药物合成反应第七章还原反应
- 格式:ppt
- 大小:925.54 KB
- 文档页数:88
9 还原反应通过还原反应,可将不饱和结构转化为饱和结构,将羰基化合物转化为醇,等等,可以实现多种官能团的转化,在药物合成中有着广泛的应用。
本章主要内容为,碳-碳(杂)不饱和结构的还原,多种含氧不饱和结构的化学还原以及氢解等,催化多相加氢等大工业生产常见的还原过程以及生物法还原不在本章重点讨论范围之内。
9.1多相催化加氢、催化转移氢化和均相催化加氢多相催化加氢可以完成从酰卤、炔烃、酮、硝基物、芳烃到羧酸,几乎所有不饱和结构的还原。
多相催化加氢以氢气为氢源,适应面广,但有时需加压,而且当底物中存在多个活性基团时,存在还原的选择性问题。
不同官能团被还原的反应活性不同,催化剂及反应条件也不同。
通常情况下,表9.1的内容可作为催化加氢活性顺序(及反应条件)的参考。
表9.1 不同官能团加氢难易顺序表(易→难)当底物分子中含多个可还原基团时,处在表的前部的基团将被优先还原。
例如还原不饱和醛的羰基,可用加氢法,如果是还原其双键,则加氢法不合适。
催化加氢反应示例:Finasteride中间体的合成。
与多相催化加氢用氢气作氢源不同,催化转移氢化的氢源为有机化合物,通常为不饱和脂环烃、不饱和萜类或醇,如环己烯、alpha-蒎烯和异丙醇等。
所用催化剂可以是钯黑或钯/碳,铂和铑的活性较低,而镍一般用于醇作氢源的反应。
催化转移氢化主要适用于碳-碳不饱和键、硝基、偶氮基、亚胺基和氰基的还原,也可用于碳-卤键、苄基及烯丙基的氢解。
具有反应条件温和,操作简单,基团选择性好等优点。
表9.2列举了更多的应用实例。
表9.2 一些催化转移氢化应用实例均相催化加氢的主要特点是催化剂以分子态溶解在反应介质中,起催化作用,其氢源为氢气。
选择性好,反应条件温和。
催化剂一般为第VIII族过渡元素Rh、Ru、Ir、Co以及Pt等的配合物。
常见的配体是Cl、CN、PPh3、CO和胺等给电子体。
在药物合成中,均相催化法主要应用于碳-碳双键的选择性还原,见表9.3。
9 还原反应通过还原反应,可将不饱和结构转化为饱和结构,将羰基化合物转化为醇,等等,可以实现多种官能团的转化,在药物合成中有着广泛的应用。
本章主要内容为,碳-碳(杂)不饱和结构的还原,多种含氧不饱和结构的化学还原以及氢解等,催化多相加氢等大工业生产常见的还原过程以及生物法还原不在本章重点讨论范围之内。
9.1多相催化加氢、催化转移氢化和均相催化加氢多相催化加氢可以完成从酰卤、炔烃、酮、硝基物、芳烃到羧酸,几乎所有不饱和结构的还原。
多相催化加氢以氢气为氢源,适应面广,但有时需加压,而且当底物中存在多个活性基团时,存在还原的选择性问题。
不同官能团被还原的反应活性不同,催化剂及反应条件也不同。
通常情况下,表9.1的内容可作为催化加氢活性顺序(及反应条件)的参考。
表9.1 不同官能团加氢难易顺序表(易→难)当底物分子中含多个可还原基团时,处在表的前部的基团将被优先还原。
例如还原不饱和醛的羰基,可用加氢法,如果是还原其双键,则加氢法不合适。
催化加氢反应示例:Finasteride中间体的合成。
与多相催化加氢用氢气作氢源不同,催化转移氢化的氢源为有机化合物,通常为不饱和脂环烃、不饱和萜类或醇,如环己烯、alpha-蒎烯和异丙醇等。
所用催化剂可以是钯黑或钯/碳,铂和铑的活性较低,而镍一般用于醇作氢源的反应。
催化转移氢化主要适用于碳-碳不饱和键、硝基、偶氮基、亚胺基和氰基的还原,也可用于碳-卤键、苄基及烯丙基的氢解。
具有反应条件温和,操作简单,基团选择性好等优点。
表9.2列举了更多的应用实例。
表9.2 一些催化转移氢化应用实例均相催化加氢的主要特点是催化剂以分子态溶解在反应介质中,起催化作用,其氢源为氢气。
选择性好,反应条件温和。
催化剂一般为第VIII族过渡元素Rh、Ru、Ir、Co以及Pt等的配合物。
常见的配体是Cl、CN、PPh3、CO和胺等给电子体。
在药物合成中,均相催化法主要应用于碳-碳双键的选择性还原,见表9.3。