精选25134-学习情境四汽车驱动防滑控制系统结构和检修(收藏)
- 格式:ppt
- 大小:3.00 MB
- 文档页数:145
汽车防滑控制系统结构及工作原理汽车防滑控制系统(Anti-lock Braking System,简称ABS)是一种用于改善汽车制动性能和防止车轮侧滑的电子控制系统。
它通过实时监测车轮的转速差异,并根据车辆速度和车轮粘附情况,自动调节制动力分配,以保持车辆的稳定性和操控性。
下面将详细介绍ABS系统的结构和工作原理。
ABS系统主要由以下几个组成部分组成:1. 主控单元(Electronic Control Unit,简称ECU):负责监测车轮转速、处理传感器信号,并根据算法控制制动系统。
2.传感器:用于感知车轮转速和车轮阻滞情况的变化。
3.控制执行器:控制制动液压系统,通过控制制动压力和刹车分配,来调整车轮所受制动力的大小。
ABS系统的工作原理如下:1.感知车轮转速:ABS系统通过车轮传感器感知每个车轮的转速,传感器工作原理一般为感应式或磁敏电阻式。
2.比对并判断车轮转速差异:主控单元会将各个车轮的转速进行比对,并判断是否存在车轮间的转速差异。
当差异较大时,说明可能存在阻滞或滑动现象。
3.刹车压力调节:当主控单元检测到车轮阻滞或滑动时,会迅速调节制动系统的作用力。
通过控制执行器,它可以控制制动压力的大小和变化速率。
4.防止轮胎阻滞:根据车速和车轮阻滞程度,主控单元会控制制动器施加/解除制动压力。
当主动轮制动器压力过大时,会导致轮胎滑动,此时主控单元会减小制动压力,以保持车轮的滚动。
5.稳定操控车辆:通过循环控制刹车压力,ABS系统可以保持轮胎在阻塞且滑动阶段之间的平衡,使得司机可以保持对车辆的操控,避免有机会发生打滑或侧滑的情况。
ABS系统的工作可以分为两个主要的阶段:1.启动阶段:当驾驶员踩下制动踏板时,ABS系统会进行自检,并进行传感器的校准。
如果发现故障,系统会亮起警示灯并进入故障模式。
2.工作阶段:在正常工作时,ABS系统会通过感知车轮的转速,并实时监测车轮阻滞情况。
当检测到阻滞时,系统会自动通过调节制动器的压力,进行相应的制动力分配,以保持车辆的稳定性。
四轮驱动系统的结构特点及故障检修众所周知,汽车驱动轮产生的牵引力受到地面附着性能的影响,并且与车重的大小成正比。
为了改善汽车的操纵性能,特别是为了提高车辆在低摩擦系数路面行驶时的动力性和稳定性,许多汽车采纳了四轮驱动(4WD)系统。
四轮驱动系统能够把发动机的动力有效地分配在4个车轮上,配合托森(Torsen)机械式等ZY差速器,确保4个轮胎都能有效抓地,使车辆具有优良的越野性能,并且在高速行驶时也可以保持良好的稳定性和安静性。
一、结构特点1 四轮驱动系统的组成四轮驱动汽车的传动系统由离合器、变速器、传动轴、分动器、前万向传动装置、前驱动桥(前差速器)、后万向传动装置以及后驱动桥(后差速器)等部件组成(图1)。
美规四轮驱动汽车的差速器分为3种结构形式,一种是黏滞耦合器式ZY差速器,一般配6挡手动变速器;一种是扭矩分流传递耦合器装置,一般配CVT无级变速器;还有一种是通过电子操纵的液压离合器传递扭矩调节的行星齿轮ZY差速器,一般配3.6L发动机和5挡自动变速器。
黏性联轴差速器的优点在于,如果适当地变更内外板的形状、两板之间的间隔,适当地选择硅油的特性,可以使其扭矩分配特性非常柔和且连续,很适合前差速器的差动限制,多用于四轮驱动轿车和轻型SUV越野车。
2 四轮驱动装置的分类四轮驱动装置大致分为分时四轮驱动和全时四轮驱动2种形式(图2)。
分时四轮驱动汽车有一个缺点,就是在四轮驱动的状态下进出车库时,汽车会突然停顿,甚至发动机熄火,这是由分时四轮驱动系统前轮和后轮直接连接的结构引起的。
在汽车转弯时,前轮和后轮的转动情况存在差异,这种差异成为汽车运动的阻力,所以产生了汽车突然停顿的现象,因此转弯时需要切换到两轮驱动状态。
为了解决这个问题,设计了全时四轮驱动系统,它采纳了ZY差动齿轮,虽然前轮和后轮有转动差异,但仍能发出动力,所以进库时也可以保持四轮驱动状态。
3 四轮驱动系统的优缺点优点:在汽车转弯稳定性、直行稳定性、启动和加速性能、爬坡性能以及雪地等恶劣路面行驶时性能优越。
子任务2驱动防滑控制系统(ASR)故障检修
一、资讯
1.ASR有哪些作用?
2.驱动轮的滑转程度用滑转率S表示,其表达式为:,当时,滑转率s=0,车辆处于状态;当时,滑转率s=100%,车辆处于状态;当时,滑转率0<s<100%,车辆处于状态。
在各种路面上当滑转率或滑移率为左右时,附着系数达到最大值。
3.驱动轮防滑转控制方法有哪些?
4.ASR系统的基本组成如图所示,由传感器、电子控制模块(ECU)、执行器、驱动车轮制动器等组成,其传感器有、;执行器有、。
二、计划与决策
请根据检查ASR故障诊断与排除的方法和更换要求,确定所需要的工具,并对小组成员进行合理分工,制定详细的检查和更换计划。
1.需要的工具
2.小组成员分工
3.检查和维修计划计划
三、实施
1.情境模拟,角色扮演客户与服务顾问,进行接车环节演练。
2.环车检查,记录车辆基本信息:
车辆品牌型号:
车辆VIN号码:
车辆行驶里程:
车辆外观检查记录
3.初步检查
1)使用专用解码器读取故障码
专用解码器型号为:
故障码为:有何含义:2)读取数据流并记录
4.识读电路图,并画出与ASR相关的电路图
5.查找维修手册制定维修计划
6.整理工位
收回翼子板布和前格栅布,关闭发动机舱盖;收回五件套,清洁车辆、清洁地面卫生,处理废弃物。
四、评价
知识评价
1.现场问答题:
(1)ASR与ABS有什么异同?
(2)ASR的控制方式有哪些?
(3)描述ASR故障检修流程。
技能及素养评价。
驱动防滑控制系统检修摘要当驱动轮打滑时,意味着轮胎与地面接地点出现了相对滑动,为了区别汽车制动时为车轮抱死而产生的“滑移”,我们把这种滑动称为驱动轮的“滑转”。
驱动轮的滑转,同样会使车轮与地面的纵向附着力下降,是驱动轮上可获得的极限驱动力减小,最终导致汽车的起步、加速性能和在湿滑路面上通过性能的下降。
同时,驱动轮的“滑转”还会导致横向附着系数大幅下降,从而使驱动轮出现横向滑动,随之产生汽车在行驶过程中的方向失控现象。
因此,为了避免和减少上述情况发生,就出现了汽车驱动防滑控制系统(Acceleration Slip Regulation,简称ASR)【关键词】:汽车驱动防滑控制系统;牵引力控制系统;制动防抱死制动系统;防滑差速锁控制;电子刹车力分配。
AbstractWhen the driving wheel slip, means that the tire and the ground locations appeared relative sliding, in order to distinguish the automobile braking for the wheels and the " slip", we call this kind of slide called" slip of driving wheel". Driving wheel slip, will also make the wheels and the ground longitudinal adhesion decreased, driving wheel is available on the ultimate driving force decreases, eventually leading to auto start, acceleration and on slippery surfaces by a decline in performance. At the same time, driving wheel" slip" also led to the adhesion coefficient drops considerably, so that the driving wheel lateral sliding, resulting in a moving vehicle in the direction of the runaway phenomenon.Therefore, in order to avoid and reduce the happening, appeared the automobile driving antiskid control system ( Acceleration Slip Regulation, ASR)[ Key words ]:Acceleration Slip Regulation;Traction Control System;ABS;Limited Slip Differential;EBD。
一、驱动防滑系统的作用驱动防滑系统能在车轮开始滑转时,降低发动机的输出扭矩,同时控制制动系统,以降低传递给驱动车轮的扭矩,使之达到合适的驱动力,使汽车的起步和加速达到快速而稳定的效果。
二、滑转率及其与路面附着系数的关系汽车在驱动过程中,驱动车轮可能相对于路面发生滑转。
滑转成分在车轮纵向运动中所占的比例称为驱动车轮的滑转率,通常用“S A”表示。
S A=(rω—ν)/rω×100%式中:S A—车轮的滑转率;r—车轮的自由滚动半径;ω—车轮的转动角速度;ν—车轮中心的纵向速度。
当车轮在路面上自由滚动时,车轮中心的纵向速度完全是由于车轮滚动产生的。
此时ν= rω,其滑转率S A=0;当车轮在路面上完全滑转(即汽车原地不动,而驱动轮的圆周速度不为0)时,车轮中心的纵向速度ν=0,其滑动率S A=100%;当车轮在路面上一边滚动一边滑转时,0<S A<100%。
与汽车在制动过程中的滑移率相同,在汽车的驱动过程中,车轮与路面间的附着系数的大小随着滑转率的变化而变化。
在干路面或湿路面上,当滑转率在15%~30%范围内时,车轮具有最大的纵向附着系数,此时可产生的地面驱动力最大。
在雪路或冰路面上时,最佳滑移率在20%~50%的范围内;当滑转率为零,即车轮处于纯滚动状态时,其侧向附着系数也最大,此时汽车保持转向和防止侧滑的能力最强。
随着滑转率的增加,侧向附着系数下降,当滑转率为100%,侧向附着系数变得极小,轮胎与路面之间的侧向附着力接近于零,车轮将完全丧失抵抗外界侧向力作用的能力。
三、驱动防滑系统的基本组成和工作过程1.驱动防滑系统的基本原理驱动防滑(ASR)系统可以通过调节作用于驱动轮的上驱动力矩和制动力矩,在驱动过程中防止驱动车轮发生滑转。
调节作用于驱动车轮上的驱动力矩可通过控制发动机节气门的开度和点火提前角的大小;调节作用于驱动轮上制动力矩可借助ABS控制系统中的车轮转速传感器及制动压力调节器对驱动车轮施加一定的制动力矩来实现。