(完整word)历年上海高考试题(立体几何).doc
- 格式:doc
- 大小:1.02 MB
- 文档页数:15
17.(2017-21-17)如图,直三棱柱ABC-A 1B 1C 1的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5. (1)求三棱柱ABC-A 1B 1C 1的体积;(2)设M 是BC 中点,求直线A 1M 与平面ABC 所成角的大小.17.【解析】(1)∵直三棱柱ABC-A 1B 1C 1的底面为直角三角形, 两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5.∴三棱柱ABC ﹣A 1B 1C 1的体积V=S △ABC ·AA 1=12AB ·AC ·AA 1=12×4×2×5=20.(2)连接AM.∵直三棱柱ABC-A 1B 1C 1, ∴AA 1⊥底面ABC.∴∠AMA 1是直线A 1M 与平面ABC 所成角. ∵△ABC 是直角三角形,两直角边AB 和AC 的长分别为4和2,点M 是BC 的中点,∴AM=12BC=12×42+22= 5.由AA 1⊥底面ABC ,可得AA 1⊥AM,∴tan ∠A 1MA=AA 1AM =55= 5.∴直线A 1M 与平面ABC 所成角的大小为arctan 5.19.(2016•23-19)将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图,AC 长为π,A 1B 1长为,其中B 1与C 在平面AA 1O 1O 的同侧.(1)求三棱锥C ﹣O 1A 1B 1的体积;(2)求异面直线B 1C 与AA 1所成的角的大小.【考点】异面直线及其所成的角.【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】(1)连结O1B1,推导出△O1A1B1为正三角形,从而=,由此能求出三棱锥C﹣O1A1B1的体积.(2)设点B1在下底面圆周的射影为B,连结BB1,则BB1∥AA1,∠BB1C为直线B1C与AA1所成角(或补角),由此能求出直线B1C与AA1所成角大小.【解答】解:(1)连结O1B1,则∠O1A1B1=∠A1O1B1=,∴△O1A1B1为正三角形,∴=,==.(2)设点B1在下底面圆周的射影为B,连结BB1,则BB1∥AA1,∴∠BB1C为直线B1C与AA1所成角(或补角),BB1=AA1=1,连结BC、BO、OC,∠AOB=∠A1O1B1=,,∴∠BOC=,∴△BOC为正三角形,∴BC=BO=1,∴tan∠BB1C=45°,∴直线B1C与AA1所成角大小为45°.【点评】本题考查三棱锥的体积的求法,考查两直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.19、(2015.上海)如图。
历年高考真题1、2003(理科)(本题满分12分)已知平行六面体ABCD —A 1B 1C 1D 1中,A 1A ⊥平面ABCD ,AB=4,AD=2.若B 1D ⊥BC ,直线B 1D 与平面ABCD 所成的角等于30°,求平行六面体ABCD —A 1B 1C 1D 1的体积..[解]连结BD ,因为B 1B ⊥平面ABCD ,B 1D ⊥BC ,所以BC ⊥BD.在△BCD 中,BC=2,CD=4,所以BD=32.又因为直线B 1D 与平面ABCD 所成的角等于30°,所以 ∠B 1DB=30°,于是BB 1=31BD=2.故平行六面体ABCD —A 1B 1C 1D 1的体积为S ABCD ·BB 1=38. 2.2005(理科)(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知正三棱锥ABC P -的体积为372,侧面与底面所成的二面角的大小为 60. (1)证明:BC PA ⊥;(2)求底面中心O 到侧面的距离.[证明](1)取BC 边的中点D ,连接AD 、PD ,则BC AD ⊥,BC PD ⊥,故⊥BC 平面APD . BCPA ⊥[解](2)如图, 由(1)可知平面⊥PBC 平面APD ,则PDA ∠面所成二面角的平面角.过点O 作E PD OE ,⊥为垂足,则OE 就是点O 到侧面的距离. 设OE 为h ,由题意可知点O 在AD 上,∴ 60=∠PDO ,h OP 2=.h BC h OD 4,32=∴=,∴ 2234)4(43h h S ABC ==∆, ∵ 3233823431372h h h =⋅⋅=,∴ 3=h . 即底面中心O 到侧面的距离为3.3、2006(理科)(本题满分 14分)本题共有 2个小题,第 1小题满分 5分,第 2小题满分满分 9分。
在三棱柱 ABC —A1B1C1 中,∠ABC=90°,AB=BC=1。
近五年上海高考真题——解析几何(2018春12)如图,正方形ABCD 的边长为20米,圆O 的半径为1米,圆心是正方形的中心,点P 、Q 分别在线段AD 、CB 上,若线段PQ 与圆O 有公共点,则称点Q 在点P 的“盲区”中.已知点P 以1.5米/秒的速度从A 出发向D 移动,同时,点Q 以1米/秒的速度从C 出发向B 移动,则在点P 从A 移动到D 的过程中,点Q 在点P 的盲区中的时长约为__________秒(精确到0.1)答案:4.4关键点:引入时刻t ,表示点,P Q ,直线PQ ,列出(不等式)圆心到直线PQ 的距离小于等于半径,解不等式可得提示:以A 为原点建立坐标系,设时刻为t ,则40(0,1.5),(20,20),03P t Q t t -≤≤ 则0 1.5:20020 1.5PQ x y tl t t--=---,化简得(8)8120t x y t --+= 点(10,10)O 到直线PQ1≤,化简得23161280t t +-≤t ≤≤0 4.4t t ≤≤⇒∆=≈P 到两个定点(1,0)和(1,0)-的距离之和等于4,则动点P 的轨迹为__________.答案:22143x y +=知识点:(2018秋20)设常数2t >,在平面直角坐标系xOy 中,已知点()2,0F ,直线l :x t =,曲线Γ:28y x =()0,0x t y ≤≤≥,l 与x 轴交于点A 、与Γ交于点B ,P 、Q 分别是曲线Γ与线段AB 上的动点.(1)用t 表示点B 到点F 的距离;(2)设3t =,2FQ =,线段OQ 的中点在直线FP 上,求△AQP 的面积;(3)设8t =,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由.【解析】(1)2BF t =+;(2)73AQP S =△;(3)245,5P ⎛⎫ ⎪ ⎪⎝⎭. 关键点:FQ FP PM =+u u u r u u u r u u u u r知识点:中点弦(2018春18)已知a R ∈,双曲线22:1x y Γ-=.直线1y kx =+与Γ相交于A 、B 两点,且线段AB 中点的横坐标为1,求实数k 的值.答案.51-. 关键点:1212x x +=,因此用设而不求,韦达定理 知识点:和立体几何相关19.(7分+7分)利用“平行于圆锥曲线的母线截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两个射灯(射出的光锥视为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影出的抛物线的平面图,图3是一个射灯的直观图,在图2与图3中,点O 、A 、B 在抛物线上,OC 是抛物线的对称轴,OC AB ⊥于C ,3AB =米, 4.5OC =米.(1)求抛物线的焦点到准线的距离;(2)在图3中,已知OC 平行于圆锥的母线SD ,AB 、DE 是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到0.01°).图1 图2 图3答案.(1)14;(2)9.59︒.知识点:双曲线2017秋-6、设双曲线)0(19222>=-b b y x 的焦点为P F F ,,21为该双曲线上的一点,若5||1=PF ,则_____||2=PF答案:11关键点:双曲线的定义,发散:若16PF =,则2______PF = 关键点:216PF PF =± 知识点:参数方程(2017秋16)已知点P 在椭圆1436:221=+y x C ,点Q 在椭圆19:222=+x y C 上,O 为坐标原点,记OP OQ ω=⋅u u u r u u u r,集合(){},|P Q OP OQ ω=⋅u u u r u u u r,当ω取得最大值时,集合中符合条件的元素有几个( )A. 2个B. 4个C. 8个D. 无数个 答案:D 关键点:法一:椭圆的参数方程()1212126cos cos 2sin 3sin 6cos θθθθθθ+=-法二:柯西不等式121211226623x x y y x y y x +=+≤从本题也可看出,柯西不等式和两角差的余弦定理,参数方程之间的联系知识点:和向量相关秋-20、在平面直角坐标系中,已知椭圆1422=+Γy x :,A 是其上顶点,P 为Γ上异于上、下顶点的动点,M 是x 轴正半轴上的一点; (1)若点P 在第一象限,且2||=OP ,求点P 的坐标;(2)若⎪⎭⎫ ⎝⎛5358,P ,且APM ∆为直角三角形,求M 的横坐标; (3)若MA MP =,4PQ PM =u u u r u u u u r ,直线AQ 交椭圆Γ于另一点C ,2AQ AC =u u u r u u u r,求直线AC 的方程;答案、(1)⎪⎪⎭⎫⎝⎛36,332P ; (2)⎪⎭⎫ ⎝⎛0,2029M 或⎪⎭⎫ ⎝⎛0,53M 或)0,1(M ; (3)设点()00,P x y 线段AP 的中垂线与x 轴的交点03,08M x ⎛⎫⎪⎝⎭,因为4PQ PM =u u u r u u u u r ,所以003,32Q x y ⎛⎫-- ⎪⎝⎭,因为2AQ AC =u u u r u u u r ,所以00133,42y C x -⎛⎫- ⎪⎝⎭,代入并联立椭圆方程,解得001,99x y ==-,所以13Q ⎛⎫ ⎪⎝⎭,所以直线AQ的方程为110y x =+ 关键点:(2)直角=向量数量积为0;(3)设出点P 的坐标,根据题意,依次表示点M Q C 、、,点,P C 在椭圆上,建立方程组,可求出点,P C 的坐标春-10、设椭圆2212x y +=的左右焦点分别为12F F 、,点P 在椭圆上,则使得12F F P ∆是等腰三角形的点P 的个数是______答案:6关键点:半弦长的值域是[],a c a c -+春-20、已知双曲线()222:10,y x b bΓ-=> 直线():0l y kx m km =+≠,l 与Γ交于P Q 、 两点,P '为P 关于y 轴的对称点,直线P Q '与y 轴交于点()0,N n(1)若点()2,0是Γ的一个焦点,求Γ的渐近线方程;(2)若1b =,点P 的坐标为()1,0-,且32NP P Q ''=u u u u r u u u u r,求k 的值;(3)若2m =,求n 关于b 的表达式答案:(1)y = (2)12k =± (3)22b n =-知识点:应用题(2016秋-20)(6+8分)有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。
1近五年上海高考汇编——立体几何一、填空题1.(2009年高考5)如图,若正四棱柱1111-ABCD A B C D 的底面边长为2,高为4,则异面直线1BD 与AD 所成角的大小是_____ ___.(结果用反三角函数值表示)答案:arctan 52.(2009年高考理科8)已知三个球的半径1R ,2R ,3R 满足32132R R R =+,则它们的表面积1S ,2S ,3S 满足的等量关系是_____ ___. 答案:12323S S S +=3.(2009年高考文科6)若球12,O O 的面积之比124S S =,则它们的半径之比12RR =___ ____. 答案:24.(2009年高考文科8)若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是____ ____. 答案:83π5.(2010年高考理科12)如图所示,在边长为4的正方形纸片ABCD 中,AC 与BD 相交于点O ,剪去AOB ,将剩余部分沿,OC OD 折叠,使,OA OB 重合,则以(),A B ,,C D O 为顶点的四面体的体积是_____ ___.答案:826.(2010年高考文科6)已知四棱锥P ABCD -的底面是边长为6的正方体,侧棱PA ⊥底面ABCD ,且8PA =,则该四棱锥的体积是_____ ___.2答案:967.(2011年高考理科7)若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为_____ __. 答案:33π 8.(2011年高考文科7)若一个圆锥的主视图是边长为3,3,2的三角形,则该圆锥的侧面积为_____ ____. 答案:3π9.(2012年高考理科6)有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为12,,...,,...n V V V ,则12lim(...)n n V V V →∞+++=_____ ____.答案:8710.(2012年高考理科8)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为_____ ____. 答案:33π 11.(2012年高考理科14)如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2BC =,若2AD c =,且2AB BD AC CD a +=+=,其中,a c 为常数,则四面体ABCD 的体积的最大值是_____ ____.答案:22213c a c -- 12.(2012年高考文科5)一个高为2的圆柱,底面周长为2π,该圆柱的表面积为_____ ____. 答案:6π13.(2013年高考理科13)在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω.过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为2418y ππ-+.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为_____ ____.3答案:2216ππ+14.(2013年高考文科10)已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为6π,则l r =_____ ____.3二、选择题1.(2009年高考文科16)如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是 ( )Oxyz443(D)(C)(B)(A)54433444答案:B三、解答题1.(2009年高考理科19)如图,在直三棱柱ABC A B C '''-中,2AA BC AB '===,AB BC ⊥,求二面角B A C C '''--的大小4答案:如图,建立空间直角坐标系则 A ()2,0,0,C ()0,2,0,A 1()2,0,2,B 1()0,0,2,C 1()0,2,2, 设AC 的中点为M ,BM ⊥AC ,BM ⊥CC 1,∴ BM ⊥平面AC 1C ,即BM =()1,1,0是平面AC 1C 的一个法向量。
1近四年上海高考解析几何试题一.填空题 :1、双曲线9x2 16y 2 1的焦距是.2、直角坐标平面xoy 中,定点A(1,2) 与动点 P(x, y) 满足 OP ? OA 4 ,则点P轨迹方程___。
3、若双曲线的渐近线方程为y 3x ,它的一个焦点是10 ,0 ,则双曲线的方程是__________。
4、将参数方程x 1 2 cos(为参数)化为普通方程,所得方程是__________。
y 2sin5、已知圆C :( x 5) 2 y 2 r 2 ( r 0) 和直线 l : 3x y 5 0 .若圆 C 与直线 l 没有公共点,则 r 的取值范围是.6、已知直线l过点P( 2, 1) ,且与 x 轴、y轴的正半轴分别交于A、 B 两点, O 为坐标原点,则三角形 OAB 面积的最小值为.7、已知圆x2- 4 x- 4+y2= 0 的圆心是点 P,则点 P 到直线x-y- 1=0 的距离是;8、已知椭圆中心在原点,一个焦点为F(- 2 3 ,0),且长轴长是短轴长的 2 倍,则该椭圆的标准方程是;10、曲线y |x| 1与直线y=kx+b没有公共点,则k、b分别应满足的条是.2 =+11、在平面直角坐标系xOy 中,若抛物线 y 2 4x 上的点P到该抛物线的焦点的距离为6,则点 P 的横坐标 x .12、在平面直角坐标系xOy 中,若曲线 x 4 y2与直线 x m 有且只有一个公共点,则实数 m .13、若直线 l1: 2x my 1 0 与直线 l2: y 3x 1 平行,则 m .14x2 y21的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是.、以双曲线4 516 、已知 P 是双曲线x2 y21 右支上的一点,双曲线的一条渐近线方程为3x y 0 .设a2 9F1、 F2分别为双曲线的左、右焦点. 若 PF2 3 ,则 PF117 、已知A(1, 2), B(3, 4) ,直线 l1: x 0, l 2 : y 0 和 l3 : x 3y 1 0 . 设 P i是l i ( i 1, 2, 3) 上与A、B 两点距离平方和最小的点,则△PP12 P3的面积是二.选择题 :218、过抛物线 y 2 4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线()A .有且仅有一条B .有且仅有两条C.有无穷多条D .不存在19、抛物线 y 24x 的焦点坐标为( )(A ) ( 0, 1) .( B ) ( 1, 0 ) . (C ) ( 0, 2 ) .( D ) ( 2, 0 ) .20、若 k R ,则“ k3 ”是“方程x 2y 21 表示双曲线”的()k3 k 3( A )充分不必要条件 . ( B )必要不充分条件 .(C )充要条件 .(D )既不充分也不必要条件 .21 、已知椭圆x 2y 2 1,长轴在 y 轴上 . 若焦距为 4 ,则 m 等于 ()10 mm2( A ) 4 .( B ) 5 .( C ) 7 .( D ) 8 .三.解答题22 ( 本题满分 18 分) ( 1)求右焦点坐标是 ( 2 , 0 ) ,且经过点 (2 , 2 ) 的椭圆的标准方程;( 2)已知椭圆 C 的方程是x 2 y 2 1 ( a b 0 ) . 设斜率为 k的直线 l ,交椭圆 C 于 A Ba 2b 2、 两点,AB 的中点为 M . 证明:当直线 l 平行移动时,动点M 在一条过原点的定直线上;( 3)利用( 2)所揭示的椭圆几何性质,用作图方法找出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心 .23、(本题满分 x 2y 2 14 分)如图, 点 A 、 B 分别是椭圆1长3620轴的左、 右端点, 点 F 是椭圆的右焦点, 点 P 在椭圆上, 且位于 x 轴上方, PA PF .( 1)求点 P 的坐标;( 2)设 M 是椭圆长轴 AB 上的一点, M 到直线 AP 的距离等于MB ,求椭圆上的点到点 M 的距离 d 的最小值.3 24 ( 本题满分14 分 ) 学校科技小组在计算机上模拟航天器变轨返回试验. 设计方案如图:航天器运行(按顺时针方向)的轨迹方程为x 2 y 2100 1 ,变轨(即航天器运行轨迹由椭圆变为抛物线)25后返回的轨迹是以y 轴为对称轴、M 0, 64 为顶点的抛物线的实线7部分,降落点为D( 8, 0 ) .观测点 A( 4, 0 )、 B( 6, 0 ) 同时跟踪航天器. (1)求航天器变轨后的运行轨迹所在的曲线方程;(2)试问:当航天器在 x 轴上方时,观测点A、B测得离航天器的距离分别为多少时,应向航天器发出变轨指令?25 、(本题满分14分)在平面直角坐标系xO y中,直线l与抛物线y2=2x 相交于、两点.A B(1)求证:“如果直线l过点 T( 3, 0),那么OA OB= 3”是真命题;(2)写出( 1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.26、(14 分 ) 求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.例如,原来问题是“若正四棱锥底面边长为4,侧棱长为 3,求该正四棱锥的体积” . 求出体积 16后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为16 ,求侧棱长”;3 3也可以是“若正四棱锥的体积为16,求所有侧面面积之和的最小值”. 3试给出问题“在平面直角坐标系xOy 中,求点 P( 2, 1) 到直线 3x 4y0 的距离有意义的“逆向”问题,并解答你所给出的“逆向”问题.评分说明:(ⅰ ) 在本题的解答过程中,如果考生所给问题的意义不大,那么在评分标准的第二阶段所列中,应只给 2 分,但第三阶段所列 4 分由考生对自己所给问题的解答正确与否而定. .”的一个6 分(ⅱ ) 当考生所给出的“逆向”问题与所列解答不同,可参照所列评分标准的精神进行评分.427 ( 14 分 ) 如图,在直角坐标系xOy 中,设椭圆yx 2 y 2C :a 2b 21 (a b 0) 的左右两个焦点分别为 F 1、F 2 . 过右焦点 F 2 且与 x 轴垂直的直线l 与椭x圆 C 相交,其中一个交点为M 2, 1 .(1) 求椭圆 C 的方程;(2) 设椭圆 C 的一个顶点为B( 0, b ) ,直线 BF 2 交椭圆 C 于另一点 N ,求△ F 1 BN 的面积 .我们把由半椭圆 x2y 2 1 ( x ≥ 0) 与半椭圆 y2x 2 1 ( x ≤ 0) 合成28(本题满分 18 分) a 2 b 2 b 2c 2的曲线称作“果圆”,其中a 2b 2c 2 , a0 , b c 0.如图,点 F 0 , F 1 , F 2 是相应椭圆的焦点, A 1 , A 2 和 B 1 , B 2 分别是“果圆”与 x , y 轴的交点.y(1)若 △ F 0 F 1F 2 是边长为 1 的等边三角形,求B 2“果圆”的方程;.F2b(2)当 A 1 A 2B 1 B 2的取值范围;.时,求 aO.xA 1F 0A 2F 1B 15 29 在平面直角坐标系xOy 中,A、B分别为直线x y 2 与x、 y 轴的交点,C为AB 的中点 . 若抛物线y2 2 px ( p 0) 过点C ,求焦点 F 到直线AB 的距离.30 、已知z是实系数方程x22bx c0 的虚根,记它在直角坐标平面上的对应点为P z ( Re z, Im z ) .( 1)若( b, c )在直线2x y 0 上,求证:P z在圆C1:(x 1)2 y2 1上;( 2)给定圆 C :( x m) 2 y2 r 2(m、r R , r 0 ),则存在唯一的线段s 满足:①若P z 在圆C 上,则( b, c )在线段s 上;②若( b, c )是线段s 上一点(非端点),则P z在圆C上. 写出线段s 的表达式,并说明理由;6近四年上海高考解析几何试题一.填空题 : 只要求直接填写结果,每题填对得4 分,否则一律得零分 .1、双曲线 9x 2 16y 21的焦距是. 562、直角坐标平面xoy 中,定点 A(1,2) 与动点 P(x, y) 满足 OP ? OA 4 ,则点 P 轨迹方程 ___。
(2018文I )在平行四边形ABCM中,AB AC 3 , / ACM 90,以AC为折痕将△ ACM折起,使点M到达点D的位置,且AB丄DA •⑴证明:平面ACD丄平面ABC ;⑵Q为线段AD上一点,P为线段BC上一点,且BP DQ - DA,求三棱锥Q ABP 的体积.(2018文I I )如图,在三棱锥P ABC中,AB BC 2 2 , PA PB PC AC 4 , O 为AC 的中点.(1)证明:PO 平面ABC ;(2)若点M在棱BC上,且MC 2MB,求点C到平面POM的距离.(2018文III )如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,⑴证明:平面AMD丄平面BMC ;⑵在线段AM上是否存在点P,使得MC //平面PBD ?说明理由.(2017 文I )如图,在四棱锥P-ABCD中, AB//CD, 且BAP CDP 90°(1) 证明:平面PABL平面PAD8(2) 若PA=PD=AB=DC, APD 90°,且四棱锥P-ABCD的体积为一,求该四棱锥的侧面积3M是C D上异于C , D的点.(2017文II )如图,四棱锥 P ABCD 中,侧面PAD 为等边三角形且垂直于底面 ABCD ,(1)证明:直线BC //平面PAD ;(2)若厶PCD 的面积为2 .7,求四棱锥P ABCD 的体积•(2017文III )如图,四面体 ABCD 中, △ ABC 是正三角形, AD=CD (1)证明:AC 丄BD(2)已知△ ACD 是直角三角形,AB=BD 若E 为棱BD 上与D 不重合的点,且 AE 丄EC 求四面体 ABCE 与四 面体ACDE 的体积比.AB BC - AD, BAD 2ABC 90 .(2016文I )如图,在已知正三棱锥 P-ABC 的侧面是直角三角形,为点D, D 在平面PAB 内的正投影为点 E ,连接PE 并延长交AB 于点G. (I )证明:G 是AB 的中点;(II )在图中作出点 E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDE 啲体积.(2016文II ) 如图,菱形 ABCD 勺对角线 AC 与 BD 交于点O,点E , F 分别在AD, CD 上, AE=CF EF 交 BD 于点H,将 m 厂沿EF 折到/7的位置. (I )证明: 「"茧「(n )若二疗才「辽上汎肿=’「汐=,求五棱锥的体积.PA=6,顶点P 在平面ABC 内的正投影4(2016 文III )如图,四棱锥P-ABCD中,P从底面ABCD AD// BC, AB=AD=AC=3 PA=BC=4 M为线段AD 上一点,AM=2MD N为PC的中点.(I )证明MIN/平面PAB;(II )求四面体N-BCM的体积.(2015 文I )如图四边形ABCD为菱形,G为AC与BD交点,BE 平面ABCD , (1 )证明:平面AEC 平面BED ;(II )若ABC 120o, AE EC,三棱锥E ACD的体积为一6,求该三棱锥的侧面积3(2015 文II )如图,长方体ABCD- A1B1C1D1 中,AB=16, BC=1Q AA1=8,点E,分别在A1B1, D1C1 上, A1E= D1F=4.过点E,F的平面a与此长方体的面相交,交线围成一个正方形(1 )在图中画出这个正方形(不必说明画法和理由)(2)求平面a把该长方体分成的两部分体积的比值(2014文I )如图,三棱柱ABC 中,侧面BBQC为菱形,B1C的中点为O,且AO 平面BB1C1C.(1)证明:B1C AB;(2)若AC AB1, CBB1 60 ,BC 1,求三棱柱ABC A1B1C1的高.(2014文II )如图,四棱锥P ABCD中,底面ABCD为矩形,PA 平面ABCD , E是PD的重占八、、-(1)证明: PB// 平面AEC ;(2)设AP 1, AD 3 , 三棱锥P ABD的体积V 严,求A到平面pBC的距离.。
ABDCA 1B 1C 1D 1立体几何【2010年上海文6】已知四棱椎P ABCD −的底面是边长为6的正方形,侧棱PA ⊥底面ABCD ,且8PA =,则该四棱椎的体积是 .【2010年上海理12】如图所示,在边长为4的正方形ABCD 纸片中,A C 与BD 相交于O ,剪去AOB ,将剩余部分沿OC 、OD 折叠,使OA 、OB 重合,则以A 、()B 、C 、D 、O 为顶点的四面体的体积为 。
【2011年上海理7】 若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为 . 【2011年上海文7】若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形,则该圆锥的侧面积为【2011年上海文20】已知1111ABCD A B C D −是底面边长为1的正四棱柱,高12AA =,求 (1)异面直线BD 与1AB 所成角的大小(结果用反三角函数值表示); (2)四面体11AB D C 的体积.O 1D 1C 1B 1A 1CDBA【2011年上海理21】已知1111ABCD A B C D −是底面边长为1的正四棱柱,1O 为11A C 与11B D 的交点.(1)设1AB 与底面1111A B C D 所成角的大小为α,二面角111A B D A −−的大小为β.求证:tan 2tan βα=;(2)若点C 到平面111A B D 的距离为43,求正四棱柱1111ABCD A B C D −的高.【2012年上海理8】若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为 .【2012年上海理14】如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2BC =,若2AD c =,且2AB BD AC CD a +=+=,其中,a c 为常数,则四面体ABCD 的体积的最大值是 .【2012年上海理19】如图,在四棱锥P ABCD −中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点,已知2AB =,22AD =,2PA =,求:(1)三角形PCD 的面积;(2)异面直线BC 与AE 所成的角的大小 .【2012年上海文19】如图,在三棱锥P ABC −中,PA ⊥底面ABC ,D 是PC 的中点,已知∠BAC =2π,2AB =,23AC =,2PA =,求: (1)三棱锥P ABC −的体积;(2)异面直线BC 与AD 所成的角的大小(结果用反三角函数值表示).PABCD【2013年上海文10】已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,A B 、是下底面圆周上的两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为6π,则rl= .【2013年上海理13】在xOy 平面上,将两个半圆弧22(1)1(1)x y x −+=≥和22(3)1(3)x y x −+=≥、两条直线1y =和1y =−围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω,过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为2418y ππ−+,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为__________【2013年上海理19】(本题满分12分)如图,在长方体1111ABCD A B C D −中,2AB =,1AD =,11AA =,证明直线1BC 平行于平面1DA C ,并求直线1BC 到平面1DA C 的距离.D 1C 1B 1A 1D C BA【2013年上海文19】(本题满分12分)如图,正三棱锥O ABC −的底面边长为2,高为1,求该三棱锥的体积及表面积。
十年高考分类上海高考数学试卷精校版含详解11立体几何部分一、选择题(共11小题;共55分)1. 给定空间中的直线l及平面α,条件“直线l与平面α内两条相交直线都垂直”是“直线l与平面α垂直”的 A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件2. 给定空间中的直线l及平面α,条件“直线l与平面α内无数条直线都垂直”是“直线l与平面α垂直”的 A. 充要条件B. 充分非必要条件C. 必要非充分条件D. 既非充分又非必要条件3. 如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是 A. B.C. D.4. 若有平面α与β,且α∩β=l,α⊥β,P∈α,P∉l,则下列命题中的假命题为 A. 过点P且垂直于α的直线平行于βB. 过点P且垂直于l的平面垂直于βC. 过点P且垂直于β的直线在α内D. 过点P且垂直于l的直线在α内5. 若空间中有两条直线,则"这两条直线为异面直线"是"这两条直线没有公共点"的 A. 充分非必要条件B. 必要非充分条件C. 充分必要条件D. 既非充分又非必要条件6. 已知直线l,m,n及平面α,下列命题中的假命题是 A. 若l∥m,m∥n,则l∥nB. 若l⊥α,n∥α,则l⊥nC. 若l⊥m,m∥n,则l⊥nD. 若l∥α,n∥α,则l∥n7. 若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的 A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 非充分非必要条件8. 如图,在正方体ABCD−A1B1C1D1中,E,F分别为BC,BB1的中点,则下列直线中与直线EF相交的是 A. 直线AA1B. 直线A1B1C. 直线A1D1D. 直线B1C19. 一个封闭的立方体,它的6个表面各标出A、B、C、D、E这6个字母中的1个字母,现放成下面3个不同位置,所看见的表面上的字母已标明,则字母A、B、C对面的字母分别是 A. D、E、FB. F、D、EC. E、F、DD. E、D、F10. 如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是 A. 48B. 18C. 24D. 3611. 在下列关于直线l、m与平面α、β的命题中,真命题是 A. 若l⊂β且α⊥β,则l⊥αB. 若l⊥β且α∥β,则l⊥αC. 若l⊥β且α⊥β,则l∥αD. 若α∩β=m且l∥m,则l∥α二、填空题(共24小题;共120分)12. 若正三棱柱的所有棱长均为a,且其体积为163,则a=.13. 若圆锥的侧面积为2π,底面积为π,则该圆锥的体积为.14. 若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形,则该圆锥的侧面积为.15. 如果一条直线与一个平面垂直,那么,称此直线与平面构成一个"正交线面对".在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的"正交线面对"的个数是.16. 如图,在正四棱柱ABCD−A1B1C1D1中,底面ABCD的边长为3,BD1与底面所成角的大小为arctan2,则该正四棱柱的高等于.317. 若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为.18. 若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为.19. 如图,若正四棱柱ABCD−A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的大小是(结果用反三角函数表示).20. 在长方体中割去两个小长方体后的几何体的三视图如图,则切割掉的两个小长方体的体积之和等于.21. 一个高为2的圆柱,底面周长为2π.该圆柱的表面积为.22. 若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是.23. 若球O1、O2表面积之比S1S2=4,则它们的半径之比R1R2=.24. 如图,若正四棱柱ABCD−A1B1C1D1的底面边长为2,高为4,则异面直线BD1与AD所成角的正切值是.25. 在正四棱锥P−ABCD中,若侧面与底面所成二面角的大小为60∘,则异面直线PA与BC所成角的正切值等于.26. 下图表示一个正方体表面的一种展开图,图中的四条线段AB、CD、EF和GH在原正方体中相互异面的有对.27. 若圆锥的侧面积是底面积的3倍,则其母线与轴所成角的大小为(结果用反三角函数值表示).28. 若圆锥的侧面积是底面积的3倍,则其母线与底面夹角的大小为(结果用反三角函数值表示).29. 已知圆柱Ω的母线长为l,底面半径为r,O是上底面圆心,A、B是下底面圆周上两个不同的点,BC是母线,如图.若直线OA与BC所成角的大小为π6,则lr=.30. 在xOy平面上,将两个半圆弧x−12+y2=1x≥1和x−32+y2=1x≥3、两条直线y=1和y=−1围成的封闭图形记为D,如图中阴影部分.记D绕y轴旋转一周而成的几何体为Ω,过0,y∣y∣≤1作Ω的水平截面,所得截面面积为4π 1−y2+8π,试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为.31. 如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于点O,剪去△AOB,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A B、C、D、O为顶点的四面体的体积是.32. 有两个相同的直三棱柱,高为2,底面三角形的三边长分别为3a,4a,5a a>0.用它们拼成一a个三棱柱或四棱柱,在所有可能的情况中,全面积最小的是一个四棱柱,则a的取值范围是.33. 如图,在底面边长为2的正三棱锥V−ABC中,E是BC的中点,若△VAE的面积是1,则侧4棱VA与底面所成角的大小为(结果用反三角函数值表示).34. 如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2.若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.35. 有两个相同的直三棱柱,高为2,底面三角形的三边长分别为3a,4a,5a a>0.用它们拼成a一个三棱柱或四棱柱,在所有可能的情形中,表面积最小的是一个四棱柱,则a的取值范围是.三、解答题(共22小题;共286分)36. 如图,正三棱锥O−ABC底面边长为2,高为1,求该三棱锥的体积及表面积.37. 如图,在棱长为2的正方体ABCD−A1B1C1D1中,E是BC1的中点.求直线DE与平面ABCD所成角的正切值.38. 如图,在正四棱锥P−ABCD中,PA=2,直线PA与平面ABCD所成的角为60∘,求正四棱锥P−ABCD的体积V.π,39. 将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,AC长为23 A1B1长为π,其中B1与C在平面AA1O1O的同侧.3(1)求三棱锥C−O1A1B1的体积.(2)求异面直线B1C与AA1所成角的大小.,A1B1 40. 将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,AC长为5π6,其中B1与C在平面AA1O1O的同侧.长为π3(1)求圆柱的体积与侧面积;(2)求异面直线O1B1与OC所成的角的大小.41. 如图,圆锥的顶点为P,底面圆心为O,底面的一条直径为AB,C为半圆弧AB的中点,E为劣弧CB的中点,已知PO=2,OA=1,求三棱锥P−AOC的体积,并求异面直线PA与OE 所成角的余弦值.42. 如图,在长方体ABCD−A1B1C1D1中,AA1=1,AB=AD=2,E,F分别是棱AB,BC的中点.证明A1,C1,F,E四点共面,并求直线CD1与平面A1C1FE所成角的正弦值.43. 底面边长为2的正三棱锥P−ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.44. 如图,在长方体ABCD−AʹBʹCʹDʹ中,AB=2,AD=1,AAʹ=1,证明直线BCʹ平行于平面DʹAC,并求直线BCʹ到平面DʹAC的距离.45. 如图,在三棱锥P−ABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=π,AB=2,2 AC=23,PA=2.求:(1)三棱锥P−ABC的体积;(2)异面直线BC与AD所成的角的大小(结果用反三角函数值表示).46. 如图,在四棱锥P−ABCD中,底面ABCD是矩形,PA⊥底面ABCD,E是PC的中点.已知AB=2,AD=22,PA=2.求:(1)三角形PCD的面积;(2)异面直线BC与AE所成的角的大小.47. 已知ABCD−A1B1C1D1是底面边长为1的正四棱柱,高AA1=2,求:(1)异面直线BD与AB1所成角的余弦值;(2)四面体AB1D1C的体积.48. 已知ABCD−A1B1C1D1是底面边长为1的正四棱柱,O1是A1C1和B1D1的交点.(1)设AB1与底面A1B1C1D1所成的角的大小为α,二面角A−B1D1−A1的大小为β.求证:tanβ=2tanα;(2)若点C到平面AB1D1的距离为4,求正四棱柱ABCD−A1B1C1D1的高.349. 已知ABCD−A1B1C1D1是底面边长为1的正四棱柱,O1为A1C1与B1D1的交点.(1)设AB1与底面A1B1C1D1所成角的大小为α,二面角A−B1D1−A1的大小为β.求证:tanβ=2tanα;,求正四棱柱ABCD−A1B1C1D1的高.(2)若点C到平面AB1D1的距离为4350. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝.骨架将圆柱底面8等分,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)在灯笼内,以矩形骨架的顶点为端点,安装一些霓虹灯.当灯笼底面半径为0.3米时,求图中两根直线型霓虹灯A1B3、A3B5所在异面直线所成角的的余弦值.51. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用S平方米塑料片制成圆柱的侧面和下底面(不安装上底面).(1)当圆柱底面半径r取何值时,S取得最大值?并求出该最大值(结果精确到0.01平方米);(2)若要制作一个如图放置的,底面半径为0.3米的灯笼,请作出用于灯笼的三视图(作图时,不需考虑骨架等因素).52. 在长方体ABCD−A1B1C1D1中,点E,F分别在BB1,DD1上,且AE⊥A1B,AF⊥A1D.(1)求证:A1C⊥平面AEF;(2)若规定两个平面所成的角是这两个平面所组成的二面角中的锐角(或直角),则在空间中有定理:若两条直线分别垂直于两个平面,则这两条直线所成的角与这两个平面所成的角相等.试根据上述定理,在AB=4,AD=3,AA1=5时,求平面AEF与平面D1B1BD所成的角的大小.(用反三角函数值表示)53. 用一块钢锭浇铸一个厚度均匀,且全面积为2平方米的正四棱锥形有盖容器(如图),设容器的高为ℎ米,盖子边长为a米.(1)求a关于ℎ的函数解析式;(2)设容器的容积为V立方米,则当ℎ为何值时,V最大?求出V的最大值.(求解本题时,不计容器的厚度)54. 如图,在直三棱柱ABC−A1B1C1中,AA1=BC=AB=2,AB⊥BC,求二面角B1−A1C−C1的大小.55. 在四棱锥P−ABCD中,底面是边长为2的菱形,∠DAB=60∘,对角线AC与BD相交于点O,PO⊥平面ABCD,PB与平面ABCD所成的角为60∘.(1)求四棱锥P−ABCD的体积;(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.56. 在直三棱柱ABC−A1B1C1中,∠ABC=90∘,AB=BC=1.(1)求异面直线B1C1与AC所成的角的大小;(2)若A1C与平面ABC所成角为45∘,求三棱锥A1−ABC的体积.57. 如图,P−ABC是底面边长为1的正三棱锥,D,E,F分别为侧棱PA,PB,PC上的点,截面DEF∥底面ABC,且棱台DEF−ABC与棱锥P−ABC的棱长和相等(棱长和是指多面体中所有棱的长度之和).(1)证明:P−ABC为正四面体;PA,求二面角D−BC−A的余弦值;(2)若PD=12(3)设棱台DEF−ABC的体积为V,是否存在体积为V且各棱长均相等的直平行六面体,使得它与棱台DEF−ABC有相同的棱长和? 若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.答案第一部分1. C2. C3. B4. D5. A6. D7. A 【解析】答案 A8. D 【解析】只有B1C1与EF在同一平面内,是相交的,选项A,B,C中直线与EF都是异面直线.9. C 10. D【解析】提示:问题可以等价转化为求正方体中过顶点的直线与过顶点的四边形所在平面垂直的对数共有多少个.11. B第二部分12. 413. 33π【解析】设圆锥的底面的圆的半径为r,高为ℎ,母线为l,则由题设πrl=2π,πr2=π,则r=1,l=2.于是ℎ=2−r2=4−1=3.该圆锥的体积V=13πr2ℎ=33π.14. 3π【解析】由主视图,得该圆锥的底面圆的半径为r=1,母线l=3,则该圆锥的侧面积是S=πrl= 3π.15. 36【解析】正方体中,一个面有四条棱与之垂直,所以六个面共构成24个“正交线面对”;而正方体的六个对角面中,每个对角面又有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”.16. 22【解析】BD=32,DD1=BD⋅23=22.17. 33π【解析】由圆锥的底面面积为π,可知圆锥的底面半径为1,由圆锥的侧面积为2π,可得圆锥的母线为2,则圆锥的高为3,所以V=13×3×π×12=33π.18. 33π【解析】设圆锥底面半径为r,母线长为l,高为ℎ,则πl=2πr,12πl2=2π,解得l=2,r=1,从而ℎ=.所以该圆锥的体积V=13πr2⋅ℎ=13π×12×3=33π.19. arctan520. 24【解析】由三视图可知,切割后的两个小长方体的长、宽、高分别为2、3、2,所以体积和为22×3×2=24.21. 6π22. 8π323. 224.25. 2【解析】过点P作PO⊥平面ABCD于O,取AD的中点H,连接OH,PH,如图:要求PA与BC所成的角,即求∠PAD,由题意知,∠PHO=60∘,设HO=a,则PH=2a,AH=12AD=OH=a,故tan∠PAD=PHAH=2.26. 3【解析】提示:原正方体中四条线段AB、CD、EF和GH的位置如图所示:27. arcsin1328. arccos1329.【解析】如图,取下底面中心,记为M,连接OM、AM,则BC∥OM,所以OA与BC所成的角就是∠MOA,即∠MOA=π6,tanπ6=rl.30. 2π2+16π【解析】一个半径为1,高为2π的圆柱平放,和一个高为2,底面面积8π的长方体放在一起构成一个组合体,根据祖暅原理,这个几何体与Ω的每个平行水平面的截面面积都相等,故它们的体积相等,即Ω的体积值为π⋅12⋅2π+2⋅8π=2π2+16π.31. 823【解析】由于正方形的边长为4,且AC和BD相交于点O,那么AO=CO=DO=22,且∠AOD=∠DOC=∠COB=90∘,通过折叠,可得如下图形,而且AO、CO、DO两两垂直,那么对应的四面体的体积为V=13×12×22×22×22=823.32. 0<a<153【解析】①拼成一个三棱柱时,有三种情况:将上、下底面对接,其全面积为:S1=2×12×3a×4a+3a+4a+5a×4a=12a2+48;3a边可以合在一起时,S2=24a2+36;4a边合在一起时,S3=24a2+32.②拼成一个四棱柱,有三种情况:就是分别让边长为3a,4a,5a所在的侧面重合,其上、下底面积之和都是2×2×12×3a×4a=24a2,但侧面积分别为:24a+5a×2a =36,23a+5a×2a=32,23a+4a×2a=28,显然,三个四棱柱中全面积最小的值为:S4=2×2×12×3a×4a+23a+4a×2a=24a2+28.由题意,得24a2+28<12a2+48.解得0<a<153.33. arctan14【解析】设V在底面上的射影为O,则O∈AE,且∠VAE就是侧棱VA与底面所成的角.因为底面△ABC的边长为2,所以其BC边上的高AE=3.由S△VAE=12VO⋅AE=14,解得VO=36,而AO=23AE=233,所以tan∠VAE=VOAO=14.34. 23c a2−c2−1【解析】利用椭圆的定义及割补法求体积.由AB+BD=AC+CD=2a>AD=2c,可得点B与点C都在以A、D为焦点的椭球上运动.过BC作垂直于AD的平面EBC交AD于E点,则四面体ABCD的体积为V=13AD⋅12×2 BE2−1=2c3BE2−1,要求四面体ABCD体积的最大值,即求BE的最大值.当E与AD的中点O重合,即B为椭圆短轴的端点时,BE最大,且BE=2−c2故四面体ABCD的体积的最大值为2c3a2−c2−1.35. 0,153【解析】两个相同的直三棱柱并排放拼成一个三棱柱或四棱柱,有三种情况:四棱柱有三种,边长为3a的边重合在一起,构成的四棱柱的表面积为24a2+36,边长为4a的边重合在一起,构成的四棱柱的表面积为24a2+32,边长为5a的边重合在一起,表面积为24a2+28;拼成三棱柱有一种,就是两个三棱柱的上下底面对接,此时新的三棱柱的表面积为12a2+48;若最小的是一个四棱柱,则要求24a2+28<12a2+48,解得0<a<153.第三部分36. 三棱锥O−ABC的体积是V O−ABC=1⋅S△ABC⋅1=3.设O在面ABC中的射影为Oʹ,BC的中点D,则OOʹ=1,OʹD=3 ,在Rt△OOʹD中,有OD=OOʹ2+DOʹ2=12+3=3,三棱锥O−ABC的表面积为S O−ABC=3S△OBC+S△ABC=3⋅BC⋅OD+3=33,所以,三棱锥O−ABC的体积为33,表面积为3.37. 如图:过E作EF⊥BC,交BC于F,连接DF,则EF⊥平面ABCD,所以∠EDF是直线DE与平面ABCD所成的角.由EF是△BCC1的中位线,得EF=12CC1=1.由F为BC的中点,得CF=1CB=1,在Rt△DCF中,DF=5,因为EF⊥DF,所以tan∠EDF=EFDF=55,故直线DE与平面ABCD所成角的正切值是55.38. 如图,作PO⊥平面ABCD,垂足为O,连接AO,O是正方形ABCD的中心,所以∠PAO是直线PA与平面ABCD所成的角.由题∠PAO=60∘,PA=2.所以PO=3,AO=1,AB=2,因此V=13PO⋅S ABCD=13×3×2=233.39. (1)连O1B1,则A1B1=∠A1O1B1=π3,所以△A1O1B1为正三角形,所以S△A1O1B1=34,所以V C−O1A1B1=13OO1⋅S△A1O1B1=312.(2)设点B1在下底面圆周的射影为B,连BB1,则BB1∥AA1,所以∠BB1C为直线B1C与AA1所成角(或补角).BB1=AA1,连BC,BO,OC,AB=A1B1=π3,AC=2π3,所以BC=π3,所以∠BOC=π3,所以△BOC为正三角形,所以BC=BO=1,所以tan∠BB1C=BCBB1=1,所以∠BB1C=45∘,所以直线B1C与AA1所成角大小为45∘.40. (1)由题意可知,圆柱的母线长l=1,底面半径r=1.圆柱的体积V=πr2l=π×12×1=π,圆柱的侧面积S=2πrl=2π×1×1=2π.(2)设过点B1的母线与下底面交于点B,则O1B1∥OB,所以∠COB或其补角为O1B1与OC所成的角.由A1B1长为π3,可知∠AOB=∠A1O1B1=π3,由AC长为5π6,可知∠AOC=5π6,∠COB=∠AOC−∠AOB=π2,所以异面直线O1B1与OC所成的角的大小为π2.41. V P−AOC=13×12×2=13.因为AC∥OE,所以∠PAC为异面直线PA与OE所成的角或其补角.由PO=2,OA=OC=1,得PA=PC=AC=在△PAC中,由余弦定理得cos∠PAC=1010,故异面直线PA与OE所成角的余弦值为1010.42. 如图,以D为原点建立空间直角坐标系,可得有关点的坐标为A12,0,1,C10,2,1,E2,1,0,F1,2,0,C0,2,0,D10,0,1.因为A1C1=−2,2,0,EF=−1,1,0,所以A1C1∥EF,因此直线A1C1与直线EF共面,即A1,C1,F,E四点共面.设平面A1C1FE的法向量为n=u,v,w,则n⊥EF,n⊥FC1,又EF=−1,1,0,FC1=−1,0,1,故−u+v=0,−u+w=0,解得u=v=w.取u=1,得平面A1C1FE的一个法向量n=1,1,1.又CD1=0,−2,1,故CD1⋅n ∣∣CD1∣∣∣n∣=−1515.因此直线CD1与平面A1C1FE所成角的正弦值为1515.43. 在△P1P2P3中,P1A=P3A , P2C=P3C,所以AC是△P1P2P3的中位线,故P1P2=2AC=4.同理P2P3=P3P1=4,所以△P1P2P3是等边三角形,且边长为4.设Q是△ABC的中心,则PQ⊥平面ABC,所以AQ=233,PQ= AP22=236.因此V=1S△ABC⋅PQ=22.44. 因为ABCD−AʹBʹCʹDʹ为长方体,故AB∥CʹDʹ,AB=CʹDʹ,故ABCʹDʹ为平行四边形,故BCʹ∥ADʹ,显然直线BCʹ不在平面DʹAC上,于是直线BCʹ平行于平面DʹAC;直线BCʹ到平面DʹAC的距离即为点B到平面DʹAC的距离,设为ℎ.考虑三棱锥ABCDʹ的体积,以ABC为底面,可得V=1×1×1×2×1=1.而△ADʹC中,AC=DʹC=,ADʹ=,故S△ADʹC=3 2 .所以,V=1×3×ℎ=1⇒ℎ=2,即直线BCʹ到平面DʹAC的距离为23.45. (1)S△ABC=12AB⋅AC=12×2×23=23,三棱锥P−ABC的体积为V=1S△ABC×PA=1×23×2=43.(2)如图,取PB的中点E,连接DE,AE,则ED∥BC,所以∠ADE(或其补角)是异面直线BC与AD所成的角.在△ADE中,DE=2,AE=,AD=2,所以cos∠ADE=22+22−22×2×2=34,所以∠ADE=arccos 3 .因此,异面直线BC与AD所成的角的大小是arccos34.46. (1)因为PA⊥底面ABCD,CD⊂平面ABCD,所以PA⊥CD.又AD⊥CD,PA∩AD=A,所以CD⊥平面PAD,从而CD⊥PD.因为在直角三角形PCD中,PD=22+222=23,CD=2,所以三角形PCD的面积为1×2×23=2 3.(2)解法一:如图所示,建立空间直角坐标系,则B2,0,0,C 2,22,0,E 1,2,1,AE=1,2,1,BC=0,22,0.设AE与BC的夹角为θ,则cosθ=AE⋅BC ∣∣AE∣∣∣∣BC∣∣=42×22=22,所以θ=π4 ,由此知,异面直线BC与AE所成的角的大小是π4.解法二:如图所示,取PB的中点F,连接EF,AF,则EF∥BC,从而∠AEF(或其补角)是异面直线BC与AE所成的角.在△AEF中,由EF=2,AF=2,AE=2,知△AEF是等腰直角三角形,所以∠AEF=π4,因此,异面直线BC与AE所成的角的大小是π4.47. (1)连接BD,AB1,B1D1,AD1,因为BD∥B1D1,AB1=AD1,所以异面直线BD与AB1所成角为∠AB1D1,记∠AB1D1=θ,AB12=AD12=22+12=5,B1D12=2,所以在△AB1D1中,由余弦定理cosθ=AB12+B1D12−AD122AB1×B1D1=1010.所以异面直线BD与AB1所成角的余弦值为1010.(2)连接AC,CB1,CD1,则所求四面体的体积V=V ABCD−A1B1C1D1−4×V C−B1C1D1=2−4×1 3=2 .48. (1)因为AA1⊥底面A1B1C1D1,所以AB1与底面A1B1C1D1所成的角为∠AB1A1,即∠AB1A1=α.因为△ABB1≌△ADD1,所以AB1=AD1,又O1为B1D1中点,所以AO1⊥B1D1,又A1O1⊥B1D1,则∠AO1A1是二面角A−B1D1−A1的平面角,即∠AO1A1=β.在Rt△AA1B1中,tanα=AA1 A1B1.在Rt△AA1O1中,tanβ=AA1 11.又A1B1=2A1O1,所以tanβ=α.(2)建立如图空间直角坐标系.设正四棱柱的高为 ℎ,底面边长为 1,则 A 0,0,ℎ ,B 1 1,0,0 ,D 1 0,1,0 ,C 1,1,ℎ ,从而AB 1 = 1,0,−ℎ ,AD 1 = 0,1,−ℎ ,AC = 1,1,0 .设平面 AB 1D 1 的一个法向量为 n = x ,y ,z ,则n ⋅AB 1 =0,n ⋅AD 1 =0,即x −ℎz =0,y −ℎz =0,取 z =1,得 n = ℎ,ℎ,1 .则点 C 到平面 AB 1D 1 的距离为d =∣∣n ⋅AC ∣∣= ℎ2+ℎ2+1=4.解得 ℎ=2.49. (1) 连接 AO 1,AA 1⊥ 底面 A 1B 1C 1D 1 于 A 1.AB 1 与底面 A 1B 1C 1D 1 所成的角为 ∠AB 1A 1,即 ∠AB 1A 1=α. 因为 AB 1=AD 1,O 1 为 B 1D 1 中点,所以 AO 1⊥B 1D 1,又 A 1O 1⊥B 1D 1,所以 ∠AO 1A 1 是二面角 A −B 1D 1−A 1 的平面角,即 ∠AO 1A 1=β. 设 AA 1=ℎ,所以tan α=AA 111=ℎ,(2) 建立如图空间直角坐标系,有 A 0,0,ℎ ,B 1 1,0,0 ,D 1 0,1,0 ,C 1,1,ℎ ,AB 1 = 1,0,−ℎ ,AD 1 = 0,1,−ℎ ,AC= 1,1,0 . 设平面 AB 1D 1 的一个法向量为 n = x ,y ,z ,则n ⊥AB 1 ,n ⊥AD 1,即n ⋅AB 1 =0,n ⋅AD 1 =0,取 z =1 得n = ℎ,ℎ,1 .所以点 C 到平面 AB 1D 1 的距离为d =∣∣n ⋅AC ∣∣= ℎ2+ℎ2+1=4, 则 ℎ=2.50. (1) 设圆柱形灯笼的母线长为 l ,则l=1.2−2r 0<r <0.6 ,S=−3π r −0.4 2+0.48π,所以当 r =0.4 时,S 取得最大值约为 1.51 平方米. (2) 当 r =0.3 时,l =0.6,建立空间直角坐标系,可得A1B3=0.3,0.3,0.6,A3B5=−0.3,0.3,0.6,设向量A1B3与A3B5的夹角为θ,则cosθ=A1B3⋅A3B5∣A1B3∣⋅∣A3B5∣=2,所以A1B3、A3B5所在异面直线所成角的余弦值为23.51. (1)圆柱体的高为1.2−2r,故S=πr2+2πr1.2−2r=π−3r2+2.4r0<r<0.6.当r=0.4时,S max=1.5080≈1.51m2.(2)当r=0.3时,l=0.6,作三视图如图.52. (1)因为CB⊥平面A1B,所以A1C在平面A1B上的射影为A1B.由A1B⊥AE,AE⊂平面A1B,得A1C⊥AE,同理可证A1C⊥AF,因为AF∩AE=A,AF⊂平面AEF,AE⊂平面AEF,所以A1C⊥平面AEF.(2)过A作BD的垂线交CD于G,因为D1D⊥AG,所以AG⊥平面D1B1BD.设AG与A1C所成的角为α,则α即为平面AEF与平面D1B1BD所成的角.由已知,计算得DG=94.如图,建立直角坐标系,则得点 A 0,0,0 ,G 94,3,0 ,A 1 0,0,5 ,C 4,3,0 ,AG = 94,3,0 ,A 1C = 4,3,−5 ,因为 AG 与 A 1C 所成的角为 α.所以 cos α=∣∣AG ⋅A 1C ∣∣∣∣AG ∣∣⋅∣∣A 1C ∣∣=12 225,α=arccos12 225.由定理知,平面 AEF 与平面 D 1B 1BD 所成角的大小为 arccos 12 225.53. (1) 设 ℎʹ 为正四棱锥的斜高. 由已知a 2+4⋅1ℎʹa =2,ℎ2+1a 2=ℎʹ2,解得 a =ℎ2+1ℎ>0 .(2) V =13ℎa 2=ℎ3 ℎ2+1ℎ>0 ,易得 V =13 ℎ+1ℎ,因为 ℎ+1ℎ≥2 ℎ⋅1ℎ=2,所以 V ≤16. 等号当且仅当 ℎ=1ℎ,即 ℎ=1 时取得.故当 ℎ=1 米时,V 有最大值,V 的最大值为 16立方米. 54. 如图,建立空间直角坐标系.则 A 2,0,0 ,C 0,2,0 ,A 1 2,0,2 ,B 1 0,0,2 ,C 1 0,2,2 . 设 AC 的中点为 M ,连接 BM .∵BM ⊥AC ,BM ⊥CC 1,∴BM ⊥ 平面 A 1C 1C ,即 BM = 1,1,0 是平面 A 1C 1C 的一个法向量. 设平面 A 1B 1C 的一个法向量是 n = x ,y ,z .因为A 1C = −2,2,−2 ,A 1B 1 = −2,0,0 ,所以n ⋅A 1B 1 =−2x =0,n ⋅A 1C =−2x +2y −2z =0,令 z =1,解得x =0,y =1.所以n = 0,1,1 .设法向量 n 与 BM 的夹角为 φ,二面角 B 1−A 1C −C 1 的大小为 θ,显然 θ 为锐角. 因为cos θ=∣cos φ∣=∣∣n ⋅BM ∣∣∣n ∣⋅∣∣BM ∣∣=12,解得θ=π.所以,二面角 B 1−A 1C −C 1 的大小为 π3.55. (1) 在四棱锥 P −ABCD 中,因为 PO ⊥ 平面 ABCD , ∠PBO 是 PB 与平面 ABCD 所成的角,∠PBO =60∘. 在 Rt △AOB 中 BO =AB sin30∘=1,由 PO ⊥BO , 于是,PO =BO tan60∘= 3,而底面菱形的面积为 2 3. 故四棱锥 P −ABCD 的体积 V =13×2 3× 3=2.(2) 解法一:以 O 为坐标原点,射线 OB 、 OC 、 OP 分别为 x 轴、 y 轴、 z 轴的正半轴建立空间直角坐标系.在 Rt △AOB 中 OA = A 、 B 、 D 、 P 的坐标分别是 A 0,− 0 、 B 1,0,0 、 D −1,0,0 、 P 0,0, 3 . E 是 PB 的中点,则 E 12,0,32,于是 DE = 32,0,32,AP = 0, 3, 3 .设 DE与 AP 的夹角为 θ,有 cos θ=324+4⋅ 3+3=24. 所以,异面直线 DE 与 PA 所成角的余弦值为 24. 解法二:取 AB 的中点 F ,连接 EF 、 DF .由E是PB的中点,得EF∥PA,∴∠FED是异面直线DE与PA所成角(或它的补角).在Rt△AOB中AO=AB cos30∘=3=OP,于是,在等腰Rt△POA中,PA=EF=62.在正△ABD和正△PBD中,DE=DF=3,所以cos∠FED=12EFDE=643=24,故异面直线DE与PA所成角的余弦值为24.56. (1)∵BC∥B1C1,∴∠ACB为异面直线B1C1与AC所成角(或它的补角),∵∠ABC=90∘,AB=BC=1,∴∠ACB=45∘,∴异面直线B1C1与AC所成角为45∘.(2)∵AA1⊥平面ABC,∴∠ACA1是A1C与平面ABC所成的角,∠A1CA=45∘,∵∠ABC=90∘,AB=BC=1,AC=2,∴AA1=2,∴三棱锥A1−ABC的体积V=13S△ABC×AA1=26.57. (1)∵棱台DEF−ABC与棱锥P−ABC的棱长和相等,∴DE+EF+FD=PD+PE+PF.又∵截面DEF∥底面ABC,∴DE=EF=FD=PD=OE=PF,∠DPE=∠EPF=∠FPD=60∘,∴P−ABC是正四面体.(2)取BC的中点M,连接PM,DM,AM.∵BC⊥PM,BC⊥AM,∴BC⊥平面PAM,BC⊥DM,则∠DMA为二面角D−BC−A的平面角.由(1)知,P−ABC的各棱长均为1,∴PM=AM=32,由D是PA的中点,得sin∠DMA=ADAM =33,∴二面角D−BC−A的余弦值为63.(3)存在满足条件的直平行六面体.棱台DEF−ABC的棱长和为定值6,体积为V.设直平行六面体的棱长均为12,底面相邻两边夹角为α,则该六面体棱长和为6,体积为18sinα=V.∵正四面体P−ABC的体积是212,故构造棱长均为12,底面相邻两边夹角的正弦值为8V的直平行六面体即满足要求.。
近五年上海高考试卷汇编——立体几何(2015理19)如图,在长方体1111ABCD A B C D -中,11,2,AA AB AD E F ===、分别是AB BC 、的中点,证明11A C F E 、、、四点共面,并求直线1CD 与平面11AC FE 所成的角的大小.答案:arcsin(2018春14)如图,在直三棱柱111AB A B C C -的棱所在的直线中,与直线1BC 异面的直线条数为( )(A )1(B )2 (C )3(D )4答案 C(2012理19)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥ 底面ABCD ,E是PC 的中点,已知2AB =,AD =2PA =,求:(1)三角形PCD 的面积.(2)异面直线BC 与AE 所成的角的大小.答案:(1) (2)4π(2012文19)如图,在三棱锥P ABC -中,PA ⊥ 底面ABC ,D 是PC 的中点,已知2BAC π∠=,2AB =,AC=2PA =,求:(1)三棱锥P ABC -的体积.(2)异面直线BC 与AD 所成的角的大小.(结果用反三角函数值表示)答案:(1)3; (2)3arccos 4(2013文10)已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为6π,则lr= .(2016理19)将边长为1的正方形11AAO O (及其内部)绕的1OO 旋转一周形成圆柱,如图,AC 长为23π,11A B 长为3π,其中1B 与C 在平面11AAO O 的同侧。
(1)求三棱锥111C O A B -的体积;(2)求异面直线1B C 与1AA 所成的角的大小。
答案:12;4π (2018秋17)已知圆锥的顶点为P ,底面圆心为O ,半径为2. (1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA 、OB 是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.答案:(1)V =;(2) 关键点:方法一:建立空间直角坐标系(首选); 方法二;平移法(2017秋考17)如图,直三棱柱111C B A ABC -中,2,4,5,901===︒=∠BC AB BB ABC ;O MPBA(1)求三棱柱111C B A ABC V -的体积;(2)若M 是棱AC 中点,求M B 1与平面ABC 所成角的大小;答案:(1)20=V ;(2)5arctan;(2015理19)如图,在长方体1111ABCD A B C D -中,11,2,AA AB AD E F ===、分别是AB BC 、的中点,证明11A C F E 、、、四点共面,并求直线1CD 与平面11AC FE 所成的角的大小.答案:arcsin(2012理19)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥ 底面ABCD ,E是PC 的中点,已知2AB =,AD =2PA =,求:(1)三角形PCD 的面积.(2)异面直线BC 与AE 所成的角的大小.答案:(1)(2)4π(2013理19)如图,在长方体''''ABCD A B C D -中,2AB =,1AD =,'1AA =. 证明直线'BC 平行于平面'D AC ,并求直线'BC 到平面'D AC 的距离.证明:略(2013理19)如图,在长方体''''ABCD A B C D -中,2AB =,1AD =,'1AA =. 证明直线'BC 平行于平面'D AC ,并求直线'BC 到平面'D AC 的距离.答案:建立空间直角坐标系,可得的有关点的坐标为(1,0,1)A 、(1,2,1)B 、(0,2,1)C 、'(0,2,0)C 、'(0,0,0)D .设平面'D AC 的法向量为(,,)n u v w =r ,则'n D A ⊥r u u u u r ,'n D C ⊥r u u u u r .因为'(1,0,1)D A =u u u u r ,'(0,2,1)D C =u u u u r ,'0n D A ⋅=r u u u u r ,'0n D C ⋅=r u u u u r,所以020u w v w +=⎧⎨+=⎩,解得2u v =,2w v =-.取1v =,得平面'D AC 的一个法向量(2,1,2)n =-r.因为'(1,0,1)BC =--u u u u r ,所以'0n BC ⋅=r u u u u r ,所以'n BC ⊥r u u u u r .又'BC 不在平面'D AC 内,所以直线'BC 与平面'D AC 平行.由(1,0,0)CB =u u u r,得点B 到平面'DAC 的距离23n CB d n ⋅===r u u u ru u r ,所以直线'BC 到平面'D AC 的距离为23(2015理4)若正三棱柱的所有棱长均为a ,且其体积为a = .答案:4(2010理12)如图所示,在边长为4的正方形纸片ABCD 中,AC 与BD 相交于点O ,剪去AOB V ,将剩余部分沿,OC OD 折叠,使,OA OB 重合,则以(),A B ,,C D O 为顶点的四面体的体积是 .(2014理19文19)底面边长为2的正三棱锥P ABC -,其表面展开图是123PP P ∆,如图,求123PP P ∆的各边长及此三棱锥的体积V .答案:在123P P P ∆中,13P A P A =,23P C PC =,所以AC 是中位线,故1224PP AC ==. 同理,234P P =,314P P =.所以123P P P ∆是等边三角形,各边长均为4.设Q 是ABC ∆的中心,则PQ ⊥平面ABC ,所以AQ =PQ ==从而,13ABC V S PQ ∆=⋅=(2010春10)各棱长为1的正四棱锥的体积V = . 答案:62 (2018秋15)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设1AA 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以1AA 为底面矩形的一边,则这样的阳马的个数是( )A. 4B. 8C. 12D. 16答案:D关键点:底面矩形是下图的四种情形,每种情形都有四种垂直于底面的侧棱,故个数为16,(2018春7)如图,在长方形1111B ABC A C D D -中,13,4,5AB BC AA ===,O 是11A C 的中点,则三棱锥11A AOB -的体积为__________.答案:5(2012文5)一个高为2的圆柱,底面周长为2π,该圆柱的表面积为 . 答案:6π(2013文10)已知圆柱Ω的母线长为l ,底面半径为r ,O 是上底面圆心,A 、B 是下底面圆周上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为6π,则lr= .(2009文8)若等腰直角三角形的直角边长为2,则以一直角边所在的直线为轴旋转一周所成的几何体体积是.答案:8 3π(2015理6)若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为______.答案:3π(2014理6文7)若圆锥的侧面积是底面积的3倍,则其母线与底面夹角的大小为(结果用反三角函数值表示).答案:1 arccos3(2012理8)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为.答案:3(2011春20)某甜品店制作一种蛋筒冰激凌,其上部分是半球形,下半部分呈圆锥形(如图),现把半径为10cm的圆形蛋皮等分成5个扇形,用一个蛋皮围成圆锥的侧面(蛋皮的厚度忽略不计),求该蛋筒冰激凌的表面积和体积.(精确到0.01)答案:设圆锥的底面半径为r,高为h.由题意,圆锥的侧面扇形的周长为121045ππ⋅⋅=()cm,圆锥底面周长为2r π()cm ,则24r ππ=,2r =()cm .=()cm ,圆锥的侧面扇形的面积为11410202S ππ=⨯⨯=()2cm ,半球的面积为 2214282S ππ=⨯⨯=.该蛋筒冰激凌的表面积122887.96S S S π=+=≈()2cm ;圆锥的体积为21123Vπ=⨯⨯()3cm , 半球的体积为3214162233V ππ=⨯⨯=()3cm ,所以该蛋筒冰激凌的体积为)1216157.803V V V π=+=≈()3cm .因此该蛋筒冰激凌的表面积约为287.96cm , 体积约为357.80cm .(2018秋17)已知圆锥的顶点为P ,底面圆心为O ,半径为2. (1)设圆锥的母线长为4,求圆锥的体积;(2)设4PO =,OA 、OB 是底面半径,且90AOB ∠=︒,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.答案:(1)V =;(2)O MPBA(2017秋4)已知球的体积为36π,则该球主视图的面积等于___ 答案:9π(2009理8)已知三个球的半径1R ,2R ,3R 满足32132R R R =+,则它们的表面积1S ,2S ,3S 满足的等量关系是 .=(2013理13)在xOy 平面上,将两个半圆弧22(1)1(1)x y x -+=≥和22(3)1(3)x y x -+=≥、两条直线1y =和1y =-围成的封闭图形记为D ,如图中阴影部分.记D 绕y 轴旋转一周而成的几何体为Ω.过(0,)(||1)y y ≤作Ω的水平截面,所得截面面积为48π.试利用祖暅原理、一个平放的圆柱和一个长方体,得出Ω的体积值为 .答案: 2216ππ+(2017秋7)如图,以长方体1111D C B A ABCD -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB u u u u r 的坐标为)2,3,4(,则1AC u u u u r的坐标为_____答案:()4,3,2-4 5 知识点15:三视图(2011文7)若一个圆锥的主视图是边长为3,3,2的三角形,则该圆锥的侧面积为 .答案:3π(2014文8)在长方体中割去两个小长方体后的几何体的三视图如右图,则切割掉的两个小长方体的体积之和等于答案:24(2009年高考文16)如图,已知三棱锥的底面是直角⊥,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是 ( )()A ()B ()C ()D答案:B知识点16:截面问题(2017春15)过正方体中心的截面截正方体所得的截面中,不可能的图形是( )A 、三角形B 、长方形C 、对角线不相等的菱形D 、六边形答案:A知识点17:球面距离(2010春21)已知地球半径约为6371千米. 上海的位置约为东经121°、北纬31°,大连的位置约为东经121°、北纬39°,里斯本的位置约为西经10°、北纬39°.(1)若飞机以平均速度720千米/小时飞行,则从上海到大连的最短飞行时间约为多少小时?(飞机飞行高度忽略不计,结果精确到0.1小时)(2)求大连与里斯本之间的球面距离.(结果精确到1千米)答案:(1)1.2小时; (2)约为10009千米 4 3 4 4 3 4知识点18:和数列相关(2012理6)有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为12,,...,,...n V V V ,则12lim(...)n n V V V →∞+++= . 答案:87知识点19:补形法(2011春13)有一种多面体的饰品,其表面由6个正方形和8个正三角形组成(如图),AB 与CD 所成角的大小是 .答案:3π提示:补充图形为正方体(2010春13)在如图所示的斜截圆柱中,已知圆柱底面的直径为40cm ,母线长最短50cm ,最长80cm ,则斜截圆柱的侧面面积S = 2cm .答案:2600πO大连上海 北南极 赤里斯本知识点20:和圆锥曲线相结合 (2014春24)如图,在底面半径和高均为1的圆锥中,AB CD 、是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点. 已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点与圆锥顶点P 的距离为( )A 、1B 、32C 、62D 、104答案:D (2012理14)如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2BC =,若2AD c =,且2AB BD AC CD a +=+=,其中,a c 为常数,则四面体ABCD 的体积的最大值是 . 答案:22213c a c -- 题型:三棱锥的体积计算与椭圆试一试:已知在半径为2的球面上有A B C D 、、、四点,若2AB CD ==,则四面体ABCD 的体积的最大值为___________答案:43 选题理由:本题为四面体中,已知对棱的长为,a b ,对棱的夹角为θ,对棱的距离为h ,体积为1sin 6V abh θ=的典型题 40c50c80c(2018春19)利用“平行于圆锥曲线的母线截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两个射灯(射出的光锥视为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影出的抛物线的平面图,图3是一个射灯的直观图,在图2与图3中,点O 、A 、B 在抛物线上,OC 是抛物线的对称轴,OC AB ⊥于C ,3AB =米, 4.5OC =米.(1)求抛物线的焦点到准线的距离; (2)在图3中,已知OC 平行于圆锥的母线SD ,AB 、DE 是圆锥底面的直径,求圆锥的母线与轴的夹角的大小(精确到0.01°).图1 图2图3 答案:(1)14;(2)9.59︒.。
17.(2017-21-17)如图,直三棱柱ABC-A 1B 1C 1的底面为直角三角形,两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5. (1)求三棱柱ABC-A 1B 1C 1的体积;(2)设M 是BC 中点,求直线A 1M 与平面ABC 所成角的大小.17.【解析】(1)∵直三棱柱ABC-A 1B 1C 1的底面为直角三角形, 两直角边AB 和AC 的长分别为4和2,侧棱AA 1的长为5.∴三棱柱ABC ﹣A 1B 1C 1的体积V=S △ABC ·AA 1=12AB ·AC ·AA 1=12×4×2×5=20.(2)连接AM.∵直三棱柱ABC-A 1B 1C 1, ∴AA 1⊥底面ABC.∴∠AMA 1是直线A 1M 与平面ABC 所成角. ∵△ABC 是直角三角形,两直角边AB 和AC 的长分别为4和2,点M 是BC 的中点,∴AM=12BC=12×42+22= 5.由AA 1⊥底面ABC ,可得AA 1⊥AM,∴tan ∠A 1MA=AA 1AM =55= 5.∴直线A 1M 与平面ABC 所成角的大小为arctan 5.19.(2016•23-19)将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图,AC 长为π,A 1B 1长为,其中B 1与C 在平面AA 1O 1O 的同侧.(1)求三棱锥C ﹣O 1A 1B 1的体积;(2)求异面直线B 1C 与AA 1所成的角的大小.【考点】异面直线及其所成的角.【专题】计算题;转化思想;综合法;空间位置关系与距离.【分析】(1)连结O1B1,推导出△O1A1B1为正三角形,从而=,由此能求出三棱锥C﹣O1A1B1的体积.(2)设点B1在下底面圆周的射影为B,连结BB1,则BB1∥AA1,∠BB1C为直线B1C与AA1所成角(或补角),由此能求出直线B1C与AA1所成角大小.【解答】解:(1)连结O1B1,则∠O1A1B1=∠A1O1B1=,∴△O1A1B1为正三角形,∴=,==.(2)设点B1在下底面圆周的射影为B,连结BB1,则BB1∥AA1,∴∠BB1C为直线B1C与AA1所成角(或补角),BB1=AA1=1,连结BC、BO、OC,∠AOB=∠A1O1B1=,,∴∠BOC=,∴△BOC为正三角形,∴BC=BO=1,∴tan∠BB1C=45°,∴直线B1C与AA1所成角大小为45°.【点评】本题考查三棱锥的体积的求法,考查两直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.19、(2015.上海)如图。
【最新整理,下载后即可编辑】历年高考立体几何解答题汇编1.(2006年北京卷)如图,在底面为平行四边表的四棱锥P ABCD -中,AB AC ⊥,PA ⊥平面ABCD ,且PA AB =,点E 是PD 的中点.(Ⅰ)求证:AC PB ⊥;(Ⅱ)求证://PB 平面AEC ; 2.(2006年上海卷)在四棱锥P -ABCD 中,底面是边长为2的菱形,∠DAB =60 ,对角线AC 与BD 相交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成的角为60 . (1)求四棱锥P -ABCD 的体积;3.( 2006年浙江卷)如图,在四棱锥P-ABCD 中,底面为直角梯形,AD ∥BC,∠BAD=90°,PA ⊥底面ABCD ,且PA =AD=AB=2BC,M 、N 分别为PC 、PB 的中点.(Ⅰ)求证:PB ⊥DM;4. ( 2006年湖南卷)如图4,已知两个正四棱锥P-ABCD 与Q-ABCD 的高分别为1和2,AB=4.(Ⅰ)证明PQ ⊥平面ABCD;P ABCD OE PA DCB5.(2006年福建卷)如图,四面体ABCD中,O、E分别是BD、BC的中点,2, 2.CA CB CD BD AB AD======(I)求证:AO⊥平面BCD;6.(2006年天津卷)如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三角形,棱//1 2EF BC=.(1)证明FO//平面CDE;(2)设3BC CD=,证明EO⊥平面CDF.7.(2006年江苏卷)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。
将△AEF沿EF折起到EFA1∆的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P (如图2)(Ⅰ)求证:A1E⊥平面BEP;AFEC BA1EFCPB图1 图2DBOE8.(2006年辽宁卷)已知正方形ABCD .E 、F 分别是AB 、CD 的中点,将ADE 沿DE 折起,如图所示,记二面角A DE C --的大小为(0)θθπ<<. (I) 证明//BF 平面ADE ;9.(广东•理•19题)如图6所示,等腰△ABC 的底边AB =66,高C D =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE 。
GH 在原正方体中相互异面的有 对。
3(02)若正四棱锥的底面边长为 2、3cm ,体积为4cm 3,则它的侧面与底面所成的二面角的大小是 ________ 30(03春)关于直线a,b,l 以及平面M , N ,下列命题中正确的是().(A) 若a//M,b//M ,则 a//b (B) 若 a // M , b a ,则 b M (C) 若 a M ,b M ,且 l a,l b ,则 I M (D) 若 a M ,a // N ,则 MN D(03)在正四棱锥P —ABCD 中,若侧面与底面所成二面角的大小为60°,则异面直线 PA历年上海高考试题(立体几何)(01春)若有平面与,且 (A )过点P 且垂直于 (C )过点P 且垂直于 I, ,P 的直线平行于 的直线在 内. ,P I ,则下列命题中的假命题为( )B )过点P 且垂直于I 的平面垂直于 . (D )过点P 且垂直于|的直线在 内. (01)已知a 、b 为两条不同的直线,a 、B 为两个不同的平面,且命题中的假命题是( )D a 丄a, b 丄则下列 A.若 a // b ,则 a//B C.若a 、b 相交,则a 、B 相交B.若a 丄B ,贝y a 丄b D.若a 、B 相交,则 a 、b 相交 (02春)下图表示一个正方体表面的一种展开图,图中四条线段 AB 、CD 、EF 和一 2(05)有两个相同的直三棱柱 ,高为一,底面三角形的三a边长分别为3a 、4a 、5a (a>0).用它们拼成一个三棱 柱或四棱柱,在所有可能的情况中,全面积最小的是一个四棱柱,则a 的取值范围是 _____________ . 0<a<上153(06春)正四棱锥底面边长为 4,侧棱长为3,则其体积为 _________________ .—3(06文)若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没 有公共点”的()(A )充分非必要条件 (B )必要非充分条件(C )充分必要条件(D )既非充分又非必要条件 A(06理)若空间中有四个点,则"这四个点中有三点在同一直线上”是"这四个点在同一平面 上”的 [答]( )A (A )充分非必要条件;(B )必要非充分条件;(C )充要条件;(D )非充分非必要条件. (07文)如图,在直三棱柱ABC A 1B 1C 1中,ACB 90,AA 1 2,AC BC 1,则异面直线 AB 与AC 所成角的A与BC 所成角的大小等于.(结果用反三角函数值表示) arctg2(03)在下列条件中,可判断平面a 与B 平行的是A .a 、B 都垂直于平面r.B .a 内存在不共线的三点到B 的距离相等 C. l , m 是a 内两条直线,且 I 〃B, m . D.I , m 是两条异面直线,且 I //a, m //a, I //3, m . (04春)如图,在底面边长为2的正三棱锥 V-ABC 中,E 是BC 的中点,1若厶VAE 的面积是一,则侧棱VA 与底面所成角的大小为41(结果用反三角函数表示)arctg(04)在下列关于直线I 、m 与平面a 、B 的命题中,真命题是()(A )若I B 且a 丄B 则I 丄a . (B )若I 丄B 且all B 则I 丄a. (C )若 I 丄 B 且 a 丄 B 则 I //a . (D )若 aA3 =&1 // m,则 I // a. B (05春)已知直线I 、m 、n 及平面 ,下列命题中的假命题是(A )若 l//m , m//n ,则 l//n .(B )若 I , n 〃,则 I n .(C )若 I m , m 〃 n ,则 I n .(D )若 I// , n 〃 ,贝U l//n.DD大小是________________________ (结果用反三角函数值表示).1B!arccos ——6(07理)在平面上,两条直线的位置关系有相交、平行、重合三种.已知, 是两个相交平面,空间两条直线l i ,I 2在 上的射影是直线 S i , s,,h, I 2在 上的射影是直线t i , t 2 •用S i 与S 2 , t i 与t 2的位置关系,写出一个总能确定 l i 与丨2是异面直线的充分条件: ____________________________________________________ • S i //S 2 ,并且 t i 与 t 2 相交(t i // t 2 ,并且 S i与S 2相交) 且全面积为2平方米的正四棱锥形有盖容器 (如图), 设容器的高为h 米,盖子边长为a 米.(1) 求a 关于h 的函数解析式;(2)设容器的容积为 V 立方米,则当h 为何值时,V 最大?求出V 的最大值.(求解本题时,不计容器的厚度) 解(i )设h'为正四棱锥的斜高14 —h'a 2,2i解得a 心0)易得V因为h * 2,所以V 1i等式当且仅当h -,即h i 时取得。
新课标卷高考真题1、(2016 年全国I 高考)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF为正方形,AF=2FD,AFD 90 ,且二面角D- AF- E与二面角C- BE- F 都是60 .(I)证明:平面ABEF 平面EFDC;(II)求二面角E- BC- A 的余弦值.2、(2016 年全国II 高考)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB 5, AC 6,点E, F分别在AD ,CD 上,5AE CF ,EF 交BD 于点H .将4DEF 沿EF 折到'D EF 位置,OD 10 .(Ⅰ)证明: D H 平面ABCD ;(Ⅱ)求二面角 B D A C 的正弦值.3【2015高考新课标1,理18】如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE 与直线CF 所成角的余弦值.4、[2014 ·新课标全国卷Ⅱ] 如图1-3,四棱锥P-ABCD 中,底面ABCD 为矩形,PA⊥平面ABCD,E 为PD 的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C 为60°,AP=1,AD=3,求三棱锥E-ACD 的体积.图1-35、[2014·新课标全国卷Ⅰ] 如图1-5,三棱柱ABC -A1B1C1 中,侧面BB1C1C 为菱形,AB⊥B1C.图1-5(1)证明:AC=AB1;(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A -A1B1 - C1 的余弦值.6、(2017?新课标Ⅱ)如图,四棱锥P﹣ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB=BC= AD ,∠BAD= ∠ABC=90°,E 是PD 的中点.(Ⅰ)证明:直线CE∥平面PAB;(Ⅱ)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M ﹣AB ﹣D 的余弦值.7、(2017?新课标Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD= ∠CBD ,AB=BD .(Ⅰ)证明:平面ACD ⊥平面ABC ;(Ⅱ)过AC 的平面交BD 于点E,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D﹣AE ﹣C 的余弦值.8、(2017?新课标Ⅰ卷)如图,在四棱锥P﹣ABCD 中,AB ∥CD,且∠BAP=∠CDP=90°.(12分)(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC ,∠APD=90°,求二面角A﹣PB﹣C 的余弦值.1【解析】⑴∵ABEF 为正方形∴AF EF ∵AFD 90 ∴AF DF∵DF EF =F ∴AF 面EFDC AF 面ABEF∴平面ABEF 平面EFDC⑵由⑴知DFE CEF 60∵AB∥EF AB 平面EFDCEF 平面EFDC ∴AB∥平面ABCDAB 平面ABCD∵面ABCD 面EFDC CD∴AB∥CD ,∴CD ∥EF∴四边形EFDC 为等腰梯形以E为原点,如图建立坐标系,FD aE 0,0 ,0 B 0 ,2a,0a 3C ,0 , a A 2a,a2,02 2EB 0 ,2a,0 ,a 3BC ,2a, a ,AB 2a ,0 ,02 2设面BEC 法向量为m x,y,z .m EB m BC 0,即2a y 01a 3x 2ay a z 01 1 12 2x1 3 ,y1 0 ,z1 1 m 3 ,0 , 1 设面ABC 法向量为n x ,y ,z2 2 2n BC n AB =0.即a 3x 2ay az 02 2 22 22ax 02x2 0,y2 3,z2 4n 0, 3 ,4设二面角 E BC A的大小为.cos m nm n4 2 19193 1 3 16∴二面角 E BC A的余弦值为2 1992【解析】⑴证明:∵ 5AE CF ,∴4 AE CF AD CD,∴EF∥AC .∵四边形ABCD为菱形,∴AC BD ,∴EF BD ,∴EF DH ,∴EF D H .∵AC 6,∴AO 3;又AB 5,AO OB ,∴OB 4 ,∴OH AE OD 1AO ,∴DH D H 3 ,∴ 2 2 2OD OH D H ,'∴D'H OH .又∵OH I EF H ,∴D 'H 面ABCD.⑵建立如图坐标系H xyz.B 5,0,0 ,C 1,3,0 ,D ' 0,0,3 ,A 1,3,0 ,u u u r A Buuur uuru,,,AD ' 1,3,3 ,AC 0,6 ,0 ,4 3 0设面ABD ' 法向量u rn x,y,z1,由n AB1n AD1得4x 3y 0x 3y 3z 0,取xyz354 ,∴u rn1 3,4,5.同理可得面AD 'C 的法向量u u rn2 3,0 ,1 ,∴cos u r u u rn n1 2 9 5 7 5u r u u r,∴5 2 10 25n n1 2sin2 9525.3,【答案】(Ⅰ)见解析(Ⅱ)3 3又∵AE⊥EC,∴EG= 3 ,EG⊥AC,在Rt△EBG 中,可得BE= 2 ,故DF=2 2.在Rt△FDG 中,可得FG=6 2.在直角梯形BDFE 中,由BD =2,BE= 2 ,DF=22可得EF=3 22,∴ 2 2 2EG FG EF ,∴EG⊥FG,∵AC∩FG=G,∴EG⊥平面AFC,∵EG 面AEC,∴平面AFC⊥平面AEC. ⋯⋯6分(Ⅱ)如图,以G 为坐标原点,分别以GB, GC 的方向为x轴,y 轴正方向,|GB| 为单位长度,建立空间直角坐标系G-xyz,由(Ⅰ)可得A(0,-3,0),E(1,0,2 ),F(-1,0,22),C(0, 3 ,0),∴AE =(1,3, 2 ),CF =(-1,- 3,22). ⋯10分故cos , 3AE CFAE CF| AE || CF | 3.所以直线A E 与CF 所成的角的余弦值为 33 . ⋯⋯12分4,解:(1)证明:连接B D 交AC 于点O,连接E O. 因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以EO∥PB.因为EO? 平面AEC,PB?平面AEC,所以PB∥平面AEC.(2)因为PA⊥平面ABCD,ABCD 为矩形,所以AB,AD,AP 两两垂直.→如图,以A 为坐标原点,AB,AD,AP 的方向为x 轴、y轴、z轴的正方向,→|为单位长,建立空间直角坐标系A-xyz,则D (0,3,0),E 0, 3|AP,2 12,A→E=0,3 1,2 2.→设B( m,0,0)( m>0),则C( m,3,0),AC=(m,3,0).设n1=(x,y,z)为平面ACE 的法向量,→n1·AC=0,则即→n1·AE=0,m x+3y=0,3 12 y+2z=0,可取n1=3,-1, 3 . m又n2=(1,0,0)为平面DAE 的法向量,1由题设易知|cos〈n1,n2〉|=,即23 1 32=,解得m=3+4m 22.=1 1 3 1××3×=×3 2 2 238 .125 解:(1)证明:连接B C1,交B1C 于点O,连接A O,因为侧面BB1C1C 为菱形,所以B1C⊥BC1,且O 为B1C 及BC1 的中点.又AB⊥B1C,所以B1C⊥平面ABO.由于AO? 平面ABO,故B1C⊥AO.又B1O=CO,故AC=AB1.(2)因为AC⊥AB1,且O 为B1C 的中点,所以AO=CO.又因为AB=BC,所以△BOA≌△BOC.故OA⊥OB,从而OA,OB,OB1两两垂直.以O 为坐标原点,OB 的方向为x 轴正方向,|O B|为单位长,建立如图所示的空间直角坐标系O- xyz.因为∠CBB1 =60°,所以△CBB1 为等边三角形,又AB=BC ,则A 0,0,33,B(1,0,0),B1 0,3,0 ,C 0,-33,0 .3→AB1=0,3,-333→,A1B1=AB=1,0,-33,→B1C1=BC=-1,-3,0 . 3设n=(x,y,z)是平面AA1B1 的法向量,则n·AB1=0,即→n·A1B1=0,333 y-3 z=0,x-33 z=0.所以可取n=(1,3,3).设m是平面A1B1C1 的法向量,→m·A1B1=0,则同理可取m=(1,-3,3).→m·B1C1=0,则c os〈n,m〉=n·m 1=7.|n||m|13.6、【答案】(Ⅰ)证明:取PA 的中点F,连接E F,BF,因为 E 是PD 的中点,13所以EF AD ,AB=BC= AD ,∠BAD= ∠ABC=90°,∴BC∥AD ,∴BCEF 是平行四边形,可得CE∥BF,BF? 平面PAB,CF?平面PAB,∴直线C E∥平面PAB;P﹣A BCD 中,(Ⅱ)解:四棱锥侧面PAD 为等边三角形且垂直于底面ABCD ,AB=BC= AD ,∠BAD= ∠ABC=90°,E 是PD 的中点.A D=2 ,则A B=BC=1 ,OP= ,取AD 的中点O,M 在底面ABCD 上的射影N 在OC 上,设∴∠PCO=6°0,直线B M 与底面ABCD 所成角为45°,可得:BN=MN ,CN= MN ,BC=1,可得:1+ BN 2=BN 2 ,BN= ,MN= ,作NQ⊥AB 于Q,连接M Q ,A B﹣D的平面角,MQ=所以∠MQN 就是二面角M﹣= ,A B﹣D的余弦值为:= .二面角M﹣7、【答案】(Ⅰ)证明:如图所示,取AC 的中点O,连接B O,OD.∵△ABC 是等边三角形,∴OB⊥AC .△ABD 与△CBD 中,AB=BD=BC ,∠ABD= ∠CBD,∴△ABD ≌△CBD ,∴AD=CD .∵△ACD 是直角三角形,∴AC 是斜边,∴∠ADC=9°0.∴DO= AC .∴DO 2+BO 2=AB 2=BD 2 .∴∠BOD=9°0 .∴OB⊥OD.又DO∩AC=O ,∴OB⊥平面ACD .又OB? 平面ABC ,∴平面ACD ⊥平面ABC .(Ⅱ)解:设点D,B 到平面ACE 的距离分别为h D ,h E .则= .∵平面AEC 把四面体ABCD 分成体积相等的两部分,∴= = =1.∴点 E 是BD 的中点.建立如图所示的空间直角坐标系.不妨设AB=2 .则O(0,0,0),A(1,0,0),C(﹣1,0,0),D(0,0,1),B(0,,0),E .=(﹣1,0,1),= ,=(﹣2,0,0).设平面ADE 的法向量为=(x,y,z),则,即,取= .同理可得:平面ACE 的法向量为=(0,1,).∴cos = = =﹣.∴二面角D﹣AE ﹣C 的余弦值为.8、【答案】(1)证明:∵∠BAP= ∠CDP=90°,∴PA⊥AB ,PD⊥CD,∵AB ∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA? 平面PAD,PD? 平面PAD,∴AB ⊥平面PAD,又AB ? 平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB ∥CD,AB=CD ,∴四边形ABCD 为平行四边形,由(1)知AB⊥平面PAD,∴AB ⊥AD ,则四边形ABCD 为矩形,在△APD 中,由PA=PD,∠APD=90°,可得△PAD 为等腰直角三角形,设PA=AB=2a ,则AD= .取AD 中点O,BC 中点E,连接PO、OE,以O 为坐标原点,分别以OA 、OE、OP 所在直线为x、y、z 轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC 的一个法向量为,由,得,取y=1,得.∵AB ⊥平面PAD,AD ? 平面PAD,∴AB ⊥AD ,又PD⊥PA,PA∩AB=A ,∴PD⊥平面PAB,则为平面PAB 的一个法向量,.∴cos<>= = .由图可知,二面角 A ﹣PB﹣C 为钝角,∴二面角 A ﹣PB﹣C 的余弦值为.。
新课标卷高考真题1、(2016 年全国I 高考)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD,∠AFD = 90 ,且二面角D -AF -E 与二面角C -BE - F 都是60 .(I)证明:平面ABEF ⊥平面EFDC;(II)求二面角E - BC - A 的余弦值.10 2、( 2016 年全国 II 高考) 如图, 菱形 ABCD 的对角线 AC 与 BD 交于点 O ,AB = 5, AC = 6 , 点 E , F 分别在 AD , CD 上, AE = CF = 5 , EF 交 BD 于点 H4.将∆DEF 沿 EF 折到∆D 'EF 位置, OD ' = .(Ⅰ)证明: D 'H ⊥ 平面 ABCD ;(Ⅱ)求二面角 B - D 'A - C 的正弦值.3【2015 高考新课标 1,理 18】如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE 与直线CF 所成角的余弦值.4、[2014·新课标全国卷Ⅱ] 如图1-3,四棱锥P-ABCD 中,底面ABCD 为矩形,PA⊥平面ABCD,E 为PD 的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C 为60°,AP=1,AD= 3,求三棱锥E-ACD 的体积.图1-35、[2014·新课标全国卷Ⅰ] 如图1-5,三棱柱ABC -A1B1C1中,侧面BB1C1C 为菱形,AB⊥B1C.图1-5(1)证明:AC=AB1;(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A -A1B1C1的余弦值.6、(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E 是PD 的中点.(Ⅰ)证明:直线CE∥平面PAB;(Ⅱ)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M﹣AB﹣D 的余弦值.7(、2017•新课标Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD= ∠CBD,AB=BD.(Ⅰ)证明:平面ACD⊥平面ABC;(Ⅱ)过AC 的平面交BD 于点E,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D﹣AE﹣C 的余弦值.8、(2017•新课标Ⅰ卷)如图,在四棱锥P﹣ABCD 中,AB∥CD,且∠BAP=∠CDP=90°.(12分)(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C 的余弦值.m n ⋅ -4 3 + 1 ⋅ 3 + 16 m 1 1 1 m 1【解析】⑴ ∵ ABEF 为正方形∴ AF ⊥ EF ∵ ∠AFD = 90︒∴ AF ⊥ DF ∵ D F EF =F∴ AF ⊥ 面 EFDC AF ⊥ 面 ABEF∴平面 ABEF ⊥ 平面 EFDC⑵ 由⑴知∠DFE = ∠CEF = 60︒∵ AB ∥ EF AB ⊄ 平面 EFDCEF ⊂ 平面 EFDC ∴ AB ∥平面 ABCDAB ⊂ 平面 ABCD∵面 ABCD 面 EFDC = CD∴ AB ∥CD ,∴ CD ∥ EF∴四边形 EFDC 为等腰梯形以 E 为原点, 如图建立坐标系,FD = aE (0 ,0 ,0)B (0 ,2a ,0)C ⎛ a ,0 , 3 a ⎫ A (2a ,2a ,0)2 2 ⎪ ⎝ ⎭ ⎛ a3 ⎫EB = (0 ,2a ,0) , BC = 2 ,- 2a , 2 a ⎪ , AB = (-2a ,0 ,0)⎝ ⎭设面 BEC 法向量为= ( x ,y ,z ) . ⎧ ⎧2a ⋅ y 1 = 0 ⎪m ⋅ EB = 0 ,即⎪ ⎨ ⋅ = 0 ⎨ a ⋅ x - 2ay + 3 a ⋅ z = 0 ⎪⎩m BC ⎪⎩ 2 1 1 2 1x = 3 ,y = 0 ,z = -1 = ( 3 ,0 ,- 1)设面 ABC 法向量为 = ( x ,y ,z ) ⎧ n 2 2 2 ⎧ a ⎪n ⋅ BC =0 .即⎪ x 2 - 2ay 2 + az 2 = 0 x = 0 ,y = 3 ,z = 4 ⎨ ⎨ 2 22 2 2⎪⎩n ⋅ AB = 0⎪⎩2ax 2 = 0 n = (0 , 3 ,4)设二面角 E - BC - A 的大小为. cos =∴二面角 E - BC - A 的余弦值为-2 19 19 m ⋅ n = = - 2 19 19 3u r u u r n 1 ⋅ n 2 u r u u r n 1 n 2 7 5 2 95 ⋅ ' ⎩ ⎩ 2【解析】⑴证明:∵ AE = CF = 5 ,∴AE = CF , 4 AD CD∴ EF ∥ AC .∵四边形 ABCD 为菱形,∴ AC ⊥ BD , ∴ EF ⊥ BD ,∴ EF ⊥ DH ,∴ EF ⊥ D 'H .∵ AC = 6 ,∴ AO = 3 ;又 AB = 5 , AO ⊥ OB ,∴ OB = 4 , ∴ O H = AE⋅ OD = 1 ,∴ D H = D 'H = 3 ,∴ OD ' 2 = O H 2 + D ' H 2 ,∴ D ' H ⊥ O H AO .又∵ OH I EF = H ,∴ D ' H ⊥ 面 ABCD .⑵建立如图坐标系 H - xyz .B (5 , 0 , 0) ,C (1, 3,0) , D '(0 , 0 , 3) , A (1, - 3, 0) ,AB = (4 , 3, 0) , AD ' = (-1, 3,3) , AC = (0 , 6 , 0) ,设面 ABD ' 法向量n 1 = ( x ,y ,z ) ,⎧ ⎧x = 3 由⎪n 1 ⋅ AB = 0 得⎧4x + 3y = 0 ,取⎪ y = -4 ,∴ n = (3, - 4 , 5) . ⎨ ⎪⎩n 1 A D = 0 ⎨-x + 3y + 3z = 0 ⎨ 1 ⎪z = 5同理可得面 AD 'C 的法向量n 2 = (3, 0 , 1) ,∴ cos= = = ,∴ s in = . 25 253,【答案】(Ⅰ)见解析(Ⅱ) 339 + 5 5 2 ⋅ 103 2 2 32 GB , G C又∵AE ⊥EC ,∴EG = ,EG ⊥AC , 在 Rt △EBG 中,可得 BE = ,故 DF =2 .2在 Rt △FDG 中,可得 FG =6 .2在直角梯形 BDFE 中,由 BD =2,BE = ,DF = 2可得 EF = 3 2, 2 2 ∴ EG 2 + FG 2 = EF 2 ,∴EG ⊥FG , ∵AC ∩FG=G ,∴EG ⊥平面 AFC , ∵EG ⊂ 面 AEC ,∴平面 AFC ⊥平面 AEC .……6 分(Ⅱ)如图,以 G 为坐标原点,分别以 的方向为 x 轴,y 轴正方向,| GB |为单位长度,建立空间直角坐标系 G-xyz ,由(Ⅰ)可得 A (0,- ,0),E (1,0,),F (-1,0, ),C (0, ,0),∴ AE =(1, , ), C F =(-1,- 2 , 2 ).…10 分 23 2 3 2 33 3 3 33 AE ,C F >= •1AP |为单位长,建立空间直角坐标系 A -xyz ,则 D (0, 3,0),E 0, 2 , 2,AE = 0 2 , 2 = - { 即 故cos < AE CF 3 . | AE || C F | 3 所以直线 AE 与 CF 所成的角的余弦值为3 .……12 分3 4,解:(1)证明:连接 BD 交 AC 于点 O ,连接 EO .因为 ABCD 为矩形,所以 O 为 BD 的中点. 又 E 为 PD 的中点,所以 EO ∥PB .因为 EO ⊂平面 AEC ,PB ⊄平面 AEC ,所以 PB ∥平面 AEC . (2)因为 PA ⊥平面 ABCD ,ABCD 为矩形, 所以 AB ,AD ,AP 两两垂直.如图,以 A→ AD ,AP 的方向为 x 轴、y 轴、z 轴的正方向,| 为坐标原点,AB , →( 1)→ (, 1).设 B (m ,0,0)(m >0),则 C (m ,3,0) →(m ,3,0).,AC = 设 n 1=(x ,y ,z )为平面 ACE 的法向量,→ n 1·AC =0,则 → ) {m x + 3y =0,)n 1·AE =0, 2 y + z =0,可取 n 1=(2,-1, ).又 n 2=(1,0,0)为平面 DAE 的法向量,1由题设易知|cos 〈n 1,n 2〉|= ,即2 13 = ,解得 m = .22 1因为 E 为 PD 的中点,所以三棱锥 E -ACD 的高为 .三棱锥 E -ACD 的体积 V =21 1 3 1 × × 3× × = . 3 22 2 83m 3 3+4m 233 3 3 3 1(( )B 1C 1=BC = -1,- 3,0 . {{335 解:(1)证明:连接 BC 1,交 B 1C 于点 O ,连接 AO ,因为侧面 BB 1C 1C 为菱形,所以 B 1C ⊥BC 1,且 O 为 B 1C 及 BC 1 的中点.又 AB ⊥B 1C ,所以 B 1C ⊥平面 ABO . 由于 AO ⊂平面 ABO ,故 B 1C ⊥AO . 又 B 1O =CO ,故 AC =AB 1.(2)因为 AC ⊥AB 1,且 O 为 B 1C 的中点,所以 AO =CO .又因为 AB =BC ,所以△BOA ≌ △BOC .故 OA ⊥OB ,从而 OA ,OB ,OB 1 两两垂直.以 O 为坐标原点,OB 的方向为 x 轴正方向,|OB |为单位长,建立如图所示的空间直角坐标系 O xyz .(3)因为∠CBB 1=60°,所以△CBB 1 为等边三角形,又 AB =BC ,则 A 0,0, 3 ,B (1,0,0),B (0, 3,0),C (0,- 3,0).→ AB 1= 0, 3 ,- 3)3 → 3 ,A 1B 1=AB =1,0,- , 3 3 3→ ( )设 n =(x ,y ,z )是平面 AA 1B 1 的法向量,则n ·AB 1=0,3 y - z =0,)→n ·A 1B 1=0,)即所以可取 n =(1,3, 3).x - z =0.{设m 是平面A1B1C1的法向量,→m·A1B1=0,则→m·B1C1=0,)同理可取m=(1,-3, 3).n·m 1则cos〈n,m〉==.|n||m| 71所以结合图形知二面角 A -A1B1 C1的余弦值为.76、【答案】(Ⅰ)证明:取PA 的中点F,连接EF,BF,因为E 是PD 的中点,所以EF AD,AB=BC= AD,∠BAD=∠ABC=90°,∴BC∥ AD,∴BCEF 是平行四边形,可得CE∥BF,BF⊂平面PAB,CF✪平面PAB,∴直线CE∥平面PAB;(Ⅱ)解:四棱锥P﹣ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E 是PD 的中点.取AD 的中点O,M 在底面ABCD 上的射影N 在OC 上,设AD=2,则AB=BC=1,OP= ,∴∠PCO=60°,直线BM 与底面ABCD 所成角为45°,可得:BN=MN,CN= MN,BC=1,可得:1+ BN2=BN2 ,BN= ,MN= ,作NQ⊥AB 于Q,连接MQ,所以∠MQN 就是二面角M﹣AB﹣D 的平面角,MQ== ,二面角M﹣AB﹣D 的余弦值为: = .7、【答案】(Ⅰ)证明:如图所示,取AC 的中点O,连接BO,OD.∵△ABC 是等边三角形,∴OB⊥AC.△ABD 与△CBD 中,AB=BD=BC,∠ABD=∠CBD,∴△ABD≌△CBD,∴AD=CD.∵△ACD 是直角三角形,∴AC 是斜边,∴∠ADC=90°.∴DO= AC.∴DO2+BO2=AB2=BD2 .∴∠BOD=90°.∴OB⊥OD.又DO∩AC=O,∴OB⊥平面ACD.又OB⊂平面ABC,∴平面ACD⊥平面ABC.(Ⅱ)解:设点D,B 到平面ACE 的距离分别为h D,h E.则= .∵平面AEC 把四面体ABCD 分成体积相等的两部分,∴ = = =1.∴点E 是BD 的中点.建立如图所示的空间直角坐标系.不妨设AB=2.则O(0,0,0),A(1,0,0),C(﹣1,0,0),D(0,0,1),B(0,,0),E .=(﹣1,0,1),= ,=(﹣2,0,0).设平面ADE 的法向量为=(x,y,z),则,即,取= .同理可得:平面ACE 的法向量为=(0,1,).∴cos = = =﹣.∴二面角D﹣AE﹣C 的余弦值为.8、【答案】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD 为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD 为矩形,在△APD 中,由PA=PD,∠APD=90°,可得△PAD 为等腰直角三角形,设PA=AB=2a,则AD= .取AD 中点O,BC 中点E,连接PO、OE,以O 为坐标原点,分别以OA、OE、OP 所在直线为x、y、z 轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC 的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥AD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB 的一个法向量,.∴cos<>= =.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C 的余弦值为.。
立体几何练习题一、选择题1.已知平面外不共线的三点A, B, C 到的距离都相等,则正确的结论是A. 平面ABC必平行于B. 平面ABC必与相交C. 平面ABC必不垂直于D. 存在ABC的一条中位线平行于或在内2.若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的( A )充分非必要条件;( B)必要非充分条件;( C)充要条件;( D)非充分非必要条件.3.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”。
在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是(A ) 48(B)18(C)24(D)364.已知二面角l 的大小为 600, m、 n 为异面直线,且m ,n ,则 m、 n 所成的角为( A )300 ( B)600 ( C)900 ( D)12005.已知球 O 半径为1, A 、 B、 C 三点都在球面上, A 、 B 两点和 A 、C两点的球面距离都是, B、 C 两点的球面距离是,则二面角 B OA C 的大小是4 3( A )( B)( C)( D)24 3 2 37.设m、n是两条不同的直线,、是两个不同的平面 .考查下列命题,其中正确的命题是A .m , n , m nB .// , m ,n // m nC., m , n // m n D., m, n m n8.设 A、B、C、D 是空间四个不同的点,在下列命题中,不正确的是...A . AC 与 BD 共面,则 AD 与 BC 共面B.若 AC 与 BD 是异面直线,则AD 与 BC 是异面直线C.若 AB=AC, DB=DC,则 AD=BCD.若 AB=AC, DB=DC,则 AD BC9.若l 为一条直线,,,为三个互不重合的平面,给出下面三个命题:①,;②,∥;③ l ∥, l .其中正确的命题有A . 0 个B. 1 个C. 2 个 D .3 个10.如图, O 是半径为 1 的球心,点 A 、B 、 C 在球面上, OA 、 OB、 OC 两两垂直, E、 F分别是大圆弧?E、 F 在该球面上的球面距离是AB 与 AC 的中点,则点( A )(B )( C)2 ( D)4 3 2 411.如图,正三棱柱ABC A1 B1C1的各棱长都为2,E、F分别为AB 、 A 1C1的中点,则EF 的长是( A ) 2 ( B) 3 ( C)5 ( D)712.若P是平面外一点,则下列命题正确的是( A )过P只能作一条直线与平面相交( B)过P可作无数条直线与平面垂直( C)过P只能作一条直线与平面平行( D)过P可作无数条直线与平面平行l13 l与平面,在平面内必有直线 m ,使 m 与.对于任意的直线( A )平行( B)相交n, (C)垂直(D )互为异面直线14和共面的直线m 、下列命题中真命题是.对于平面( A )若m , m n,则n∥( B)若m∥,n∥,则m∥n( C)若m , n∥ ,则m∥n ( D)若m、n与所成的角相等,则m∥n 15.关于直线m、n与平面、,有下列四个命题:①若 m // , n // 且// ,则 m // n ;② 若③ 若m , n 且,则 m n ;m , n // 且 // ,则 m n ;④若 m //,n且,则m // n。
2 (2018 文 I )在平行四边形 ABCM 中, AB = AC =3 ,∠ACM = 90︒ ,以 AC 为折痕将△ M 到达点 D 的位置,且 AB ⊥ DA .ACM 折起,使点⑴证明:平面 ACD ⊥平面 ABC ;⑵ Q 为线段 AD 上一点, P 为线段 BC 上一点,且 BP = DQ = 2DA ,求三棱锥Q - ABP 的体积.3(2018 文 I I )如图,在三棱锥P - ABC 中, AB = BC = 2 ,PA = PB = PC = AC = 4 , O 为 AC 的中点.(1) 证明: PO ⊥ 平面 ABC ;(2) 若点 M 在棱 BC 上,且 MC = 2MB ,求点C 到平面 POM 的距离.OMACB(2018 文 III )如图,矩形 ABCD 所在平面与半圆弧CD 所在平面垂直, M 是C D 上异于C , D 的点.⑴证明:平面 AMD ⊥平面 BMC ;⑵在线段 AM 上是否存在点 P ,使得 MC ∥平面 PBD ?说明理由.2(2017 文 I )如图,在四棱锥 P-ABCD 中,AB//CD ,且∠BAP = ∠CDP = 90(1) 证明:平面 PAB⊥平面 PAD ;8(2) 若 PA=PD=AB=DC, ∠APD = 90 ,且四棱锥 P-ABCD 的体积为 3,求该四棱锥的侧面积.(2017 文 II )如图,四棱锥 P - ABCD 中,侧面 PAD 为等边三角形且垂直于底面 ABCD ,AB = BC = 1AD , ∠BAD = ∠ABC = 90︒.(1) 证明:直线 BC ∥平面 PAD ;7(2)若△PCD 的面积为2 ,求四棱锥P ABCD 的体积.(2017 文 III )如图,四面体 ABCD 中,△ABC 是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E 为棱BD 上与D 不重合的点,且AE⊥EC,求四面体 ABCE 与四面体 ACDE 的体积比.(2016 文I )如图,在已知正三棱锥 P-ABC 的侧面是直角三角形,PA=6,顶点 P 在平面 ABC 内的正投影为点D,D 在平面 PAB 内的正投影为点 E,连接 PE 并延长交 AB 于点G.(I)证明: G 是AB 的中点;(II)在图中作出点 E 在平面 PAC 内的正投影 F(说明作法及理由),并求四面体 PDEF 的体积.PEAD CGB(2016 文II)如图,菱形ABCD 的对角线AC 与BD 交于点O,点E,F 分别在AD,CD 上,AE=CF,EF 交BD 于点H,将△DEF 沿EF 折到△D'EF 的位置.(Ⅰ)证明:AC HD' ;(Ⅱ)若AB = 5, AC = 6, AE=5, OD' = 24,求五棱锥D' -ABCFE 的体积.(2016 文 III )如图,四棱锥P-ABCD 中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD,N 为 PC 的中点.(I)证明MN∥平面 PAB;(II)求四面体 N-BCM 的体积.2(2015 文 I )如图四边形 ABCD 为菱形,G 为 AC 与 BD 交点, BE ⊥ △ △(I ) 证明:平面 AEC ⊥ 平面 BED ;ABCD ,(II ) 若∠ABC = 120 , AE ⊥ EC ,三棱锥 E - ACD 的体积为6 ,求该三棱锥的侧面积.3(2015 文 II )如图,长方体 ABCD ﹣A1B1C1D1 中,AB=16,BC=10,AA1=8,点 E ,分别在 A1B1, D1C1 上,A1E= D1F=4.过点 E,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由)(2)求平面α把该长方体分成的两部分体积的比值.(2014 文 I )如图,三棱柱ABC -A1B1C1 中,侧面BB1C1C 为菱形,B1C 的中点为O ,且AO ⊥平面BB1C1C .(1)证明:B1C ⊥AB;(2)若AC ⊥AB1 ,∠CBB1 = 60 , BC =1, 求三棱柱ABC -A1B1C1 的高.(2014 文 II )如图,四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的重点.(1)证明:PB //平面AEC ;(2)设AP = 1, AD = ,三棱锥P -ABD 的体积V = ,求A 到平面PBC 的距离.433。
2017-2021年上海市高考数学真题分类汇编:立体几何
一.选择题(共6小题)
1.(2020•上海)在棱长为10的正方体ABCD﹣A1B1C1D1中,P为左侧面ADD1A1上一点,已知点P到A1D1的距离为3,P到AA1的距离为2,则过点P且与A1C平行的直线交正
)
方体于P、Q两点,则Q点所在的平面是(
A.AA1B1B B.BB1C1C C.CC1D1D D.ABCD 2.(2019•上海)已知平面α、β、γ两两垂直,直线a、b、c满足:a⊆α,b⊆β,c⊆γ,则直线a、b、c不可能满足以下哪种关系()
A.两两垂直B.两两平行C.两两相交D.两两异面3.(2019•上海)一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为()
A.1B.2C.4D.8 4.(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面
)
矩形的一边,则这样的阳马的个数是(
A.4B.8C.12D.16 5.(2018•上海)如图,在直三棱柱ABC﹣A1B1C1的棱所在的直线中,与直线BC1异面的直线的条数为()
第1页(共30页)。
近四年(2005-2008)上海高考立体几何试题一.填空题:只要求直接填写结果1(2005年11)有两个相同的直三棱柱,高为a2,底面三角形的三边长分别为)0(5,4,3>a a a a 。
用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,表面积最小的是一个四棱柱,则a 的取值范围是__________。
解答:两个相同的直三棱柱并排放拼成一个三棱柱或四棱柱,有三种情况四棱柱有一种,就是边长为a 5的边重合在一起,表面积为242a +28三棱柱有两种,边长为a 4的边重合在一起,表面积为242a +32边长为a 3的边重合在一起,表面积为242a +36两个相同的直三棱柱竖直放在一起,有一种情况表面积为122a +48最小的是一个四棱柱,这说明 201248122824222<⇒+<+a a a 3150<<⇒a 2(2006春8) 正四棱锥底面边长为4,侧棱长为3,则其体积为 .316 3(2006年10)如果一条直线与一个平面垂直,则称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是 ;解:正方体中,一个面有四条棱与之垂直,六个面,共构成24个“正交线面对”;而正方 体的六个对角截面中,每个对角面又有两条面对角线与之垂直,共构成12个“正交线面对”,所以共有36个“正交线面对”;4(2007年10)在平面上,两条直线的位置关系有相交、平行、重合三种. 已知αβ,是两个相交平面,空间两条直线12l l ,在α上的射影是直线12s s ,,12l l ,在β上的射影是直线12t t ,.用1s 与2s ,1t 与2t 的位置关系,写出一个总能确定1l 与2l 是异 面直线的充分条件: .21//s s ,并且1t 与2t 相交(//1t 2t ,并且1s 与2s 相交)5(2008春8)已知一个凸多面体共有9个面,所有棱长均为1,其平面展开图如右图所示,则该凸多面体的体积V=16+二.选择题:每题都给出四个结论,其中有且只有一个结论是正确的,必须把正确结论的代号写在题后的圆括号内,6(2005春13) 已知直线n m l 、、及平面α,下列命题中的假命题是 ( ) (A )若//l m ,//m n ,则//l n . (B )若l α⊥,//n α,则l n ⊥.(C )若l m ⊥,//m n ,则l n ⊥. (D )若//l α,//n α,则//l n .[答] ( D ) 7(2006年14)若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的 ( ) (A )充分非必要条件;(B )必要非充分条件;(C )充要条件;(D )非充分非必要条件; 解: 充分性成立: “这四个点中有三点在同一直线上”有两种情况: 1)第四点在共线三点所在的直线上,可推出“这四个点在同一平面上”; 2)第四点不在共线三点所在的直线上,可推出“这四点在唯一的一个平面内”; 必要性不成立:“四个点在同一平面上”可能推出“两点分别在两条相交或平行直线上”; 故选(A )三.解答题:解答下列各题必须写出必要的步骤.8(2005春19) (14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.已知正三棱锥ABC P -的体积为372,侧面与底面所成的二面角的大小为 60. (1)证明:BC PA ⊥;(2)求底面中心O 到侧面的距离.[证明](1)(1)取BC 边的中点D ,连接AD 、PD ,则BC AD ⊥,BC PD ⊥,故⊥BC 平面APD . …… 4分 ∴ BC PA ⊥. …… 6分[解](2)如图, 由(1)可知平面⊥PBC 平面APD ,则PD A ∠是侧面与底面所成二面角的平面角.过点O 作E PD OE ,⊥为垂足,则OE 就是点O 到侧面的距离.…… 9分设OE 为h ,由题意可知点O 在AD 上, ∴ 60=∠PDO ,h OP 2=.h BC h OD 4,32=∴=, …… 11分∴ 2234)4(43h h S ABC ==∆, ∵ 3233823431372h h h =⋅⋅=,∴ 3=h . 即底面中心O 到侧面的距离为3.…… 14分9(2005年17)(本题满分12分)已知直四棱柱1111ABCD A BC D -中,12AA =,底面ABCD 是直角梯形,A ∠为直角,//AB CD ,4AB =,2AD =,1DC =,求异面直线1BC 与DC 所成角的大小.(结果用反三角函数值表示) [解法一]由题意AB//CD ,BA C 1∠∴是异面直线BC 1与DC 所成的角.连结AC 1与AC ,在Rt △ADC 中,可得5=AC , 又在Rt △ACC 1中,可得AC 1=3.在梯形ABCD 中,过C 作CH//AD 交AB 于H , 得13,3,2,90=∴==︒=∠CB HB CH CHB 又在1CBC Rt ∆中,可得171=BC ,在.17173arccos ,171732cos ,112121211=∠∴=⋅-+=∠∆ABC BC AB AC BC AB ABC ABC 中∴异而直线BC 1与DC 所成角的大小为.17173arccos[解法二]如图,以D 为坐标原点,分别以AD 、DC 、DD 1所在直线为x 、y 、z 轴建立直角坐标系.则C 1(0,1,2),B (2,4,0) ),2,3,2(1--=∴BCBC 与设1),0,1,0(-=所成的角为θ,则,17173arccos .17173||||cos 11===θθCD BC ∴异面直线BC 1与DC 所成角的大小为.17173arccos10(2006春17) (本题满分12分)在长方体1111D C B A ABCD -中,已知3,41===DD DC DA ,求异面直线B A 1与C B 1所成角的大小(结果用反三角函数值表示). [解法一] 连接D A 1,D BA C B D A 111,//∠∴ 为异面直线B A 1与C B 1所成的角. ……4分 连接BD ,在△DB A 1中,24,511===BD D A B A , ……6分则DA B A BD D A B A D BA 112212112cos ⋅⋅-+=∠259552322525=⋅⋅-+=. ……10分 ∴ 异面直线B A 1与C B 1所成角的大小为259arccos .……12分 [解法二] 以D 为坐标原点,分别以DA 、DC 、1DD 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系. ……2分则 )0,4,0()3,4,4()0,4,4()3,0,4(11C B B A 、、、, 得 )3,0,4(),3,4,0(11--=-=B A . ……6分设A 1与B 1的夹角为θ,则259cos ==θ, ……10分 ∴ B A 1与C B 1的夹角大小为259arccos, 即异面直线B A 1与C B 1所成角的大小为259arccos. ……12分 11(2006年19)(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分)在四棱锥P -ABCD 中,底面是边长为2的菱形,∠DAB =60,对角线AC 与BD 相交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成的角为60. (1)求四棱锥P -ABCD的体积; (2)若E 是PB 的中点,求异面直线DE 与PA 所成角的大小(结果用 反三角函数值表示).[解](1)在四棱锥P-ABCD 中,由PO ⊥平面ABCD,得∠PBO 是PB 与平面ABCD 所成的角, ∠PBO=60°. 在Rt △AOB 中BO=ABsin30°=1, 由PO ⊥BO, 于是,PO=BOtg60°=3,而底面菱形的面积为23. ∴四棱锥P-ABCD 的体积V=31×23×3=2. (2)解法一:以O 为坐标原点,射线OB 、OC 、OP 分别为x 轴、y 轴、z 轴的正半轴建立 空间直角坐标系.在Rt △AOB 中OA=3,于是,点A 、B 、 D 、P 的坐标分别是A(0,-3,0), B (1,0,0), D (-1,0,0), P (0,0, 3).E 是PB 的中点,则E(21,0,23) 于是=(23,0, 23),=(0, 3,3).设AP DE 的夹角为θ,有cosθ=4233434923=+⋅+,θ=arccos 42, ∴异面直线DE 与PA 所成角的大小是arccos 42; 解法二:取AB 的中点F,连接EF 、DF.由E 是PB 的中点,得EF ∥PA , ∴∠FED 是异面直线DE 与PA 所成 角(或它的补角),在Rt △AOB 中AO=ABcos30°=3=OP , 于是, 在等腰Rt △POA 中,PA=6,则EF=26. 在正△ABD 和正△PBD 中,DE=DF=3,cos ∠FED=34621=DE EF=42PAB D OECB1C 1B1A∴异面直线DE 与PA 所成角的大小是arccos42. 12(2007春 16) (12分)如图,在棱长为2的正方体D C B A ABCD ''''-中,F E 、分别是B A ''和AB 的中点,求异面直线F A '与CE 所成角的大小 (结果用反三角函数值表示).[解法一] 如图建立空间直角坐标系. …… 2分 由题意可知)0,1,2(),2,1,2(),0,2,0(),2,0,2(F E C A '. )2,1,2(),2,1,0(-=-='∴CE F A . …… 6分 设直线F A'与CE 所成角为θ,则35355cos =⋅==θ. ……10分 35a r c c o s =∴θ,即异面直线F A '与CE 所成角的大小为35arccos. …… 12分 [解法二] 连接EB , …… 2分BF E A //' ,且BF E A =',FBE A '∴是平行四边形,则EB F A //', ∴ 异面直线F A '与CE 所成的角就是CE 与EB 所成的角. …… 6分 由⊥CB 平面A B AB '',得BE CB ⊥. 在Rt △CEB 中,5,2==BE CB ,则552t a n=∠C E B , …… 10分 ∴ 552arctan=∠CEB . ∴ 异面直线F A '与CE 所成角的大小为552arctan. …… 12分 13(2007年16)(本题满分12分)如图,在体积为1的直三棱柱111C B A ABC -中,1,90===∠BC AC ACB .求直线B A 1与平面C C BB 11所成角的大小(结果用反三角函数值表示).解法一: 由题意,可得体积11111122ABC V CC S CC AC BC CC ==== △,∴ 211==CC AA .连接1BC . 1111111AC B C AC CC ⊥⊥ ,,⊥∴11C A 平面C C BB 11,11BC A ∠∴是直线B A 1与平面C C BB 11所成的角. 52211=+=BC CC BC ,51t a n 11111==∠∴BC C A BC A ,则 11BC A ∠=55arctan . 即直线B A 1与平面C C BB 11所成角的大小为55arctan .解法二: 由题意,可得体积11111122ABC V CC S CC AC BC CC ∆==== ,21=∴CC ,如图,建立空间直角坐标系. 得点(010)B ,,, 1(002)C ,,,1(102)A ,,. 则1(112)A B =-- ,,,平面C C BB 11的法向量为(100)n =,,.设直线B A 1与平面C C BB 11所成的角为θ,A 1与的夹角为ϕ,则11cos A B n A B n ϕ==, 66arcsin ,66|cos |sin ===∴θϕθ, 即直线B A 1与平面C C BB 11所成角的大小为66arcsin. 14(2008春20)(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 某厂根据市场需求开发折叠式小凳(如图所示). 凳面为三角形的尼龙布,凳脚为三根细钢管. 考虑到钢管的受力和人的舒适度等因素,设计小凳应满足:① 凳子高度为30cm ,② 三根细钢管相交处的节点O 与凳面三角形ABC 重心的连线垂直于凳面和地面.(1)若凳面是边长为20cm 的正三角形,三只凳脚与地面所成的角均为45,确定节点O 分细钢管上下两段的比值(精确到0.01); (2)若凳面是顶角为120的等腰三角形,腰长为24cm ,节点O 分细钢管上下两段之比为2:3. 确定三根细钢管的长度(精确到0.1cm ).[解](1)设△ABC 的重心为H ,连结OH .由题意可得,BH =设细钢管上下两段之比为λ. 已知凳子高度为30. 则301OH λλ=+. …… 3分 节点O 与凳面三角形ABC 重心的连线与地面垂直,且凳面与地面平行.∴ OBH ∠就是OB 与平面ABC 所成的角,亦即45OBH ∠= .303,1BH OH λλ=∴=+,解得,0.63λ=≈. …… 6分即节点O 分细钢管上下两段的比值约为0.63. (2)设120,24B AB BC ∠=∴==,AC = 设△ABC 的重心为H,则8,BH AH == …… 10分由节点O 分细钢管上下两段之比为2:3,可知12OH =.设过点A B C 、、的细钢管分别为AA BB CC '''、、,则560.82AA CC OA ''===≈,536.12BB OB '===≈, ∴ 对应于A B C 、、三点的三根细钢管长度分别为60.8cm , 36.1cm 和60.8cm . 14分/。
历年上海高考试题(立体几何 )(01 春) 若有平面(A )过点(C)过点与,且P且垂直于P且垂直于l ,, P, P l ,则下列命题中的假命题为()的直线平行于.(B)过点P且垂直于l的平面垂直于.的直线在内.(D)过点P且垂直于l的直线在内.(01)已知 a、b 为两条不同的直线,α、β为两个不同的平面,且a⊥α, b⊥β,则下列命题中的假命题是() DA. 若 a∥ b,则α∥βB. 若α⊥β,则a⊥bC. 若 a、 b 相交,则α、β相交D. 若α、β相交,则a、b 相交(02 春) 下图表示一个正方体表面的一种展开图,图中四条线段AB 、CD、EF 和GH 在原正方体中相互异面的有对。
3(02)若正四棱锥的底面边长为23cm ,体积为 4cm3,则它的侧面与底面所成的二面角的大小是30(03 春) 关于直线a, b, l以及平面M , N,下列命题中正确的是( ).(A)若 a // M , b // M ,则a // b(B) 若 a // M , b a ,则b M(C) 若 a M ,b M ,且 l a, l b ,则l M(D) 若 a M , a // N ,则M N D与 BC 所成角的大小等于.(结果用反三角函数值表示) arctg2(03)在下列条件中,可判断平面α与β平行的是()A .α、β都垂直于平面 r.B .α内存在不共线的三点到β的距离相等.C . l , m 是α内两条直线,且 l ∥β, m ∥β .D . l , m 是两条异面直线,且 l ∥α, m ∥α, l ∥β, m ∥β . D(04 春 )如图 ,在底面边长为 2 的正三棱锥 V-ABC 中 ,E 是 BC 的中点 , 若△ VAE 的面积是1,则侧棱 VA 与底面所成角的大小为 41(结果用反三角函数表示) arctg4(04) 在下列关于直线 l 、m 与平面 α、β的命题中 ,真命题是 ()(A) 若 l β且 α⊥ β,则 l ⊥ α . (B) 若 l ⊥ β且 α∥ β,则 l ⊥ α.(C) 若 l ⊥β且 α⊥ β,则 l ∥ α . (D) 若 α∩β =m 且 l ∥ m,则 l ∥ α.B (05 春) 已知直线 l 、m 、n 及平面 ,下列命题中的假命题是( A )若 l // m , m // n ,则 l // n .( B )若 l, n // ,则 ln .(C )若 l m , m // n ,则 l n .(D )若 l // , n // ,则 l // n .D2 (05)有两个相同的直三棱柱,高为, 底面三角形的三a边长分别为 3a 、4a 、5a(a>0). 用它们拼成一个三棱柱或四棱柱 ,在所有可能的情况中,全面积最小的是一个四棱柱 ,则 a 的取值范围是. 0<a< 153(06 春 ) 正四棱锥底面边长为 4,侧棱长为3,则其体积为. 163(06 文) 若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的( )( A )充分非必要条件 (B )必要非充分条件( C )充分必要条件(D )既非充分又非必要条件 A(06 理) 若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的[答]( ) A(A )充分非必要条件; (B )必要非充分条件; ( C )充要条件;(D )非充分非必要条件.(07 文)如图,在直三棱柱 ABC A 1B 1C 1中, ACB 90,C 1B 1AA 1 2,AC BC1,则异面直线 A 1 B 与 AC 所成角的A 1大小是(结果用反三角函数值表示) .CB6arccos6(07 理 ) 在平面上,两条直线的位置关系有相交、平行、重合三种.已知,是两个相交平面,空间两条直线l1, l2在上的射影是直线s1, s2, l1, l2在上的射影是直线 t1,t 2.用s1与s2,t1与t2的位置关系,写出一个总能确定l1与 l 2是异面直线的充分条件:. s1 // s2,并且 t1与 t 2相交( t1 // t 2,并且 s1 与 s2相交)(01 春 ) 用一块钢锭浇铸一个厚度均匀,且全面积为 2 平方米的正四棱锥形有盖容器(如图),设容器的高为 h 米,盖子边长为a米.(1)求 a 关于h的函数解析式;(2)设容器的容积为V立方米,则当h为何值时, V 最大?求出 V 的最大值.(求解本题时,不计容器的厚度)解( 1)设h'为正四棱锥的斜高a2 4 1 h' a 2,由已知 21 a2h2 h'2 ,4解得 a1(h 0) h 2 1(2) V 1 ha2 h (h 0)3 3(h2 1)易得 V11) 3(hh因为 h 1h12 ,所以 V1 2h 6 h等式当且仅当 h 1 ,即 h 1 时取得。
h故当 h 1 米时, V 有最大值, V 的最大值为1 立方米.6(01 春) 在长方体 ABCD A 1B1C1D1中,点E、F分别BB1、DD1上,且AE A1B ,AF A D 。
( 1)求证:A1C 平面 AEF ;( 2)若规定两个平面所成的角是这两个平面所组成的二面角中的锐角(或直角),则在空间中有定理:若两条直线分别垂直于两个平面,则这两条直线所成的角与这两个平面所成的角相等。
试根据上述定理,在AB 4, AD 3,AA1 5 时,求平面AEF与平面 D B BD 所成的1 1角的大小。
(用反三角函数值表示)证( 1)因为 CB 平面 A1 B ,所 A1C 在平面 A1B 上的射影为 A1B由 A B AE,AE 平面AB,得 AC AE ,1 1 1同理可证A1C AF因为 A1C AF , A1C AE所以 A1C平面AEF解( 2)过A作BD的垂线交CD于G,因为 D1D AG ,所以 AG平面D B BD设 AG 与A1C所成的角为,则即为平面 AEF 与平面D1B1BD所成的角.由已知,计算得DG 9 .4如图建立直角坐标系,则得点A(0,0,0) ,9,3,0), A1 (0,0,5),C (4,3,0)G ( ,4 AG { 9,3,0}, A C { 4,3, 5} ,4 1因为 AG 与A1C所成的角为所以AG A1C 12 2 cos25|AG| |A1C|arccos12 225由定理知,平面AEF 与平面CEF 所成角的大小为12 2 arccos25(01)在棱长为 a 的正方体OABC- O'A'B'C'中,E、F分别是棱AB、BC上的动点,且 AE=BF.( 1)求证: A'F ⊥ C'E;( 2)当三棱锥B' -BEF 的体积取得最大值时,求二面角B' - EF- B 的大小 . (结果用反三角函数表示)(1)利用空间直角坐标系证明;( 2) arctan2(02 春 )如图,三棱柱OAB-O1A1B1,平面OBB1O1⊥平面OAB ,O1OB=60°,∠AOB=90 °,且 OB=OO1 =2,OA= √3。
求:(1)二面角O1-AB-O大小;(2)异面直线A1B与AO1所成角的大小。
(上述结果用反三角函数值表示)[ 解] (1)取 OB 的中点 D ,连结 O 1D ,则 O 1D ⊥ OB 。
∵平面 OBB 1O 1⊥平面 OAB ,∴O 1D ⊥平面 OAB过 D 作 AB 的垂线,垂足为 E ,连结 O 1E ,则 O 1E ⊥AB 。
∴∠ DEO 1 为二面角 O 1-AB-O 的平面角。
由题设得 O 1 D=√3,∴DE=DBsin ∠OBA=√21/7.∵在 Rt △O 1DE 中, tg ∠ DEO 1=√7,∴∠ DEO 1 =arctg 7√.即二面角 O 1 -AB-O 的大小为 arctg 7√.(2)以 O 点为原点,分别以 OA 、OB 所在直线为 x 、 y 轴、过 O 点且与平面AOB 垂直的直线为 z 轴,建立空间直角坐标系,则O (0,0,0),O1(0,1,√3),A (√3,0,0),A1(√3,1,√3),B (0,2,0)。
设异面直线 A 1B 与 AO 1 所成角为 α,(02)如图,在直三棱柱 ABOA' B'O' 中, OO' 4 ,OA 4,OB 3,AOB90 ,D 是线段 A'B'的中点, P 是侧棱 BB' 上的一点,若 OPO ’A ’BD ,求DOP 与底面 AOB 所成角的大小。
(结果用反三角函数值表示)B ’[解法一 ]如图 ,以 O 点为原点建立空间直角坐标系POA由题意,有 B(3,0,0), D( 3,2,4)2B设 P(3,0, z) ,则zO ’ A ’BD {3,2,4}, OP { 3,0, z}DB ’2BDOPBD OP9 4z 029z8因为 BB' 平面 AOBPOB 是 OP 与底面 AOB 所成的角O ’A ’tg POB3 ED8B ’arctg3POB8POA[解法二 ]取 O'B' 中点 E ,连结 DE 、 BE ,则DE 平面 OBB'O'BBE 是 BD 在平面 OBB' O' 内的射影。
又因为 OP BD由三垂线定理的逆定理,得 OP BE在矩形 OBB'O' 中,易得 Rt OBP ~ Rt BB'E BPOB,得 BP 9 B' E BB'8(以下同解法一)(03 春 ) 已知三棱柱 ABCA 1B 1C 1 ,在某个空间直角坐标系中, A 1B 1AB {m,3m,0}, AC { m,0,0}, AA 1{ 0,0, n}. 其中 m, n 0C22(1) 证明:三棱柱 ABC A 1B 1C 1 是正三棱柱; AB(2) 若 m 2n ,求直线 CA 1与平面 A 1 ABB 1 所成角的大小 .(2)4中, A A ⊥平面 ABCD ,AB=4 ,AD=2. 若 B D ⊥ BC ,(03)已知平行六面体 ABCD — A B C D11 1111直线 B 1D 与平面 ABCD 所成的角等于 30°,求平行六面体 ABCD — A 1B 1C 1D 1 的体积 .[解 ]连结 BD ,因为 B 1B ⊥平面 ABCD ,B 1D ⊥BC ,所以 BC ⊥ BD.在△ BCD 中, BC=2 , CD=4 ,所以 BD= 2 3 .又因为直线 B 1D 与平面 ABCD 所成的角等于 30°,所以 ∠ B 1DB=30 °,于是 BB 1=1BD=2.3故平行六面体 ABCD —A 1B 1C 1 D 1 的体积为 S ABCD ·BB 1= 8 3 .(04 春) 如图 ,点 P 为斜三棱柱 ABC-A 1B 1C 1 的侧棱 BB 1 上一点 ,PM ⊥BB 1 交 AA 1 于点M,PN ⊥BB 1 交 CC 1 于点 N.(1) 求证: CC 1⊥ MN;(6 分 )(2) 在任意 △ DEF 中有余弦定理:DE 2=DF 2+EF 2- 2DF ·EFcos ∠DFE. 拓展到空间 ,类比三角形的余弦定理 ,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明 .(8 分 )证明: (1) ∵ CC 1∥ BB 1, ∴ CC 1⊥ PM, CC 1⊥ PN,且 PM 、 PN 相交于点 P,∴CC 1 ⊥平面 PMN. ∵MN平面 PMN, ∴ CC 1⊥ MN.解: (2) 在钭三棱柱 ABC-A 1B 1C 1 中,有222- 2S BCC B S ACC 1 A 1 cos αSABBA=SBCC B+SACC A1 11 11 11 1其中 α为平面 CC 1B 1B 与平面 CC 1A 1A 所组成的二面角 ∵ CC 1⊥平面 PMN,∴平面 CC 1B 1B 与平面 CC 1A 1A 所组成的二面角为∠ MNP 在 △ PMN 中 ,PM 2=PN 2+MN 2- 2PN ·MNcos ∠ MNP,222PM 2·CC 1 = PN 2·CC 1 + MN 2·CC 1 - 2(PN ·CC 1)(MN ·CC 1) cos ∠ MNP由于 S BCC 1B 1 = PN ·CC 1, S ACC 1A 1 = MN ·CC 1, S ABB 1 A 1 =PM ·BB 1 及 CC 1=BB 1,222-2SBCC B S ACC 1 A 1 cos α则SABBA=SBCC B+SACC A1 11 11 11 1(04)某单位用木料制作如图所示的框架 , 框架的下部是边长分别为 x 、y(单位: m)的矩形 .上部是等腰直角三角形 . 要求框架围成的总面积 8cm 2. 问 x 、y 分别为多少 (精确到 0.001m) 时用料最省 ?【解】由题意得x 218 8 x2∴ y=4 2 ).xy+x =8,x=(0<x<44x 4于定 , 框架用料长度为l=2x+2y+2(2 3 16 4 2 .x )=( + 2 )x+≥4 622x3 +16 ,即 x=8 - 42 时等号成立 .当 (2 )x=2x此时 , x ≈ 2.343,y=22 ≈ 2.828.故当 x 为 2.343m,y 为 2.828m 时, 用料最省 . (05 春) 已知正三棱锥 P ABC 的体积为 723 ,侧面与底面所成的二面角的大小为60 .( 1)证明: PA BC ;P( 2)求底面中心 O 到侧面的距离[证明 ](1)取 BC 边的中点 D ,连接 AD 、 PD ,则 ADBC ,PDBC ,故 BC平 面APD .4 分A∴COPA BC .6分[解](2)如图, 由( 1)可知平面 PBC 平面 APD ,则PDA 是侧面B与底面所成二面角的平面角 .过点O 作OE PD, E 为垂足,则 OE 就是点 O 到侧面的距离 .9 分设 OE 为 h ,由题意可知点O 在 AD 上,∴PDO 60 , OP 2h .OD 2h ,BC4h , 11 分3∴ S ABC3 (4h) 24 3h 2,4∵72314 3h 22h 8 3h 3 ,∴ h 3 .33 即底面中心 O 到侧面的距离为 3.(05 文 )已知长方体 ABCD-A 1 B 1C 1D 1 中 ,M 、 N 分别是 BB 1 和 BC 的中点 ,AB=4,AD=2.B 1D 与 平面 ABCD 所成角的大小为 60°,求异面直线 B 1D 与 MN所成角的大小 .(结果用反三角函数值表示 )[解 ]联结 B 1C,由 M 、 N 分别是 BB 1 和 BC 的中点 ,得 B 1C ∥ MN,∴∠ DB C 就是异面直线 B D 与 MN 所成的角 .11联结 BD, 在 Rt △ ABD 中 ,可得 BD=2 5 ,又 BB ⊥平面 ABCD,∠BDB 是BD 与平面111ABCD 所成的角 , ∴∠ B 1DB=60°.在 Rt △ B 1BD 中 , B 1 B=BDtan60 °=2 15 ,又 DC ⊥平面 BB 1C 1C, ∴ DC ⊥ B 1C,DCDC1在 Rt △ DB 1 C 中 , tan ∠ DB 1C=,B 1CBC 2 BB 1221∴∠ DB 1C=arctan .21即异面直线 B 1D 与 MN 所成角的大小为arctan .(05 理 ) 已知直四棱柱ABCD-A B C D中, AA 2 底面 ABCD,∠A 为直1 =2是直角梯形11 11角,AB ∥ CD,AB=4,AD=2,DC=1,. 求异面直线 BC 1 与 DC 所成角的大小 .(结果用反三角函数值表示 )[解 ]由题意 AB ∥ CD,∴∠ C 1BA 是异面直线 BC 1 与 DC 所成的角 .连结 AC 1 与 AC, 在 Rt △ ADC 中 ,可得 AC=5 .又在 Rt △ACC 1 中,可得 AC 1=3.在梯形 ABCD 中 ,过 C 作 CH ∥AD 交 AB 于 H, 得∠ CHB=90° ,CH=2,HB=3, ∴ CB= 13 .又在 Rt △CBC 1 中,可得 BC 1= 17 ,3 173 17 在 △ ABC 1 中 ,cos ∠C 1BA=,∴∠ C 1 BA=arccos1717异面直线 BC 1 与 DC 所成角的大小为3 17arccos17另解 :如图 ,以 D 为坐标原点 ,分别以 DA 、 DC 、 DD 1 所在 直线为 x 、 y 、 z 轴建立直角坐标系 . 则 C 1(0,1,2),B(2,4,0), ∴ BC 1 =(-2,-3,2),CD =(0,-1,0), 设 BC 1 与 CD 所成的角为 θ,BC 1 CD3 17 3 17则 cos θ==, θ = arccos.BC 1 CD1717异面直线 BC 1 与 DC 所成角的大小为3 17arccos17(06 春 ) 在长方体 ABCD A 1 B 1 C 1 D 1 中,已知 DA=DC=4,DD1=3,求异面直线 A 1B 与 B 1C 所成角的大小 (结果用反三角函数表示 ). [解法一 ]连接 A 1D∵A 1D ∥ B 1C,∴∠ BA 1D是异面直线A 1B与B 1C 所成的角4 分连接 BD, 在 △ A 1DB 中 ,AB=A 1D=5,BD=42 6分1A 1B 2 A 1D 2 BD 2cos ∠ BA D= 2 A 1B A 1D=25 25 32 92 5 5=10 分259∴异面直线 A 1B 与 B 1C 所成角的大小为12 分arccos25[ 解法二 ]以 D 为坐标原点 ,DA 、 DC 、 DD 1所在直线为x 轴、 y 轴、 z 轴 ,建立空间直角坐标系 . 2分则 A 1(4,0,3) 、 B(4,4,0) 、 B 1(4,4,3) 、C(0,4,0),得 A1 B =(0,4,-3), B1C =( -4,0,- 3) 6分设 A1 B 与 B1 C 的夹角为θ,A1B B1C 910 分cos θ==A1B B1C 25∴异面直线 A 1B 与 B 1C 所成角的大小为9 arccos25(06 文) 在直三棱柱 ABC ABC 中,ABC 90o, AB BC 1. (1)求异面直线B1C1与 AC 所成的角的大小;( 2)若A1C与平面 ABCS 所成角为45o,求三棱锥A1 ABC 的体积解: (1) ∵ BC ∥ B 1C1, ∴∠ ACB 为异面直线 B 1C1与 AC 所成角 (或它的补角 ) ∵∠ ABC=90°, AB=BC=1, ∴∠ ACB=45°,∴异面直线 B1C1与 AC 所成角为 45°.(2) ∵ AA 1⊥平面 ABC,∠ACA 1是 A 1C 与平面 ABC 所成的角 , ∠ ACA =45 °.∵∠ ABC=90° , AB=BC=1, AC= 2 ,∴AA 1= 2 .1 6∴三棱锥 A 1-ABC 的体积 V= S△ABC×AA 1=.3 2(06 理 )在四棱锥 P-ABCD 中,底面是边长为 2 的菱形,∠ DAB = 60 ,对角线相交于点 O,PO⊥平面 ABCD , PB 与平面 ABCD 所成的角为 60 .(1)求四棱锥 P-ABCD 的体积;(2)若 E 是 PB 的中点,求异面直线 DE 与 PA 所成角的大小(结果用反三角函数值表示)P[ 解 ]( 1)在四棱锥 P-ABCD 中 ,由 PO⊥平面 ABCD,得E D∠PBO 是 PB 与平面 ABCD 所成的角 ,∠PBO=60° . AO 在 Rt△ AOB 中BO=ABsin30° =1, 由PO⊥ BO,B 于是 ,PO=BOtg60°= 3 ,而底面菱形的面积为2 3 . AC与BDC∴四棱锥 P-ABCD 的体积 V=1×23× 3=2.3( 2)解法一: 以 O 为坐标原点 ,射线 OB 、 OC 、OP 分别为 x 轴、 y 轴、 z 轴的正半轴建立 空间直角坐标系 .在 Rt △ AOB 中 OA= 3 ,于是 ,点 A 、 B 、 D 、 P 的坐标分别是 A(0, - 3 ,0),B (1,0,0), D (- 1,0,0),P (0,0, 3 ).1 ,0,3 于是 DE =(3 ,0,3 3 , 3 ).E 是 PB 的中点 ,则 E() 2 ), AP =(0,222322设 DE 与 AP 的夹角为 θ,有 cos θ=2, θ =arccos ,9 3 3 3 4444∴异面直线 DE 与 PA 所成角的大小是arccos2 ;4解法二: 取 AB 的中点 F,连接 EF 、 DF.由 E 是 PB 的中点 ,得 EF ∥ PA , ∴∠ FED 是异面直线 DE 与 PA 所成角 (或它的补角 ),在 Rt △ AOB 中 AO=ABcos30° = 3 =OP , 于是 , 在等腰 Rt △ POA 中,PA= 6 ,则 EF=6 .2在正 △ ABD 和正 △PBD 中,DE=DF=3 ,16EF2cos ∠ FED=24=DE3 4∴异面直线 DE 与 PA 所成角的大小是arccos2 .4(07 春) 如图,在棱长为2 的正方体 ABCD ABCD 中, E 、F 分别是 AB 和 AB 的中点,求异面直线 A F 与 CE 所成角的大小 (结果用反三角函数值表示)[ 解法一 ] 如图建立空间直角坐标系 .2 分由题意可知 A ( 2, 0,2 ), C(0, 2, 0), E(2, 1, 2), F(2, 1, 0) . AF (0,1,2 ),CE( 2,1, 2 ) .6 分设直线 A F 与 CE 所成角为,则cosA F CE 5 5. 10 分A F CE 5 3 3arccos 5 ,3即异面直线 A F 与 CE 所成角的大小为512 分arccos.[解法二 ] 连接EB,32 分AE//BF,且 AE BF , A FBE 是平行四边形,则AF//EB,异面直线 A F 与 CE 所成的角就是 CE 与EB所成的角. 6 分由 CB 平面 ABB A ,得 CB BE .在 Rt △ CEB 中, CB 2, BE 5 ,则tan CEB 2 5 ,10 分5CEB2 5 arctan.5异面直线 A F 与 CE 所成角的大小为arctan 25 . 5(07 文) 在正四棱锥P ABCD 中, PA 2 ,直线 PA 与平面 ABCD 所成的角为60,求正四棱锥 P ABCD 的体积 V .P解:作 PO 平面 ABCD ,垂足为 O .连接 AO , O 是正方形 ABCD 的中心,PAO 是直线 PA 与平面ABCD 所成的角.D CPAO =60 , PA 2 .PO 3 .AO, AB 2 ,A B 1V 1 13 22 3 POgS ABCD3.3 317.解:由题意,得 cos B 3, B 为锐角,sin B 4 ,5 5sin A sin( π B C ) sin 3πB 7 2 ,4 10由正弦定理得 c 10 7,S 1 acgsin B 1 2 10 4 8 .2 2 7 5 7(07 理) 如图,在体积为 1 的直三棱柱ABC A1 B1C1中, ACB 90 , AC BC 1.求直线 A1B 与平面 BB1C1C 所成角的大小(结果用反三角函数值表示).解法一:由题意,可得体积V CC1 gS△ABC1 11 ,CC1 g gAC gBC CC12 2AA1 CC1 2 .连接 BC1.Q AC1 1 B1C1, AC1 1CC1,A1C1平面BB1C1C,A1 BC1是直线 A1B 与平面 BB1 C1C 所成的角.BC1 CC1 2 BC 2 5 ,tan A1 BC1 A1C1 1A1 BC1= arctan5 BC1,则.5 5即直线 A1B 与平面 BB1C1C 所成角的大小为5 arctan .5解法二:由题意,可得z体积 V1 1CC1 1,C1 B1 CC1 gS ABC CC1 g gAC gBC2 2CC1 2 ,A1 如图,建立空间直角坐标系.得点 B(0,1,0) ,uuur ,,,C BC1 (0,0,2) , A1 (1,0,2) .则 A1 B ( 1 1 2) y平面BB1C1C的法向量为n (100)Ar ,,.x设直线则 cos 即直线A1B 与平面uuur rA1 Bgnuuur rA1B g nA1B 与平面BB1C1C 所成的角为, A B 与n的夹角为,16 ,sin | cos | 6 , arcsin 6 ,6 6 66BB1C1C 所成角的大小为arcsin.617.解:由题意,得 cos B 3, B 为锐角,sin B 4 ,sin A sin( π B C ) sin 3πB 7 2 ,4 10由正弦定理得 c 10 ,S 1 acgsin B 1 2 10 4 8 .7 2 2 7 5 7。