2013年中考数学模拟考试题及答案201337
- 格式:doc
- 大小:380.00 KB
- 文档页数:13
2013年中考数学模拟题一、选择题(每小题3分,共15分)1.下列运算正确的是 ( )A. x 2·x 3=x 6B. –2x -2=- 14x 2 C.(-x 2)3=x 5 D.-x 2-2x 2=-3x 2 2.在平面直角坐标系中,点P (-1,-1)关于x 轴的对称点在( ) A.第一象限 B. 第二象限C.第三象限D. 第四象限3.某班5位同学的身高(单位:厘米)分别155,160,160,161,169,这组数据中,下列说法错误的是 ( )A.众数是160B.中位数是160C.平均数是161D.方差是24.如图,PA 切⊙O 于A ,∠P=30°,OP =2,则⊙O 的半径的是 ( )A.21B.1C. 2D.45.已知圆锥的母线长为5cm ,底面半径为3cm ,则此圆锥的侧面积为 ( )A. 12πcm 2B. 15πcm 2C. 20πcm 2D. 30πcm 2二、填空题(每小题4分,共20分)6.已知代数式2x 2-x+1的值等于2,则代数式 4x 2-2x+5的值为___________.7.若反比例函数y=- x8的图象经过点(m ,-2m ),则m 的值为___________.8、十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率是________.9.如图,CD⊥AB,BE⊥AC,请你再添加一个条件:________使ΔABE≌ΔACD。
10.如图,在 RtΔABC中,∠C=90°,AB=4cm,AC=23cm,以B为圆心,以BC为半径作弧交AB于D,则阴影部分的面积是 _____cm2。
三、解答题(每小题6分,共30分)11.有这样一道题:“计算x2-2x+1x2-1÷x-1x2+x-x 的值,其中x=2007”。
甲同学把“x=2007”错抄成“x=2070”,但他的计算结果也是正确的,你说这是怎么回事?12. ,并把解集在数轴上表示出来。
2013年中考数学模拟试题一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.- 13的倒数是A .-3B .3C .- 13D .132.下列各式运算中,正确的是A .222()a b a b +=+ B3=C .3412a a a ⋅=D .)0(6)3(22≠=a a a3.下列几何体中,主视图、左视图、俯视图完全相同的是 A. 圆柱 B. 圆锥 C. 球 D. 棱锥 4.下列说法正确的是A .买一张福利彩票一定中奖,是必然事件.B .买一张福利彩票一定中奖,是不可能事件.C .抛掷一个正方体骰子,点数为奇数的概率是13. D .一组数据:1,7,3,5,3的众数是3. 5.函数y =中自变量的取值范围在数轴上表示为6.在□ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则=CFAFA .1:2B .1:3C .2:3D .2:5第7题图7.如图,在△ABC 中,AB = AC ,AB = 8,BC = 12以AB 、AC 为直径作半圆,则图中阴影部分的面积是A.64π-B .1632π-C.16π-.16π-8.如图,点P 按A →B →C →M 的顺序在边长为1的正方形边上运动,M 是CD 边上的中点。
设点P 经过的路程x 为自变量,△APM 的面积为y ,则函数y 的大致图像是二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分. 9.我国公安部交管局公布的数据显示,截至2012年初,全国机动私家车保有量达0.195亿辆,将0.195亿辆用科学记数法表示应是 辆(结果保留2个有效数字) 10.分解因式:=+-y xy y x 22 。
11.= . 12.如果圆锥的底面周长为20πcm ,侧面展开后所得的扇形的圆心角是120º,则该圆锥的侧面积是___________.(结果保留π) 13.如图,直线a ∥b ,l 与a 、b 交于E 、F 点,PF 平分∠EFD 交a 于P 点,若∠1 = 70︒,则∠2 = . 14.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,21F E DblPa2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________;15.如图,在等边△ABC 中,9=AC ,点O 在AC 上,且3=AO ,点P 是AB 上一动点,连接OP ,以O 为圆心,OP 长为半径画弧交BC 于点D , 连接PD ,如果PD PO =,那么AP 的长是 .16.如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,……,1n n n B D C +∆的面积为n S ,则n S = (用含n 的式子表示).三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.17.化简求值 (本题满分6分) 。
数学试题 第1页(共4页)2013年初中毕业生学业水平调研测试数 学本试卷共4页,22小题,满分120分,考试时间100分钟. 注意事项:⒈ 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的姓名、考生号等,用2B 铅笔把对应号码的标号涂黑.⒉ 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.⒊ 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.⒋ 考生务必保持答题卡整洁.考试结束时,将答卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.31的相反数是A .31 B .31-C .3D .3-2.下列算式正确的是A .632a a a =+B .532a a a =+C .632a a a =⋅D .532a a a =⋅ 3.如图1是一个底面水平放置的圆柱,它的左视图是A .B .C .D .4.菱形ABCD 的对角线长为分别32=AC ,2=BD ,则菱形的内角=∠BAD A .o30 B .o60 C .o120 D .o1505.袋中有2个红球和4个白球,它们除颜色上的区别外其他都相同.从袋中随机地取出一个球,取到红球的概率是 A .61 B .32 C .31 D .21二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.据统计,某市2011年有初中毕业生约53600人.试用科学计数法表示=53600 .数学试题 第2页(共4页)7.在2012年“植树节”义务植树活动中,某校九年级5个班植树的颗数分别为16、20、15、21、18,则这组数据的平均数是 . 8.若点)213, 12(-+m m P 在第四象限,则常数m 的取值范围是 .9.如图2,⊙O 的半径5=R ,13=PO ,过P 作⊙O 的切线,切点为A ,则=PA . 10.观察下列连等式:⑴21)1(1)1)(1(x x x x x x -=-+-=+-⑵222)1(1])1)[(1()1)(1(x x x x x x x x -+-=++-=++-⑶43332321)1(1])1)[(1()1)(1(x x x x x x x x x x x x -=-+-=+++-=+++- 依此下去,第四个连等式为: . 三、解答题㈠(本大题5小题,每小题6分,共30分) 11.计算:o145cos 2)21( |22|)13( +---+--.12.先化简,再求值:xx x xx 1121222+++÷+,其中3=x .13.如图3,E 、F 分别是平行四边形ABCD 的边AD 、BC 的中点.⑴求证:DF BE =;⑵直接写出直线BE 与DF 的位置关系(不需要证明.....).14.如图4,在边长为 1 个单位长度的正方形方格纸中建立直角坐标系,坐标轴都在格线上.已知ABC ∆各顶点的坐标为)0 , 1(-A 、)3 , 4(-B 、)1 , 5(-C . ⑴画出ABC ∆关于y 轴对称的///C B A ∆;⑵写出点/B 的坐标,并直接写出//A ABB 是怎样的特殊四边形(不需要证明.....).AB CDEF15.如图5,反比例函数xky=的部分图象与直线xy-=1交点A的横坐标为2-.⑴试确定k的值;⑵当31<≤x时,求反比例函数y的取值范围.四、解答题㈡(本大题4小题,每小题7分,共28分)16.去冬今春,我国西南地区遭遇历史上罕见的旱灾,武警某部接到了限期打30口水井的作业任务,部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?17.开展阳光体育运动后,体育老师为了解九年级360名男生的身体素质状况,在九年级随机抽取50位男生进行100米跑测试,以测试数据为样本,绘制出如下的频数分布表和频数分布直方图(均未完成):请根据图表数据解答下列问题:⑴求频数分布表中a的值,并把频数分布直方图补充完整;⑵这个样本数据的中位数落在第组(直接填写结果,不必写出求解过程);⑶若九年级男生100米跑的时间小于3.14秒为优秀,根据以上图表,估计九年级全级大约有多少名男生达到优秀?18.如图6,已知ABD∆和ACE∆都是等边三角形,CD、BE相交于点F.⑴求证:ABE∆≌ADC∆;⑵ABE∆可由ADC∆经过怎样的旋转变换得到?数学试题第3页(共4页)数学试题 第4页(共4页)19.为美化环境,建设绿色校园,学校计划铺设一块面积为230m 的等腰三角形绿地,已知等腰三角形一边长为m 10,且顶角是锐角,试求这块等腰三角形绿地另外两边的长.五、解答题㈢(本大题3小题,每小题9分,共27分)20.如图7,B 是线段AD 上一点,ABC ∆和BDE ∆都是等边三角形,⊙O 是ABC ∆的外接圆.CE 与⊙O 相交于G ,CE 的延长线与AD 的延长线相交于F . ⑴求证:BCF ∆∽DEF ∆; ⑵求证:BE 是⊙O 的切线; ⑶若21=BCDE ,求CGEG .21.某商场销售一批进价为16元的日用品,为了获得更多利润,商场需要确定适当的销售价格.调查发现:若按每件20元销售,每月能卖出360件;若按每件25元销售,每月能卖出210件.假定每月销售量y (件)是销售价格x (元/件)的一次函数. ⑴试求y 与x 之间的函数关系式;⑵销售价格定为多少时,商场每月获得的利润最大?每月的最大利润是多少?22.如图8,在平面直角坐标系xOy 中,二次函数542++-=x x y 的图象交x 轴于点A 、B ,交y 轴于点C ,顶点为P ,点M 是x 轴上的动点. ⑴求MB MA +的最小值; ⑵求MC MP -的最大值;⑶当M 在x 轴的正半轴(不包含坐标原点)上运动时, 以CP 、CM 为邻边作平行四边形PCMD .PCMD 能否 为矩形?若能,求M 点的坐标;若不能,简要说明理由.(参考公式:二次函数c bx ax y ++=2图象的顶点坐标是)44, 2(2ab ac ab --)数学试题 第5页(共4页)评分参考一、选择题 BDABC二、填空题 6.41036.5⨯ 7.18 8.3121<<-m 9.1210.5444324321)1(1])1)[(1()1)(1(x x x x x x x x x x x x x x -=-+-=++++-=++++-三、解答题㈠ 11.原式222)2( )22(1⨯+---+=……4分(每项1分) 5=……6分12.原式xx x x 1)1()1(22++⨯+=……2分, xx xxx 321)1(2+=++=……4分,3=x 时,原式332+=……5分, 32+=……6分.13.⑴(方法一)ABCD 是平行四边形,所以BC AD //,且BC AD =……2分,因为E 、F 分别的边AD 、BC 的中点.所以BF ED =……3分,所以DEBF 是平行四边形……4分,所以DF BE =……5分.(方法二)ABCD 是平行四边形,所以CD AB =,BC AD =且C A ∠=∠……2分,因为E 、F 分别的边AD 、BC 的中点.所以CF AE =……3分,所以CDF ABE ∆≅∆……4分,所以DF BE =……5分.⑵DF BE //……6分.14.⑴正确画图……3分,正确写出顶点/A 、/B 、/C ……4分⑵)3 , 4(/B ……5分;//A ABB 是等腰梯形……6分.15.⑴2-=x 时,31=-=x y ……1分,所以632-=⨯-=k ……2分.⑵1=x 时,反比例函数的值616-=-==x k y ……3分;3=x 时,236-=-==x k y……4分.所以,31<≤x 时,反比例函数的取值范围为26-<≤-y ……6分.数学试题 第6页(共4页)ABCADB CD四、解答题㈡16.设原计划每天打x 口井……1分,由题意得:533030=+-x x ……3分去分母,整理得01832=-+x x ……4分, 解得31=x ,62-=x …… 5分,经检验,31=x ,62-=x 都是原方程的根,但62-=x 不合题意,舍去……6分 答(略)……7分.17.⑴503122043=+++++a ……1分,所以8=a ……2分,画图……3分⑵4……5分⑶估计九年级达到优秀的男生大约有36050843⨯++……6分,108=(名)……7分.18.⑴因为A B D ∆和ACE ∆都是等边三角形,所以AE AC =,AB AD =……2分,60=∠=∠CAE BAD ……3分,BAC BAE DAC ∠+=∠=∠060……4分,所以ABE ∆≌ADC ∆……5分.⑵ABE ∆可由ADC ∆逆时针旋转060得到……7分.19.如图,等腰三角形ABC ∆,AC AB =,面积为230m若底边长m BC 10=(如左图),作BC AD ⊥,垂足为D ,由3021=⨯⨯=BC AD S 得6=AD ……1分,因为ABC ∆是等腰三角形,所以521=⨯=BC BD ……2分,所以61==AC AB ……3分若腰长m AC AB 10==(如右图),作AC BD ⊥,垂足为D ,由3021=⨯⨯=BD AC S 得6=BD ……4分,所以822=-=BDABAD ……5分,所以2=CD ,10222=+=BDCDBC ……6分所以,这块等腰三角形绿地另外两边的长为m 61、m 61或m 10、m 102……7分.数学试题 第7页(共4页)五、解答题㈢20.⑴ABC ∆和BDE ∆都是等边三角形,所以060=∠=∠BDE ABC ,所以DE BC //……1分,所以DEF BCF ∠=∠,又因为F F ∠=∠,所以BCF ∆∽DEF ∆……2分 ⑵连接OB ,依题意得,OB 是ABC ∠的平分线,03021=∠=∠ABC ABO ……3分,90)(180=∠+∠-=∠DBE ABO EBO ……4分,所以BE OB ⊥,BE 是⊙O 的切线……5分⑶由⑴DE BC //得21==BCDE BFDF ,所以DE DB DF ==,所以030=∠=∠=∠BCE DEF F ……6分,连接OC 、OG ,与⑵同理得030=∠OCB ,所以060=∠OCG ,从而060=∠COG ,3021=∠=∠COG CBG ……7分,在EBC ∆中,030=∠BCE ,060=∠CBE ,090=∠CEB ,所以BE CE 3=,同理在EBG ∆中,000303060=-=∠EBG ,090=∠GEB ,所以BE EG 33=……8分,所以EG CE 3=,从而21=CGEG ……9分.21.⑴依题意,设b kx y +=……1分,则⎩⎨⎧=+=+2102536020b k b k ……2分,解得⎩⎨⎧=-=96030b k (3)分,所以96030+-=x y ,3216≤≤x (不写x 的取值范围不扣分)……4分.⑵商场每月获利)16)(96030(-+-=x x w ……6分,153601440302-+-=x x ……7分,1920)24(302+--=x ……8分,所以,当24=x 时w 有最大值,最大值是1920元。
2013年中考数学模拟考试题说明:1.考试用时100 分钟,满分 150 分.2.答题前,考生务必在答题卷上填写自己的姓名、座位号等.所有答案必须在答题卷上做答. 3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应答案选项涂黑,如需改动,用橡皮擦擦干净后,再重新选涂其他答案.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷上各题目指定区域内相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效. 一、选择题(本大题共8小题,每小题4分,共32分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.﹣5的相反数是( )A .﹣B .﹣5C .D .52. 钓鱼岛自古以来就是中国的固有领土,在“百度”搜索引擎中输入“钓鱼岛最新消息”,能搜索到与之相关的结果个数约为4640000,这个数用科学记数法表示为 ( ) A. 464×104 B .46.4×106 C .46.4×106 D .4.64×1063. 在50,20,50,30,50,25,35这组数据中,中位数是( )A .20B .30C .35D .50 4. 在下图的几何体中,它的左视图是 ( )5. 有意义,则x 的取值范围是( )A .x ≥1B .x ≤1C .x >1D .x ≠16.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )A .B .C .D . 第4题图 ABCD7. 下列计算不正确...的是 ( ) A .32a a a =⋅ B .426a a a =÷ C .632)(x x = D .2m + 3n=5mn 8. 如图,AB 是⊙O 的直径,C 是⊙O 上的一点,若AC =8,AB =10, OD ⊥BC 于点D ,则BD 的长为( ) A. 1.5 B. 3 C. 5 D. 6二、填空题(本大题共5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.9. 分解因式:x 2-16=_________________.10. 从标有1到9序号的9张卡片中任意抽取一张,抽到序号是3的倍数的概率是 .11. 如图,AB ∥CD ,CP 交AB 于O ,AO =PO ,若∠C =50°,则∠A =______°.12. 如下图1是二环三角形, 可得S =∠A 1+∠A 2+ … +∠A 6=360°, 下图2是二环四边形, 可得S =∠A 1+∠A 2+ … +∠A 7=720°, 下图3是二环五边形, 可得S =1080°, ……, 请你根据以上规律直接写出二环二零一三边形中,S =___________°.13.已知圆锥中,母线长为5,底面半径为3,则圆锥的侧面积为 cm 2(结果保留含π的形式)。
2013年中考模拟考试数学试卷一、选择题(共10小题,每小题4分,满分40分)1.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N2.某校羽毛球训练队共有8名队员,他们的年龄(单位:岁)分別为:12,13,13,14,12,13,15,13,则他们年龄的众数为()A.12 B.13 C.14 D.153.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为()A. B. C.D.4.在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6) B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6) D.(2,3),(﹣4,6)5. a4b﹣6a3b+9a2b分解因式得正确结果为()A.a2b(a2﹣6a+9)B.a2b(a﹣3)(a+3)C.b(a2﹣3)2 D.a2b(a﹣3)2 6.下列调查:①调查一批灯泡的使用寿命;②调查全班同学的身高;③调查市场上某种食品的色素含量是否符合国家标准;④企业招聘,对应聘人员进行面试.其中符合用抽样调查的是()A.①②B.①③C.②④D.②③7. 2012年7月27日国际奥委会的会旗将在伦敦上空升起,会旗上的图案由五个圆环组成.如图,在这个图案中反映出的两圆的位置关系有()A.内切、相交 B.外离、内切 C.外切、外离 D.外离、相交8.下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y9.小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为( ) A .B .C .D .10.已知二次函数y=ax 2+bx+c 的图象如图所示,它与x 轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c <0;④8a+c>0.其中正确的有( ) A .3个 B .2个 C .1个 D .0个二.填空题(共8小题,每题4分,共32分) 11.在函数21-=x y 中,自变量x 的取值范围是 . 12.如图,∠C=900,∠A=300,BD 平分∠ABC ,若AD=8, 则CD=_________.13.已知x+y=﹣5,xy=6,则x 2+y 2= _________ .14.小程对本班50名同学进行了“我最喜爱的运动项目”的调查,统计出了最喜爱跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目的人数.根据调查结果绘制了人数分布直方图.若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为 _________ °.15.如图,直线y=﹣x+3与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 旋转90°后得到△AO′B′,则点B′的坐标是 _________ .第14题图 第15题图 16.已知(a ﹣)<0,若b=2﹣a ,则b 的取值范围是 _________ .BCDA(第12题)17.如果关于x 的不等式组的整数解仅有1,2,那么适合这个不等式组的整数a ,b 组成的有序数对(a ,b )共有 _________ 个.18.图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+42,则图3中线段AB 的长为 .三、解答题(本题有8小题,共78分.解答需写出必要的文字说明、演算步骤或证明过程) 19.(6分)解方程:解方程:22121=--+-xxx . 20.(8分)如图,A 、B 两所学校在一条东西走向公路的同旁,以公路所在直线为x 轴建立如图所示的平面直角坐标系,且点A 的坐标是(2,2),点B 的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C ,使C 点到A 、B 两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P ,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P 的位置,并求出它的坐标. 21.(8分)在3×3的方格纸中,点A 、B 、C 、D 、E 、F 分别位于如图所示的小正方形的顶点上.(1)从A 、D 、E 、F 四个点中任意取一点,以所取的这一点及点B 、C 为顶点画三角形,则所画三角形是等腰三角形的概率是 ________ ;(2)从A 、D 、E 、F 四个点中先后任意取两个不同的点,以所取的这两点及点B 、C 为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解). 22.(10分)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A ,在点A 的对岸选取一个参照点C ,测得∠CAD=30°;小丽沿岸向前走30m 选取点B ,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.BA(第18题: 图1 图2 图3)23.(10分)已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.24.(10分)如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径R.25.(12分)我州某乡A,B两村盛产香梨,A村有香梨200吨,B村有香梨300吨,现将这些香梨运到C,D两个冷藏仓库.已知C仓库可储存240吨,D仓库可储存260吨,从A 村运往C,D两处的费用分别为每吨40元和45元;从B村运往C,D两处的费用分别为每吨25元和32元.设从A村运往C仓库的香梨为x吨,A,B两村运香梨往两仓库的运输费用分别为y A元,y B元.(1)请填写下表,并求出y A,y B与x之间的函数关系式;C D 总计A x吨200吨B 300吨总计240吨260吨500吨(2)当x为何值时,A村的运费较少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.26.(14分)如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2.(1)求点D的坐标,并直接写出t的取值范围.(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF 的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S 的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?2013年中考模拟考试数学参考答案一、选择题(共10小题,每题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10答案 A B A A D B D D B B二.填空题(共8小题,每题4分,共32分)题号11 12 13 14 15 16 17 18 答案x≠2 4 13 144 (﹣1,﹣2)或(5,2)2﹣<b<2 6 √2+1三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)19. 解:原方程可化为:1-(1-x)=2(x-2) 2分去括号得:1-1+x=2x-4移项并项得:-x=4系数化为1得:x=4 4分经检验:x=4是原方程的根所以:原方程的解是x=4 6分20. 解:(1)存在满足条件的点C;作出图形,如图所示.(4分)(2)作点A关于x轴对称的点A′(2,﹣2),连接A′B,与x轴的交点即为所求的点P.(6分)设A′B所在直线的解析式为:y=kx+b,把(2,2)和(7,3)代入得:,解得:,∴y=x﹣4,当y=0时,x=4,所以交点P为(4,0).(8分)21. 解:(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,故P(所画三角形是等腰三角形)=;(2分)(2)用“树状图”或利用表格列出所有可能的结果:∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,(6分)∴所画的四边形是平行四边形的概率P==.(8分)22. 解:过点C作CE⊥AD于点E,由题意得,AB=30m,∠CAD=30°,∠CBD=60°,故可得∠ACB=∠CAB=30°,(2分)即可得AB=BC=30m,(4分)设BE=x,在Rt△BCE中,可得CE=x,又∵BC2=BE2+CE2,即900=x2+3x2,(6分)解得:x=15,即可得CE=15m.(8分)答:小丽自家门前的小河的宽度为15m.23.证明:①∵CN∥AB,∴∠DAC=∠NCA,(1分)在△AMD和△CMN中,∵,∴△AMD≌△CMN(ASA),(2分)∴AD=CN,(3分)又∵AD∥CN,∴四边形ADCN是平行四边形,(4分)∴CD=AN;(5分)②∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,(6分)∴MD=MC,(7分)由①知四边形ADCN是平行四边形,∴MD=MN=MA=MC,(8分)∴AC=DN,(9分)∴四边形ADCN是矩形.(10分)24.(1)证明:过O点作OE⊥CD于点E,∵AM切⊙O于点A,∴OA⊥AD,(1分)又∵DO平分∠ADC,∴OE=OA,(2分)∵OA为⊙O的半径,∴OE是⊙O的半径,且OE⊥DC,(3分)∴CD是⊙O的切线.(4分)(2)解:过点D作DF⊥BC于点F,∵AM,BN分别切⊙O于点A,B,∴AB⊥AD,AB⊥BC,(5分)∴四边形ABFD是矩形,∴AD=BF,AB=DF,(6分)又∵AD=4,BC=9,∴FC=9﹣4=5,(7分)∵AM,BN,DC分别切⊙O于点A,B,E,∴DA=DE,CB=CE,(8分)∴DC=AD+BC=4+9=13,(9分)在Rt△DFC中,DC2=DF2+FC2,∴DF==12,∴AB=12,(10分)∴⊙O的半径R是6.25(1)填写如下:每空1分C D 总计A x吨(200﹣x)吨200吨B (240﹣x)吨(60+x)吨300吨总计240吨260吨500吨由题意得:y A=40x+45(200﹣x)=﹣5x+9000;y B=25(240﹣x)+32(60+x)=7x+7920;(2)对于y A=﹣5x+9000(0≤x≤200),∵k=﹣5<0,∴此一次函数为减函数,则当x=200吨时,y A最小,其最小值为﹣5×200+9000=8000(元)(3分)(3)设两村的运费之和为W,则W=y A+y B=﹣5x+9000+7x+7920=2x+16920(0≤x≤200),(8分)∵k=2>0,∴此一次函数为增函数,(10分)则当x=0时,W有最小值,W最小值为16920元.(11分)此时调运方案为:从A村运往C仓库0吨,运往D仓库为200吨,B村应往C仓库运240吨,运往D仓库60吨.(12分)26.(1)由题意可知,当t=2(秒)时,OP=4,CQ=2,在Rt△PCQ中,由勾股定理得:PC===4,∴OC=OP+PC=4+4=8,(2分)又∵矩形AOCD,A(0,4),∴D(8,4).点P到达终点所需时间为=4秒,点Q到达终点所需时间为=4秒,由题意可知,t的取值范围为:0<t<4.(4分)(2)结论:△AEF的面积S不变化.∵AOCD是矩形,∴AD∥OE,∴△AQD∽△EQC,(5分)∴,即,解得CE=.由翻折变换的性质可知:DF=DQ=4﹣t,则CF=CD+DF=8﹣t.(6分)S=S梯形AOCF+S△FCE﹣S△AOE=(OA+CF)•OC+CF•CE﹣OA•OE=[4+(8﹣t)]×8+(8﹣t)•﹣×4×(8+)(8分)化简得:S=32为定值.所以△AEF的面积S不变化,S=32.(9分)(3)若四边形APQF是梯形,因为AP与CF不平行,所以只有PQ∥AF.由PQ∥AF可得:△CPQ∽△DAF,(10分)∴,即,化简得t2﹣12t+16=0,(11分)解得:t1=6+2,t2=6﹣2,(13分)由(1)可知,0<t<4,∴t1=6+2不符合题意,舍去.∴当t=(6﹣2)秒时,四边形APQF是梯形.(14分)。
2013年数学中考模拟试题一、选择题:(本大题共12个小题,满分36分).1.方程x(x-2)+ x-2 = 0的解是()A.x=2 B.x=-2或1 C.x=-1 D.x=2或-12.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则CDOC的值为()A.21B.31C.22D.333.如图,⊙O的半径为2,弦AB=23,点C在弦AB上,AC=41AB,则OC的长为()A.2B.3C.332D.274.如果一个扇形的半径是1,弧长是3π,那么此扇形的圆心角的大小为()A.30° B.45° C.60° D.90°5.圆心距为2的两圆相切,其中一个圆的半径为1,则另一个圆的半径为()A.1 B.3 C.1或2 D.1或36.下列事件为必然事件的是()A.小王参加本次数学考试,成绩是150分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球7.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.-1<x<5 B.x<-1或x>5C.x<-1且x>5 D. x>58.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2-4ac与反比例函数y=xcba++在同一坐标系内的图象大致为()A.B.C.D.9.一个钢筋三角架三边长分别为20cm,50cm,60cm,现在要做一个和它相似的钢筋三角架,而只有长为30cm和50cm的两根钢筋,要求以其中的一根为一边,从另一根上截两段(允许有余料)作为另两边,则不同的截法有()A.一种B.两种C.三种D.四种或四种以上10.如图,在△ABC中,EF∥BC,EBAE=21,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.1311.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A的坐标为(1,0),则E点的坐标为()A.(2,0) B.(23,23)C.(2,2)D.(2,2)12.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3 B.311C.310D.4二、填空题:(本大题共5小题,满分20分).13.关于x的两个方程x2-x-2=0与11+x=ax+2有一个解相同,则a= ________________14.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为____________15.如图,将等边△ABC沿BC方向平移得到△A1B1C1.若BC=3,S△PB1C= 3,则BB1=______________16.圆内接正n边形的每个内角都等于135°,则n=________17.如图,点A1、A2、A3、…、An在抛物线y=x2图象上,点B1、B2、B3、…、B n在y轴上,若△A1B0B1、△A2B1B2、…、△A n B n-1B n都为等腰直角三角形(点B0是坐标原点),则△A2013B2012B2013的腰长= _________________三、解答题:(本大题共7小题,共64分).18.(本题满分6分)计算:(-1)2013+(π-3)0+(21)1--2)21(-2题图3题图7题图8题图10题图11题图12题图数学试题第1 页共4 页数学试题 第 2 页 共 4 页19. (本题满分10分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,点E 在⊙O 外,∠EAC=∠D=60°. (1)求证:AE 是⊙O 的切线; (2)当BC=4时,求劣弧AC 的长20、(本题满分8分)某学校课程安排中,各班每天下午只安排三节课,初一(1)班星期二下午安排了数学、英语、生物课各一节,通过画树状图求出把数学课安排在最后一节的概率; .21.(本题满分10分)如图,二次函数y=ax 2-4x+c 的图象经过坐标原点,与x 轴交于点A (-4,0). (1)求二次函数的解析式;(2)在抛物线上存在点P ,满足S △AOP =8,请直接写出点P 的坐标.22.(本题满分10分)⌒ ⌒如图所示,在⊙O 中,AD= AC ,弦AB 与弦AC 交于点A ,弦CD 与AB 交于点F ,连接BC .(1)求证:AC 2=A B•AF ;(2)若⊙O 的半径长为2cm ,∠B=60°,求图中阴影部分面积.23.(本题满分8分)24. (本题满分12分)如图,一次函数122y x =-+分别交y 轴、x 轴于 A 、B 两点,抛物线2y x bx c =-++过A 、B 两点。
数 学 试 卷(一)*考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填在题后的括号内,每小题3分,共24分) 1.|65-|=( ) A .65+B .65-C .-65-D .56-2.如果一个四边形ABCD 是中心对称图形,那么这个四边形一定是( ) A .等腰梯形 B .矩形 C .菱形 D .平行四边形 3. 下面四个数中,最大的是( )A .35-B .sin88°C .tan46°D .215- 4.如图,一个小圆沿着一个五边形的边滚动,如果五边形的各边长都和小圆的周长相等,那么当小圆滚动到原来位置时,小圆自身滚动的圈数是( ) A .4 B .5 C .6 D .10 5.二次函数y=(2x-1)2+2的顶点的坐标是( ) A .(1,2) B .(1,-2) C .(21,2) D .(-21,-2)6.足球比赛中,胜一场可以积3分,平一场可以积1分,负一场得0分,某足球队最后的积分是17分,他获胜的场次最多是( ) A .3场 B .4场 C .5场 D .6场 7. 如图,四边形ABCD 的对角线AC 和BD 相交于点E ,如果△CDE 的面积为3,△BCE 的面积为4,△AED 的面积为6,那么△ABE 的面积为( ) A .7 B .8 C .9 D .108. 如图,△ABC 内接于⊙O,AD 为⊙O 的直径,交BC 于点E ,若DE =2,OE =3,则tanC·tanB = ( )A .2B .3C .4D .5 二、填空题(每小题3分,共24分)9.写出一条经过第一、二、四象限,且过点(1-,3)的直线解析式 . 10.一元二次方程x2=5x的解为 .11. 凯恩数据是按照某一规律排列的一组数据,它的前五个数是:269,177,21,53,31,按照这样的规律,这个数列的第8项应该是 . 12.一个四边形中,它的最大的内角不能小于 . 13.二次函数x x y 2212+-=,当x 时,0<y ;且y 随x 的增大而减小.14. 如图,△ABC 中,BD 和CE 是两条高,如果∠A =45°,则BC DE= . 15.如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为⊙O 的直径,则∠A +∠B +∠C =__________度. 16.如图,矩形ABCD 的长AB =6cm ,宽AD =3cm. O 是AB 的中点,OP ⊥AB ,两半圆的直径分别为AO 与OB .抛物线y=ax2经过C 、D 两点,则图中阴影部分 的面积是 cm 2.三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.计算:01)32009(221245cos 4)21(8--⨯÷-︒-+-18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭19.已知:如图,梯形ABCD 中,A B ∥CD ,E 是BC 的中点,直线AE 交DC 的延长线于点F .(1)求证:△ABE ≌△FCE ; (2)若BC ⊥AB ,且BC =16,AB =17,求AF 的长.CA20.观察下面方程的解法x4-13x2+36=0解:原方程可化为(x2-4)(x2-9)=0∴(x+2)(x-2)(x+3)(x-3)=0∴x+2=0或x-2=0或x+3=0或x-3=0∴x1=2,x2=-2,x3=3,x4=-3你能否求出方程x2-3|x|+2=0的解?四、(每小题10分,共20分)21.(1)顺次连接菱形的四条边的中点,得到的四边形是.(2)顺次连接矩形的四条边的中点,得到的四边形是.(3)顺次连接正方形的四条边的中点,得到的四边形是.(4)小青说:顺次连接一个四边形的各边的中点,得到的一个四边形如果是正方形,那么原来的四边形一定是正方形,这句话对吗?请说明理由.22.下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题(1)李刚同学6次成绩的极差是.(2)李刚同学6次成绩的中位数是.(3)李刚同学平时成绩的平均数是.(4)如果用右图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程)23.(本题12分)某射击运动员在一次比赛中,前6次射击已经得到52环,该项目的记录是89环(10次射击,每次射击环数只取1~10中的正整数).(1)如果他要打破记录,第7次射击不能少于多少环?(2)如果他第7次射击成绩为8环,那么最后3次射击中要有几次命中10环才能打破记录?(3)如果他第7次射击成绩为10环,那么最后3次射击中是否必须至少有一次命中10环才有可能打破记录?24.(本题12分)甲、乙两条轮船同时从港口A出发,甲轮船以每小时30海里的速度沿着北偏东60°的方向航行,乙轮船以每小时15海里的速度沿着正东方向行进,1小时后,甲船接到命令要与乙船会和,于是甲船改变了行进的速度,沿着东南方向航行,结果在小岛C 处与乙船相遇.假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离(2)甲轮船后来的速度.25.(本题12分)如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. (1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 与△AOB 相似?(3) 当t 为何值时,△APQ 的面积为524个平方单位?26.(本题14分)如图,直线y= -x+3与x轴,y轴分别相交于点B、C,经过B、C两点的抛物线与x轴的另一交点为A,顶点为P,且对称轴为直线x=2.(1)求A点的坐标;(2)求该抛物线的函数表达式;(3)连结AC.请问在x轴上是否存在点Q,使得以点P、B、Q为顶点的三角形与△ABC 相似,若存在,请求出点Q的坐标;若不存在,请说明理由.2009年中考模拟题 数学试题参考答案及评分标准一、选择题(每小题3分,共24分)1.D; 2.D ; 3.C ;4.C;5.C; 6.C ;7.B;8.C . 二、填空题(每小题3分,共24分)9.y=-x+2等; 10.x1=0,x2=5; 11.133; 12.90°; 13.227; 14.2115.90;16.π49三、(第17小题6分,第18、19小题各8分,第20小题10分,共32分) 17.解:原式=222224222⨯⨯-⨯-+ -1 ...............4分 =822222--+ -1=-7 .............................6分18.计算:22111211x x x x ⎛⎫-+÷ ⎪-+-⎝⎭解:原式=)1(])1()1)(1(1[2-⨯--++x x x x ).............................4分 xx x x x x 211)1(]111[=++-=-⨯-++................................8分19.(1)证明: ∵E 为BC 的中点 ∴BE =CE ∵AB ∥CD∴∠BAE =∠F ∠B =∠FCE∴△ABE ≌△FCE .............................4分解:由(1)可得:△ABE≌△FCE∴CE=AB=15,CE=BE=8,AE=EF∵∠B=∠BCF=90°根据勾股定理得AE=17∴AF=34.............................8分20.解:原方程可化为|x|2-3|x|+2=0.............................3分∴(|x|-1)(|x|-2)=0∴|x|=1或|x|=2∴x=1,x=-1,x=2,x=-2 .............................10分四.(每小题10分,共20分)21.解:(1)矩形;(2)菱形,(3)正方形.............................6分(4)小青说的不正确如图,四边形ABCD中AC⊥BD,AC=BD,BO≠DO,E、F、G、H分别为AD、AB、BC、CD的中点显然四边形ABCD不是正方形但我们可以证明四边形ABCD是正方形(证明略)所以,小青的说法是错误的..............................10分22.解:(1)10分.............................2分(2)90分.............................4分(3)89分.............................6分(4)89×10%+90×30%+96×60%=93.5李刚的总评分应该是93.5分..............................10分23.小强和小亮的说法是错误的,小明的说法是正确的....................2分不妨设小明首先抽签,由树状图可知,共出现6种等可能的结果,其中小明、小亮、小强抽到A 签的情况都有两种,概率为31,同样,无论谁先抽签,他们三人抽到A 签的概率都是31.所以,小明的说法是正确的..............................12分24.解:(1)作BD ⊥AC 于点D由题意可知:AB =30×1=30,∠BAC =30°,∠BCA =45° 在Rt △ABD 中∵AB =30,∠BAC =30°∴BD =15,AD =ABcos30°=153 在Rt △BCD 中, ∵BD =15,∠BCD =45° ∴CD =15,BC =152 ∴AC =AD +CD =153+15即A 、C 间的距离为(153+15)海里.............................6分 (2)∵AC =153+15轮船乙从A 到C 的时间为1515315 =3+1由B 到C 的时间为3+1-1=3 ∵BC =152∴轮船甲从B 到C 的速度为3215=56(海里/小时)答:轮船甲从B到C的速度为56海里/小时..............................12分七、25.解:(1)老师说,三个同学中,只有一个同学的三句话都是错的,所以丙的第一句话和老师的话相矛盾,因此丙的第一句话是错的,同时也说明甲、乙两人中有一个人是全对的;............................2分(2)如果丙的第二句话是正确的,那么根据抛物线的对称性可知,此抛物线的对称轴是直线x=2,这样甲的第一句和乙的第一句就都错了,这样又和(1)中的判断相矛盾,所以乙的第二句话也是错的;根据老师的意见,丙的第三句也就是错的.也就是说,这条抛物线一定过点(-1,0);.............................6分(3)由甲乙的第一句话可以断定,抛物线的对称轴是直线x=1,抛物线经过(-1,0),那么抛物线与x轴的两个交点间的距离为4,所以乙的第三句话是错的;由上面的判断可知,此抛物线的顶点为(1,-8),且经过点(-1,0)设抛物线的解析式为:y=a(x-1)2-8∵抛物线过点(-1,0)∴0=a(-1-1)2-8解得:a=2∴抛物线的解析式为y=2(x-1)2-8即:y=2x2-4x-6.............................12分八、(本题14分)26.【探究】证明:过点F作GH∥AD,交AB于H,交DC的延长线于点G∵AH∥EF∥DG,AD∥GH∴四边形AHFE和四边形DEFG都是平行四边形∴FH=AE,FG=DE∵AE=DE∴FG=FH∵AB∥DG∴∠G=∠FHB,∠GCF=∠B∴△CFG≌△BFH2013年中考数学模拟试题和答案- 11 - / 11 ∴FC =FB .............................4分【知识应用】过点C 作CM ⊥x轴于点M ,过点A 作AN ⊥x轴于点N ,过点B 作BP ⊥x轴于点P则点P 的坐标为(x2,0),点N 的坐标为(x1,0)由探究的结论可知,MN =MP∴点M 的坐标为(221x x +,0) ∴点C 的横坐标为221x x + 同理可求点C 的纵坐标为221y y + ∴点C 的坐标为(221x x +,221y y +).............................8分 【知识拓展】 当AB 是平行四边形一条边,且点C 在x轴的正半轴时,AD 与BC 互相平分,设点C 的坐标为(a,0),点D 的坐标为(0,y)由上面的结论可知:-6+a=4+0,-1+0=5+b∴a=10,b=-6∴此时点C 的坐标为(10,0),点D 的坐标为(0,-6)同理,当AB 是平行四边形一条边,且点C 在x轴的负半轴时求得点C 的坐标为(-10,0),点D 的坐标为(0,6)当AB 是对角线时点C 的坐标为(-2,0),点D 的坐标为(0,4).............................14分。
2013届中考模拟试题数 学一、仔细选一选(本大题有10小题,每小题3分,共30分。
请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分) 1、下列一元二次方程中,没有实数根的是( )A.2210x x +-= B.2x +22x+2=0C.210x += D.220x x -++=2、如图,将三角尺ABC (其中∠ABC =60°,∠C =90°)绕B 点按顺时针方向转动一个角度到△A 1BC 1的位置,使得点A ,B ,C 1在同一条直线上,那么这个角度等于( )A .120°B .90°C .60°D .30°3、在成都市二环路在某段时间内的车流量为30.6万辆,用科学记数法表示为() A .430.610⨯辆 B .33.0610⨯辆C .43.0610⨯辆D .53.0610⨯辆4、给出下列命题:(1)平行四边形的对角线互相平分; (2)对角线相等的四边形是矩形;(3)菱形的对角线互相垂直平分; (4)对角线互相垂直的四边形是菱形. 其中,真命题的个数是( )A.4 B.3 C.2 D.1 5、下列各函数中,y 随x 增大而增大的是( ) ①1y x =-+. ②3y x=-(x < 0) ③21y x =+. ④23y x =- A .①② B .②③ C .②④ D .①③ 6、在△ABC 中,90C ∠=o,若4BC =,2sin 3A =,则AC 的长是( )A.6B.C.D.7、若点A (-2,y 1)、B (-1,y 2)、C (1,y 3)在反比例函数xy 1-=的图像上,则( )_1_ A _1_ A(第13题图)A. y 1>y 2 >y 3 B.y 3> y 2 >y 1 C.y 2 >y 1 >y 3 D. y 1 >y 3> y 2 8、如图,EF 是圆O 的直径,5cm OE =,弦8cm MN =则E ,F 两点到直线MN 距离的和等于( ) A.12cm B.6cmC.8cm D.3cm9、若抛物线22y x x c =-+与y 轴的交点坐标为(0,3)-,则下列说法不正确的是( ) A.抛物线的开口向上 B.抛物线的对称轴是直线1x = C.当1x =时y 的最大值为4- D.抛物线与x 轴的交点坐标为(1,0)-、(3,0) 10、反比例函数k y x=的图象如左图所示,那么二次函数221y kx k x =--的图象大致为 ( )二、填空题:(每小题4分,共16分)11、2008年8月5日,奥运火炬在成都传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,65,80,70,95,100,则这组数据的中位数是 . 12、方程2(34)34x x -=-的根是 .A .B. C.D .(第8题图)13、如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .14、在Rt △ABC 中,90C ∠=o,D 为BC 上一点,30DAC ∠=o ,2BD =,AB =AC 的长是.三、(第15题每小题6分,第16题6分,共18分) 15、解答下列各题:(1)计算:323+—2)(-+2cos30°—23—(2)解方程:2430x x +-=.17、把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5、)洗匀后正面朝下放在桌面上。
2013年中考数学模拟考试数学试题一、选择题(本大题共有8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.-2的相反数是A.-2B.2C.-21 D.212.已知两圆的半径分别为6和4,圆心距为7,则两圆的位置关系是 A .相交B .内切C .外切D .内含3.下列计算中,正确的是( )A .42232a a a =+ B .()52322x x x -=-⋅ C .()53282a a -=- D .22326x x xm m=÷4.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是A .1个B . 2个C . 3个D . 4个 5.下列说法正确的是A .若甲组数据的方差20.01S =甲,乙组数据的方差20.1S =乙,则乙组数据比甲组数据稳定B .为了解全国中学生的心理健康情况,应该采用普查的方式C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .一个游戏的中奖概率是110,则做10次这样的游戏一定会中奖 6.下面四个几何体中,左视图是四边形的几何体共有A. 1个B. 2个C. 3个D. 4个7.如图所示,在方格纸上建立的平面直角坐标系中,将△ABO 绕点O 按顺时针方向旋转90°,得A B O ''△ ,则点A '的坐标为A .(3,1)B .(3,2)C .(2,3)D .(1,3)y C 2C 1C y 24 3B8.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2011个正方形的面积为 ( ) A .201035()2⨯B .201195()4⨯ C . 200995()4⨯ D .402035()2⨯二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.去年冬季的某一天,学校一室内温度是8℃,室外温度是2-℃,则室内外温度相差 ▲ ℃.10.国家游泳中心“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260 000平方米,将260 000用科学记数法表示应为 ▲ 平方米. 11.五边形的内角和为 ▲ 度.12.已知反比例函数的图象经过点A (6,-1),请你写出该函数的表达式 ▲ . 13.已知二元一次方程组⎩⎨⎧=-=-52832y x y x ,则y x -的值为 ▲ .14.不等式组30210x x -<⎧⎨-⎩≥的解集是 ▲ .15.在如图的甲、乙两个转盘中,指针指向每一个数字的机会是均等的.当同时转动两个转盘,停止后指针所指的两个数字表示两条线段的长,如果第三条线段的长为5,那么这三条线段能构成三角形的概率为_____▲____.16.如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC = °.17.已知圆锥的底面半径是3cm ,母线长为6cm ,则这个圆锥的侧面积为_ ▲ .cm 2.(结果保留π)B 题)yxO BCA (第18题)OAC(第16题)·(第15题)18.如图,A 、B 是双曲线 y = k x(k >0) 上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k= ▲ .三、解答题(本大题共有10小题,共74分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题6分)计算:(1)200821(1)()162---+; (2)2311()11x x x x--⋅-+. 20.(本题6分)为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下: 组 别 噪声声级分组 频 数 频 率 1 44.5——59.5 4 0.1 2 59.5——74.5 a 0.2 3 74.5——89.5 10 0.25 4 89.5——104.5 bc 5 104.5——119.56 0.15 合 计401.00根据表中提供的信息解答下列问题:(1)频数分布表中的a =________,b =________,c =_________; (2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?21.(本题6分)小晶和小红玩掷骰子游戏,每人将一个各面分别标有1,2,3,4,5,6的正方体骰子掷一次,把两人掷得的点数相加,并约定:点数之和等于6,小晶赢;点数之和等于7.小红赢;点数之和是其它数,两人不分胜负.问他们两人谁获胜的概率大?请你用“画树状图”或“列表”的方法加以分析说明.22.(本题6分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是2288m ?23.(本题8分)如图,点E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE .(第24题)(第22题)蔬菜种植区域前 侧 空 地F EDCBA(第23题)(1)求证:△AFD ≌△CEB(2)四边形ABCD 是平行四边形吗?请说明理由.24.(本题8分)如图15,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50米.现需从山顶A 到河对岸点C 拉一条笔直的缆绳AC ,求缆绳AC 的长(结果精确到0.1m )(参考数据:2 1.41≈,3 1.73≈) 25.(本题8分)如图,A (-1,0)、B (2,-3)两点在二次函数y 1=ax 2+bx -3与一次函数y 2=-x +m 图像上。
α2013年数学中考模拟试题一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)1.-6的相反数是().A、-6 B、6 C、61- D、612.温家宝总理有一句名言:“多么小的问题,乘以13亿,都会变得很大,多么大的经济总量,除以13亿,都会变得很小。
”如果每人每天浪费0.01千克粮食,,我国13亿人每天就浪费粮食()A . 1.3³105 千克B . 1.3³106千克C . 1.3³107千克D . 1.3³108千克3.函数y=1-x中自变量x的取值范围是()A.x>1 B. x≥1 C. x<1 D. x≤14.将如图所示放置的一个直角三角形ABC,(∠C=90°),绕斜边AB旋转一周,所得到的几何体的正视图是下面四个图中的()(A)(B)(C)(D)5. 在反比例函数xky=(k<0)的图象上有两点A(x1,y1),B(x2,y2),且1x>2x>0,则12y y-的值为()A、正数B、负数C、非正数D、非负数7.把不等式组1010xx+>⎧⎨-⎩,≤的解集表示在数轴上,正确的是()6.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是()A、平均数 B、加权平均数 C、中位数D、众数8. 一副三角板,如图所示叠放在一起,则图中∠α的度数是()A、 75° B、60°C、65°D、55°9. 图①、图②、图③是三种方法将6根钢管用钢丝捆扎的截面图,三种方法所用的钢丝长分别为a,b,c, (不记接头部分),则a, b, c,的大小关系为()。
A、a=b >c B. a=b=c C. a<b<c D. a>b>c(第8题)(第9题)10.如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边0C在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A、B、C、D、二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)11.若2x+5y-3=0,则4x²32y的值为 .12.如图,直线yxy与434+-=轴交于点A,与直线5454+=xy交于点B,且直线54=yx轴交于点C,则ABC∆的面积为13. 如图所示,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,DC=3,AB=24,则⊙O的直径等于。
2013年中考数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共计24分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号涂在答题卡相应位......置.上) 1.51-的绝对值是( ▲ ) A .-5 B .15 C .15- D . 52.下列图形是生活中常见的道路标识,其中不是..轴对称图形的是( ▲ )A .B .C .D .3.下列运算正确的是( ▲ )A .22a a a =+B .4226)3(a a =C .49)23)(23(2-=-+-a a aD .ab ba ab 2=+4.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的主视图是( ▲ )A .两个外离的圆B .两个相交的圆C .两个外切的圆D .两个内切的圆5. 将不等式组x 1x 3≥⎧⎨≤⎩的解集在数轴上表示出来,正确的是( ▲ ) A. B.C. D.6.下列说法中正确的是( ▲ )A .“打开电视,正在播放《新闻联播》”是必然事件B .想了解某种饮料中含色素的情况,宜采用抽样调查C .数据1,1,2,2,3的众数是3D .一组数据的波动越大,方差越小7. 若直线y 3x m =+经过第一、三、四象限,则抛物线2y (x m)1=-+的顶点必在 ( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限8. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( ▲ )二、填空题(本大题共有10小题,每小题3分,共计30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 4的算术平方根为 ▲ .10.若代数式21-+x x 的值为零,则x = ▲ . 11.分解因式:y xy -= ▲ . 12.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m , 其最小直径用科学计数法表示约为 ▲ m .13.如图,过CDF ∠的一边DC 上的点E 作直线AB ∥DF ,若110AEC ∠=o,则CDF ∠的度数为 ▲ o .14. 已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是 ▲ .15.如图,AB 是⊙O 的直径,圆心O 到弦BC 的距离是1,则AC 的长是 ▲ .第13题 第15题 第18题16. 某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为 ▲ .17.将一个圆心角为120°,半径为6cm 的扇形围成一个圆锥的侧面,则所得圆锥的高为 ▲ cm .18. 如图所示,点1A 、2A 、3A 在x 轴上,且11223OA A A A A ==,分别过点1A 、2A 、3A 作y 轴的平行线,与反比例函数()80y x x=>的图象分别交于点1B 、2B 、3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别与y 轴交于点1C ,2C ,3C ,连接1OB ,2OB ,3OB ,那么图中阴影部分的面积之和为 ▲ .三、解答题(本大题共有10小题,共计96分.请在答题卡指定区域内作答..........,解答时应写出必要的文字说明、证明过程或演算步骤)19. (本题满分8分)(1)计算:()10230sin 3-︒-+-π;(2)化简:2242(1)44a a a a-÷-++.20.(本题满分8分)某班从2名男生和2名女生中随机抽取学生参加学校举行的“我的中国梦”演讲比赛,求下列事件的概率:(1)抽取1名,恰好是男生;(2)抽取2名,恰好是1名女生和1名男生.21(本题满分8分)小敏为了解我市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.如图,点E ,F 在平行四边形ABCD 的对角线AC上,AE =CF .(1)证明:ABE ∆≌CDF ∆;(2)猜想:BE 与DF 平行吗?对你的猜想加以证明.23.(本题满分10分)如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A 、B ,B 船在A 船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A 的东北方向,B 的北偏东15°方向有一不明国籍的渔船C ,求此时渔船C 与海监船B 的距离是多少.(结果保留根号)24.(本题满分10分)如图, Rt ABC △中,90ABC ∠=°,以AB 为直径作半圆⊙O 交AC于点D ,点E 为BC 的中点,连结DE .(1)求证:DE 是半圆⊙O 的切线;(2)若︒=∠30BAC ,DE =2,求AD 的长.A B C D E F·先锋岛大润发超市进了一批成本为8元/个的文具盒. 调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒的定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?26.(本题满分10分)在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O 作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.(1)如图1,当点A的横坐标为▲时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到一个新抛物线,试判断新抛物线经过平移变换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.定义:如图1,射线OP 与原点为圆心,半径为1的圆交于点P ,记xOP α∠=,则点P 的横坐标叫做角α的余弦值,记作cos α;点P 的纵坐标叫做角α的正弦值,记作sin α;纵坐标与横坐标的比值叫做角α的正切值,记作tan α.如:当ο45=α时, 点P 的横坐标为ο45cos =22, 纵坐标为ο45sin=22,即P (22,22). 又如:在图2中,α-=∠ο90xOQ (α为锐角), PN ⊥y 轴,QM ⊥x 轴,易证OPN OQM ∆≅∆, 则Q 点的纵坐标)90sin(α-ο等于点P 的横坐标cos α,得)90sin(α-ο= cos α. 解决以下四个问题:(1)当60α=o 时,求点P 的坐标;(2)当α是锐角时,则cos α+sin α ▲ 1(用>或<填空),(sin α)2 + (cos α)2= ▲ ;(3)求证:sin(90)cos αα+=o (α为锐角);(4)求证:1cos tan2sin ααα-=(α为锐角).图1 图2已知,把Rt△ABC和Rt△DEF按图1摆放(点C与E重合),点B,C,E,F始终在同一条直线上,∠ACB=∠EDF=90°,DE=DF,AC=8,BC=6,EF=10.如图2,△DEF从图1位置出发,以每秒1个单位的速度沿CB向△ABC匀速运动,同时,点P从点A出发,沿AB以每秒1个单位的速度向点B匀速运动,AC与△DEF 的直角边相交于点Q,当E到达终点B时,△DEF与点P同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:(1)当D在AC上时,求t的值;(2)在P点运动过程中,是否存在点P,使△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)连接PE,设四边形APEQ的面积为y(cm2),求y与t之间的函数关系式,并写出自变量t的取值范围.参考答案1-8 BBDC ABBC9.2 10.-1 11.y(x-1) 12.8×10-8 13.70 14.-1 15.216.204205.0420=--xx 17.24 18.949 19.(1) 1 ; (2)2+a a 20.(1)21; (2)32 21.(1)50; (2)57.6度 (3)29222.(1)证明略; (2)平行,证明略23.21024.(1)证明略;(2)6 25.(1)y=-10x+300 ; (2)设超市每星期销售这种文具可获得利润为w 元,w=y(x-8)=-10(x-19)2+1210, 当x=19时,最高利润为1210元26.(1)-1;(2)①B (2,4)②过点C 作CG ⊥FB 的延长线于点G ,∵∠AOE+∠EAO=90°,∠FBO+∠CBG=90°,∠AOE=∠FBO ,∴∠EAO=∠CBG ,在△AEO 和△BGC 中,,∴△AEO ≌△BGC (AAS ), ∴CG=OE=,BG=AE=.∴x c =2﹣=,y c =4+=,∴点C (,), 设过A (﹣,)、B (2,4)两点的抛物线解析式为y=﹣x 2+bx+c ,由题意得,,解得,∴经过A 、B 两点的抛物线解析式为y=﹣x 2+3x+2,当x=时,y=﹣()2+3×+2=,所以点C 也在此抛物线上,故经过A 、B 、C 三点的抛物线解析式为y=﹣x 2+3x+2=﹣(x ﹣)2+. 平移方案:先将抛物线y=﹣x 2向右平移个单位,再向上平移个单位得到抛物线y=﹣(x。
2013年中考数学模拟考试试卷一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣的倒数是()A.﹣2 B.2C.D.﹣2.如图是由六个棱长为1的正方体组成的一个几何体,其主视图的面积是()A.3B.4C.5D.63.下列图形中,不是中心对称图形的是()A.平行四边形B.矩形C.菱形D.等边三角形4.如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是()A.∠B=48°B.∠AED=66°C.∠A=84°D.∠B+∠C=96°5.以下事件中,必然发生的是()A.打开电视机,正在播放体育节目B.正五边形的外角和为180°C.通常情况下,水加热到100℃沸腾D.掷一次骰子,向上一面是5点6.(4分)如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是()A.A D=AB B.∠BOC=2∠D C.∠D+∠BOC=90°D.∠D=∠B7.今年6月某日南平市各区县的最高气温(℃)如下表:区县延平建瓯建阳武夷山浦城松溪政和顺昌邵武光泽气温(℃) 33 32 32 30 30 29 29 31 30 28则这10个区县该日最高气温的众数和中位数分别是()A.32,32 B.32,30 C.30,30 D.30,328.关于x的一元二次方程x2﹣2x+2+m2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定9.给定一列按规律排列的数:,则这列数的第6个数是()A.B.C.D.10.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B.C.D.二、填空题(本大题共8小题,每小题3分,共24分.请将答案填入答题卡的相应位置)11.(3分)计算:=.12.(3分)甲、乙、丙、丁四位同学在5次数学测验中,他们成绩的平均数相同,方差分别为,,,,则成绩最稳定的同学是.13.(3分)写出一个第二象限内的点的坐标:(,).14.(3分)分解因式:3a2+6a+3=.15.(3分)计算:(a2b)3=.16.(3分)长度分别为3cm,4cm,5cm,9cm的四条线段,任取其中三条能组成三角形的概率是.17.(3分)分式方程的解是.18.(3分)设点P是△ABC内任意一点.现给出如下结论:①过点P至少存在一条直线将△ABC分成周长相等的两部分;②过点P至少存在一条直线将△ABC分成面积相等的两部分;③过点P至多存在一条直线将△ABC分成面积相等的两部分;④△ABC内存在点Q,过点Q有两条直线将其平分成面积相等的四个部分.其中结论正确的是.(写出所有正确结论的序号)三、解答题(本大题共8小题,共86分.请在答题卡的相应位置作答)19.(14分)(1)计算:.(2)化简:.20.(8分)解不等式组:.21.(8分)如图,在▱ABCD中,点E,F分别在BC,AD上,且BE=FD,求证:四边形AECF是平行四边形.22.(10分)初中生在数学运算中使用计算器的现象越来越普遍,某校一兴趣小组随机抽查了本校若干名学生使用计算器的情况.以下是根据抽查结果绘制出的不完整的条形统计图和扇形统计图:请根据上述统计图提供的信息,完成下列问题:(1)这次抽查的样本容量是;(2)请补全上述条形统计图和扇形统计图;(3)若从这次接受调查的学生中,随机抽查一名学生恰好是“不常用”计算器的概率是多少?23.(10分)某校为了实施“大课间”活动,计划购买篮球、排球共60个,跳绳120根.已知一个篮球70元,一个排球50元,一根跳绳10元.设购买篮球x个,购买篮球、排球和跳绳的总费用为y元.(1)求y与x之间的函数关系式;(2)若购买上述体育用品的总费用为4 700元,问篮球、排球各买多少个?24.(10分)2013年6月11日,“神舟”十号载人航天飞船发射成功!如图,飞船完成变轨后,就在离地球(⊙O)表面约350km的圆形轨道上运行.当飞船运行到某地(P点)的正上方(F点)时,从飞船上能看到地球表面最远的点Q(FQ是⊙O的切线).已知地球的半径约为6 400km.求:(1)∠QFO的度数;(结果精确到0.01°)(2)地面上P,Q两点间的距离(PQ的长).(π取3.142,结果保留整数)25.(12分)在矩形ABCD中,点E在BC边上,过E作EF⊥AC于F,G为线段AE的中点,连接BF、FG、GB.设=k.(1)证明:△BGF是等腰三角形;(2)当k为何值时,△BGF是等边三角形?(3)我们知道:在一个三角形中,等边所对的角相等;反过来,等角所对的边也相等.事实上,在一个三角形中,较大的边所对的角也较大;反之也成立.利用上述结论,探究:当△BGF分别为锐角、直角、钝角三角形时,k的取值范围.26.(14分)如图,已知点A(0,4),B(2,0).(1)求直线AB的函数解析式;(2)已知点M是线段AB上一动点(不与点A、B重合),以M为顶点的抛物线y=(x﹣m)2+n与线段OA交于点C.①求线段AC的长;(用含m的式子表示)②是否存在某一时刻,使得△ACM与△AMO相似?若存在,求出此时m的值.参考答案一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.A2.B3.D4.B5.C6.B7.C8.C9.A10.D二、填空题(本大题共8小题,每小题3分,共24分.请将答案填入答题卡的相应位置)11.3.12.丁.13.(﹣1,1).14.3(a+1)2.15.a6b3.16.(或0.25).17.x=9.18.①②④.三、解答题(本大题共8小题,共86分.请在答题卡的相应位置作答)19.解:(1)原式=4×5+(π﹣1)﹣3=20+π﹣1﹣3=16+π;(2)原式=+﹣===.20.解:∵由①得:2x<5,,由②得:,,x>﹣3,∴不等式组的解集为.21.证明:在□ABCD中,AD=BC且AD∥BC∵BE=FD,∴AF=CE∴四边形AECF是平行四边形22.解:(1)100÷62.5%=160.即这次抽查的样本容量是160.故答案为160;(2)不常用计算器的人数为:160﹣100﹣20=40;不常用计算器的百分比为:40÷160=25%,不用计算器的百分比为:20÷160=12.5%.条形统计图和扇形统计图补全如下:(3)∵“不常用”计算器的学生数为40,抽查的学生人数为160,∴从这次接受调查的学生中,随机抽查一名学生恰好是“不常用”计算器的概率是:.答:从这次接受调查的学生中,随机抽查一名学生恰好是“不常用”的概率是.23.解:(1)依题意,得y=70x+50(60﹣x)+10×120=20x+4200;(2)当y=4700时,4700=20x+4200(7分)解得:x=25∴排球购买:60﹣25=35(个)答:篮球购买25个、排球购买35个.24.解:(1)∵FQ是⊙O的切线,∴OQ⊥FQ,∴∠OQF=90°,∴在Rt△OQF中,OQ=6400,OF=OP+PF=6400+350=6750,∴sin∠QFO=\frac{OQ}{FQ}=≈0.9481,∴∠QFO≈71.46°;答:∠QFO的度数约为71.46°;(2)∵∠QFO=71.46°,∴∠FOQ=90°﹣71.46°=18.14°,∴{PQ}的长=≈2071,答:地面上PP、Q两点间的距离约为2 071 km.25.解:(1)证明:∵EF⊥AC于点F,∴∠AFE=90°∵在Rt△AEF中,G为斜边AE的中点,∴,在Rt△ABE中,同理可得,∴GF=GB,∴△BGF为等腰三角形;(2)当△BGF为等边三角形时,∠BGF=60°∵GF=GB=AG,∴∠BGE=2∠BAE,∠FGE=2∠CAE∴∠BGF=2∠BAC,∴∠BAC=30°,∴∠ACB=60°,∴,∴当k=时,△BGF为等边三角形;(3)由(1)得△BGF为等腰三角形,由(2)得∠BAC=∠BGF,∴当△BGF为锐角三角形时,∠BGF<90°,∴∠BAC<45°,∴AB>BC,∴k=>1;当△BGF为直角三角形时,∠BGF=90°,∴∠BAC=45°∴AB=BC,∴k==1;当△BGF为钝角三角形时,∠BGF>90°,∴∠BAC>45°∴AB<BC,∴k=<1;∴0<k<1.26.解:(1)设直线AB的函数解析式为:y=kx+b.∵点A坐标为(0,4),点B坐标为(2,0),∴,解得:,即直线AB的函数解析式为y=﹣2x+4;(2)①∵以M为顶点的抛物线为y=(x﹣m)2+n,∴抛物线顶点M的坐标为(m,n).∵点M在线段AB上,∴n=﹣2m+4,∴y=(x﹣m)2﹣2m+4.把x=0代入y=(x﹣m)2﹣2m+4,得y=m2﹣2m+4,即C点坐标为(0,m2﹣2m+4),∴AC=OA﹣OC=4﹣(m2﹣2m+4)=﹣m2+2m;②存在某一时刻,能够使得△ACM与△AMO相似.理由如下:过点M作MD⊥y轴于点D,则D点坐标为(0,﹣2m+4),∴AD=OA﹣OD=4﹣(﹣2m+4)=2m.∵M不与点A、B重合,∴0<m<2,又∵MD=m,∴AM==m.∵在△ACM与△AMO中,∠CAM=∠MAO,∠MCA>∠AOM,∴当△ACM与△AMO相似时,假设△ACM∽△AMO,∴,即,整理,得9m2﹣8m=0,解得m=或m=0(舍去),∴存在一时刻使得△ACM与△AMO相似,且此时m=.。
2013年中考数学模拟考试题说明:1.全卷共6页,考试时间为100分钟,满分为150分。
2.用黑色字迹的钢笔或签字笔答题。
答案按各题要求写在答题卷上。
一、选择题(共8小题,每题4分,共32分)1.若二次根式1x -有意义,则x 的取值范围是( )A .x ≥1B .x ≤1C .x >1D .x ≠12、下列标志中,可以看作是中心对称图形的是( )(B )3、右图是一个由4个相同的正方体组成的立体图形,它的三视图是( )4、圆锥的底面直径是80cm ,母线长90cm ,则它的侧面展开图的圆心角是( ) A .3200 B.400 C .1600 D.8005、如图,AB 是⊙O 的直径,C .D 是⊙O 上一点,∠CDB=20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 等于( )A .40°B 50°C .60°D 70°6.在Rt ABC ∆中,︒=∠90C ,5=AB ,2=AC ,则A c o s 的值是········( )(D)(A )(c)A.521 B.52 C.221D.257、随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是( ) A.16 B. 19 C. 118 D. 2158.如图为二次函数y=ax2+bx+c 的图象,此图象与x 轴的交点坐标分别为(-1,0)、(3,0).下列说法正确的个数是( ) ①ac <0 ②a+b+c >0③方程ax2+bx+c=0的根为x1=-1,x2=3 ④当x >1时,y 随着x 的增大而增大.A.1B. 2C.3D. 4二、填空题(本大题共5小题,每小题4分,满分20分)9、关于x 的一元二次方程04)2(22=-++-k x x k 的一个根为0,则k 的值是__________. 10.正六边形的边心距与半径长的比值为__________.11.⊙O 的半径为1㎝,弦AB=2㎝,AC=3㎝,则∠BAC 的度数为 .12. 抛物线542+-=x x y 的对称轴是__________..13、如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是__________.三、解答题(本大题共5小题,每小题7分,满分35分)14、1142sin30(2012)3-⎛⎫-+- ⎪⎝⎭15.按要求解方程:2410x x -+=(配方法)16.某兴趣小组用仪器测测量湛江海湾大桥主塔的高度.如图,在距主塔从AE60米的D 处.用仪器测得主塔顶部A 的仰角为68°,已知测量仪器的高CD=1.3米,求主塔AE 的高度(结果精确到0.1米) (参考数据:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)17、已知:如图,图①和图②中的每个小正方形的边长都为1 个单位长度.(1)将图①中的格点ABC ∆(顶点都在网格线交点处的三角形叫格点三角形)向上平移2个单位长度得到111C B A ∆,请你在图中画出111C B A ∆;(2)在图②中画出一个与格点ABC ∆相似的格点222C B A ∆,且222C B A ∆与ABC ∆的相似比为2﹕1.18、将两块大小相同的含30°角的直角三角板(∠BAC =∠B ′A ′C =30°)按图①方式放置,固定三角板A ′B ′C ,然后将三角板ABC 绕直角顶点C 顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB 与A ′C 交于点E ,AC 与A ′B ′交于点F ,AB 与A ′B ′相交于点O . (1)求证:△BCE ≌△B ′CF ; (2)当旋转角等于30°时,AB 与A ′B ′垂直吗?请说明理由.四、解答题(本大题共3小题,每小题9分,满分27分)图①AB C 图②AB C第18题图AFD OEBG C19、在一个口袋中有4个完全相同的小球,把它们分别标号为1,3,5,7,随机摸出一个小球然后放回,再随机摸出一个小球,求下列事件的概率: (1)两次取出的小球标号相同;(2)两次取出的小球的标号和是5的倍数.20、菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售. (1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.21、已知:如图,在△ABC 中,AB=BC ,D 是AC 中点,BE 平分∠ABD 交AC 于点E ,点O 是AB 上一点,⊙O 过B 、E 两点, 交BD 于点G ,交AB 于点F 。
(1)求证:AC 与⊙O 相切;(2)当BD=6,sinC=53时,求⊙O 的半径。
五、解答题(本大题共3小题,每小题12分,满分36分)22、“数学迷”小楠通过从“特殊到一般”的过程,对倍角三角形(一个内角是另一个内角的2倍的三角形)进行研究.得出结论:如图8,在ABC ∆中,C B A ∠∠∠、、的对边分别是c b a 、、,如果B A ∠=∠2,那么bc b a =-22.下面给出小楠对其中一种特殊情形的一种证明方法. 已知:如图9,在ABC ∆中,︒=∠90A ,︒=∠45B . 求证:bc b a =-22.证明:如图9,延长CA 到D ,使得AB AD =.b CABa c(图8)∴ABD D ∠=∠,∵D ABD D CAB ∠=∠+∠=∠2,︒=∠90CAB ∴︒=∠45D ,∵︒=∠45ABC , ∴ABC D ∠=∠,又C C ∠=∠ ∴ABC ∆∽BCD ∆ ∴BC AC CD BC =,即abc b a =+ ∴bc b a =-22根据上述材料提供的信息,请你完成下列情形的证明(用不同于材料中的方法也可以):已知:如图8,在ABC ∆中,B A ∠=∠2.求证:bc b a =-22.23、已知一个矩形纸片OACB ,将该纸片放置在平面直角坐标系中,点A (11,0),点B (0,6),点P 为BC 边上的动点(点P 不与点B 、C 重合),经过点O 、P 折叠该纸片,得点B′和折痕OP .设BP=t .(1)如图①,当∠BOP=300时,求点P 的坐标;(2)如图②,经过点P 再次折叠纸片,使点C 落在直线PB′上,得点C′和折痕PQ ,若AQ=m ,试用含有t 的式子表示m ;(3)在(2)的条件下,当点C′恰好落在边OA 上时,求点P 的坐标(直接写出结果即可).24、如图,二次函数y =ax 2+bx +c 的图象交x 轴于A (﹣1,0),B (2,0),交y 轴于C (0,﹣2),过A ,C 画直线.(1)求二次函数的解析式;(2)点P 在x 轴正半轴上,且P A =PC ,求OP 的长;(3)点M 在二次函数图象上,以M 为圆心的圆与直线AC 相切,切点为H .若M 在y 轴右侧,且△CHM ∽△AOC (点C 与点A 对应),求点M 的坐标;D图92013年中考模拟考试题数学参考答案及评分说明一、ABAC BABC 二、9、-2 10、23 11、150或72012、2 13、4n ﹣2 三、解答题14.解:10142sin30(2012)3-⎛⎫-+- ⎪⎝⎭(4分)122132=-⨯+- (6分)1=-. (7分)15、解:移项,得241x x -=-.配方,得24414x x -+=-+, 2(2)3x -= (4分) 由此可得23x -=± (6分)123x =+,223x =- (7分)16、解:根据题意得:在Rt △ABC 中,AB=BC•tan68°≈60×2.48=148.8(米)(3分) ∵CD=1.3米, ∴BE=1.3米,∴AE=AB+BE=148.8+1.3=150.1(米).(6分)∴主塔AE 的高度为150.1米.(7分)17、如下图所示.(每画一个图给3分,共7分)18、解:(1)因∠B =∠B /,BC =B /C ,∠BCE =∠B /CF ,所以△BCE ≌△B ′CF ;(3分) (2)AB 与A ′B ′垂直,理由如下:旋转角等于30°,即∠ECF =30°,所以∠FCB /=60°,又∠B =∠B /=60°,根据四边形的内角和可知∠BOB /的度数为360°-60°-60°-150°=90°,所以AB 与A ′B ′垂直(7分)四、解答题19、解:(1)画树状图得:(3分)∵共有16种等可能的结果,两次取出的小球标号相同的有4种情况, ∴两次取出的小球标号相同的概率为:41=164。
(5分) (2)∵两次取出的小球的标号和是5的倍数的有3种情况:3+7,5+5,7+3,∴两次取出的小球的标号和是5的倍数的概率为:316。
(9分) C 2B 2 A 2C 1 B 1 A 1 图①AB C图②A B C 第18题图20、解(1)设平均每次下调的百分率为x .由题意,得5(1﹣x )2=3.2.(3分) 解这个方程,得x 1=0.2,x 2=1.8.因为降价的百分率不可能大于1,所以x 2=1.8不符合题意, 符合题目要求的是x 1=0.2=20%. 答:平均每次下调的百分率是20%.(5分)(2)小华选择方案一购买更优惠.理由:方案一所需费用为:3.2×0.9×5000=14400(元), 方案二所需费用为:3.2×5000﹣200×5=15000(元). ∵14400<15000, ∴小华选择方案一购买更优惠.(9分) 21.(1)证明:连接OE ,∵AB=BC 且D 是BC 中点 ∴BD ⊥AC∵BE 平分∠ABD∴∠ABE=∠DBE ∵OB=OE∴∠OBE=∠OEB ∴∠OEB=∠DBE∴OE ∥BD ∴OE ⊥AC ∴AC 与⊙O 相切(4分) (2)∵BD=6,sinC=53,BD ⊥AC ∴BC=10 ∴AB=10设⊙O 的半径为r ,则AO=10-r ∵AB=BC ∴∠C=∠A ∴sinA=sinC=53 ∵AC 与⊙O 相切于点E , ∴OE ⊥AC ∴sinA=OA OE =r r-10=53 ∴r=415(9分) 五、解答题22.证明: 延长CA 到D ,使得AB AD =.…………………………(2分)∴ABD D ∠=∠, …………………………………………………(3分)C∵D ABD D CAB ∠=∠+∠=∠2,………………………………(5分) ∵ABC CAB ∠=∠2,∴ABC D ∠=∠,又C C ∠=∠ ∴ABC ∆∽BCD ∆ ∴BC AC CD BC =,即abc b a =+………………………………………(10分) ∴bc b a =-22………………………………………………………(12分)23、解:(1)根据题意,∠OBP=90°,OB=6。