水力学知识点
- 格式:doc
- 大小:781.50 KB
- 文档页数:18
水力学知识点总结1. 水的基本性质水是自然界中非常重要的物质,它具有一系列独特的物理、化学性质。
如水的密度、粘度、表面张力等重要性质对水力学研究有着重要的影响。
2. 水动力学水动力学是研究流体的运动规律及其与物体之间的相互作用的科学。
水动力学是水力学的基础,分为静水力学和流体力学。
静水力学研究静止的流体,而流体力学则研究流体的运动。
3. 流体静力学流体静力学是研究静止流体中的压力、浮力和力的平衡问题。
在水力学中,流体静力学主要用于水库、坝体等结构的压力分析。
4. 流体动力学流体动力学是研究流体运动及其产生的压力、阻力以及对物体的作用力。
在水力学中,流体动力学主要应用于河流、渠道等流体动力学性质的研究。
5. 流态力学流体力学是研究流体运动状态与性质的学问。
在水力学中,流态力学主要应用于分析水流的速度、流量、流向、涡流情况等。
6. 水流的稳定性水流的稳定性是水力学中的重要概念,它指的是水体流动时所产生的稳定的流态特性,包括流态的平稳性、安定性和可操作性等。
7. 水力工程水利工程是利用水资源进行灌溉、供水、发电等利用的工程。
水利工程设计要考虑水力学的各种知识,如水流的稳定性、水利工程的结构和设备等方面。
8. 水道工程水道工程是为了改善河流、渠道等水道的通航、排涝等目的的工程项目。
在水道工程设计中,水力学知识对水流速度、水位变化、水力坡等方面有着重要影响。
9. 水电站在水力学中,水电站是一个重要的应用领域。
水力功率的计算、水轮机的设计、水库的水位控制等都需要水力学知识。
10. 河流水文学河流水文学是研究河流的水文特性、水位变化规律、涨落情况等方面的科学。
水文学是水力学中应用最广泛的一个分支,水利工程、水资源评价等方面都需要水文学的知识。
11. 液压机械液压机械是以流体静力学和流体动力学的理论为基础,利用液体作为传动介质的机械装置。
水力学的理论基础对液压机械的设计、制造和使用都有着重要的影响。
12. 水资源评价水力学的知识还被应用于水资源评价领域,通过水文学、水文模型等方法来评价水资源的分布、利用、保护等问题。
绪论1、密度是指单位体积液体所含有的质量 量纲为[M/L3],单位为kg/m32、容重是指单位体积液体所含有的重量 量纲为[F/L3],单位为N/m3一般取ρ水=1000 kg/m3,γ水=9800N/m3=9.8kN/m3第一章 水静力学1、静水压强的特性:①静水压强垂直指向受压面②作用于同一点上各方向的 静水压强的大小相等2、3、绝对压强——以设想没有大气存在的绝对真空状态作为零点计量的压强,用p ′表示(绝对压强恒为正值)相对压强——以当地大气压作为零点计量的压强,用p 表示。
(相对压强可正可负) 4、真空——当液体中某点的绝对压强小于当地大气压强pa , 即其相对压强为负值时,称为水力意义上的“真空”真空值(或真空压强)——指绝对压强小于大气压强的数值,用pk 来表示 5、压强的单位:1个工程大气压=98kN/㎡ =10m 水柱压=735mm 水银柱压6、压强的测量①测压管②U 形水银测压计③差压计7、静水压强分布图的绘制规则:1.按一定比例,用线段长度代表该点静水压强的大小 2.用箭头表示静水压强的方向,并与作用面垂直 8、平面的静水总压力的计算 ①图解法②解析法9、作用于曲面上的静水总压力(投影) 第二章 液体运动的流束理论1、迹线——某液体质点在运动过程中,不同时刻所流经的空间点所连成的线。
流线——是指某一瞬时,在流场中绘出的一条光滑曲线,其上所有各点的速度向量都与该曲线相切。
/流管——由流线构成的一个封闭的管状曲面 微小流束——充满以流管为边界的一束液流总流——在一定边界内具有一定大小尺寸的实际流动的水流,它是由无数多个微小流束组成2、水流的分类(1)按运动要素是否随时间变化①恒定流——运动要素不随时间变化②非恒定流——运动要素随时间变化(2)按同一流线上各质点的流速矢是否沿流程变化①均匀流——同一流线上流速矢沿流程不发生变化②非均匀流 a 、渐变流b 、急变流 3、均匀流的重要特性(1)过水断面为平面,且过水断面的形状和尺寸沿程不变(2) 同一流线上不同点的流速应相等,从而各过水断面上的流速分布相同,断面平均流速相等(3) 均匀流(包括非均匀的渐变流)过水断面上的动水压强分布规律与静水压强分布规律p z C gρ+=0p p ghρ=+相同,即在同一过水断面上各点的测压管水头为一常数推论:均匀流(包括非均匀的渐变流)过水断面上动水总压力的计算方法与静水总压力的计算方法相同。
第一章水力学基本知识1.惯性:具有维持它原有运动状态的特性、质量越大,运动状态越难改变,因而惯性越大2.单位体积内液体所具有的重量称为该液体的容重(重度)3.内摩擦力f=黏滞力4.谬u:动力粘滞系数与液体性质有关5.u液体表面与底面流速差6.液体粘滞性还可用运动粘滞系数v表示v=谬u/破p7.压缩性:液体不能承受拉力,可以承受压力。
液体受压缩后体积缩小,密度增加,同时液体内部会产生压力抵抗压缩变形,这种性质被称为液体的压缩性;压力解除后消除变形,恢复原状,这种性质称为液体弹性8.表面张力:表面张力仅在液体表面存在,液体内部不存在9.连续介质假说:假设液体是一种连续充满其所占据空间毫无间隙的连续体,水力学所研究的液体运动是连续介质的连续运动10.理想液体概念:水是不可被压缩,没有粘滞性,没有表面张力的连续介质11.质量力:常见的重力和惯性力皆属于质量力,单位质量液体所受的质量力为单位质量力m第二章水力静学1.等压面:静止液体中凡压强相等的各点连接起来组成的面(平面或曲面)称为等压面2.等压面重要性质:作用于静止液体上任意一点的质量力必须垂直于通过该点的等压面3.重力液体的等压面是重力加速度g互相垂直的曲面4.所以平衡液体的自由表面是等压面,即液体静止时的自由表面是水平面,静止液体中两种不同液体的分界面是等压面5.等压面概念:相连通的两种液体6.绝对压强:以设想没有大气存在的绝对真空状态作为零点计量的压强7.相对压强:把当地大气压作为零点计量的压强8.p’绝对压强p相对压强Pa当地大气压强9.Yh为液体自重产生压强,与水呈线性关系,沿水深的压强分布图为直角三角形10.压强分布图中各点压强方向恒垂直指向作用面,两受压面交点处的压强具有各向等值性11.z—位置高度,即计算点距计算基准面的高度,称位置水头12.p/y—压强高度测压管中水面至计算点的高度,称压强水头13.z+p/y—测压管中水面至计算点的高度,称测压管水头(单位重量液体的势能,简称单位势能)第三章水力学基础1.迹线:是单个液体质点在某一时间段内的运动轨迹线2.流线:是在某一瞬时的空间流场中,表示各质点流动方向的曲线流线上所有各点在该瞬时的厉害矢量都和该流线相切,流线不能相交和转折3.元流,总流,过水断面:充满微小流管内的液体称为元流;充满流管内的液体称为总流,总流是无数元流的总和;与元流或总流中所有流线相正交的截面称为过水断面4.流量:单位时间内通过某一过水断面的液体体积5.恒定流,非恒定流:所有水流运动要素均不随时间变化的液流称恒定流;水流任一运动要素随时间变化的液流称非恒定流6.无压流,有压流:凡过水断面的部分周线为自由表面的液流称为无压流;凡过水断面的全部周线均于固体壁面相接触的液流称为有压流7.毕托管:一种测量液体点流速的仪器8.文丘里管:测量管道中液体流量的常用仪器9.雷诺数:表征了惯性力与黏滞力的比值雷诺数Rek≈2300是一个相当稳定的数值10.层流底层:液体作紊流运动时,紧邻壁面液体层的流速很小,流速梯度很大,黏滞力处于主导地位,且质点的横向混掺受到很大约束,因此总存在有保持层流流动的薄层,称为层流底层11.紊流切应力:在紊流中的水流阻力除了粘性阻力t1外,液体质点混参和运动量交换还将产生附加的切应力t2,简称紊流的附加应力12.重力流,无压流:明渠中水流是直接依靠重力作用而产生的,称重力流;同时它具有自由表面,相对压强为零,故称为无压流13.明渠均匀流形成条件①必须是顺坡渠道i>0并在较长一段距离保持不变②必须是长而直的棱柱形渠道③渠道表面的糙率n应沿程不变④渠道中的水流应是恒定流14.水力最佳断面:矩形渠道水力最佳断面的底宽为水深的两倍即水力半径为水深的1/215.水文资料应有以下四性①可靠性②代表性③独立性④一致性16.水位观测:水位是河流最基本的水文要素12.我国统一规定用青岛验潮站的黄海平均海平面作为水准基面17.水位观测通常用水尺和自记水位计,水尺读数加水尺零点高程就是水位18.水文调查:步骤是先建立水文断面,通过洪水调查,确定各种洪水位和洪水比降,进而确定水文断面的流速和流量19.洪水调查:访问调查洪痕调查20.其他调查:其他调查主要有冰凌调查和既有涉河工程调查21.堰流和堰:在明渠流中,为控制水位或控制流量而设置构筑物,使水流溢过构筑物的流动称为堰流,该构筑物称为堰22.堰水力特性:①堰的上游水流受阻,水面壅高,势能增大;在堰顶上由于水深变小,流速变大,使动能增大,在势能转化为动能过程中,水面有下跌的现象。
《水力学》自己复习整理知识框架水力学是研究水流在各种流动条件下的物理规律的学科。
水力学的研究对象包括河流、湖泊、水库、海洋等自然水体的运动规律,以及水力工程中涉及的渠道、管道、泵站等的水流行为。
以下是水力学的知识框架及复习整理。
一、基本概念和基本方程1.水力学的研究对象、目标和意义2.水的物理性质及其在水力学中的应用3.流动的基本概念:流线、流量、流速、剖面平均流速、平均流速、瞬时流速、表观流速、临界流速等4.流体运动的宏观描述:物质守恒定律、动量守恒定律、能量守恒定律5.海森堡统一速度场二、流态分类和力学特性1.流态分类:层流和湍流2.湍流的产生和发展机制3.湍流的统计特性:平均流速、涡度、雷诺应力、雷诺应力公式等4.湍流的判别方法和湍流的传输性质三、流动的基本方程1.牛顿第二定律和欧拉方程2.曼宁公式和雨道公式3.马克斯韦方程组和势流理论4.控制体分析法和控制体微分形式四、流动的能量方程1.泊肃叶方程和能量守恒方程2.流动过程中的能量转化和能量损失3.流体摩擦和阻力的计算五、水力学实验和模型1.水力学原理实验、水工模型2.模型尺度和相似理论3.型流和真流的关系4.实测资料的处理和分析六、流动的计算方法1.数值方法在水力学中的应用2.一维水流数值模拟方法3.CFD在水力学中的应用4.流动的计算机模拟与可视化技术七、水动力学1.水体运动的动力学机制2.水体运动的力学特性3.溶解氧和氨氮的弥散4.水体温度和盐度的传输以上是《水力学》的知识框架和复习整理,通过掌握这些知识点,可以对水力学的基本概念、基本方程和流态分类等进行全面地理解和复习。
同时,了解水力学实验和模型、流动的计算方法以及水动力学等内容,可以为深入研究水力学提供一定的基础。
在复习过程中,可以结合教材、参考书籍和相关研究论文进行学习和理解,通过刷题和实践练习来提高对该学科的应用能力和实际问题解决能力。
知识点 第0章 绪论1. 连续介质2.实际流体模型由质点组成的连续体,具有:易流动性、粘滞性、不可压缩性、不计表面张力的性质.3.粘滞性:牛顿内摩擦定律 dydu μτ= 4.理想流体模型:不考虑粘滞性。
5.作用在液体上的力:质量力、表面力例:1.在静水中取一六面体,分析其所受的外力:作用在该六面体上的力有 ( )(a )切向力、正压力 (b) 正压力(c) 正压力、重力 (d) 正压力、切向力、重力2.在明渠均匀流中取一六面体,其所受的外力:作用在该六面体上有 ( )(a )切向力、正压力 (b) 正压力(c) 正压力、重力 (d) 正压力、切向力、重力3. 理想流体与实际流体的区别仅在于,理想流体具有不可压缩性。
( )第1章 水静力学1.静压强的特性(1)垂直指向受压面。
(2)在同一点各方向的静压强大小与受压面方位无关. 2.等压面:等压面是水平面的条件 3.水静力学基本方程2. 基本概念位置水头、压强水头、测压管水头 、绝对压强、相对压强、真空压强。
C gpz =+ρghp p ρ+=03. 静压强分布图 5.点压强的计算利用:等压面、静压强基本方程。
解题思路:① 找等压面② 找已知点压强③利用静压强基本方程推求。
6 作用在平面上的静水总压力图解法:Ω=b P解析法:A gh P c ρ= A y I y y c cc D +=7. 作用在曲面上的静水总压力关键:压力体画法以曲面为底面,向自由液面(自由液面延长面)投影,曲面、铅锤面、自由液面所包围的水体为压力体。
压力体与水在同一侧为实压力体,铅锤分力方向向下。
反之,为虚压力体,铅锤分力方向向上。
例 1. 流体内部某点存在真空,是指 ( )(a )该点的绝对压强为正值 (b )该点的相对压强为正值 (c )该点的绝对压强为负值 (d )该点的相对压强为负值2. 流体内部某点压强为2个大气压,用液柱高度为 ( )a) 10米水柱 b) 22米水柱 c)20米水柱 d)25米水柱3. 无论流体作何种运动,流体内任何一个水平面都是等压面。
水力学知识点总结水力学是一门涉及流体力学的应用分支,主要研究大气、洪水、潮流、海水和其他水体流动的规律,是水利、海洋、环境等领域的重要基础理论。
水力学的研究具有重要的现实意义,可为水利工程和水环境保护提供基础理论支持。
一、水体流速水力学中最重要的一个概念是流速,是指水体在江河或湖泊表面、管道或渠道中的运动速度。
流速可以是恒定的,也可以是变化的,常常受到水体的形态、地形和静水压力等因素的影响。
一般情况下,运动水体的流速越大,水体的压力越大,流量也越大。
二、水体压力水力学中还涉及水体的压力。
它是指水体表面所受的垂直力,是施加在水体上的压力与密度的乘积。
压力的大小取决于水体的形态、体积、温度和物质的混合情况等。
三、水体受力水力学中还涉及水体受力的问题,它是指水体运动时受到的力,如摩擦力、重力力等。
摩擦力是水体在渠道内的内部摩擦,受水体的流动速度、渠道或管道的形状和尺寸、水体的粘度等因素的影响。
重力力则是水体由高处往低处流动时受到的力,表现为水体出现上下流动,其力量是由水体的坡度、深度、流速等因素决定的。
四、流速场流速场是水体运动中不同位置、时间上流速分布的空间变化情况,即流速随着位置和时间的变化而变化。
流速场可以用数学方法或实验方法进行测量,可以用来研究水体的运动特性。
五、洪水洪水是指降水量大于雨水融化和地面蒸发量,导致河流和湖泊水位上升的现象,是水力学中的重要内容。
通过对洪水的研究,可以提出洪水管理的技术原则,以及建立水库、堤坝、排洪渠等水利工程,为防洪险治理等提供理论指导。
六、潮流潮流是指海水上涨(潮汐)和下降(涨潮)的现象,是水力学中一个重要研究内容。
潮流的研究主要是研究潮汐的周期性变化和水位的变化,以及潮汐的影响等,可以为海洋工程设计提供参考。
七、水力机械水力机械指以水体动力为主要驱动力的机械设备,包括水力发电机、水轮机、涡轮机等。
水力机械的运行必须符合水力学的规律,因此,研究水力机械运行过程中的水力学规律,也是水力学研究时不可忽视的重要内容。
复习总结第一章绪论一、 概念1、水力学:用实验和分析的方法,研究液体机械运动(平衡和运动)规律及其实际应用的一门科学。
2、密度和容重:ρ=V M γ=VMg γ=ρg 纯净水1个标准大气压下,1atm 4℃时密度最大ρ水=1000kg /m 3 γ水=9.80kN/m 3 ρ水银=13.6×103 kg /m 3 1N=1kgm/s 23、粘滞性:液体质点抵抗相对运动的性质。
粘滞性是液体内摩擦力存在的表现,是液体运动中能量产生损失的根本原因。
4、理想液体:不考虑粘滞性、可压缩性等特性的液体称为理想液体。
τ=μdy du 或T=μA dyduμ动粘 [ML -1T -1] Pa.s (帕.秒)1 Pa=1N/m2 1N=1kg ²m/s 2ν运粘 [L 2T -1] m 2/sν=μ/ρ水的经验公式:ν=2000221.00337.0101775.0tt ++公式中ν单位为cm 2/s ,t 为水温℃。
5、连续介质模型:假定液体质点毫无空隙地充满所占空间,描述液体运动物理量(质量、速度、压力等)是时间和空间的连续函数,因而可用连续函数的分析方法来研究,这种假定对解决一般工程实际问题是有足够的精度的。
6、压缩性 一般不考虑热膨胀性流动性 二、 问题1、 牛顿内摩擦定律简单应用;2、 作用于液体上的力:质量力、表面力;3、 水力学研究方法:理论分析、数值计算、模型实验方法第二章液体静力学一、概念1、静水压强:p =A PA ∆∆→∆0lim=dA dP2、等压面:均质连通液体中,压强各点相等的点构成的面称为等压面。
二个性质:等压面是等势面,与质量力正交。
汞水··ABC连通不均质AB 不是等压面 均质不连通,ABC 等压,但A 与B 不是等压面3、压强的二种计量基准:绝对压强、相对压强、真空值或真空度p v 或p v /γo绝对压强基准,完全真空)p a)关于真空值或真空度:由于压强的三种度量方法,二者区别并不明显。
绪论1.连续介质假说: 即认为液体和气体充满一个空间时, 分子间没有间隙, 是一种连续介质, 其物理性质和运动要素都是连续分布的, 在此基础上, 一般还认为液体石均质的, 其物理性质具有均匀等向性。
2.在标准大气压下, t=4时水的密度最大=1000kg/mmm;t=0时, 冰的体积比水约大9%。
3.流动性:静止时, 液体不能承受切力、抵抗剪切变形的特性, 称为流动性。
4.粘滞性:在运动状态下, 液体所具有抵抗剪切变形的能力, 称为粘滞性。
是运动液体机械能损失的根源。
(牛顿平板实验)5.理想液体: 没有粘滞性的液体。
6.实际液体: 理想+修正。
7.质量力:作用在液体每一质点上, 其大小与受作用液体质量成正比的力。
(常见有重力、惯性力)1.表面力: 作用于液体隔离体表面上的力。
2.思考题:3.什么是连续介质模型?为什么要提出此模型?第一章什么是单位质量力?为什么质量力常用单位质量力表示, 举例说明。
第二章液体内摩擦力有哪些特性?什么情况下需要考虑内摩擦力的影响?第三章静水力学1.静止: 相对静止和绝对静止, 相对静止下, 液体内部质点间没有相对运动, 其粘滞性不起作用。
2.静水压强特性: 垂直指向作用面;同一点出, 静水压强各向等值。
3.等压面:液体中压强相等各点所构成的曲面, 如自由表面。
在静止液体中, 质量力与等压面相互垂直。
4.基本方程:压强表示方法: 单位面积上的力;液柱高度;工程大气压的倍数。
基本方程的几何、水力学、能量意义:z——计算点的位置高度;位置水头;单位位能;——=h, 压强高度, 即测压管中水面至计算点的高度;压强水头;单位压能;z+pr——计算点处测压管中的水面距计算基准面的高度;测管水头;单位全势能;z+pr=C——静止液体中各点位置高度和压强高度之和不变;各点测压管水头或静止水头不变;各点单位全势能不变。
5.待测点压强较小时: 1, 提高读书精确度;2, 改用轻质液体;3, 倾斜放置测压管。
一、流体的主要性质:①惯性(质量密度)②万有引力(重量和容重)③粘滞性④压缩性二、表面力:作用在液体的表面上,并与受作用的的液体表面积成比例的力。
三、质量力:作用在液体的每一个质点上,并与受作用的液体质量成比例的力。
四、静水压强:把静置液体作用在受压面单位面积上的静水压力,称为静水压强。
五、静水压强的特性:(1)静水压强的方向垂直并指向受压面(2)静水压强的大小与作用面的方位无关六、等压面:由压强相等的空间点构成的面积称为等压面。
七、等压面的两个性质:①在平行液体中,等压面为等势面②等压面垂直质量力八、描述液体运动的两种方法:(1)拉格朗日法:把每一个质点作为研究对象,观察其运动的轨迹、速度和加速度,掌握其运动状况,综合所有质点的运动情况就可得到这个液体的运动规律,(2)欧拉法:以考察不同液体质点通过固定的空间点的运动情况来了解这个运动空间内的流动情况,既着眼于研究各运动要素的分布场,又叫流场法。
九、流管:在水流中,任取一条与流线重合的微小封闭曲线,通过曲线上每一点做一条流线,这些流线成一个封闭的管状表面,称为流管十、元流:充满以流管为边界的水流称为元流。
十一、非恒定流:液体运动区域内每个点处的动水压强和流速随时间而改变,也就是说他们不仅同坐标有关,而且同时间有关。
十二、恒定流:当运动液体在任意空间点处的动水压强和流速,均不随时间而改变时,称为恒定流。
十三、均匀流:组成总流的各个流线或元流为互相平行的直线时,这种水流称为均匀流。
十四、均匀流的特性:(1)均匀流的过水断面为平面,其形状和尺寸均沿程不变。
(2)均匀流中,同一流线上不同点的流速都相等,,因此各过水断面上的流速分布相同,断面平均流速相等。
(3)均匀流过水断面上的动水压强分布规律与静水压强分布规律相同,既在同一过水断面上各点的测压管水头为一常输。
十四、非均匀流:水流的流线与流线之间不是互相平行的直线时,该水流称为非均匀流十五、渐变流:水流的流线虽然不是相互平行的直线,但其流线间夹角甚小,或流线虽然平行,但并非直线,而其曲率半径甚大。
水力相关知识点总结一、水的运动规律1.1 流体的基本性质流体是一种没有固定形状的物质,它能够适应所容器的形状。
流体有两种基本形式:液体和气体。
在水力学中,液体是最常见的流体形式,它是水力学研究的主要对象。
1.2 流体的运动规律流体的运动受到许多因素的影响,如重力、惯性力、压力等。
在水流中,常见的运动规律有流速、流量、水头等参数,它们都可以通过数学模型来描述流体的运动情况。
1.3 流体的阻力流体在运动过程中会受到阻力的影响,这是因为流体与容器表面或其他流体之间存在摩擦力。
在水力学中,流体的阻力是一个重要的参数,它会影响水流的速度和流量。
1.4 流体的动能与静能流体有两种基本的能量形式:动能与静能。
动能是流体在运动过程中所具有的能量,它与流体的速度有关;静能是流体在停止运动时所具有的能量,它与流体的压力有关。
这两种能量形式都是水力学中重要的概念,它们对于水流的运动状态和能量转换具有重要影响。
二、水力工程设施2.1 水库水库是一种蓄水建筑,它可以储存大量的水资源,并且可以调节水流量和水位。
在水力学中,水库是重要的水利工程设施,它被广泛应用于灌溉、供水、防洪等方面。
2.2 水坝水坝是用来阻挡水流或者调节水位的工程结构,它在水力学中起着非常重要的作用。
水坝可以分为重力坝、拱坝、重力拱坝、土石坝等不同类型,不同类型的水坝有着不同的结构和功能。
2.3 水轮机水轮机是一种利用水流能量来驱动机械设备的装置,它是水力发电的核心设备。
水轮机根据其结构和工作原理可以分为垂直轴水轮机和水平轴水轮机,它们在水力发电中扮演着不同的角色。
2.4 水利工程水力工程是研究和应用水的相关知识和技术的学科,它涵盖了水库、水坝、水轮机、水渠、泵站等许多方面。
水力工程在农业灌溉、城市供水、水电发电、防洪抗旱等方面都有着重要的应用,对于社会经济的发展和人类生活的改善都起着至关重要的作用。
三、水力发电原理3.1 水力发电的概念水力发电是利用水流的动能进行能源转换,将水流能转化为电能。
第一章绪论 1.水力学的研究方法:理论分析方法、实验方法,数值计算法。
2.实验方法:原型观测、模型试验。
3.液体的主要物理性质:①质量和密度②重量和重度③易流动性与粘滞性④压缩性⑤气化特性和表面张力。
4.理想液体:没有粘滞性的液体(μ=0)。
5.实际液体:存在粘滞性的液体(μ≠0)。
6.牛顿液体:τ与du/dy呈过原点的正比例关系的液体。
7.非牛顿液体:与牛顿内摩擦定律不相符的液体。
8.作用在液体上的力:即作用在隔离体上的外力。
9.按物理性质区分:粘性力、重力、惯性力、弹性力、表面张力。
10.按力的作用特点区分:质量力和表面力两类。
11.质量力:作用在液体每一质点上,其大小与受作用液体质量成正比例的力。
12.表面力:作用于液体隔离体表面上的力。
第二章水静力学 1.静水压强特性:①垂直指向作用面②同一点处,静水压强各向等值。
2.静水压强分布的微分方程:dp=ρ(Xdx+ Ydy+ Zdz),它表明静水压强分布取决于液体所受的单位质量力。
3.等压面:液体压强相等各点所构成的曲面。
等压面概念的应用应注意,它必须是相连通的同种液体。
4.压强的单位可有三种表示方法:①用单位面积上的力表示:应力单位Pa,kN/m2②用液柱高度表示:m(液柱),如p=98kN/m2,则有p/γ=98/9.8=10m(水柱)③用工程大气压Pa的倍数表示:1p a=98kP a。
5.绝对压强p abs:以绝对真空作起算零点的压强(是液体的实际压强,≥0)p abs=p o+γh6.相对压强pγ:以工程大气压p a作起算零点的压强,pγ=p abs-p a= (p o+γh)-p a 真空:绝对压强小于大气压强时的水力现象。
真空值p v:大气压强与绝对压强的差值。
7.帕斯卡原理:在静止液体中任一点压强的增减,必将引起其他各点压强的等值增减。
应用:水压机、水力起重机及液压传动装置等。
8.压强分布图的绘制与应用要点:①压强分布图中各点压强方向恒垂直指向作用面,两受压面交点处的压强具有各向等值性。
水力学复习知识点水力学是研究液体的运动和行为的学科,主要研究液体在管道中的流动、流体的力学性质以及与流体运动相关的现象。
下面将介绍水力学的一些重要知识点。
1.流体的性质:-流体的密度:单位体积流体的质量,通常用ρ表示。
-流体的粘度:流体阻止流动的性质,通常用μ表示。
-流体的压力:单位面积上流体对物体施加的作用力,通常用P表示。
2.流体静力学:- 流体压力:与深度有关,可以通过P = ρgh计算,其中ρ为液体密度,g为重力加速度,h为液体的高度。
-流体静力学定律:流体静力学定律包括帕斯卡定律、阿基米德原理和斯托克斯定律。
3.流体动力学:-流体的运动:流体可以分为层流和湍流。
层流是指流体的分子按照规则的、平行的和层层叠加的方式运动。
湍流是指流体的分子按照混乱无序的方式运动。
-流速:指流体在单位时间内通过其中一截面的体积,通常用v表示。
-流量:指流体在单位时间内通过其中一截面的质量,通常用Q表示,流量Q=Av,其中A为截面积。
-连续性方程:流体质量守恒定律,即当流体连续流动时,进出流体质量需要保持一致,表达式为A1v1=A2v2,其中A为截面积,v为流速。
- 能量守恒方程:描述了流体的能量转化和损失,表达式为P1 +0.5ρv1^2 + ρgh1 = P2 + 0.5ρv2^2 + ρgh2,其中P为压力,ρ为密度,v为流速,h为高度。
-流体动力学定律:主要包括伯努利定律、托利少定律和勒让德定律。
伯努利定律描述了流体在不同压力下的流动,托利少定律描述了流体在曲线壁面上的流动,勒让德定律描述了固体颗粒在流体中的运动。
4.管道流动:-管道流动类型:包括层流和湍流两种。
-管道流动速度分布:在层流中,流速沿半径方向呈线性分布;在湍流中,流速分布更复杂,通常是非线性的。
-管道流量与压力损失:管道流量与压力损失之间存在一定的关系,通常可以通过流体动力学定律来计算。
-管道流动的实际应用:管道流动广泛应用于供水、排水、油气输送管道等领域,对于基础设施建设和工程设计具有重要意义。
知识点 第0章 绪论1. 连续介质2.实际流体模型由质点组成的连续体,具有:易流动性、粘滞性、不可压缩性、不计表面张力的性质.3.粘滞性:牛顿内摩擦定律 dydu μτ= 4.理想流体模型:不考虑粘滞性。
5.作用在液体上的力:质量力、表面力例:1.在静水中取一六面体,分析其所受的外力:作用在该六面体上的力有 ( )(a )切向力、正压力 (b) 正压力(c) 正压力、重力 (d) 正压力、切向力、重力2.在明渠均匀流中取一六面体,其所受的外力:作用在该六面体上有 ( )(a )切向力、正压力 (b) 正压力(c) 正压力、重力 (d) 正压力、切向力、重力3. 理想流体与实际流体的区别仅在于,理想流体具有不可压缩性。
( )第1章 水静力学1.静压强的特性(1)垂直指向受压面。
(2)在同一点各方向的静压强大小与受压面方位无关. 2.等压面:等压面是水平面的条件 3.水静力学基本方程2. 基本概念位置水头、压强水头、测压管水头 、绝对压强、相对压强、真空压强。
C gpz =+ρghp p ρ+=03. 静压强分布图 5.点压强的计算利用:等压面、静压强基本方程。
解题思路:① 找等压面② 找已知点压强③利用静压强基本方程推求。
6 作用在平面上的静水总压力图解法:Ω=b P解析法:A gh Pc ρ= 7. 作用在曲面上的静水总压力关键:压力体画法以曲面为底面,向自由液面(自由液面延长面)投影,曲面、铅锤面、自由液面所包围的水体为压力体。
压力体与水在同一侧为实压力体,铅锤分力方向向下。
反之,为虚压力体,铅锤分力方向向上。
例 1. 流体内部某点存在真空,是指 ( )(a )该点的绝对压强为正值 (b )该点的相对压强为正值 (c )该点的绝对压强为负值 (d )该点的相对压强为负值2. 流体内部某点压强为2个大气压,用液柱高度为 ( )a) 10米水柱 b) 22米水柱 c)20米水柱 d)25米水柱3. 无论流体作何种运动,流体内任何一个水平面都是等压面。
( )第2章 液体运动的流束理论1.描述流体运动的两种方法:拉格朗日(Lagrange)法、欧拉(Euler)法2.基本概念Ay I y y c ccD +=迹线和流线、流管、元流、总流和过水断面、流量和断面平均流速、一元流、二元流和三元流、恒定流与非恒定流、均匀流与非均匀流;渐变流、急变流。
3.不可压缩均质流体连续性方程0=∂∂+∂∂+∂∂zu y u x u zy x 4.恒定总流连续方程:2211v A v A =5.理想流体元流的能量方程gu g p z g u g p z 2222222111++=++ρρ6.实际流体元流的能量方程'2222211122wh gu g p z g u g p z +++=++ρρ7.实际流体恒定总流能量方程21222222111122-+++=++w h g v g p z g v g p z αραρ21222222111122-+++=±++w h gv g p z H g v g p z αραρ能量方程应用注意事项(三选)(1)基准面:(可任选,以方便为原则)(2)过流断面:(必须是均匀流或渐变流断面,中间可为急变流) (3)计算点:(可任选,以方便为原则) 8.恒定总流动量方程v v Q ∑=-)(1122ββρ分量形式:x x x F v v Q ∑=-)(2122ββρ y y y F v v Q ∑=-)(2122ββρz z z F v v Q ∑=-)(2122ββρ9. 动量方程应用注意事项(1)选择脱离体(控制面) (2)建立坐标系 (3)全面分析外力(4)动量方程为矢量式,流速、力均有方向。
(5)方程左边为所取流段的动量的变化率,一定是流出的动量减去流入的动量。
10. 三大方程联合应用(1)(2)11.π定理对于任一物理过程,存在有n 个物理量,总可以写成函数0),,(321=⋅⋅⋅n q q q q f若选择其中m 个物理量作为基本量,(流体力学中一般3=m ,一个几何量,一个运动量,一个动力量),其他的物理量可以用这3个基本量表示,写为无量纲的π式,共写出)3(-n 个有效 π 式,γβαπ32144q q q q =此物理过程可写为:0)....,(654=n F ππππ 通过量纲和谐原理建立其物理量之间的关系,此乃定理。
例.1. 在水箱上接出一条等直径圆管,末端设有阀门已控制流量,若水箱内水面不随时间变化、当阀门开度一定时,管中水流为 ( ) (a)恒定均匀流 (b )恒定非均匀流 (c )非恒定均匀流 (d )非恒定非均匀流 2. 恒定流一定是均匀流。
( ) 3.在恒定流情况下,流线与迹线重合。
( )第3章 液流型态与水头损失1.液体流动的两种型态层流:流体质点互不掺混,做有条不紊的规则运动。
紊流:流体质点互相掺混,形成涡体,做杂乱无章的运动。
1. 流态的判别 — 雷诺数管流:νvd=Re非圆管或明渠水流:νvR=Re2000Re =c 500Re =c2.水头损失达西公式:gv d l h f 22λ=3.均匀流基本公式固体边界:gRJ ρτ=0 流体内部:J gR 'ρτ=4.圆管过水断面上切应力的分布0r r ττ=2. 圆管中的层流运动切应力:dy duμτ=断面流速分布:)(4220r r gJ u -=μρ最大流速:(管轴线上) 20max 4r gJ u μρ= 断面平均流速: max 20218u r gJ v ==μρ g v d l h f3Re 642=令 Re64=λ g v d l h f32λ= 6.紊流的特征紊流中运动要素的脉动瞬时流速:')(x x x u u t u +=时均流速: ')(1x x x x u u dt t u T u ±==⎰脉动流速:x x xu u u -='7.紊流附加切应力21τττ+= 22)(dydu l dy du ρμτ+=8.紊流流速分布c y v u +=*ln 1β对数曲线分布,流速分布均匀化了。
此即0.1=α,0.1=β的原因。
9.粘流底层受粘滞力作用,有一极薄层流体附在管壁上不流动;在靠近固体边界附近的液层做层流运动,称之为粘性底层。
粘性底层的厚度用δ表示。
粘性底层的厚度不是一成不变的,与直径、雷诺数、粗糙度有关。
10. 紊流分区绝对粗糙度 K 粘性底层 δ 紊流流核 (1)水力光滑区 δ4.0<K(2)过渡粗糙区 δδ64.0<<K (3)粗糙区(阻力平方区)δ6>K11.尼古拉兹实验I 区,Re<2300,层流区 λ=f (Re ),II 区,Re=2300~4000, 层流到紊流过渡区λ= f (Re ,K/d) III 区,105<Re>4000,紊流水力光滑 区 λ=f (Re ).IV 区,过渡粗糙区,λ=f (Re 、K /d ).V 区,粗糙管,λ=f (K /d ). ‘阻力平方区’。
12. 局部损失计算公式: gv h j 22ζ=突然放大局部损失计算公式的推导。
g v v h j 2)(221-=⎪⎪⎭⎪⎪⎬⎫=-==-=g v g v A A h g v g v A A h j j 22)1(22)1(2222221221121221ζζ ⎪⎪⎭⎪⎪⎬⎫-=-=212222111A A A A 1)()(ζζ 等直径圆管中紊流的过流断面流速分布是 ( )(a)呈抛物线分布 (b) 呈对数线分布(c)呈椭圆曲线分布 (d) 呈双线分布2. 壁面粗糙的管道一定是水力粗糙管。
( )3. 在进行水力计算时,短管是指管道几何长度较短的管道。
( )4. 临界雷诺数的大小仅与流体的流速有关,与流体的性质无关。
( )5. 圆管中层流与紊流,其断面流速分布有什么不同?试根据尼古拉兹试验,说明紊流各区沿程阻力系数λ与Re 和d K 的关系?7. 层流与紊流的内部切应力有何不同?第4章 有压管中的恒定流1.孔口分类:(1)大孔口与小孔口 (大孔口10<dH;小孔口10>d H ) (2)薄壁孔口与厚壁孔口(3)自由出流与淹没出流 (4)恒定出流与非恒定出流 2.薄壁小孔口恒定出流流量公式:02gH A Q μ=3.管嘴出流流量公式:02gH A Qn μ=μμ32.1=n ,收缩断面压强:075.0H p c-=γ管嘴工作条件:(a)d l )4~3(=;(b)m H 90≤(水柱) 4.短管的水力计算流量公式:02gH A Q μ= ζλαμ∑++=dl1gH A Q 2μ=3. 总水头线与测压管水头线的画法。
(1) 总水头线测压管水头线。
规律:(1)总水头线沿程总是下降的。
(2)测压管水头线总是在总水头线的下方。
(反之) (3)测压管水头线沿程可升可降。
总水头线与测压管水头线重合,为折线。
6.长管的水力计算(1)简单管路计算公式:l RC A Q gA Q R l c g g v d l h H f 22222222482====λ 令R AC K= 流量模数l KQ h H f 22==粗糙区(s m v /2.1≥):l KQ h H f 22== 水力光滑区或紊流过渡区(s m v/2.1<)l KQ k h H f 22==还可表示为:252422282162lQ d g d g Q d l g v d l h H f πλπλλ====令:528d g s πλ=(比阻)粗糙区(s m v /2.1≥):2SlQ h H f == 水力光滑区或紊流过渡区(s m v /2.1<)2kSlQh H f ==k —修正系数(2)串联管路计算原则:(1)21i i ni i Q l s H∑== i ii ni l K Q H 221∑==(2)1++=i i i Q q Q (节点流量)(3)并联管路 计算原则:(1)....321====f f f fh h h h(2)01=∑=ni i Q (节点流量)例:1. 总水头线与测压管水头线的基本规律之一,是: ( )(a )总水头线总是沿程升高。
(b )总水头线总是在测压管水头线的上方。
(c )测压管水头线沿程升高。
(d )测压管水头线总是沿程下降的。
2. 外延管嘴的正常工作条件是 ( )(a ) 管长等于3-4倍的管径 (b )作用水头小于9米水柱(c) 管长l <(3-4)d ,作用水头大于9米水柱 (b ) 管长l =(3-4)d ,作用水头小于9米水柱第5章 明渠恒定均匀流1.明渠的分类:(1)按渠身形式分类: 棱柱形渠道 非棱柱形渠道(2)按底坡分类: 顺坡渠道 0>i ;逆坡渠道 0<i ;平坡渠道 0=i (3)按渠道断面分类:梯形渠道、矩形渠道、复式断面渠道…… 流动形态:明渠恒定流、明渠非恒定流、明渠均匀流、明渠非均匀流明渠非均匀流又分为:急变流与渐变流2.明渠均匀流的水力特征:(1)底坡线、水面线、总水头线,三线平行。