§2.5 等比数列的前n 项和(二)一、基础过关1.在各项都为正数的等比数列{a n }中,首项a 1=3,前3项和为21,则a 3+a 4+a 5等于( ) A .33B .72C .84D .1892.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列{1a n}的前5项和为( )A.158和5B.3116和5C.3116D.1583.一弹性球从100米高处自由落下,每次着地后又跳回到原来高度的一半再落下,则第10次着地时所经过的路程和是(结果保留到个位)( )A .300米B .299米C .199米D .166米4.某企业在今年年初贷款a 万元,年利率为γ,从今年年末开始每年偿还一定金额,预计五年内还清,则每年应偿还( )A.a (1+γ)(1+γ)5-1万元B.aγ(1+γ)5(1+γ)5-1万元C.aγ(1+γ)5(1+γ)4-1万元D.aγ(1+γ)5万元 5.等比数列{a n }共2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.6.等比数列{a n }中,前n 项和为S n ,S 3=2,S 6=6,则a 10+a 11+a 12=________. 7.在等比数列{a n }中,已知S 30=13S 10,S 10+S 30=140,求S 20的值.8.一个热气球在第一分钟上升了25 m 的高度,在以后的每一分钟里,它上升的高度都是它在前一分钟里上升高度的80%.这个热气球上升的高度能超过125 m 吗? 二、能力提升9.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6等于( )A .3×44B .3×44+1C .45D .45+110.某工厂月生产总值的平均增长率为q ,则该工厂的年平均增长率为( )A .qB .12qC .(1+q )12D .(1+q )12-111.银行一年定期储蓄存款年息为r ,三年定期储蓄存款年息为q ,银行为吸收长期资金,鼓励储户存三年定期的存款,那么q 的值应略大于________. 12.利用等比数列前n 项和公式证明a n+an -1b +a n -2b 2+…+b n =a n +1-b n +1a -b,其中n ∈N *a ,b 是不为0的常数,且a ≠b . 三、探究与拓展13.已知{a n }是以a 为首项,q 为公比的等比数列,S n 为它的前n 项和.(1)当S 1,S 3,S 4成等差数列时,求q 的值;(2)当S m ,S n ,S l 成等差数列时,求证:对任意自然数k ,a m +k ,a n +k ,a l +k 也成等差数列.答案1.C 2.C 3.A 4.B 5.2 6.16 7.解 ∵S 30≠3S 10,∴q ≠1.由⎩⎪⎨⎪⎧ S 30=13S 10S 10+S 30=140,∴⎩⎪⎨⎪⎧S 10=10S 30=130, ∴⎩⎪⎨⎪⎧a 1(1-q 10)1-q=10a 1(1-q 30)1-q=130,∴q 20+q 10-12=0. ∴q 10=3,∴S 20=a 1(1-q 20)1-q=S 10(1+q 10)=10×(1+3)=40.8.解 用a n 表示热气球在第n 分钟上升的高度,由题意,得a n +1=45a n ,因此,数列{a n }是首项a 1=25,公比q =45的等比数列.热气球在前n 分钟内上升的总高度为S n =a 1+a 2+…+a n =a 1(1-q n )1-q=25×⎣⎡⎦⎤1-⎝⎛⎭⎫45n 1-45=125×⎣⎡⎦⎤1-⎝⎛⎭⎫45n <125. 故这个热气球上升的高度不可能超过125 m. 9.A 10.D 11.13[(1+r )3-1]12.证明 ∵a ≠0,b ≠0,a ≠b ,∴ba≠1.∴左端=a n +a n -1b +a n -2b 2+…+b n =a n ⎣⎡⎦⎤1+b a +⎝⎛⎭⎫b a 2+…+⎝⎛⎭⎫b a n =a n ⎣⎡⎦⎤1-⎝⎛⎭⎫b a n +11-b a=a n +1⎣⎡⎦⎤1-⎝⎛⎭⎫b a n +1a -b =a n +1-b n +1a -b =右端.∴a n+an -1b +a n -2b 2+…+b n =a n +1-b n +1a -b.13.(1)解 由已知,得a n =aq n -1,因此S 1=a ,S 3=a (1+q +q 2),S 4=a (1+q +q 2+q 3). 当S 1,S 3,S 4成等差数列时,S 4-S 3=S 3-S 1, 可得aq 3=aq +aq 2,化简得q 2-q -1=0.解得q =1±52.(2)证明 若q =1,则{a n }的各项均为a ,此时a m +k ,a n +k ,a l +k 显然成等差数列. 若q ≠1,由S m ,S n ,S l 成等差数列可得S m +S l =2S n , 即a (q m -1)q -1+a (q l -1)q -1=2a (q n -1)q -1,整理得q m +q l =2q n .因此,a m +k +a l +k =aq k -1(q m +q l )=2aq n +k -1=2a n +k .所以a m +k ,a n +k ,a l +k 成等差数列.习题课 数列求和一、基础过关1.数列12·5,15·8,18·11,…,1(3n -1)·(3n +2),…的前n 项和为( )A.n 3n +2B.n 6n +4C.3n 6n +4D.n +1n +22.已知数列{a n }的通项a n =2n +1,由b n =a 1+a 2+a 3+…+a nn 所确定的数列{b n }的前n 项之和是( )A .n (n +2)B.12n (n +4)C.12n (n +5)D.12n (n +7) 3.已知数列{a n }前n 项和为S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 15+S 22-S 31的值是( )A .13B .-76C .46D .764.数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1是首项为1,公比为2的等比数列,那么a n 等于( )A .2n -1B .2n -1-1C .2n +1D .4n -15.一个数列{a n },其中a 1=3,a 2=6,a n +2=a n +1-a n ,那么这个数列的第5项是________. 6.在数列{a n }中,a n +1=2a n2+a n 对所有正整数n 都成立,且a 1=2,则a n =______.7.已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n . (1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n .8.已知数列{a n }满足a 1=1,a n +1=2a n +1. (1)求证:数列{a n +1}是等比数列;(2)求数列{a n }的通项公式a n 和前n 项和S n . 二、能力提升9.如果一个数列{a n }满足a n +a n +1=H (H 为常数,n ∈N *),则称数列{a n }为等和数列,H 为公和,S n 是其前n 项的和,已知等和数列{a n }中,a 1=1,H =-3,则S 2 011等于( ) A .-3 016B .-3 015C .-3 014D .-3 013 10.在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n 等于( )A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n11.数列{a n }中,S n 是其前n 项和,若a 1=1,a n +1=13S n (n ≥1),则a n =____________.12.设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n . 三、探究与拓展13.等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列.(1)求数列{a n }(2)若数列{b n }满足:b n =a n +(-1)n ln a n ,求数列{b n }的前n 项和S n .。