《机械制图》曲面立体的投影
- 格式:ppt
- 大小:2.07 MB
- 文档页数:16
第3章立体的投影一、本章重点:1.平面立体和曲面立体投影的画法,及立体表面点的投影。
2.立体与平面相交其交线的画法,既求截交线。
3.两回转体轴线垂直相交其交线的画法。
4.立体的尺寸标注。
二、本章难点:1.圆球和圆环的投影及表面上点的投影。
2.圆锥、圆球被平面截切后,截交线的画法。
3.求作相贯线。
三、本章要求:通过本章的学习,要掌握基本体的三面投影画法,基本体表面点的投影,能够分析和绘制常见的截交线和两回转体轴线相交时的相贯线,掌握立体的尺寸标注的方法。
四、本章内容:§3-1 平面立体的投影一、棱柱棱柱体由若干个棱面及顶面和底面组成,它的棱线相互平行。
顶面和底面为正多边形的直棱柱,称为正棱柱。
常见的棱柱有三棱柱、四棱柱、六棱柱等。
1.棱柱的三视图2.棱柱表面上的点二、棱锥棱锥的底面为多边形,各侧面为若干具有公共顶点的三角形。
从棱锥顶点到底面的距离叫做锥高。
当棱锥底面为正多边形,各侧面是全等的等腰三角形时,称为正棱锥。
常见的棱锥有三棱锥、四棱锥、六棱锥。
1. 棱锥的三视图2.棱锥表面上的点§3-2曲面立体的投影曲面立体的表面是由一母线绕定轴旋转而成的,故称曲面立体,也称为回转体。
常见的回转体有圆柱、圆锥、圆球和圆环等。
一、圆柱1.圆柱面的形成圆柱面可看作一条直线AB围绕与它平行的轴线OO回转而成。
OO称为回转轴,直线AB称为母线,母线转至任一位置时称为素线。
这种由一条母线绕轴回转而形成的表面称为回转面,由回转面构成的立体称为回转体。
2.圆柱的三视图3.圆柱表面上的点二、圆锥1.圆锥面的形成圆锥面可看作由一条直母线围绕和它相交的轴线回转而成。
2.圆锥的三视图3.圆锥表面上的点三、圆球1.圆球面的形成圆球面可看作一圆(母线),围绕它的直径回转而成。
2.圆球的三视图3.圆球表面上的点四、圆环1.圆环的形成圆环面可看作由一圆母线,绕一与圆平面共面但不通过圆心的轴线回转而成。
图中的回转轴是铅垂线。
曲面立体表面点的投影(总9页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除《机械制图》课程教案《第三章立体表面交线的投影作图§3-1 立体表面上点的投影》教案授课教师:杨秋颖班级:机加14-1 时间:课题:曲面立体的投影及表面取点教学方法:讲授法教学目的:1、讲解曲面立体的种类及其三视图画法2、讲解在圆柱和圆锥体表面取点、取线的作图方法目的要求:1、能够熟练掌握圆柱和圆锥体的三视图画法2、能够熟练运用利用点所在的面的积聚性法和辅助线法在曲面立体表面取点、取线教学重点:1、曲面立体的种类及其三视图画法。
2、在曲面立体表面取点、取线的作图方法教学难点:在圆柱和圆锥体表面取点、取线的作图方法【教学媒体和资源利用】多媒体课件【教学过程设计】组织教学—引入—新授—小结—学生练习—作业(a )立体图 (b )投影图 图3-4 圆柱的投影及表面上的点 边画图边讲解作图方法与步骤。
总结圆柱的投影特征:当圆柱的轴线垂直某一个投影面时,必有一个投影为圆形,另外两个投影为全等的矩形。
(2)圆柱面上点的投影 方法:利用点所在的面的积聚性法。
(因为圆柱的圆柱面和两底面均至少有一个投影具有积聚性。
)举例:如图3-4(b )所示,已知圆柱面上点M 的正面投影m ′,求作点M 的其余两个投影。
因为圆柱面的投影具有积聚性,圆柱面上点的侧面投影一定重影在圆周上。
又因为m ′ 可见,所以点M 必在前半圆柱面的上边,由m ′ 求得m ″,再由m ′ 和m ″ 求得m 。
第二课时(二)曲面立体的投影及表面取点1、圆锥圆锥表面由圆锥面和底面所围成。
如图3-5(a )所示,圆锥面可看作是一条直母线SA 围绕与它平行的轴线SO 回转而成。
在圆锥面上通过锥顶的任一直线称为圆锥面的素线。
(1)圆锥的投影画圆锥面的投影时,也常使它的轴线垂直于某一投影面。
举例:如图3-5(b )所示圆锥的轴线是铅垂线,底面是水课件展示平面,图3-5(c)是它的投影图。
第二章立体的投影§2—1 liti表面上的点与线立体由其表面所围成,可分为两类:表面都是平面的平面立体和表面是曲面或曲面与平面的曲面立体。
一、平面立体平面立体由若干多边形所围成,因此,绘制平面立体的投影,可归结为绘制它的所有多边形表面的投影,也就是绘制这些多边形的边和顶点的投影。
多边形的边是平面立体的轮廓线,分别是平面立体的每两个多边形表面的交线。
当轮廓线的投影为可见时,画粗实线;不可见时,画虚线;当粗实线与虚线重合时,应画粗实线。
工程上常用的平面立体是棱柱和棱锥(包括棱台)。
图2一l是一个正五棱柱的立体图和投影图。
本书从这里开始,在投影图中都不画投影轴。
只要按照各点的正面投影和水平投影位于铅垂的投影连线上,正面投影与侧面投影位于水平的投影连线上,以及任两点的水平投影和侧面投影保持前后方向的宽度相等和前后对应的三条原则绘图,投影轴是不必画的,在实际应用中通常也不画投影轴。
如图2一la所示,正五棱柱的顶面和底面都是水平面,它们的边分别都是四条水平线和一条侧垂线,棱面是四个铅垂面和一个正平面,棱线是五条铅垂线。
图2一lb是正五棱柱的投影图,请读者自行阅读分析棱线和棱面的投影及其可见性。
在图2一lb中,请特别注意水平投影与侧面投影之间必须符合宽度相等和前后对应的关系。
例如前棱线与后棱面之间的宽度,左、右棱线与后棱面之间的宽度,分别为y和y。
;并且,前棱线和左、右棱线都分别在后棱面之前。
这种水平投影和侧面投影之间的关系,一般可如图2—1b所示,直接量取相等的距离作图;但也可如图2—2所示,用添加45。
辅助线作图。
图2—2是一个正三棱锥的投影图。
从图中可见:底面是水平面;前、后棱面都是一般位置平面;右棱面是正垂面。
从图中还可看出:除了底面的正面投影和侧面投影、右棱面的正面投影有积聚性外,三个棱面的水平投影都可见,底面的水平投影不可见;前棱面的正面投影可见,后棱面的正面投影不可见;前、后棱面的侧面投影可见,右棱面的侧面投影不可见。
第三章基本立体的投影、截交线、相贯线§1立体的投影1.1平面立体的投影本节教学目标:掌握平面立体的投影特性和作图方法;掌握拉伸体的形成、投影及画法;熟悉平面立体表面中特殊位置的点、线的三面投影及画法。
重点:平面立体的投影特性及表面取点、取线的投影。
难点:平面立体表面中特殊位置处点、线的投影。
引入:通过对前面知识的学习已经知道,很多的机械零件都是由一些简单的基本形体组成,比如螺栓,我们可以将它分成正六棱柱、圆柱体和圆锥台三部分。
如果我们要绘制此螺栓的三视图,同学们都应该知道必须要绘制正六棱柱、圆柱体和圆锥台的三视图。
任何一个复杂的物体都可以看成由基本体组成,按组成基本体表面的性质进行分类,基本体可分为平面体和曲面体。
平面立体侧表面的交线称为棱线若平面立体所有棱线互相平行,称为棱柱。
若平面立体所有棱线交于一点,称为棱锥。
1.1.1棱柱的投影1. 以正六棱柱为例,分析平面立体的结构,(1)正六棱柱共有几个表面?有何关系?(2)正六棱柱共有几条侧棱?有何关系?提问:1)不同位置的投影有什么不同?2)应怎样放置最合理?提示:使尽可能多的表面和棱线处于特殊位置。
2.投影特性分析(1)投影分析:上、下两个底面——平行的两个侧面——其余的几个侧面(2)三面投影图分析(3)绘图步骤:1)建立投影面系;2)根据三等原则绘制三面投影;3)区分可见性。
3. 棱柱体的投影特性(重点:学生应掌握)(1)当棱柱的底面平行于某一投影面时,棱柱的投影在该面上为与底面相等的正多边形。
(2)另两面投影为几个相邻的矩形线框。
4. 棱柱表面取点、线重点:所取的点、线属于棱柱的哪个面上?进而再求三面投影。
***若点所在平面的投影可见,点的投影可见;若平面的投影积聚成直线,点的投影也可见。
例:例:已知四棱柱,试完成其V、H投影。
(图7-1)图7-1四棱柱的投影1.1.2棱锥的投影棱锥的投影是棱锥各顶点同面投影连线的集合。
1. 棱锥的定义2. 棱锥的形体分析(1)投影分析:下底面——顶点——其余的几个侧面(2)三面投影图分析(3)绘图步骤:1)建立投影面系;2)根据三等原则绘制三面投影;3)区分可见性。
第2章立体的投影2.1 立体及其表面上的点与线立体由其表面所围成,可分为两类:表面都是平面的平面立体和表面是曲面或曲面与平面的曲面立体。
一、平面立体平面立体由若干多边形所围成,因此,绘制平面立体的投影,可归结为绘制它的所有多边形表面的投影,也就是绘制这些多边形的边和顶点的投影。
多边形的边是平面立体的轮廓线,分别是平面立体的每两个多边形表面的交线。
当轮廓线的投影为可见时,画粗实线;不可见时,画虚线;当粗实线与虚线相重合时,应画粗实线。
常见的平面立体有棱柱和棱锥。
1、棱柱2、棱锥平面立体的投影的外围轮廓总是可见的,应画粗实线;而在投影的外围轮廓内部的图线,则应根据线、面的投影分析,按前遮后、上遮下、左遮右直接判断投影的可见性,决定画粗实线或虚线,必要时还可利用交叉两直线的重影点的可见性进行判断。
二、曲面立体曲面立体由曲面或曲面与平面所围成。
有的曲面立体有轮廓线,即表面之间的交线,如圆柱;有的曲面立体有尖点,如圆锥;有的曲面立体全部由光滑的曲面所围成,如圆球。
在画曲面立体的投影时,除了画出轮廓线和尖点外,还要画出曲面投影的转向轮廓线。
曲面立体的转向轮廓线是切于曲面的诸投射线与投影面的交点的集合,也就是这些投射线所组成的平面或柱面与曲面的切线的投影,常常是曲面的可见投影和不可见投影的分界线。
曲面立体的投影就是它的所有曲面表面或曲面表面与平面表面的投影,也就是曲面立体的轮廓线、尖点的投影和曲面投影的转向轮廓线。
常见的曲面立体有圆柱、圆锥、圆球,圆环。
1、圆柱圆柱由圆柱面、顶面和底面所围成。
圆柱面由直线绕与它平行的轴线旋转而成。
因此,画圆柱的投影就是画顶面和底面及轮廓线、圆柱面投影的转向轮廓线、轴线。
当圆柱的轴线与投影面垂直时,圆柱面在轴线垂直的投影面上的投影具有积聚性。
因此,作圆柱表面2、 圆锥圆锥由圆锥面和底面所围成。
圆锥面由直线绕与它相交的轴线旋转而成。
因此,画圆锥的投影就是画尖点(即锥顶)、底面及轮廓线、圆锥面投影的转向轮廓线、轴线。