牛顿迭代法的实验报告

  • 格式:doc
  • 大小:29.50 KB
  • 文档页数:3

下载文档原格式

  / 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿迭代法实验报告

1.功能

本程序采用牛顿法,求实系数高次代数方程

f(x)=a0x n+a1x n-1+…+a n-1x+a n=0(a n≠0)(1)

的在初始值x0附近的一个根。

2.使用说明

(1)函数语句

Y=NEWTON_1(A,N,X0,NN,EPS1)

调用M文件newton_1.m。

(2)参数说明

A n+1元素的一维实数组,输入参数,按升幂存放方程系数。

N整变量,输入参数,方程阶数。

X0 实变量,输入参数,初始迭代值。

NN整变量,输入参数,允许的最大迭代次数。

EPS1实变量,输入参数,控制根的精度。

3.方法简介

解非线性议程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。把f(x)在x0点附近展开成泰勒级数

f(x)=f(x0)+(x-x0)fˊ(x0)+(x-x0)2

!2)

(0x

f''

+…

取其线性部分,作为非线性方程f(x)=0的近似方程,则有

f(x0)+fˊ(x0)(x-x0)=0

设fˊ(x0)≠0则其解为

x1=x0-f(x0)/fˊ(x0)

再把f(x)在x1附近展开成泰勒级数,也取其线性部分作f(x)=0的近似方程。若f(x1)≠0,则得

x2=x1-f(x1)/fˊ(x1)

这样,得到牛顿法的一个迭代序列

x n+1=x n-f(x n)/fˊ(x n)

4.newton_1.m程序

function y=newton_1(a,n,x0,nn,eps1)

x(1)=x0;

b=1;

i=1;

while(abs(b)>eps1*x(i))

i=i+1;

x(i)=x(i-1)-n_f(a,n,x(i-1))/n_df(a,n,x(i-1));

b=x(i)-x(i-1);

if(i>nn)error(ˊnn is fullˊ);

return;

end

end

y=x(i);

i

5.程序附注

(1)程序中调用n_f.m和n_df.m文件。n_f.m是待求根的实数代数方程的函数,n_df.m 是方程一阶导数的函数。由使用者自己编写。

(2)牛顿迭代法的收敛速度:如果f(x)在零点附近存在连续的二阶微商,ξ是f(x)的一个重零点,且初始值x0充分接近于ξ,那么牛顿迭代是收敛的,其收敛速度是二阶的,即平方收敛速度。

6.例题

用牛顿法求下面方程的根

f(x)=x3+2x2+10x-20

7.运行结果

>>a=[1,2,10,-20] ;

>>n=3;

>>x0=1;

>>nn=1000;

>>eps1=1e-8;

>>y=newton_1(a,n,x0,nn,eps1)

y=

1.368808107821373e+000

i=

6

程序中调用的n_f.m和n_df.m文件如下:

function y=n_f(a,n,x)

y=0.0;

for i=(n+1)(n+1)

y=y+a(i)*xˆ(n+1-i);

end

function y=n_df(a,n,x)

y=0.0;

for i=1:n

y=y+a(i)*(n+1-i)*xˆ(n-i);

end

参考文献:

张培强. MA TLAB语言---演算纸式的科学工程语言. 合肥:中国科技大学出版社,1995