《一元一次方程》单元测试卷
- 格式:docx
- 大小:87.18 KB
- 文档页数:3
一元一次方程单元测试题 【1 】(时光:90分钟,总分:100分)一.填空题:(本大题10个小题,每小题2分,共20分)在每小题中,请将答案直接填在题后的横线上.1.在0,-1,3中,是方程3x -9=0的解.2.假如3x 52a -=-6是关于x 的一元一次方程,那么a =,方程的解=x .3.若x =-2是关于x 的方程324=-a x 的解,则a =.4.由3x =2x +1变成3x -2x =1,其依据是.5.请你自编一道以5为解的一元一次方程是.6.“代数式9-x 的值比代数式x 32-1的值小6”用方程暗示为.7.当x =时,代数式223x -与32x-互为相反数.8.有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量雷同,则甲桶应向乙桶倒水升.9.假如(5a -1)2+| b +5 |=0,那么a +b =.10.某商场把彩电按标价的8折出售,仍可获利20%,若该彩电的进价为2000元,则标价是.二.选择题:(本大题8个小题,每小题3分,共24分)在每个小题的下面,都给出了代号为A.B.C.D 的四个答案,个中只有一个是准确的,请将准确答案的代号填在题后的括号中.11.下列各式中是一元一次方程的是( ) A.32=x B.2x =3C.2x -3D.x 2+2x =112.下列解方程错误的是( )A.由-31x =9得x =-3B.由7x =6x -1得7x -6x =-1C.由5x =10得x =2D.由3x =6-x 得3x+x =613.在公式s=21(a+b)h 中,已知a=3,h=4,s=16,那么b =( )A. 1B. 3C. 5D. 714.与方程x -1=2x 的解雷同的方程是( )A.x=2x+1B.x -2=1+2xC.x=2x+3D.x=2x -315.将方程xx 24213=+-去分母,准确的是( )A.3x -1=-4x -4B.3x -1+8=2xC.3x -1+8=0D.3x -1+8=4x16.假如方程axa x x =+=2131与 的解雷同,则a 的值是( )A.2B.-2D.-317.小明本年12岁,他爷爷60岁,经由( )年今后,爷爷的年纪是小明的4倍.B18.甲.乙两人演习短距离竞走,测得甲每秒跑7米,乙每秒跑6.5米,假如甲让乙先跑2秒,那么几秒钟后甲可以追上乙?若设x 秒后甲追上乙,列出的方程应为( )B.7x=6.5(x+2)C.D.三.解答题:(本大题3个小题,每小题4分,共12分)解答时每小题必须给出须要的演算进程或推理步调.19.)11(76)20(34y y y y --=--20.511312--=+x x 21.)12(43)]1(31[21+=--x x x 22.75.001.003.02.02.02.03=+-+x x四.解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出须要的演算进程或推理步调.23.当x 取何值时,代数式31--x x 比-53+x 的值大1?24.已知三支笔的价钱依次相差元,买这三支笔共需元,则这三支笔的价钱分离是若干元?25.某校一学生不幸得了白血病,全校学生踊跃捐钱献爱心,经统计初一共有学生420人,平均每人捐了5元,初二共有学生400人,平均每人捐了6元,初三学生平均每人捐了8元,占全校学生捐钱总额的94,则初三学生有若干人?26.某部书稿,甲.乙两个打字员一路打10天可以完成,若由甲单独打需14天完成.现两人合打4天后,余下的书稿由乙单独打,问乙还须要若干天才干完成?五.解答题:(本大题2个小题,每小题10分,共20分)解答时每小题必须给出须要的演算进程或推理步调.27.先浏览下列解题进程,然后解答问题(1).(2)解方程:|x+3|=2解:当x+3≥0时,原方程可化为:x+3=2,解得x=-1当x+3<0时,原方程可化为:x+3=-2,解得x=-5所以原方程的解是x=-1,x=-5(1)解方程:|3x-2|-4=0(2)探讨:当b为何值时,方程|x-2|=b+1 ①无解;②只有一个解;③有两个解.28.某黉舍举办一次登山比赛,有一同窗上山的速度为每小时5千米,下山的速度为每小时10千米,则该同窗往返的平均速度是若干?请解释来由.。
人教版2024—2025学年七年级上册第五章一元一次方程单元测试考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷选择题(每题只有一个正确选项,每小题3分,满分30分)1.方程3x+2(1﹣x)=4的解是()A.x=B.x=C.x=2D.x=12.若代数式4x﹣5与的值相等,则x的值是()A.1B.C.D.23.下列等式根据等式的变形正确的有()①若a=b,则ac=bc;②若ac=bc,则a=b;③若,则a=b;④若a=b,则.A.1个B.2个C.3个D.4个4.解方程时,去分母正确的是()A.3x﹣3=2(x﹣1)B.3x﹣6=2x﹣1C.3x﹣6=2(x﹣1)D.3x﹣3=2x﹣15.古代名著《孙子算经》中有一题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?设有车x辆,则根据题意,可列出方程是()A.3(x+2)=2x﹣9B.3(x+2)=2x+9C.3(x﹣2)=2x﹣9D.3(x﹣2)=2x+96.由于换季,商场准备对某商品打折出售,如果按原售价的七五折出售,将亏损25元,而按原售价的九折出售,将盈利20元,则该商品的原售价为()A.230元B.250元C.270元D.300元7.中国古代数学著作《算法统宗》中有这样一段记载,“三百七十八里关;初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意时,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一和第六这两天共走了()A.102里B.126里C.192里D.198里8.日历上竖列相邻的三个数,它们的和是39,则第一个数是()A.6B.12C.13D.14 9.若关于x的方程的解是x=2,则常数a的值是()A.﹣8B.5C.8D.10 10.已知关于x的方程有非负整数解,则整数a的所有可能的取值的和为()A.﹣6B.﹣7C.﹣14D.﹣19二、填空题(6小题,每题3分,共18分)11.关于x的方程mx2m﹣1+(m﹣1)x﹣2=0如果是一元一次方程,则其解为.12.代数式与代数式3﹣2x的和为4,则x=.13.如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”.如图所示,“优美矩形”ABCD的周长为26,则正方形d的边长为.14.关于x的方程x2+bx+2a=0(a、b为实数且a≠0),a恰好是该方程的根,则a+b的值为.15.已知a,b为实数,且关于x的方程x﹣ax=b的解为x=6,则关于y的方程(y﹣1)﹣a(y﹣1)=b的解为y=.16.已知关于x的一元一次方程无解,则m=.第II卷人教版2024—2025学年七年级上册第五章一元一次方程单元测试姓名:____________ 学号:____________准考证号:___________ 12345678910题号答案11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.解方程:﹣=1.18.m为何值时,关于x的方程3x﹣m=2x+1的解是4=2x﹣1的解的2倍.19.七3班数学老师在批改小红的作业时发现,小红在解方程时,把“2﹣x”抄成了“x﹣2”,解得x=8,而且“a”处的数字也模糊不清了.(1)请你帮小红求出“a”处的数字.(2)请你正确地解出原方程.20.已知:方程(m+2)x|m|﹣1﹣m=0①是关于x的一元一次方程.(1)求m的值;(2)若上述方程①的解与关于x的方程x+=﹣3x②的解互为相反数,求a的值.21.对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一副对联,对联的长为100cm,宽为27cm.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.22.某超市有线上和线下两种销售方式.与2023年4月份相比,该超市2024年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2023年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2024年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2023年4月份a x a﹣x2024年4月份 1.1a 1.43x(2)求2024年4月份线上销售额与当月销售总额的比值.23.幻方最早源于我国,古人称之为纵横图.概念:在一个3×3方格中填入九个数,使每行、每列、每条斜对角线上的三个数之和都相等,便得到了一个“三阶幻方”.(1)将九个数按上述方式填入如图1所示的幻方中,求a﹣b的值;(2)将九个数按上述方式填入如图2所示的幻方中,分别求m,n的值;方法:下面介绍一种构造三阶幻方的方法——杨辉法:口诀(如图3所示):“九子斜排,上下对易,左右相更,四维挺出.”学以致用:(3)请你将下列九个数:﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入如图4所示的方格中,使得每行、每列、每条斜对角线上的三个数之和都相等.①求每行三个数的和;②将这九个数分别填入如图4所示的方格中,使得每行、每列、每条斜对角线上的三个数之和都相等.24.一般情况下,对于数m和n(mn≠0),(≠表示不等号),但是对于某些特殊的数m和n(mn≠0),能使等式成立,我们把这些特殊的数m和n 称为等式的“分型数对”,记作〈m,n〉.例如当m=1,n=﹣4时,有,那么〈1,﹣4〉就是等式“分型数对”.(1)〈﹣2,6〉,〈5,﹣20〉可以称为等式“分型数对”的是;(2)如果〈2,x〉是等式的“分型数对”,求x的值;(3)若〈a,b〉是等式的“分型数对”(ab≠0),求代数式(6a+3b﹣3)﹣(b﹣2a﹣1)的值.25.如图,在数轴上A点表示数a,B点表示数b,且a,b满足|a+12|+|6﹣b|=0.(1)求A、B两点之间的距离;(2)点C在A点的右侧,D在B点的左侧,AC为14个单位长度,BD为8个单位长度,求点C与点D之间的距离;(3)在(2)的条件下,动点P以3个单位长度/秒的速度从A点出发沿正方向运动,同时点Q以2个单位长度/秒的速度从点B出发沿负方向运动,则它们几秒钟相遇?相遇点E表示的数是多少?。
单元测试卷---《一元一次方程》(试卷总分:120分)一、选择题(每小题4分,满分40分,每小题有且只有一个选项正确)1.解是x =2的方程是( ).A .2(x -1)=6B .2x +1=xC .12x +10=2xD .213x +=1-x 2.已知(m 2-1)x 2+(m -1)x +7=0是关于x 的一元一次方程,则m 的值为( ).A .±1B .-1C .1D .以上答案都不对3.若(a -3)与(2a -3)互为相反数,则a 的值为( ).A .-3B .1C .2D .04.如果x =0是关于x 的方程3x -2a =4的解,则a 的值是( )A .2B .-2C .43D .-435.关于x 的一元一次方程2x a -2+m =4的解为x =1,则a +m 的值为( ).A .9B .8C .5D .46.下列结论中错误的有( ).①若a =b ,则ac -3=bc -3;②若ax =ay ,则x =y ; ③若a b =c b ,则a =c ;④若0.320.2x -=5,则3202x -=5. A .0个B .1个C .2个D .3个 7.解方程:2-243x -=-76x -,去分母得( ). A .2-2(2x -4)=-(x -7) B .12-2(2x -4)=-x -7C .2-(2x -4)=-(x -7)D .12-2(2x -4)=-(x -7)8.某商店以每个120元的价格卖出两个智能手表,其中一个盈利20%,另一个亏损20%.在这次买卖中,这家商店( ).A .不盈不亏B .亏损10元C .盈利9.6元D .盈利10元9.解方程4(x -1)-x =2(x +12),步骤如下:①去括号,得4x -4-x =2x +1;②移项,得4x +x -2x =1+4;③合并同类项,得3x =5;④系数化为1,得x =53.检验知,x =53不是原方程的解,说明解题的四个步骤中有错误,其中做错的一步是( ).A .①B .②C .③D .④10.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( ).A .3x +3(100-x )=100B .3x -3(100-x )=100 C .3x +1003x -=100 D .3x -1003x -=100二.填空题(每小题4分,满分24分)11.在解方程12x -=43x +1时,去分母后正确的是__________. 12.已知x =2是方程(a +1)x -4a =0的解,则a 的值是__________. 13.小强在解方程时,不小心把一个数字用墨水污染成了x =1-5x -●,他翻阅了答案知道这个方程的解为x =1,于是他判断●应该是__________.14.某种家电商场将一种品牌的电脑按标价的9折出售,仍可获利20%,已知该品牌电脑进价为9000元,如果设该电脑的标价为x 元,根据题意得到的方程是__________.15.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或瓶底45个,一个瓶身和两个瓶底可配成一套.用多少张制瓶身,多少张制瓶底可以正好制成配套的饮料瓶?设用x 张铝片制瓶身,则可列方程为__________.16.对于三个数a ,b ,c ,我们规定用M {a ,b ,c }表示这三个数的平均数,用min {a ,b ,c }表示这三个数中最小的数.例如:M {-1,2,3}=1233-++=43,min {-1,2,3}=-1,如果M {3,2x +1,4x -1}=min {2,-x +3,5x },那么x =__________.三.解答题(满分56分)17.(8分)解方程:(1)5(x -3)=7(x -5);(2)216x --314x -=1+13x +.18.(6分)已知关于x 的方程43x -m =65x -1,当m 为某些正整数时,方程的解为正整数,试求正整数m 的最小值.19.(8分)我们规定x的一元一次方程ax=b的解为b-a,则称该方程是“差解方程”,例如:3x=4.5的解为4.5-3=1.5,则该方程3x=4.5就是“差解方程”,请根据上述规定解答下列问题:(1)已知关于x的一元一次方程4x=m是“差解方程”,则m=__________.(2)已知关于x的一元一次方程4x=ab+a是“差解方程”,它的解为a,则a+b=__________.(3)已知关于x的一元一次方程4x=mn+m和-2x=mn+n都是“差解方程”,求代数式-3(m+11)+4n+2[(mn+m)2-m]-12[(mn+n)2-2n]的值.20.(10分)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?21.(12分)某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的1倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?22.(12分)缴纳个人所得税是收入达到缴纳标准的公民应居的义务,个人所得税率是由国家相应的法律法规规定的.根据个人的收入计算,新修改的《中华人民共和国个人所得税法》于2019年1月1日正式实施,新税法规定个人所得税的免征额为5000元,应纳税所得额按如下税率表缴纳.(1)小明的妈妈应纳税所得额为2000元,她应该缴纳个人所得税__________元.(2)小明的爸爸要缴纳个人所得税590元,他应纳税所得额是多少元?(3)如果小明的爸爸和妈妈某月应纳税所得额共为20000元(爸爸的应纳税所得额高于妈妈的应纳税所得额),共要缴纳个人所得税1780元,小明的爸爸应纳税所得额是__________元.。
人教2024版七年级上册数学第五章一元一次方程单元测试卷一.选择题1.已知关于x的方程3x+a−2=2的解为x=5,则a的值为()A.1B.−11C.−3D.−132.某商品的标价为300元,打8折后销售仍获利40元,该商品的进价为()A.220元B.200元C.180元D.160元3.下列方程变形中,正确的是()A.由y3=0,得y=3B.由2x=3,得x=23C.由2a−3=a,得a=3D.由2b−1=3b+1,得b=24.甲组有33个人,乙组有27个人,从乙组调若干人到甲组后,甲组的人数恰好是乙组人数的3倍,则变化后乙组的人数有()人.A.12B.13C.14D.155.一船在静水中的速度为20km/h,水流速度为4k m/h,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为x km,则下列方程正确的是()A.x20+x4=5B.20x+4x=5C.(20+4)x+(20-4)x=5D.x20+4+x20−4=56.某商场举行促销活动,全场商品一律打八折销售.杨老师买了一件商品,比标价少付了50元,那么他购买这件商品花了()A.250元B.200元C.150元D.100元7.如图,在数轴上,点A、B表示的数分别为−12,16,(规定数轴上两点A、B之间的距离记为AB).若点C在A,B两点之间,且满足AC−BC=4,则点C对应的数是()A.1B.2C.4D.68.我国古代《孙子算经》中记载了“多人共车”问题:今有三人共车,二车空,二人共车,九人步,问人与车各几何?其大意是:若3个人乘一辆车,则空2辆车;若2个人乘一辆车,则有9个人要步行,问人与车各是多少?若设有x辆车,则可列方程是()A.x3+2=x−92B.3(x−2)=2x+9C.x−23=x−92D.3(x+2)=2x−9二.填空题9.已知x=2是关于x的方程3a+2x=9−x的解,那么关于y的方程2−ay=−1+2y的解为.10.列等式表示“x的3倍与5的和等于x的4倍与2的差”为.11.乐乐在解关于x的方程2x+15−1=x+m2去分母时,方程左边的-1没有乘10,因而求得方程的解为x=4,则这个方程的正确解为12.甲、乙两班共有48人,若从甲班调3人到乙班,此时甲乙两班人数正好相等.那么甲班原来有人.13.幻方最早源于我国,古人称之为纵横图,如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为.−1−6−a02a4a−5−2a−3三.计算题14.解方程:(1)2x−13+1=x−22(2)5x−2x−1=x−2四.解答题15.老师在黑板上出了一道解方程的题:2x−13=1−x+24,东东马上举起了手,要求到黑板上去做,他是这样做的:4(2x−1)=1−3(x+2),①8x−4=1−3x−6,②8x+3x=1−6+4,③11x=−1,④x=−111.⑤老师说:东东解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,请你指出他错在第步(填序号),错误的原因是.现在,请你细心地解下列方程x−32−2x+13=1.16.某车间有28名工人,生产特种螺栓和螺帽,一个螺栓的两头各套上一个螺帽配成一套,每人每天平均生产螺栓12个或螺帽18个.问要有多少工人生产螺栓,其余的工人生产螺帽,才能使一天所生产的螺栓和螺帽刚好配套?17.某校七年级准备观看电影,由各班班长负责买票,每班人数都多于40人,票价每张36元.一班班长问售票员买团体票是否可以优惠,售票员说:“40人以上的团体票有两种优惠方案可选择.方案1:全体人员可打八折;方案2:若打九折,有5人可以免票.”(1)若一班有43名学生,则班长该选择哪个方案?(2)二班班长思考了一会儿说,你知道二班有多少人吗?18.某企业已收购毛竹52.5吨,根据市场信息,将毛竹直接销售,每吨可获得100元,如果对毛竹进行粗加工,每天可加工8吨,每吨可获得1000元;如果进行精加工,每天加工0.5吨,每吨可获得5000元.由于受条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,为此研究了两种方案:(1)方案一:将毛竹全部粗加工后销售,则可获利元(2)方案二:30天时间都进行精加工,未来得及加工的毛竹,在市场上直接销售,则可获利元(3)问:是否存在第三种方案,将部分毛竹精加工,其余毛竹粗加工,并且恰好在30天内完成?若存在,求销售后所获利润;若不存在,请说明理由.19.乐乐用的练习本可以到甲、乙两家商店购买,已知两家商店的标价都是每本2元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是从第一本起按标价的80%出售.(1)设乐乐要购买x(x>10)本练习本,则当乐乐到甲商店购买时,须付款元,当到乙商店购买时,须付款元.(2)买多少本练习本时,两家商店付款相同?(3)乐乐准备买50本练习本,为了节约开支,选择哪家更合算?。
第三章一元一次方程单元达标检测卷一、单选题:1.下列方程是一元一次方程的是()A.2x+3y=7B.3x 2=3C.6=2x-1 D.2x-1=202.下列解方程步骤正确的是()A.由0.2x +4=0.3x +1,得0.2x -0.3x =1+4B.由4x +1=0.310.1x ++1.2,得4x +1=3101x ++12C.由0.2x -0.3=2-1.3x ,得2x -3=2-13x D.由13x --26x +=2,得2x -2-x -2=123.解方程3112424x x-+-=-时,去分母后得到的方程正确的是()A.()231124x x --+=- B.()()231121x x --+=-C.()()231124x x --+=- D.()()2311216x x --+=-4.如果式子5x-4的值与-16互为倒数,则x 的值为()A.56B.-56C.-25D.255.下列变形中,不正确的是()A.若a ﹣3=b ﹣3,则a=bB.若a b c c=,则a=b C.若a=b ,则2211a bc c =++ D.若ac=bc ,则a=b6.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是13.(-12x -+x)=1-5x -,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。
同学们,你能补出这个常数吗?它应该是()A.2 B.3 C.4 D.57.某校教师举行茶话会.若每桌坐10人,则空出一张桌子;若每桌坐8人,还有6人不能就坐.设该校准备的桌子数为x ,则可列方程为()A.()10186x x -=- B.()10186x x -=+ C.()10186x x +=- D.()10186x x +=+8.下图是某超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴签上,使得原价看不清楚,请你帮忙算一算,该洗发水的原价为()A.22元 B.23元 C.24元D.26元9.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x 元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x 的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x-2)=44 C.9(x+2)=44 D.9(x+2)-4×2=4410.已知关于x 的一元一次方程2133axx +=+的解为正整数,则所有满足条件的整数a 有()个A.3B.4C.6D.8二、填空题:11.若关于x 的方程(k ﹣3)x |k ﹣2|+5k+1=0是一元一次方程,则k=.12.若关于y 的方程32y k -=与32y y +=的解相同,则k 的值为.13.若方程3(2x ﹣1)=2+x 的解与关于x 的方程623k-=2(x+3)的解互为相反数,则k 的值是14.在全国足球甲级A 组的比赛中,某队在已赛的11场比赛中保持连续不败,积25分.已知胜一场得3分,平一场得1分,那么该队已胜场.15.春节将近,各服装店清仓大甩卖.一商店某一时间以每件120元的价格卖出两件衣服,其中一件盈利50%,另一件亏损20%,卖这两件衣服的利润为元.16.整理一批资料,由一个人做要20h 完成,现计划由一部分人先做3h ,然后调走其中5人,剩下的人再做2h 正好完成这项工作,假设这些人的工作效率相同,具体应先安排多少人工作?若设应先安排x 人工作3h ,则根据题意可列方程为.17.为了抓住国庆长假的商机,某商家推出了“每满300元减30元”的活动,该商家将某品牌微波炉按进价提高50%后标价,再按标价的八折销售,一顾客在国庆长假期间购买了一个该商家这个品牌的微波炉,最终付款780元.(1)将表格补充完整:(2)该商家卖一个这个品牌的微波炉的利润为元.18.按照下面的程序计算,如果输入的值是正整数,输出结果是94,则满足条件的y 值有个.19.某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是%(注:利润率=-销售价进价进价×100%).20.线段15AB =,点P 从点A 开始向点B 以每秒1个单位长度的速度运动,点Q 从点B 开始向点A 以每秒2个单位长度的速度运动,当其中一个点到达终点时另一个点也随之停止运动,当2AP PQ =时,t 的值为.三、计算题:21.解下列方程(1)()4315235x x --=(2)10.10.051220.2x x+--=+四、解答题:22.小李在解关于x 的方程2133x x a-+=-1去分母时,方程右边的-1漏乘了3,因而求得方程的解为x=-2,请你帮小李同学求出a 的值,并且求出原方程的解.23.学习了一元一次方程的解法后,老师布置了这样一道计算题317124x x +--=,甲、乙两位同学的解答过程分别如下:甲同学:解方程317124x x +--=.解:317441424x x +-⨯-⨯=⨯…第①步()23174x x +--=……第②步6274x x +--=……第③步6427x x -=-+……第④步59x =…………第⑤步95x =.………第⑥步乙同学:解方程317124x x +--=.解:31744124x x +-⨯-⨯=…第①步()23171x x +-+=……第②步6271x x +-+=……第③步6127x x -=--……第④步58x =-…………第⑤步85x =-.………第⑥步老师发现这两位同学的解答过程都有不符合题意.请你从甲、乙两位同学中,选择一位同学的解答过程,帮助他分析错因,并加以改正.(1)我选择同学的解答过程进行分析(填“甲”或“乙”);(2)该同学的解答过程从第步开始出现不符合题意(填序号);错误的原因是;(3)请写出正确的解答过程.24.某地区发生强烈地震,维和部队在两个地方进行救援工作,甲处有91名维和部队队员,乙处有49名维和部队队员,现又调来100名维和部队队员支援,要使甲处的人数比乙处人数的3倍少12人,应往甲、乙两处各调来多少名维和部队队员?25.用方程解答问题:某车间有22名工人,用铝片生产听装饮料瓶,每人每天可以生产1200个瓶身或2000个瓶底,一个瓶身和两个瓶底可配成一套,为使每天生产的瓶身和瓶底刚好配套,应安排生产瓶身和瓶底的工人各多少名?26.某城市对用户的自来水收费实行阶梯水价,收费标准如下表所示:月用水量不超过12吨的部分超过12吨不超过18吨的部分超过18吨的部分收费标准(元/吨) 2.00 2.50 3.00(1)某用户5月份缴水费45元,则该用户5月份的用水量是多少?(2)某用户想月所缴水费控制在20元至30元之间,则该用户的月用水量应该如何控制?(3)若某用户的月用水量为m吨,请用含m的代数式表示该用户月所缴水费.27.为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?28.某牛奶加工厂现有鲜奶8吨,若市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元.该工厂的生产能力是:如制成酸奶每天可加工3吨;制成奶片每天可加工1吨.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利最多?为什么?答案一、单选题:1-10DDDCD DBCAB 二、填空题:11.112.713.-314.715.1016.320x +()2520x -=117.(1)60(2)8018.319.1720.307或6三、计算题:21.(1)解:去括号,得:445635x x -+=移项,合并同类项,得:1080x =系数化为1,得:8x =(2)解:原方程化为:110512220x x+--=+去分母,得:()1012040105x x+-=+-去括号得:101020505x x +-=-移项,合并同类项,得:1560x =系数化为1,得:4x =四、解答题:22.解:按小李的解法解方程,去分母得:2x -1=x +a -1,整理,解得x =a ,又∵小李解得x =-2,∴a =-2,把a =-2代入原方程,得2x 1x 2133--=-,去分母得:2x-1=x-2-3,整理,解得x =-4,将x=-4代入方程中,左式=右式,即x =-4为原方程正确的解.23.(1)甲(2)②;去分母时7x -这一项没有加括号(3)解:317124x x +--=.317441424x x +-⨯-⨯=⨯()231(7)4x x +--=62+74x x +-=6427x x -=--55x =-1x =-.24.解:设应往甲处调x 名维和部队队员,则往乙处调100-x 名,可列方程:91+x=3[49+(100-x )]-12解得x=86,则100-x=14答:应往甲处调86名维和部队队员,往乙处调14名维和部队队员。
《一元一次方程》单元测试题时间:100分钟 满分:110分班别: 座号: 姓名: 分数:一、选择题(每小题3分,共36分)1、方程2x+1=0的解是 ( )(A) 21 (B ) 21- (C ) 2 (D ) —-22、已知下列方程中①x x 22=-、②0.3x=1、③152-=x x、④34=-x x⑤x=6、⑥x+2y=0、⑦x x x x 3222+=+-,其中是一元一次方程的有( )(A ) 2个 (B ) 3个 (C ) 4个 (D )5个3、下列解方程错误的是( )(A )由-31x =9得x =-3 (B)由7x =6x -1得7x -6x =-1(C )由5x =10得x =2 (D )由3x =6-x 得3x+x =64、方程2(x-7)=x+4的解是 ( )(A ) x=—5 (B )x=5 (C ) x=14 (D) x=185、对于等式x x 2131=-,下列变形正确的是 ( )(A ) 1231=+x x (B)1312-=-x x (C )135=x (D) x x 23=-6、下列等式变形错误的是 ( )(A)由a=b,得a+5=b+5 (B )由a=b ,得33-=-ba(C )由x+2=y+2,得x=y (D)由-3x=-3y, 得x=-y7、方程x x 73374-=的解是 ( )(A) x=3 (B) 21=x (C) 21-=x (D ) x=—38、将方程11)14(3)12(7=---x x 去括号后正确的是( )(A)1112714=+--x x (B) 11312714=+--x x(C )11312114=---x x (D) 14x-1—12x+3=119、方程16531=-+x x 的解是 ( ) (A )31- (B) 34 (C) 31 (D) 34- 10、方程)1(4242103-=++x x a 的解为3=x ,则a 的值为( ) (A )2 (B )22 (C)10 (D )-211、A 厂库存钢材为100吨,每月用去15吨;B 厂库存钢材82吨,每月用去9吨。
一元一次方程单元测试题篇1:一元一次方程单元测试题一元一次方程单元测试题一.填空题:(每小题3分,共30分)1.方程的解为____________________;2.相邻5个自然数的和为45,则这5个自然数分别为______________________;3.如果x=1是方程m(x-1)=3(x+m)的解,则m=_________________;4.一根长18米的铁丝围成一个长是宽的2倍的长方形的面积为________________;5.若代数式2x-6的值与0.5互为倒数,则x=____.6.一件衬衫进货价60元,提高50%标价为_______,八折优惠价为________,利润为______;7.小明跑步每秒钟跑4米,则他15秒钟跑_____米,2分钟跑_____米,1小时跑____公里;.8.笼子里鸡和兔总共有56个头,160只脚,设鸡有x只,则兔有___________只,列方程__________________可求出鸡兔的.只数;9.小明今年6岁,他的祖父72岁,__________年后,小明的年龄是他祖父年龄的;10.关于x的一元一次方程2x+a=x+1的解是-4,则方程-ay+1=3的解为:y=________________;二.选择题(每小题3分,共24分)11.方程3(x+1)=2x-1的解是A、x=-4B.x=1C.x=2D.x=-212.某商品提价100%后要恢复原价,则应降价()A30%,B50%,C75%,D100%;13.方程去分母后可得()A3x-3=1+2x,B3x-9=1+2x,C3x-3=2+2x,D3x-12=2+4x;14、小山上大学向某商人贷款1万元,月利率为6‰,1年后需还给商人多少钱?()A17200元,B16000元,C10720元,D10600元;15.小明每秒钟跑6米,小彬每秒钟跑5米,小彬站在小明前10米处,两人同时起跑,小明多少秒钟追上小彬()A5秒,B6秒,C8秒,D10秒;16.甲商品进价为1000元,按标价1200元9折出售,乙商品进价为400元,按标价600元7.5折出售,则甲、乙两商品的利润率()A、甲高B、乙高C、一样高D、无法比较17.某种产,商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( )。
一元一次方程单元测试(附参考答案)一、填空题1、1y =是方程()232m y y --=的解,则m = 。
2、若()23340x y -++=,则xy = 。
3、如果21m x-+8=0是一元一次方程,则m= 。
4、若3x -的倒数等于12,则x -1= 。
5、今年母女二人年龄之和53,10年前母女二人年龄之和是 ,已知10年前母亲的年龄是女儿年龄的10倍,如果设10年前女儿的年龄为x ,则可列方程 。
6、如果方程340x +=与方程3418x k +=是同解方程,则k= 。
7、单项式1414x a b +与9a 2x -1b 4是同类项,则x= 。
8、若52x +与29x -+是相反数,则x -2的值为 。
二、选择题9、下列各式中是一元一次方程的是( )。
A 、1232x y -=- B 、2341x x x -=- C 、1123y y -=+ D 、1226x x-=+ 10、根据“x 的3倍与5的和比x 的13多2”可列方程( )。
A 、3525x x +=- B 、3523x x +=+ C 、3(523x x +=-) D 、3(523xx +=+) 11、解方程20.250.1x0.10.030.02x -+=时,把分母化为整数,得( )。
A 、200025101032x x -+= B 、20025100.132x x-+= C 、20.250.10.132x x -+= D 、20.250.11032x x -+= 12、三个正整数的比是1:2:4,它们的和是84,那么这三个数中最大的数是( )。
A 、56 B 、48 C 、36 D 、1213、方程2152x kx x -+=-的解为-1时,k 的值为( )。
A 、10 B 、-4 C 、-6 D 、-814、已知:()2135m --有最大值,则方程5432m x -=+的解是( )7979B C D 9797A --、、、、 15、若关于x 的方程230m mxm --+=是一元一次方程,则这个方程的解是( )A 、0x =B 、3x =C 、3x =-D 、2x =16、某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )。
七年级数学(上)《一元一次方程》单元测试卷(时间:120分钟 ) 一、选择题(18分) 1、在方程23=-y x ,021=-+x x ,2121=x ,0322=--x x 中一元一次方程的个数为( ) A .1个 B .2个 C .3个 D .4个2、解方程3112-=-x x 时,去分母正确的是( ) A .2233-=-x x B .2263-=-x x C .1263-=-x x D .1233-=-x x 3、方程x x -=-22的解是( )A .1=xB .1-=xC .2=xD .0=x 4、对432=+-x ,下列说法正确的是( )A .不是方程B .是方程,其解为1C .是方程,其解为3D .是方程,其解为1、3 5、方程17.0123.01=--+x x 可变形为( ) A.17102031010=--+x x B.171203110=--+x xC.1071203110=--+x xD.107102031010=--+x x6、x 增加2倍的值比x 扩大5倍少3,列方程得( )A .352+=x xB .352-=x xC .353+=x xD .353-=x x7、A 厂库存钢材为100吨,每月用去15吨;B 厂库存钢材82吨,每月用去9吨.若经过x 个月后,两厂库存钢材相等,则x =( )A .3B .5C .2D .48、某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( ). A .80元 B .85元 C .90元 D .95元9、某原料供应商对购买其原料的顾客实行如下优惠:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元给九折优惠;(3)一次购买超过3万元,其中3万元九折优惠,超过3万元的部分八折优惠.某厂因库容原因,第一次在供应商购买原料付款7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,可少付金额为( )元. A.1460 B.1540 C.1560 D.2000二、填空题(18分)10、代数式12+a 与a 21+互为相反数,则=a . 11、如果06312=+--a x是一元一次方程,那么=a ,方程的解为=x .12、若4-=x 是方程0862=--x ax 的一个解,则=a .13、如果)12(3125+m b a 与)3(21221+-m b a 是同类项,则=m .14、已知023=+x ,则=-34x .15、一个数x 的51与它的和等于–10的20%,则可列出的方程为 .16、已知梯形的下底为cm 6,高为cm 5,面积为225cm ,则上底的长等于 .17、要锻造直径为16厘米、高为5厘米的圆柱形毛坯,设需截取边长为6厘米的的方钢x 厘米,可得方程为 .18、国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:⑴稿费不高于800元的不纳税;⑵稿费高于800元,又不高于4000元,应缴纳超过800元的那一部分稿费14%的税;⑶稿费高于4000元,应缴纳全部稿费的11%的税.某老师获得了2000元稿费,他应纳税 元. 三、解答题(共55分) 19、解下列方程(10分) (1)22)141(34=---a a (2)151423=+--x x (3)25.032.04=--+x x20、(8分)在公式h b a S )(21+=中,已知8,18,120===h b S ,求a 的值21、(8分)不论x 取何值,等式34=--x b ax 永远成立,求ab 21的值.22、(8分)当m 为何值时,关于x 的方程x x m +=+21125的解比关于x 的方程)1()1(x m m x +=+的解大2.23、(8分)设1511+=x y ,4122+=x y ,当x 为何值时,1y 、2y 互为相反数?24、(8分)已知3=x 是方程()241133=⎥⎦⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛+x m x 的解,n 满足关系式12=+m n ,求n m +的值.四.列方程解应用题(共41分)25、(10分)在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?26、(10分)一项工作,甲单独做需15天完成,乙单独做需12天完成,这项工作由甲、乙两人合做,并且施工期间乙休息7天,问几天完成?27、(10分)张老师带领该校七年级“三好学生”去开展夏令营活动,甲旅行社说:“如果老师买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括老师在内按全票价的6折优惠.”若全票价为240元,当学生人数为多少人时,两家旅行社的收费一样多?28. (11分)小明中考时的准考证号码是由四个数字组成的,这四个数字组成的四位数有如下特征:(1)它的千位数字为1;(2)把千位上的数字1向右移动,使其成为个位数字,那么所得的新数比原数的5倍少49.请你根据以上特征推出小明的准考证号码.一、选择题1.下列各种变形中,不正确的是( )A .从3+2x =2可得到2x =-3B .从6x =2x -1可得到6x -2x =-1C .从21%+50%(60-x )=60×42%可得到21+50(60-x )=62×42D .从3212-=-x x 可得到3x -1=2(x -2)2.方程673422--=--x x 去分母是( ) A .12-2(2x -4)=-(x -7) B .12-2(2x -4)=-x -7 C .12-2(2x -7)=-(x -7) D .12-4x -4=-x +73.已知x =1是方程21233-=-x k x 的解,则32+k 的值是( )A .-2B .2C .0D .-14.如果3个连续的奇数的和为15,那么它们的积是( ) A .15 B .21 C .105 D .2155.1元和5角的硬币共100枚,值68元,则1元和5角的硬币个数分别为( ) A .36个,64个 B .64个,36个 C .28个,72个 D .50个,50个 6.某项工程由甲队单独做需18天完成,由乙队做只需甲队的一半时间完成,设两队合作需x 天完成,则可得方程( )A .x =+91181 B .1)91181(=+x C .x =+361181 D .1)361181(=+x 7.一个长方形的周长是16cm ,长与宽的差是2 cm ,那么这个长方形的长与宽分别是( )A .9cm ,7cmB .5cm ,3cmC .7cm ,5cmD .10cm ,6cm8.若关于x 的方程x +2=ax 的解是-1,则a 的值是( ) A .1=a B .1-=a C .0=a D .3=a9.采石场工人爆破时,为了确保安全,点燃炸药导火线后要在爆破前转移到400米以外的安全区域,燃烧速度是1厘米/秒,人离开的速度是5米/秒,至少需要导火线的长度是( ) A .70厘米 B .75厘米 C .79厘米 D .80厘米10.一家三口(父亲、母亲、儿子)准备利用寒假外出旅游,甲旅行社告知:父母买全票,儿子可按半价优惠;乙旅行社告知:每人均按定价的8折优惠,若这两家旅行社每人的原票价相同,那么优惠条件是( )A .甲比乙优惠B .乙比甲优惠C .甲与乙相同D .与原票价有关二、填空题11.1、x 52比41大17,则x =_________。
一元一次方程单元测试题一、选择题(40分)1.在方程4x-y=0, x+1x-2=0,-2x=1,x2-2x+7=0中一元一次方程的个数为(A)A.1个B.2个C.3个D.4个2.解方程x2 -1=x-13时,去分母正确的是(B)A.3x-3=2x-2B.3x-6=2x-2C.3x-6=2x-1D.3x-3=2x-1 3.方程x-2=2-x的解是(C)A.x=1B.x= - 1C.x=2 D.x=04.如果等式ax=bc成立,则下列等式成立的是(D)A.abx=abc ;B.x= bca; C.b-ax=a-bc D.b+ax=b+bc5.增加2倍的值比扩大5倍少3,列方程得(D)A.2x=5x+3B.2x=5x-3C.3x=5x+3D.3x=5x-36.方程3a10+2x+42=4(x-1)的解为x=3,则a的值为(C)A.2;B.22;C.10;D.-27.已知a≠1,则关于x的方程(a-1)x=1-a的解是(C)A.x=0B.x=1C.x=- 1D.无解8.对∣x-2∣+3=4,下列说法正确的是(D)A.不是方程;B.是方程,其解为1;C.是方程,其解为3;D.是方程,其解为1、3。
9.A厂库存钢材为100吨,每月用去15吨;B厂库存钢材82吨,每月用去9吨。
若经过x 个月后,两厂库存钢材相等,则x =(A)A.3;B.5;C.2;D.410.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( C)。
A.80元;B.85元;C.90元;D.95元二、填空题(48分)11.代数式-2a+1与1+4a 互为相反数,则a= -112.如果 - 3x 2a+1+6=0是一元一次方程,那么a= 0 ,方程的解为x= 2 。
13.若x= -4是方程ax 2-6x-8=0的一个解,则a= -1 。
14.如果5a 2b -3(2m+1)与-3a 2b 2(m+3)是同类项,则m= - 98。
第十一章一元一次方程单元检测一、选择题(每小题3分,共30分)1.下列方程中是一元一次方程的是()A.x+3=y+2B.x+3=3-xC.1x =1D.x 2-1=02.下列方程中,解是x =2的是()A .3x =x +3B .-x +3=0C .2x =6D .5x -2=83.下列说法中,正确的是()A .若ac =bc ,则a =bB .若a=b,则a+c=c-bC .若a 2=b 2,则a =bD .若a+1=b+1,则a =b4.下列方程变形中,正确的是()A.方程3x-2=2x+1,移项,得3x-2x=-1+2B.方程3-x=2-5(x-1),去括号,得3-x=2-5x+1C.方程23t =32,未知数系数化为1,得t=1D.方程2(3)5(1)3(1)x x x +--=-,去括号得265533x x x +-+=-5.解方程371123x x-+-=的步骤中,去分母一项正确的是().A.3(37)226x x --+=B.37(1)1x x --+=C.3(37)2(1)1x x ---= D.3(37)2(1)6x x --+=6.在甲队工作的有272人,在乙处工作的有196人,如果乙处工作的人数是甲处工作人数的13,应从乙处调多少人到甲处?若设应从乙处调x 人到甲处,则下列方程中正确的是()A.272+x=13(196-x)B.13(272-x)=196-xC.13(272+x)=196+x D.13(272+x)=196-x7.甲比乙大15岁,5年前,甲的年龄是乙的年龄的2倍,则乙现在的年龄是().A.10岁B.15岁C.20岁D.30岁8.某个体商贩在一次买卖中,同时卖出两件上衣,售价都是80元,若按成本计,其中一件盈利60%,另一件亏本20%,在这次买卖中他().A.不赚不赔B.盈利10元C.亏损10元D.盈利50元9.足球比赛的积分规则:胜一场得3分,平一场得1分,负一场得0分,某队打了14场,负5场,共得19分,那么这个队胜了()。
一元一次方程单元测试题及答案一、选择题1. 解一元一次方程 \( ax + b = 0 \)(\( a \neq 0 \))时,应将\( x \) 的系数化为1,即解得 \( x = \) 。
A. \( -\frac{b}{a} \)B. \( \frac{b}{a} \)C. \( \frac{a}{b} \)D. \( -\frac{a}{b} \)2. 方程 \( 3x - 5 = 14 \) 的解是:A. \( x = 3 \)B. \( x = 4 \)C. \( x = 5 \)D. \( x = 6 \)3. 如果 \( x \) 满足方程 \( 2x + 4 = 10 \),那么 \( x \) 的值是:A. \( 1 \)B. \( 2 \)C. \( 3 \)D. \( 4 \)二、填空题4. 解方程 \( 5x - 7 = 18 \) 时,首先需要将方程两边同时加上______,然后将两边同时除以______。
5. 方程 \( 3x + 2 = 7x - 1 \) 移项后,合并同类项得到 \( 4x = ______ \)。
三、解答题6. 解方程 \( \frac{2}{3}x - 1 = \frac{1}{2}x + 2 \)。
7. 解方程 \( 2(x - 3) = 3(4x + 1) - 5x \)。
四、应用题8. 某工厂生产一批零件,如果每天生产50个,需要20天完成。
如果每天生产60个,需要多少天完成?答案:1. A2. C3. B4. 7, 55. 36. 解:\( \frac{2}{3}x - \frac{1}{2}x = 2 + 1 \),得\( \frac{1}{6}x = 3 \),\( x = 18 \)。
7. 解:\( 2x - 6 = 12x + 3 - 5x \),得 \( -8x = 9 \),\( x =-\frac{9}{8} \)。
8. 解:设需要 \( x \) 天完成。
一元一次方程单元测试卷pdf一、选择题(每题3分,共15分)1.下列方程中,是一元一次方程的是()A. x2−4=0B. 2x+y=5C. x+3=7D. x1=22.方程3x−5=16 的解是()A. x=3B. x=5C. x=7D. x=213.若方程2x+a=10 的解是x=3,则a的值为()A. 2B. 3C. 4D. 54.下列变形中,正确的是()A. 由7x=4 得x=74B. 由5x−3=2x得2x=3C. 由x+8=5−x得2x=−3D. 由−3x=9 得x=−25.某数的3倍比它的2倍多5,设这个数为x,则列出的方程是()A. 3x−2x=5B. 3x+2x=5C. 3x=2x+5D. 2x=3x+5二、填空题(每题3分,共15分)6.方程4x−7=1 的解是x= _______。
7.若2x−3=13,则x+5= _______。
8.已知方程3x+5=14 的解也是关于x的方程6x+k=30 的解,则k= _______。
9.已知y=1 是方程3−2y=y−a的解,则a= _______。
10.某商品原价为x元,降价10%后的价格为 _______ 元。
三、解答题(每题10分,共70分)11.解方程:5x+3=2x−9。
12.解方程:32x−1=1−2x−3。
13.已知方程3x+2=11 的解也是方程3x+8=2(x+a) 的解,求a的值。
14.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?15.某水果店进了某种水果1t,进价是7元/kg,售价为10元/kg,销售了一半以后,为了尽快售完,准备降价出售。
如果要使总利润不低于2000元,那么余下的水果最低可以按多少元/kg出售?(只列不等式,不求解)16.小明计划在本周星期六、日两天到爸爸单位参观学习,周六早上去,周日晚上回,若来回都坐公共汽车,则需花车费4元;若来回都坐出租车,则需车费12元;已知出租车的车费比公共汽车的车费每趟多3元,问:公共汽车和出租车的车费各是多少元/趟?17.某商店经销一种品牌的空调,其中某一型号的空调每台进价为m元,商店将进价提高30%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号空调的零售价为每台多少元?。
…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________北师大版2024新版七年级数学上册 《第五章 一元一次方程》单元测试及答案(满分:100分 时间:100分钟)题号 一 二 三 总分 分数一、选择题(每小题3分,共30分)1.下列各方程中,属于一元一次方程的是( ) A.20x y += B.2320x x ++= C.1232x x-=+D.10x +=2.如果ma mb =,那么下列等式中不一定成立的是( ) A.11ma mb +=+ B.33ma mb -=- C.1122ma mb-=-D.a b =3.已知方程33x m x +=-的解为1x =-,则m 的值为( ) A.13 B.7 C.-10 D.-134.解一元一次方程11(1)123x x +=-时,去分母正确的是( )A.3(1)12x x +=-B.2(1)13x x +=-C.2(1)63x x +=-D.3(1)62x x +=- 5.如图,在编写数学谜题时,“口”内要求填写同一个数字,若设“口”内数字为x .则列出方程正确的是( )A.3252x x ⨯+=B.3205102x x ⨯+=⨯C.320520x x ⨯++=D.3(20)5102x x ⨯++=+ 6.某商店有两个进价不同的计算器都卖了80元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店( )A.不赔不赚B.赚了10元C.赔了10元D.赚了50元 7.已知12211,536y x y x =-+=-,若1220y y +=,则x =( )A.-30B.-48C.48D.30 8.解方程20.250.10.10.030.02x x-+=时,把分母化为整数,得( )A.200025101032x x -+=B.20025100.132x x -+=C.20.250.10.132x x -+=D.20.250.11032x x -+=9.一根竹竿插入到池塘中,插入池塘淤泥中的部分占全长的15,水中部分是淤泥中部分的2倍多1米,露出水面的竹竿长1米,设竹竿的长度为x 米,则可列出方程为( ) A.12155x x x++=B.121155x x x+++=C.121155x x x++-=D.12155x x +=10.方程13153520052007x x xx++++=⨯的解是x =()A.20062007B.20072006C.20071003D.10032007二、填空题(每小题3分,共24分)11.如果1x =是关于x 的方程5270x m +-=的根,则m 的值是________. 12.根据条件:“x 的2倍与5的差等于15”列出方程为________.13.若0x =是方程200120023x a x -=+的解,那么代数式22a -+=________. 14.一份数学试卷,只有25个选择题,做对一题得4分,做错一题倒扣1分,某同学做了全部试卷,得了70分,他一共做对了________……○………………内………………○………………装………………○………………订………………○………………线………………○… 此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…道题.15.如果关于x 的方程51763x -=与81142||22x x m -=++的解相同,那么m 的值是________.16.如图,长方形ABCD 是一个游乐场的平面示意图,AB=22,AD=26,它是由6个正方形拼成的长方形,则中间阴影部分的正方形的边长是________.17.规定:用{m }表示大于m 的最小整数,例如:{2.6}3,{8}9,{4.9}4==-=-;用[m ]表示不大于m 的最3182x x -+=大整数,例如:7[3,[4]4,[ 1.5]22=-=--=-.如果整数x 满足关系式:2[]5{2}29x x --=,则x =________.18.一列方程如下排列:1142x x -+=的解是2x =;2162x x -+=的解是3x =;的解是4x =;…;利用根据观察得到的规律,写出解是7x =的方程是________.三、解答题(共46分) 19.(6分)解方程: (1)15(75)2(53)x x x --=+-; (2)221153x x x ---=-.20.(7分)已知关于x 的方程3210x m -+=与22m x -=的解互为相反数,试求这两个方程的解及m 的值.21.(7分)若关于x 的方程231x -=和32x k k x -=-有相同的解,求k 的值.22.(8分)小丽在商店花18元买了苹果和橘子共6千克,已知苹果每千克3.2元,橘子每千克2.6元,小丽买了苹果和橘子各有多少千克?23.(8分)为了拓展销路,商店对某种照相机的售价做了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是多少元?…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________24.(10分)如图,将一条数轴在原点O 和点B 处各折一下,得到一条“折线数轴”.图中点A 表示-11,点B 表示10,点C 表示18,我们称点A 和点C 在数轴上相距29个长度单位.动点P 从点A 出发,以2个长度单位/秒的速度沿着“折线数轴”的正方向运动,从点O 运动到点B 期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q 从点C 出发,以1个长度单位/秒的速度沿着数轴的负方向运动,从点B 运动到点O 期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t 秒.问:(1)动点P 从点A 运动至C 点需要多少时间? (2)P ,Q 两点相遇时,求出相遇点M 所对应的数是多少; (3)求当t 为何值时,P ,O 两点在数轴上相距的长度与Q ,B 两点在数轴上相距的长度相等.参考答案1.D2.D3.B4.D5.D6.B7.B8.B9.B 10.C 11.1 12.2515x -= 13.-7 14.19 15.2± 16.217.-8 18.61142x x -+= 19.【解析】(1)去括号得:1575253x x x -+=+-,移项合并同类项得:63x =-,解得:12x =-;(2)去分母得:153610515x x x -+=--,移项合并同类项得:226x =-,解得:13x =-.20.【解析】3210x m -+=,解得:213m x -=,22m x -=,解得:22m x -=,根据题意得:212032m m --+=,去分母得:42630m m -+-=,解得:4m =-,两方程的解分别为-3,3.21.【解析】解方程231x -=得2x =,解方程32x k k x -=-得37x k =,因为两方程有相同的解,所以327k =,解得143k =.22.【解析】设小丽买了苹果x 千克,橘子(6x -)千克.由题意得:3.2 2.6(6)18x x +⨯-=,解得:4x =,所以62x -=.答:小丽买了苹果4千克,橘子2千克.23.【解析】设该照相机的原售价是x 元,根据题意得:0.81200(114%)x =⨯+,解得:1710x =.答:该照相机的原售价是1710元.24.【解析】(1)点P 运动至点C 时,所需时间1121018219.5t =÷+÷+÷=(秒). 答:动点P 从点A 运动至C 点需要19.5秒.(2)由题可知,P ,Q 两点相遇在线段OB 上于M 处,设OM=x.则112181(10)2x x ÷+÷=÷+-÷,x =5.答:M 所对应的数为5.(3)P ,O 两点在数轴上相距的长度与Q ,B 两点在数轴上相距的长度相等有4种可能:①动点Q 在CB 上,动点P 在AO 上,则:8112t t -=-,解得:3t =.②动点Q 在CB 上,动点P 在OB 上,则:8( 5.5)1t t -=-⨯,解得: 6.75t =. ③动点Q 在BO 上,动点P 在OB 上,则:2(8)( 5.5)1t t -=-⨯,解得:10.5t =. ④动点Q 在OA 上,动点P 在BC 上,则:102(15.5)1310t t +-=-+,解得:18t =.综上所述:t 的值为3,6.75,10.5或18.。
人教新版2024-2025学年度七年级上册第3章一元一次方程单元测试卷一、选择题1.(3分)下列方程是一元一次方程的是( )A.=5x B.x2+1=3x C.y2+y=0D.2x﹣3y=12.(3分)下列说法不正确的是( )A.若x=y,则3﹣x=3﹣y B.若x=y,则0.5x=0.5yC.若﹣4a=﹣4b,则a=b D.若m+5=n﹣5,则m=n3.(3分)方程=1去分母正确的是( )A.2(3x﹣1)﹣3(2x+1)=6B.3(3x﹣1)﹣2(2x+1)=1C.9x﹣3﹣4x+2=6D.3(3x﹣1)﹣2(2x+1)=64.(3分)下列解方程过程中,变形正确的是( )A.由2x﹣1=3得2x=3﹣1B.由+1=+1.2得+1=+12C.由﹣75x=76得x=﹣D.由﹣=1得2x﹣3x=65.(3分)已知y=1是关于y的方程2﹣(m﹣1)=2y的解,则关于x的方程m(x﹣3)﹣2=m的解是( )A.0B.6C.43D.以上答案均不对6.(3分)甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后2分钟内,两人相遇的次数为( )A.7B.6C.5D.47.(3分)如图,水平桌面上有个内部装水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度为别为40公分,50公分,今将隔板抽出,若过程中箱内的水量未改变,且不计箱子及隔板厚度,则根据图中的数据,求隔板抽出后水面静止时,箱内的水面高度为多少公分( )A.43B.43.5C.44D.458.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.对书中某一问题改编如下:一百馒头一百僧,大僧三个更无争;小僧三人分一个,大僧共得几馒头.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个正好分完,大和尚共分得( )个馒头A.25B.72C.75D.909.(3分)某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,该家商店( )A.亏损2元B.盈利5元C.亏损5元D.不亏不盈10.(3分)如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针绕正方形运动,则第2018次相遇在( )A.点A B.点B C.点C D.点D二、填空题11.(3分)方程2x=3x﹣4的解是x= .12.(3分)若2x﹣3=1与ax﹣3=x+1有相同的解,那么a﹣1= .13.(3分)把黄豆发成豆芽后,质量增加4倍,要得到1000千克豆芽,需要 千克黄豆.14.(3分)在梯形面积公式S=(a+b)•h中,已知S=18,b=2a,h=4,则b= .15.(3分)若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则m= ,这个方程的解是 .16.(3分)某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打八折销售,则该商品每件销售利润为 元.17.(3分)如图,这是某超市“飘柔”洗发水的价格标签,一位服务员不小心将标签弄脏了,使得原价看不清.请你帮忙算一算,该洗发水的原价是 元.18.(3分)某人将2000元人民币按一年定期存入银行,到期后扣除20%的利息税得本息和2080元,这种存款方式的年利率是 .三、解答题19.(8分)解方程:(1)7x﹣9=9x﹣7(2)20.(6分)小强的练习册上有一道方程题,其中一个数字被墨水污染了,成了(﹣+x)=1﹣(“⊙”表示被污染的数字),他翻了书后的答案,知道这个方程的解为x=5,于是他把被污染的数字求了出来,请你把小强的计算过程写出来.21.(8分)本学期学习了一元一次方程的解法,下面是小亮同学的解题过程:解方程:﹣=1解:原方程可化为:﹣=1…………①方程两边同时乘以15,去分母,得3(20x﹣3)﹣5(10x+4)=15…………②去括号,得60x﹣9﹣50x+20=15…………③移项,得60x﹣50x=15+9﹣20……………④合并同类项,得10x=4………………⑤系数化1,得x=0.4………………⑥所以x=0.4原方程的解上述小亮的解题过程从第 (填序号)步开始出现错误,错误的原因是 .22.(8分)已知代数式比大1,求x的值.23.(8分)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下:(1)降价前每件衬衫的利润率为多少?(2)每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?24.(8分)【背景资料】一棉花种植区的农民研制出采摘棉花的单人便携式采棉机(如图),采摘效率高,能耗低,绿色环保.经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元.雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工资,雇工每天工作8小时.【问题解决】(1)一个雇工手工采摘棉花,一天能采摘多少公斤?(2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值;(3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇用的人数是张家的2倍.张家雇人手工采摘,王家所雇的人中有的人自带采棉机采摘,的人手工采摘.两家采摘完毕,采摘的天数刚好都是8天,张家付给雇工工钱总额为14400元.王家这次采摘棉花的总重量是多少?参考答案与试题解析一、选择题1.(3分)下列方程是一元一次方程的是( )A.=5x B.x2+1=3x C.y2+y=0D.2x﹣3y=1【分析】根据一元一次方程的定义对各选项进行逐一分析即可.【解答】解:A、符合一元一次方程的定义,故本选项正确;B、是一元二次方程,故本选项错误;C、是一元二次方程,故本选项错误;D、是一元一次方程,故本选项错误.故选:A.【点评】本题考查的是一元一次方程的定义,即只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.2.(3分)下列说法不正确的是( )A.若x=y,则3﹣x=3﹣y B.若x=y,则0.5x=0.5yC.若﹣4a=﹣4b,则a=b D.若m+5=n﹣5,则m=n【分析】根据等式的基本性质:①等式的两边同时加上或减去同一个数或字母,等式仍成立;②等式的两边同时乘以或除以同一个不为0的数或字母,等式仍成立.即可解决.【解答】解:A、根据等式性质2,等式两边都乘以﹣1,再根据等式性质1,两边都加3即可得到3﹣x=3﹣y;B、根据等式性质2,等式两边都乘以0.5,即可得到0.5x=0.5y;C、根据等式性质2,等式两边都除以﹣4,即可得到a=b;D、若m+5=n﹣5,则m=n﹣10.综上所述,故选D.【点评】本题主要考查等式的性质.需利用等式的性质对根据已知得到的等式进行变形,从而找到最后的答案.3.(3分)方程=1去分母正确的是( )A.2(3x﹣1)﹣3(2x+1)=6B.3(3x﹣1)﹣2(2x+1)=1C.9x﹣3﹣4x+2=6D.3(3x﹣1)﹣2(2x+1)=6【分析】根据等式的性质,方程两边同时乘以6,去括号,选出正确的选项即可.【解答】解:﹣=1,方程两边同时乘以6得:3(3x﹣1)﹣2(2x+1)=6,去括号得:9x﹣3﹣4x﹣2=6,故选:D.【点评】本题考查了解一元一次方程,正确掌握等式的性质是解题的关键.4.(3分)下列解方程过程中,变形正确的是( )A.由2x﹣1=3得2x=3﹣1B.由+1=+1.2得+1=+12C.由﹣75x=76得x=﹣D.由﹣=1得2x﹣3x=6【分析】各方程整理得到结果,即可作出判断.【解答】解:A、由2x﹣1=3得2x=3+1,不符合题意;B、由+1=+1.2得+1=+1.2,不符合题意;C、由﹣75x=76得x=﹣,不符合题意;D、由﹣=1得2x﹣3x=6,符合题意,故选:D.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.5.(3分)已知y=1是关于y的方程2﹣(m﹣1)=2y的解,则关于x的方程m(x﹣3)﹣2=m的解是( )A.0B.6C.43D.以上答案均不对【分析】把y=1代入已知方程求出m的值,即可确定出所求方程的解.【解答】解:把y=1代入方程得:2﹣(m﹣1)=2,去分母得:6﹣m+1=6,解得:m=1,把m=1代入方程得:x﹣3﹣2=1,解得:x=6,故选:B.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.(3分)甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后2分钟内,两人相遇的次数为( )A.7B.6C.5D.4【分析】利用时间=路程÷两人的速度之和可求出两人每隔s相遇一次,设两人相遇的次数为x,由运动的总时间为2分钟,即可得出关于x的一元一次方程,解之即可得出x的值,再结合x为整数,即可得出两人相遇的次数为5.【解答】解:设两人相遇的次数为x,依题意得:x=60×2,解得:x=.又∵x为整数,∴x取5.故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.7.(3分)如图,水平桌面上有个内部装水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度为别为40公分,50公分,今将隔板抽出,若过程中箱内的水量未改变,且不计箱子及隔板厚度,则根据图中的数据,求隔板抽出后水面静止时,箱内的水面高度为多少公分( )A.43B.43.5C.44D.45【分析】设长方形的宽为x公分,抽出隔板后之水面高度为h公分,根据题意列出方程,求出方程的解即可.【解答】解:设长方形的宽为x公分,抽出隔板后之水面高度为h公分,长方形的长为130+70=200(公分)130x×40+70x×50=200•x•h,解得:h=43.5,即抽出隔板后之水面高度为43.5公分故选:B.【点评】本题考查了一元一次方程的应用,能根据题意列出方程是解此题的关键.8.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.对书中某一问题改编如下:一百馒头一百僧,大僧三个更无争;小僧三人分一个,大僧共得几馒头.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个正好分完,大和尚共分得( )个馒头A.25B.72C.75D.90【分析】设有x个大和尚,则有(100﹣x)个小和尚,根据馒头数=3×大和尚人数+×小和尚人数结合共分100个馒头,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设有x个大和尚,则有(100﹣x)个小和尚,依题意,得:3x+(100﹣x)=100,解得:x=25,∴3x=75.故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.9.(3分)某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,该家商店( )A.亏损2元B.盈利5元C.亏损5元D.不亏不盈【分析】设两件衣服的进价分别为x、y元,根据利润=销售收入﹣进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用120﹣两件衣服的进价后即可找出结论.【解答】解:设盈利20%的那件衣服的进价是x元,根据进价与得润的和等于售价列得方程:x+0.20x=60,解得:x=50,类似地,设另一件亏损衣服的进价为y元,它的商品利润是﹣20%y元,列方程y+(﹣20%y)=60,解得:y=75.那么这两件衣服的进价是x+y=125元,而两件衣服的售价为60元.∴120﹣125=﹣5元,所以,这两件衣服亏损5元.故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.10.(3分)如图,正方形ABCD的边长为1,电子蚂蚁P从点A分别以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针绕正方形运动,则第2018次相遇在( )A.点A B.点B C.点C D.点D【分析】根据题意可以得到前几次相遇的地点,从而可以发现其中的规律,进而求得第2018次相遇的地点,本题得以解决.【解答】解:由题意可得,第一次相遇在点D,第二次相遇在点C,第三次相遇在点B,第四次相遇在点A,第五次相遇在点D,……,每四次一个循环,∵2018÷4=504…2,∴第2018次相遇在点C,故选:C.【点评】本题考查数字的变化类,解答本题的关键是明确题意,找出题目中的变化规律.二、填空题11.(3分)方程2x=3x﹣4的解是x= 4 .【分析】方程移项合并,将x系数化为1,即可求出解.【解答】解:方程移项合并得:x=4.故答案为:4.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.12.(3分)若2x﹣3=1与ax﹣3=x+1有相同的解,那么a﹣1= 2 .【分析】先求出2x﹣3=1的解,再根据方程解的定义,将方程的解代入方程可得关于字母系数a的一元一次方程,从而可求出a的值,然后将其代入求值式即可得到答案.【解答】解:∵2x﹣3=1解得:x=2把x=﹣2代入方程ax﹣3=x+1,得:2a﹣3=2+1,解得:a=3故a﹣1=2.【点评】已知条件中涉及到方程的解,把方程2x﹣3=1的解代入ax﹣3=x+1,转化为关于字母系数的方程进行求解.可把它叫做“有解就代入”.13.(3分)把黄豆发成豆芽后,质量增加4倍,要得到1000千克豆芽,需要 200 千克黄豆.【分析】设需要x千克黄豆,根据要得到1000千克豆芽,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设需要x千克黄豆,依题意,得:x+4x=1000,解得:x=200.故答案为:200.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.14.(3分)在梯形面积公式S=(a+b)•h中,已知S=18,b=2a,h=4,则b= 6 .【分析】由b=2a可得a=b,将S,a,h的值代入公式计算即可求出b的值.【解答】解:由b=2a得a=b,将S=18,a=b,h=4代入公式得:18=()×4,去分母得:36=,即6b=36,解得:b=6.故答案为:6.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.15.(3分)若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则m= 3 ,这个方程的解是 0 .【分析】根据一元一次方程的定义得出m﹣2=1且m≠0,求出m,代入方程,再求出x即可.【解答】解:∵关于x的方程mx m﹣2﹣m+3=0是一元一次方程,∴m﹣2=1且m≠0,解得:m=3,方程为3x=0,解得:x=0,即方程的解为x=0,故答案为:3,0.【点评】本题考查了一元一次方程的定义和解一元一次方程,能根据一元一次方程的定义求出m的值是解此题的关键.16.(3分)某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打八折销售,则该商品每件销售利润为 16 元.【分析】设该商品每件销售利润为x元,根据进价+利润=售价列出方程,求解即可.【解答】解:设该商品每件销售利润为x元,根据题意,得80+x=120×0.8,解得x=16.答:该商品每件销售利润为16元.故答案为16.【点评】本题考查一元一次方程的应用,正确理解题意找到等量关系是解题的关键.17.(3分)如图,这是某超市“飘柔”洗发水的价格标签,一位服务员不小心将标签弄脏了,使得原价看不清.请你帮忙算一算,该洗发水的原价是 24 元.【分析】设该洗发水的原价是x元,根据打七折后为16.8元可列方程求解.【解答】解:设该洗发水的原价是x元,根据题意,得0.7x=16.8,解得x=24.答:该洗发水的原价为24元.故答案为:24.【点评】本题考查一元一次方程的应用,关键知道标价和现价的关系,从而可列方程求解.18.(3分)某人将2000元人民币按一年定期存入银行,到期后扣除20%的利息税得本息和2080元,这种存款方式的年利率是 5% .【分析】利用本金×利率×时间=利息,列出一元一次方程,解方程即可.【解答】解:设这种存款方式的年利率为x,根据题意得:2000×x×1×(1﹣20%)=2080﹣2000,解得:x=5%,即这种存款方式的年利率为5%,故答案为:5%.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题19.(8分)解方程:(1)7x﹣9=9x﹣7(2)【分析】(1)移项、合并同类项,系数化成1即可求解.(2)去分母、去括号、移项、合并同类项,系数化成1即可求解.【解答】解:(1)7x﹣9=9x﹣77x﹣9x=﹣7+9﹣2x=2x=﹣1;(2)5(x﹣1)=20﹣2(x+2)5x﹣5=20﹣2x﹣45x+2x=20﹣4+57x=21x=3.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.20.(6分)小强的练习册上有一道方程题,其中一个数字被墨水污染了,成了(﹣+x)=1﹣(“⊙”表示被污染的数字),他翻了书后的答案,知道这个方程的解为x=5,于是他把被污染的数字求了出来,请你把小强的计算过程写出来.【分析】根据方程的解满足方程,可得关于⊙,根据解方程,可得答案.【解答】解:将x=5代入(﹣+x)=1﹣,得(﹣2+5)=1﹣(1﹣⊙/5),1=⊙/5解得⊙=5.【点评】本题考查了一元一次方程的解,利用方程的解满足方程得出关于⊙的方程是解题关键.21.(8分)本学期学习了一元一次方程的解法,下面是小亮同学的解题过程:解方程:﹣=1解:原方程可化为:﹣=1…………①方程两边同时乘以15,去分母,得3(20x﹣3)﹣5(10x+4)=15…………②去括号,得60x﹣9﹣50x+20=15…………③移项,得60x﹣50x=15+9﹣20……………④合并同类项,得10x=4………………⑤系数化1,得x=0.4………………⑥所以x=0.4原方程的解上述小亮的解题过程从第 ③ (填序号)步开始出现错误,错误的原因是 利用乘法分配律时负数乘以正数积为负 .【分析】找出题中的错误,分析原因即可.【解答】解:从第③步出错,错误原因是:利用乘法分配律时负数乘以正数积为负,故答案为:③;利用乘法分配律时负数乘以正数积为负【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.(8分)已知代数式比大1,求x的值.【分析】根据题意列出关于x的一元一次方程,再根据解方程的步骤依次计算可得.【解答】解:根据题意得﹣=1,5(3x+1)﹣2(2x﹣8)=10,15x+5﹣4x+16=10,15x﹣4x=10﹣5﹣16,11x=﹣11,x=﹣1.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.23.(8分)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下:(1)降价前每件衬衫的利润率为多少?(2)每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?【分析】(1)根据利润率公式计算即可求解;(2)每件衬衫降价x元时,销售完这批衬衫正好达到盈利45%的预期目标,根据销售收入﹣进货成本=利润,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)(120﹣80)÷80×100%=40÷80×100%=50%.故降价前每件衬衫的利润率为50%;(2)设每件衬衫降价x元时,销售完这批衬衫正好达到盈利45%的预期目标,根据题意得:120×400+(120﹣x)×(500﹣400)﹣80×500=80×500×45%,解得:x=20.答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.(8分)【背景资料】一棉花种植区的农民研制出采摘棉花的单人便携式采棉机(如图),采摘效率高,能耗低,绿色环保.经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元.雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工资,雇工每天工作8小时.【问题解决】(1)一个雇工手工采摘棉花,一天能采摘多少公斤?(2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值;(3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇用的人数是张家的2倍.张家雇人手工采摘,王家所雇的人中有的人自带采棉机采摘,的人手工采摘.两家采摘完毕,采摘的天数刚好都是8天,张家付给雇工工钱总额为14400元.王家这次采摘棉花的总重量是多少?【分析】(1)先根据一个人操作采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,求出一个人手工采摘棉花的效率,再乘以工作时间8小时,即可求解;(2)根据一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,列出关于a的方程,解方程即可;(3)设张家雇人x人,则王家雇人2x人,其中机械采摘的有人,手工采摘的有人,由“采摘的天数刚好都是8天,张家付给雇工工钱总额为14400元”列出方程解答.【解答】解:(1)35÷3.5×8=80(公斤);(2)7.5×8×10×a=900解得a=1.5(元);(3)设张家雇人x人,则王家雇人2x人,其中机械采摘的有人,手工采摘的有人,∵张家付给雇工工钱总额为14400元∴8×10×1.5×x×8=14400解得x=15王家这次采摘棉花的总重量是:8×35××8+8×10××8=35200(公斤).【点评】本题考查了一元一次方程及列代数式在实际生产与生活中的应用,抓住关键语句,找出等量关系是解题的关键,本题难度适中.。
第五章 一元一次方程(单元测试)(试卷满分120分,考试用时120分钟)注意事项:本试卷满分100分,考试时间120分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置一、选择题(本大题共16个小题,共38分,1~6小题每题3分,7~16小题每题2分.每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.3x =是下列方程( )的解.A .390x +=B .5124x x -=+C .112x x +=D .112x -=2.下列方程中,一元一次方程的是( )A .1y =B .37x +>C .431x x =-D .34a -3.三个连续偶数的和是3a ,最大的一个偶数是( )A .aB .2a +C .4a +D .2a4.如果3-是3a -的相反数,那么a 的值是( )A .0B .3C .6D .6-5.已知关于x 的方程322x a +-=的解为5x =,则a 的值为( )A .1B .11-C .3-D .13-6.若2x =-是关于x 的方程32x a +=的解,则a 的值为( )A .8-B .10C .8D .127.在()48613a -¸这个式子中,当a 是多少时,这个式子的结果是零( )A .9B .8C .78.已知:2321353a b c ´=´=¸,且a ,b ,c 都不等于0,则a ,b ,c 中最小的数是( )A .aB .bC .cD .无法确定9.某同学出生时父亲26岁,现在父亲的年龄是该同学年龄的3倍,则现在父亲的年龄是( )A .30岁B .36岁C .39岁D .48岁10.“ ”表示一种运算,已知232349=++= ,727815=+= ,3534567=++++ 25=,按此规则,若860n = ,则n 的值为( )A .3B .4C .5D .611.把方程 2113332x x x -++=-去分母正确的是( )A .()()32131x x x +-=-+B .()()182211831x x x +-=-+C .()()18221181x x x +-=-+D .()()3221331x x x +-=-+12.根据如图所示的程序计算,若输入x 的值是1-时,输出的值是5.若输入x 的值是3,则输出值为( )A .13B .0C .1-D .113.小邱同学做这样一道题“计算()6-+■”,其中“■”是被墨水污染看不清的一个数,他翻看了后面的答案,得知该题的答案是15,那么“■”表示的数是( )A .9B .9或21-C .21-D .9-或2114.某工程要求按期完成,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天,后两队合作,则正好按期完工.问该工程的工期是几天?设该工程的工期为x 天.则方程为( )A .41404050x +=+B .41404050x +=´C .41404050x x ++=D .4441404050--++=x x 15.【简单方程】某校图书馆买来文艺书和科技书共1500本,其中买来的文艺书本数比买来的科技书的2倍少36本,买来的科技书有多少本?如果设买来的科技书有x 本,那么下列方程正确的是( )A .2150036x x +=-B .2361500x -=C .21500x x +=D .2361500x x +-=16.如图,用一根质地均匀长30厘米的直尺和一些相同棋子做实验,已知支点到直尺左右两端的距离分别为a ,b ,通过实验可得如下结论:左端棋子数a ´=右端棋子数b ´,直尺就能平衡,现在已知10a =厘米并且左端放了4枚棋子,那么右端需放几枚棋子,直尺才能平衡( )A .8枚B .4枚C .2枚D .1枚二、填空题(本大题共4个小题,共12分;17~18小题各2分,19~20小题各4分,每空2分,答案写在答题卡上)17.若代数式12x -与65的值互为倒数,则x = .18.已知2331m n -=+,则23m n -= .19.某厂会计发现现金多了273.6元,经查账发现原来是一笔支出款的小数点错了一位,则这笔款是 元.20.如图,在一张普通的月历中,任意圈出一竖列上的相邻的三个数,用方程的思想来研究,中间日期数为 时,三个日期数之和为69.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)21.已知关于x 的方程()1213m m x m -+-=+∣∣是一元一次方程,求m 的值.22.检验下列方程后面括号内所列各数是否为相应方程的解:(1)5118x x +=-;3(,3)2-(2)2291341y y y ---=-()()().10,10-() 23.一件衬衫先按成本加价60元标价,再以8折出售,仍可获利24元,这件衬衫的成本是多少元?设这件衬衫的成本为x 元(1)填写表格(用含x 的代数式表示):成本/元标价/元售价/元x(2)根据相等关系列出方程.24.阅读下列材料:让我们来定义一种运算:a b ad bc c d =-,例如:2325341012245=´-´=-=-,再如:24214x x =-.按照这种运算的规定,请解答下列问题.(1)1321=-______(只填最后结果);(2)求x 的值,使0323x x -=(写出解题过程).25.一项工程,由甲、乙两个工程队合作完成.已知甲工程队单独完成需要4天,乙工程队单独完成需要6天.(1)甲、乙合作需要______天完成;(2)若先由乙工程队单独做1天,再由甲、乙两队合作完成.问还需几天可以完成这项工程?1.B【分析】本题主要考查了一元一次方程的解,将3x =分别代入四个选项,能使得方程左边等于右边即为方程的解.【详解】解:把3x =代入,A 、左边33918=´+=,右边0=,因此不是的解,故不符合题意;B 、左边53114´-=,右边24314+´=,因此是的解,故符合题意;C 、左边153122´+=,右边3=,因此不是的解,故不符合题意;D 、左边312-=,右边12=,因此不是的解,故不符合题意;故选:B .2.A【分析】本题考查了一元一次方程的定义,只含有一个未知数、未知数的最高次数为1且两边都为整式的等式叫做一元一次方程.根据一元一次方程的定义逐项判断即可.【详解】解:A .1y =是一元一次方程,符合题意;B . 37x +>不是等式,不是一元一次方程,不符合题意;C . 431x x =-不是整式方程,不是一元一次方程,不符合题意;D .34a -不是等式,不是一元二次方程,不符合题意;故选:A .3.B【分析】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.先设最大的偶数,再根据三个连续的偶数的和是3a ,即可列出相应的方程,然后求解即可.【详解】解:设最大的偶数为x ,则另为两个偶数为2x -,4x -,由题意可得:()()423x x x a -+-+=,解得2x a =+,故选:B .4.C【分析】本题主要考查相反数的概念及性质:如果a 和b 互为相反数.则0a b +=.根据相反数的性质,互为相反数的两个数的和为0,得出330a -+-=,解方程求出a 的值.【详解】解:∵3-是3a -的相反数,∴330a -+-=,∴6a =,故选:C .5.B【分析】本题考查一元一次方程的解、解一元一次方程,将方程的解代入已知方程中求解即可.【详解】解:∵方程322x a +-=的解为5x =,∴3522a ´+-=,解得11a =-,故选:B .6.C【分析】本题考查了一元一次方程的解,解题的关键是理解方程的解,即为能使方程左右两边相等的未知数的值.根据方程解的定义,把2x =-代入方程32x a +=,,即可得到一个关于a 的方程,从而求得a 的值.【详解】解:把2x =-代入方程32x a +=,得()322a ´-+=,则8a =.故选:C .7.B【分析】本题考查了解一元一次方程,正确掌握一元一次方程的解的定义是解题的关键.根据题意列出方程()486130a -¸=,并求解即可.【详解】解:由题意得:()486130a -¸=,解得:8a =,故选:B .8.B【分析】本题考查了有理数乘除的应用,等式的性质,根据等式的性质可知:乘积相等,一个因数越大,另一个因数越小;先把除法化成乘法,比较数字因数的大小,再根据乘积相等,一个因数越大,另一个因数越小判断字母因数的大小即可.【详解】解:2321353a b c ´=´=¸Q ,23111352a b c \´=´=´,213<1<1325Q ,<<b c a \,\a ,b ,c 中最小的数是b ,故选:B .9.C【分析】本题考查一元一次方程的应用,设该同学现在的年龄是a 岁,根据题意列方程求解即可.【详解】解:设该同学现在的年龄是a 岁,根据题意,得326a a =+,解得13a =,33339a =´=,∴现在父亲的年龄是39岁,故选:C .10.B【分析】本题主要考查了数字类规律的探索,解一元一次方程,观察所给三个式子可得“ ”运算表示的是,从“ ”前面的数开始的连续的整数求和,“ ”后面的数表示的是有多少个整数求和,据此可得123456760n n n n n n n n ++++++++++++++=,解方程即可得到答案.【详解】解:232349=++= ,727815=+= ,3534567=++++ 25=,……,以此类推可知,“ ”运算表示的是,从“ ”前面的数开始的连续的整数求和,“ ”后面的数表示的是有多少个整数求和,∵860n = ,∴123456760n n n n n n n n ++++++++++++++=,∴4n =,故选:B .11.B【分析】本题主要考查了解一元一次方程,熟练掌握相关方法是解题关键.根据题意可得将方程两边同时乘以6即可去掉分母,据此进一步计算判断即可.【详解】解:2113332x x x -++=-,去分母,得:()()182211831x x x +-=-+,故选:B .12.B【分析】本题考查代数式求值、一元一次方程的应用,先根据流程图,将1x =-,5y =代入2y x b =-+求得b ,再将3x =代入3x b y -+=求解即可.【详解】解:由题意,∵12-<,∴将1x =-,5y =代入2y x b =-+中,得()521b =-´-+,解得3b =,∵32>,∴3x =代入33x y -+=中,得3303y -+==,故选:B .13.D【分析】本题考查了绝对值的意义,一元一次方程的应用,掌握绝对值的意义是解题的关键.根据绝对值的意义,可得绝对值里面式子等于15±,继而根据有理数的减法进行计算即可求解.【详解】解:∵()5|61|-+=■,∴()615-+=±■,∴()1569=---=-■或()15621=--=■.故选:D .14.D【分析】本题考查了一元一次方程的应用;关系式为:甲4天的工作量+甲乙合作(40)x -天的工作量1=,把相关数值代入即可求解.找到工作量之间的等量关系解决本题的关键.【详解】解:甲4天的工作量为:440;甲乙合作其余天数的工作量为:444050x x --+,\可列方程为:4441404050--++=x x ,故选:D .15.D 【分析】根据题意,文艺书的本数+科技书的本数1500=本,又知买来的文艺书本数比买来的科技书的2倍少36本,设买来的科技书有x 本,则买来文艺书有(236x -)本,据此列方程答.此题属于含有两个未知数的问题,关键是找出等量关系,设其中一个数未知数为x ,另一个未知数用含有字母的式子表示,据此列方程解答.【详解】解:设买来的科技书有x 本,则买来文艺书有()236x -本,则列方程为2361500x x +-=故选D .16.C【分析】本题考查了一元一次方程的应用,根据直尺平衡可得()4103010b ´=-,解方程即可求解.【详解】解:根据题意,得()4103010b ´=-,解得2b =,即右端需放2枚棋子,故选:C .17.83【分析】本题考查了倒数的定义,解一元一次方程,根据互为倒数的两个数的乘积为1进行列式,结合等式的性质进行计算,即可作答.【详解】解:∵代数式12x -与65的值互为倒数,∴16125x -´=,∴66110x -=,∴去分母得6610x -=,∴移项得616x =,∴系数化1,得83x =,故答案为:83.18.4【分析】本题考查了等式的性质,根据等式两边同时加上或者减去同一个数,等式仍成立,据此即可作答.【详解】解:∵2331m n -=+,∴等式两边同时加上3,得234m n =+,∴等式两边同时减去上3n ,得234m n -=,故答案为:4.19.30.4【分析】本题考查一元一次方程的应用,设笔款是x 元,根据现金多了273.6元列方程即可.【详解】解:设笔款是x 元,则现在数量为10x (元),由题意可得,10273.6x x -=,解得30.4x =,答:这笔款是30.4元,故答案为:30.4.20.23【分析】本题主要考查一元一次方程的应用,解题的关键是理解题意;设中间日期为x ,则跟它相邻的两个数分别为7x -和7x +,然后根据题意可列方程进行求解.【详解】解:设中间日期为x ,则跟它相邻的两个数分别为7x -和7x +,由题意得:7769x x x -+++=解得:23x =;故答案为:23.21.2【分析】本题主要考查的是一元一次方程的定义,熟练掌握一元一次方程的定义是解题的关键.根据只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程,列出方程与不等式,求解即可.【详解】解:由题意,得11m -=∣∣,且20m +¹,所以2m =±,且2m ¹-,所以2m =.22.(1)32x =-不是方程的解,3x =是方程的解;(2)10y =-是方程的解;10y =不是方程的解.【分析】(1)根据方程解的定义,把数分别代入方程左、右两边的代数式,能使得左右两边相等的即为方程的解;(2)根据方程解的定义,把数分别代入方程左、右两边的代数式,能使得左右两边相等的即为方程的解;【详解】(1)把32x =-代入原方程;左边35()1132816´-+==-,右边35122=--=-.∵¹左边右边,∴32x =-不是该方程的解.把3x =代入方程,得左边53128´+==,右边312=-=.∵=左边右边,∴3x =是该方程的解;(2)把10y =-代入原方程.左边2(102)9(110)123=---+=-,右边34101123[]=´´--=-(),∵=左边右边,∴10y =-是原方程的解;把10y =代入原方程.左边2(102)9(110)97=---=,右边3(4101)117=´´-=,∵¹左边右边,∴10y =不是原方程的解.【点睛】本题考查方程解的定义,理解方程解的定义是解题的关键.23.(1)标价:60x + 售价:0.848x +(2)0.84824x x +-=【分析】此题考查了一元一次方程的应用,代数式,理解成本价、标价、销售价,以及利润、成本、售价之间的关系是解本题的关键.(1)设这件衬衫的成本是x 元,根据题意:标价=成本价60+,售价=标价0.8´,由此即可解决问题.(2)设这件衬衫的成本是x 元,根据:利润=销售价-成本,即可列出方程.【详解】(1)解:根据题意可得:标价为:60x +,售价为:()0.8600.848x x +=+;(2)根据题意可得:0.84824x x +-=.24.(1)7(2)9x =【分析】此题考查了一元一次方程与有理数的混合运算,解题的关键是理解题意,将所给式子转换为正常运算.(1)首先根据题意可得()21121133´-=´--,则可求得答案;(2)由0323x x -=,根据题意可得一元一次方程:()2330x x --=,解此方程即可求得答案.【详解】(1)解:()11321671321´-´-=+==-;(2)解:Q 0323x x -=, ()2330x x \--=,2390x x \-+=,9x \-=-,解得:9x =.25.(1)125(2)2天【分析】本题考查了一元一次方程的应用,涉及工作总量、工作时间、工作效率等知识内容,正确掌握相关性质内容是解题的关键.(1)设甲乙合作需要x 天完成,因为甲工程队单独完成需要4天,乙工程队单独完成需要6天,则11146x æö+=ç÷èø,解出即可作答.(2)依题意,设还需要y 天,因为乙工程队单独做1天,再由甲、乙两队合作完成,所以1164y y ++=,解出即可作答.【详解】(1)解:设甲乙合作需要x 天完成,依题意:11146x æö+=ç÷èø,解得125x = ,所以需要125天;(2)解:设还需要y 天:依题意,1164y y ++=,解得2y =,故还需要2天.。
一元一次方程单元测试题及答案测试题:1. 解方程:2x + 3 = 72. 解方程:4(x - 5) = 163. 解方程:3(2x - 1) + 2 = 5(x + 3) - 14. 解方程:5x + 3 = 2 - 4x5. 解方程:2(3x + 4) - 5(x - 2) = 146. 解方程:3(2x - 1) = 4(3x + 2) - 17. 解方程:6x - 7 = 5(x - 3)8. 解方程组:2x + 3y = 74x - 2y = 89. 解方程组:3x + y = 4x - 2y = -110. 解方程组:2x + y = 13x - 2y = 4答案及解析:1. 解方程:2x + 3 = 7解:首先,将方程中的常数项移动到等号的右边,得到2x = 7 - 3。
接着,将式子进行计算,得到2x = 4。
最后,将方程两边同时除以2,得到x = 2。
答案:x = 22. 解方程:4(x - 5) = 16解:首先,将括号内的式子进行计算,得到4x - 20 = 16。
接着,将常数项移动到等号的右边,得到4x = 16 + 20。
最后,将方程两边同时除以4,得到x = 9。
答案:x = 93. 解方程:3(2x - 1) + 2 = 5(x + 3) - 1解:首先,将括号内的式子进行计算,得到6x - 3 + 2 = 5x + 15 - 1。
接着,将常数项移动到等号的右边,得到6x - 1 = 5x + 14。
接着,将方程两边同时减去5x,得到x - 1 = 14。
最后,将方程右边的常数项移动到等号左边,得到x = 15。
答案:x = 154. 解方程:5x + 3 = 2 - 4x解:首先,将方程中的常数项移动到等号的右边,得到5x = 2 - 3 + 4x。
接着,将方程两边同时减去4x,得到x = 2 - 3。
最后,将右边的常数项进行计算,并化简方程,得到x = -1。
答案:x = -15. 解方程:2(3x + 4) - 5(x - 2) = 14解:首先,将括号内的式子进行计算,得到6x + 8 - 5x + 10 = 14。
《一元一次方程》单元测试卷
(时间:120分钟 满分:150分)
一、选择题(27分)
1、在方程23=-y x ,021=-+x x ,2
121=x ,0322=--x x 中一元一次方程的个数为( ) A .1个 B .2个 C .3个 D .4个
2、解方程
3
112-=-x x 时,去分母正确的是( ) A .2233-=-x x B .2263-=-x x C .1263-=-x x D .1233-=-x x
3、方程x x -=-22的解是( )
A .1=x
B .1-=x
C .2=x
D .0=x 4、对432=+-x ,下列说法正确的是( )
A .不是方程
B .是方程,其解为1
C .是方程,其解为3
D .是方程,其解为1、3
5、方程17
.0123.01=--+x x 可变形为( ) A.17102031010=--+x x B.17
1203110=--+x x C.1071203110=--+x x D.107
102031010=--+x x 6、x 增加2倍的值比x 扩大5倍少3,列方程得( )
A .352+=x x
B .352-=x x
C .353+=x x
D .353-=x x 7、A 厂库存钢材为100吨,每月用去15吨;B 厂库存钢材82吨,每月用去9吨.若经过x 个月后,两厂库存钢材相等,则x =( )
A .3
B .5
C .2
D .4
8、某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( ).
A .80元
B .85元
C .90元
D .95元
9、某原料供应商对购买其原料的顾客实行如下优惠:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元给九折优惠;(3)一次购买超过3万元,其中3万元九折优惠,超过3万元的部分八折优惠.某厂因库容原因,第一次在供应商购买原料付款7800元,第二次购买付款26100元,如果他是一次购买同样数量的原料,可少付金额为( )元.
A.1460
B.1540
C.1560
D.2000
二、填空题(27分)
10、代数式12+a 与a 21+互为相反数,则=a .
11、如果06312=+--a x 是一元一次方程,那么=a ,方程的解为=x .
12、若4-=x 是方程0862=--x ax 的一个解,则=a .
13、如果)12(3125+m b a 与)3(21
221+-m b a 是同类项,则=m . 14、已知023=+x ,则=-34x .
15、一个数x 的5
1与它的和等于–10的20%,则可列出的方程为 . 16、已知梯形的下底为cm 6,高为cm 5,面积为225cm ,则上底的长等于 .
17、要锻造直径为16厘米、高为5厘米的圆柱形毛坯,设需截取边长为6厘米的的方钢x 厘米,可得方程为 .
18、国家规定个人发表文章、出版图书获得稿费的纳税计算办法是:⑴稿费不高于800元的不纳税;⑵稿费高于800元,又不高于4000元,应缴纳超过800元的那一部分稿费14%的税;⑶稿费高于4000元,应缴纳全部稿费的11%的税.某老师获得了2000元稿费,他应纳税 元.
三、解答题(共55分)
19、解下列方程(15分)
(1)
22)14
1(34=---a a (2)15
1423=+--x x (3)25
.032.04=--+x x 20、(8分)在公式h b a S )(2
1+=中,已知8,18,120===h b S ,求a 的值 21、(8分)不论x 取何值,等式34=--x b ax 永远成立,求ab 2
1的值. 22、(8分)当m 为何值时,关于x 的方程x x m +=+21125的解比关于x 的方程)1()1(x m m x +=+的解大2.
23、(8分)设1511+=x y ,4
122+=x y ,当x 为何值时,1y 、2y 互为相反数? 24、(8分)已知3=x 是方程()241133=⎥⎦⎤⎢⎣⎡-+⎪⎭
⎫ ⎝⎛+x m x 的解,n 满足关系式12=+m n ,求n m +的值. 四.列方程解应用题(共41分)
25、(10分)在甲处劳动的有27人,在乙处劳动的有19人,现在另调20人去支援,使在甲处人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?
26、(10分)一项工作,甲单独做需15天完成,乙单独做需12天完成,这项工作由甲、乙两人合做,并且施工期间乙休息7天,问几天完成?
27、(10分)张老师带领该校七年级“三好学生”去开展夏令营活动,甲旅行社说:“如果老师买全票一张,则学生可享受半价优惠.”乙旅行社说:“包括老师在内按全票价的6折优惠.”若全票价为240元,当学生人数为多少人时,两家旅行社的收费一样多?
28. (11分)小明中考时的准考证号码是由四个数字组成的,这四个数字组成的四位数有如下特征:(1)它的千位数字为1;(2)把千位上的数字1向右移动,使其成为个位数字,那么所得的新数比原数的5倍少49.请
你根据以上特征推出小明的准考证号码.
附:参考答案
一、 选择题
1、A
2、B
3、C
4、D
5、A
6、D
7、A
8、C 9.A
二、 填空题
10、21- 11、1,2 12、-1 13、7 14、325- 15、%20105
1⨯-=+X X 16、4 17、x 36564=⋅π 18、168
三、 解答题
19、(1)a=-8 (2)x=-9 (3)x=-8
20、a=12
21、-6
22、3243-
=m 23、14
25-=x 24、6
11,65--=m 一、 解答题
25、应调往甲处17人,调往乙处3人.
26、9
95天完成. 27、当学生人数为4人,两家旅行社的收费一样.
28. 小名的准考证号码为1990.。