初一数学期末考试卷和答案
- 格式:doc
- 大小:469.00 KB
- 文档页数:6
七年级期末考试卷班级:姓名:成绩:一、选择题(每题2分,共28分)1.如果零上5℃记作+5℃,那么零下3℃记作()A .-5℃B .-3℃C .+3℃D .+5℃2.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):城市悉尼纽约时差/时+2-13当北京6月15日23时,悉尼、纽约的时间分别是()A .6月16日1时;6月15日10时B .6月16日1时;6月14日10时C .6月15日21时;6月15日10时D .6月15日21时;6月16日12时3.人工智能AlphaGo 因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了20000000局的训练(等同于一个人近千年的训练量).数字20000000用科学记数法表示为()A .70.210´B .7210´C .80.210´D .8210´4.关于多项式23230.3271x y x y xy --+,下列说法错误的是()A .这个多项式是五次四项式B .四次项的系数是7C .常数项是1D .按y 降幂排列为3322720.31xy x y x y --++5.如图,则下列判断正确()A .a+b >0B .a <-1C .a-b >0D .ab >06.设x 、y 、m 都是有理数,下列说法一定正确的是()A .若x =y ,则x +m =y -mB .若x =y ,则xm =ymC .若x =y ,则x ym m=D .若x ym m=,则x =-y 7.化简2a 2-a 2的结果是()A .2a 4B .3a 4C .a 2D .4a28.下列方程的解法中,错误的个数是()①方程211x x -=+移项,得30x =②方程2(1)3(2)5x x ---=去括号得,22635x x --+=③方程21142x x ---=去分母,得422(1)x x --=-④方程32x =-系数化为1得,32x =-A .1B .2C .3D .49.如图所示的图形经过折叠可以得到一个正方体,则与“我”字一面相对的面上的字是()A .爱B .庆C .学D .中10.如果35x =是关于x 的方程50x m -=的解,那么m 的值为()A .3B .13C .3-D .13-11.已知3,2a b c d -=+=,则()()a c b d +--的值是()A .-1B .1C .-5D .512.已知数列1b ,2b ,3b ,···满足121n n nb b b +++=,其中1n ³,若12b =且25b =,则2019b 的值为()A .2B .5C .45D .3513.对于两个不相等的有理数a b 、,我们规定Max {a b 、}表示a b 、中的较大值,如:Max {2、4}=4,按照这个规定,方程Max {x x -、}=3x +2的解为()A .1-B .12-C .-1或-12D .1或1214.如图,数轴上O 、A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点1A 处,第2次从1A 点跳动到1A O 的中点2A 处,第3次从2A 点跳动到2A O 的中点3A 处,按照这样的规律继续跳动到点456,,,...,n A A A A (3n ³,n 是整数)处,问经过这样2020次跳动后的点与O 点的距离是()A .201812B .201912C .202012D .202112二、填空题(每个小题3分,共12分,)15.甲、乙、丙三地的海拔高度分别为20,10m m -和5m -,那么最高的地方比最低的地方高__________m16.如图是一个计算程序,若输入a 的值为-1,则输出的结果应为____.17.甲、乙两站相距480公里,一列慢车从甲站开往乙站,每小时行80公里,一列快车从乙站开往甲站,每小时行120公里.慢车从甲站开出1小时后,快车从乙站开出,那么快车开出__________小时后快车与慢车相距200公里.18.已知∠AOB =45°,∠BOC =30°,则∠AOC =.三、解答题(19-21每题6分,22-25每题8分,26题10分,满分60分)(1)()()()12838--++--+(2)()157362912æö-+´-ç÷èø(3)()322524-´--¸20.解下列方程:(1)532(5)x x +=-(2)2523136x x -+=-21.有三个有理数x ,y ,z ,若x =()211n --,且x 与y 互为相反数,y 是z 的倒数.(1)当n 为奇数时,求出x ,y ,z 这三个数.(2)根据(1)的结果计算:xy ﹣y n ﹣(y ﹣z)2019的值.22.已知如图,数轴上有A ,B ,C ,D 四个点,点A 对应的数为-1,且AB=a+b ,BC=2a-b ,BD=3a+2b(1)求点B ,C ,D 所对应的数(用含a 和b 的代数式表示);(2)若a=3,C 为AD 的中点,求b 的值,并确定点B ,C ,D 对应的数.23.对,a b 定义一种新运算T :规定2(,)2T a b ab ab a =-+,(其中,a b 均为有理数),这里等式右边是通常的四则运算.如:2(1,3)1321314T =´-´´+=;(1)求(2,3)T -的值;(2)计算1,32a T +æöç÷èø;(3)若(2,)m T x =,(,3)n T x =-(其中x 为有理数),比较m 与n 的大小.24.如图,OD 是∠AOB 的平分线,OE 是∠BOC 的平分线.(1)若∠BOC =50°,∠BOA =80°,求∠DOE 的度数;(2)若∠AOC =150°,求∠DOE 的度数;(3)你发现∠DOE 与∠AOC 有什么等量关系?给出结论并说明.25.某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x 条(20x >).(1)若该客户按方案一购买,需付款______元.(用含x 的代数式表示)若该客户按方案二购买,需付款______元.(用含x 的代数式表示)(2)若40x =,通过计算说明此时按哪种方案购买较为合算?(3)当40x =时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.26.如图,已知A 、B 、C 是数轴上三点,点C 表示的数为3,2BC =,6AB =.(1)数轴上点A 表示的数为______,点B 表示的数为______.(2)动点P 、Q 分别从A 、C 同时出发,点P 以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒1个单位长度的速度沿数轴向右匀速运动,t 何值时,P 、Q 两点到B 点的距离相等.(3)动点P 、Q 分别从A 、C 同时出发,点P 以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒1个单位长度的速度沿数轴向左匀速运动,M 为AP 的中点,点N 在线段CQ 上,且23CN CQ =,设运动时间为t ()0t >秒.①求数轴上M 、N 表示的数(用含t 的式子表示);②在运动过程中,点P 到点B 的距离、点Q 到点B 的距离以及点P 到点Q 的距离,是否存在两段相等,若存在,求出此时t 的值;若不存在,请说明理由.答案:一、选择题1、B 2、A 3、B 4、B 5、A 6、B 7、C 8、C 9、C 10、A 11、D 12、C 13、B 14、A 二、填空题15、3016、-517、1或318、15或75度三、解答题19、(1)1(2)8(3)8--++--1283=++--8=0(2)()157362912æö-+´-ç÷èø157(36)(36)(36)2912=´--´-+´-=-18+20-21=-19(3)2325(2)4-´--¸20(2)=---=-1820、解:(1)()5325x x +=-53102x x +=-,55=x ,1x =;(2)2523136x x -+=-()()225623x x -=-+,613x =,136x =.21、解:()1当n 为奇数时,1,1,1x y z =-==,()2当1,1,1x y z =-==时,原式–1102=--=-.22、(1)因为A 对应数-1,且AB=a+b所以点B 对应数轴上点的数值是1()1a b a b -++=+-又2,(2)3BC a b AC a b a b a =-=++-= 所以点C 对应的数值是13a -+;32,(32)43BD a b AD a b a b a b=+=+++=+ 所以点D 对应的数值是143a b -++;(2)因为点C 为AD 的中点所以AC=CD ,33a a b=+23b a =因为a=3,所以b=2所以B 对应数轴上的数值是:3+2-1=4;点C 对应数轴上的点的数值是:1338-+´=;点D 对应数轴上的数值是:1433217-+´+´=.23、(1)T(-2,3)()()2232232=-´-´-´+-181228=-+-=-;(2)2111133232222a a a a T ++++æö=´-´´+ç÷èø,9(1)3(1)1222a a a +++=-+7(1)2a +=;(3)2(2)2222m T x x x ==-´+,2242x x =-+,2(3)32()3n T x x x x=-=-×--×-,96x x x =-+-4x =-,所以2220m n x =+>﹣.所以m n >.24、(1)∵OD 是∠AOB 的平分线,OE 是∠BOC 的平分线,∴∠AOD=∠BOD=12∠BOC ,∠BOE=∠COE=12∠BOA ,∵∠BOC=50°,∠BOA=80°,∴∠BOD=25°,∠BOE=40°,∴∠DOE=25°+40°=65°;(2)∵OD 是∠AOB 的平分线,OE 是∠BOC 的平分线,∴∠AOD=∠BOD=12∠BOC ,∠BOE=∠COE=12∠BOC ,∵∠AOC=150°,∴∠DOE=∠DOB+∠EOB=12(∠BOC+∠BOA)=12∠AOC=75°;(3)∠DOE=12∠AOC ;理由是:∵OD 是∠AOB 的平分线,OE 是∠BOC 的平分线,∴∠AOD=∠BOD=12∠BOA ,∠BOE=∠COE=12∠BOC ,∴∠DOE=∠DOB+∠EOB=12(∠BOC+∠BOA)=12∠AOC .25、(1)按方案一购买:201000200(20)20016000x x ´+´-=+,按方案二购买:(100020200)0.918018000x x ´+´=+;(2)当40x =时,方案一:200401600024000´+=(元)方案二:180401800025200´+=(元)所以,按方案一购买较合算.(3)先按方案一购买20套西装获赠送20条领带,再按方案二购买20条领带.则200002002090%23600+´´=(元)26、(1) 点C 表示的数为3,2BC =,6AB =,且A ,B ,C 位置如数轴上所示,\点B 表示的数为321-=点A 表示的数为165-=-.故答案为:5-,1.(2)点P 表示的数为52t -+,点Q 表示的数为3+t ,则|521||26|PB t t =-+-=-,312QB t t =+-=+,|26|2t t \-=+,当03t ££时,622t t -=+,43t =,当3t >时,262t t -=+,8t =,综上,43t =或8.故答案为:43t =或8.(3)①Q 表示的数为3t -,M表示的数为5(52)52t t -+-+=-+,N Q 在线段CQ 上,2233CN CQ t ==,N \表示的数为233t -;故答案为:M 表示的数为5t -+,N 表示的数为233t -.②|26|PB t =-,|52(3)||38|PQ t t t =-+--=-,|31||2|QB t t =--=-;(1)若PB PQ =,则|26||38|t t -=-,2638t t -=-或26380t t -+-=,则2t =或145t =;(2)若PB QB =,则|26||2|t t -=-,262t t -=-或2620t t -+-=,则83t =或4t =;(3)若PQ QB =,则|38||2|t t -=-,382t t -=-或3820t t -+-=,52t =或3t =;综上,存在,且2t =或3或4或52或85或145.。
βα石景山区2023-2024学年第一学期初一期末试卷数 学学校 姓名 准考证号一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个. 1.12-的相反数是(A )12(B )12-(C )2(D )2-2.以河岸边步行道的平面为基准,河面高 1.8m -,河岸上地面高5m ,则地面比河面高(A )3.2m(B ) 3.2m -(C )6.8m(D ) 6.8m -3.依据第三方平台统计数据,2022年12月至2023年5月,石景山区共有350人享受养 老助餐服务(其中基本养老服务对象90人,其他老年人260人),累计服务10 534人次. 其中,数字10 534用科学记数法可表示为 (A )310.53410⨯ (B )41.053410⨯ (C )31.053410⨯(D )50.1053410⨯4. 如图,从左面看图中四个几何体,得到的图形是四边形的几何体的个数是(A )1 (B )2(C )3(D )45. 将三角尺与直尺按如图所示摆放,若α∠的度数比β∠的度数的三倍多10︒,则α∠的度数是 (A )20︒ (B )40︒ (C )50︒(D )70︒考生须知1.本试卷共4页,共三道大题,28道小题,满分100分。
考试时间100分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,选择题、作图题请用2B 铅笔作答,其他试题请用黑色字迹签字笔作答,在试卷上作答无效。
4.考试结束,请将本试卷和答题卡一并交回。
-3b a -2-12106. 下列运算正确的是(A )325+=a b ab (B )2222-=c c(C )2()2--=-+a b a b(D )22243-=-x y yx x y7.已知:如图O 是直线AB 上一点,OD 和OE 分别平分AOC ∠和BOC ∠,50BOC ∠=︒,则AOD ∠的度数是(A )50︒ (B )60︒ (C )65︒(D )70︒8. 有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是 (A )0ab >(B )<-a b(C )20+>a(D )20->a b二、填空题(本题共16分,每小题2分)9.对单项式“0.5a ”可以解释为:一块橡皮0.5元,买了a 块,共消费0.5a 元.请你再对 “0.5a ”赋予一个实际意义________________________________________________. 10. 如图是一数值转换机的示意图,若输入1=-x ,则输出的结果是 .÷3平方-2结果输入x11. 若233m x y -与253mx y --是同类项,则m 的值为 .12. 若2=x 是关于x 的一元一次方程25-=x m 的解,则m 的值为 . 13. 如图,要在河边修建一个水泵站,分别向A 村和B 村送水,修在 (请在,,D E F中选择)处可使所用管道最短,理由是 .河岸FE D 村庄B村庄A第13题图 第14题图14.如图,正方形广场边长为a 米,广场的四个角都设计了一块半径为r 米的四分之一圆形花坛,请用代数式表示图中广场空地面积 平方米.(用含a 和r 的字母表示)15.规定一种新运算:1⊕=+-+a b a b ab ,例如:23232310⊕=+-⨯+=, (1)请计算:2(1)⊕-___________.(2)若32x -⊕=,则x 的值为 .16.a 是不为1的有理数,我们把11a -称为a 的差倒数,如2的差倒数是1112=--,-1的差倒数是111(1)2=--.已知113α=-,2α是1α的差倒数,3α是2α的差倒数,4α是3a 的差倒数,……,以此类推,则2023a =___________.l三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程. 17.计算:312-+-. 18.计算:11124(834-⨯-+19.计算:3122(7)2-+⨯-÷. 20.本学期学习了一元一次方程的解法,下面是小亮同学的解题过程:上述小亮的解题过程中(1)第②步的依据是_________________________________;(2)第_____(填序号)步开始出现错误,请写出这一步正确的式子__________. 21.解方程:52318x x +=-. 22.解方程:211123x x +--=. 23.先化简,再求值:22(28)(14)x x x ----,其中2x =-.24.如图,已知直线l 和直线外两点,A B ,按下列要求作图并回答问题: (1)画射线AB ,交直线l 于点C ; (2)画直线AD l ⊥,垂足为D ;(3)在直线AD 上画出点E ,使DE AD =; (4)连接CE ; (5)通过画图、测量:点A 到直线l 的距离d ≈ cm (精确到0.1);图中有相等的线段(除DE AD =以外)或相等的角,写出你的发现: .25.列方程解应用题:某公司计划为员工购买一批运动服,已知A 款运动服每套180元,B 款运动服每套210元,公司购买了这两种运动服共计50套,合计花费9600元,求公司购买两种款式运动服各多少套?26.已知:线段=10AB ,C 为线段AB 上的点,点D 是BC 的中点. (1)如图,若=4AC ,求CD 的长. 根据题意,补全解题过程:∵10,4AB AC CB ===,AB - , ∴CB = . ∵点D 是BC 的中点,∴CD = =CB .(理由: ) (2)若=3AC CD ,求AC 的长.27. 已知:OA OB ⊥,射线OC 是平面上绕点O 旋转的一条动射线,OD 平分BOC ∠. (1)如图,若40BOC =︒∠,求AOD ∠.(2)若=(0180)BOC αα︒<<︒∠,直接写出AOD ∠的度数.(用含α的式子表示)28. 对于点M ,N ,给出如下定义:在直线MN 上,若存在点P ,使得MP =kNP (k >0),则称点P 是“点M 到点N 的k 倍分点”.例如:如图,点Q 1,Q 2,Q 3在同一条直线上,Q 1Q 2=3,Q 2Q 3=6,则点Q 1是点Q 2到点Q 3的13倍分点,点Q 1是点Q 3到点Q 2的3倍分点.已知:在数轴上,点A ,B ,C 分别表示﹣4,﹣2,2.(1)点B 是点A 到点C 的 倍分点,点C 是点B 到点A 的 倍分点; (2)点B 到点C 的3倍分点表示的数是 ;(3)点D 表示的数是x ,线段BC 上存在点A 到点D 的4倍分点,写出x 的取值范围.石景山区2023-2024学年第一学期初一期末数学试卷答案及评分参考阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.2.若考生的解法与给出的解法不同,正确者可参照评分参考相应给分. 3.评分参考中所注分数,表示考生正确做到此步应得的累加分数. 一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.答案不唯一,正确即可 10.3 11.212.1- 13.E ;两点之间线段最短 14. 22()a r π-15.(1)4;(2)1 16.13-三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.解:原式312=-+ ………………………… 2分 9=. ………………………… 5分 18.解:原式386=-+- ………………………… 3分 1=-. ………………………… 5分 19.解:原式82(7)2=-+⨯-⨯ ………………………… 2分 828=-- ………………………… 4分 36=-. ………………………… 5分 20.(1)等式基本性质2; ………………………… 2分 (2)③; ………………………… 3分 609502015x x ---=. ………………………… 5分 21.解:移项,得53182x x -=--. ………………………… 2分 合并同类项,得 220x =-. ………………………… 4分 系数化为1,得10x =-. ………………………… 5分 ∴10x =-是原方程的解.22.解:去分母,得 3(21)2(1)6x x +--=. ………………………… 2分去括号,得 63226x x +-+=. ………………………… 3分 移项,合并同类项,得 41x =. ………………………… 4分 系数化为1,得14x =. ………………………… 5分 ∴14x =是原方程的解. 23.解:原式2241614x x x =---+2217x =-. …………………………4分 当2x =-时,原式22(2)17=⨯--.9=-. …………………………6分24.解:(1)(2)(3)(4)画图并标出字母如右图所示; ……………… 3分(5)d ≈ cm (精确到0.1);(以答题卡上实际距离为准)……… 4分 CA CE =,ACD ECD ∠=∠,CAD CED ∠=∠. ……………… 6分25.解:设公司购买A 款式运动服x 套,则购买B 款式运动服(50x -)套. …… 1分 根据题意可得,180210(50)9600x x +-=. ………………………… 3分 解得:30x =. 则5020x -=. ………………………… 5分 答:公司购买A 款式运动服30套,购买B 款式运动服20套. ……………… 6分 26.解:(1)补全解题过程如下:∵10,4AB AC CB ===,AB - AC ,……………………… 1分 ∴CB = 6 . ……………………… 2分 ∵点D 是BC 的中点, ∴CD =12=CB 3 .(理由:线段中点的定义).…………4分 (2)∵点D 是BC 的中点,∴CD BD =(线段中点的定义). ∵=3AC CD ,∴设CD BD x ==,=3AC x . ……………………… 5分∴10AB AC CD BD =++=. 即:310x x x ++=. 解得,2x =.∴=6AC . …………………………6分 27. 解:(1)∵OA OB ⊥,∴90AOB ∠=︒(垂直定义). …………………………2分∵OD 平分BOC ∠,∴12BOD BOC ∠=∠(角平分线定义). …………………………4分 ∵40BOC ∠=︒, ∴20BOD ∠=︒.∵AOD AOB BOD ∠=∠-∠,∴70AOD ∠=︒. …………………………5分(2)9090+22αα︒-︒或. …………………………7分28. 解:(1)12,23; …………………………2分 (2)1或4; …………………………4分 (3)5722x -≤≤. …………………………7分。
2023—2024学年度第一学期期末检测试题七年级数学试卷本试卷共8页,满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共38分)一、选择题(本大题共16个小题,1-6每小题3分,7-16每小题2分,共38分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1. 某品牌酸奶外包装上标明“净含量:”;随机抽取四种口味的这种酸奶分别称重如下表.其中,净含量不合格的是()种类原味草莓味香草味巧克力味净含量/ml295300310305A. 原味B. 草莓味C. 香草味D. 巧克力味2. 下列等式错误的是()A. B. C. D.3. 如图,数轴上点P表示的有理数可能是()A. 1.6B. -1.4C. -1.6D. -2.44. 如图,C、D是线段AB的三等分点,若,则线段CB的长度为()A. 3B. 6C. 9D. 125. 方程去分母后,得()A. B.C. D.6. 一副三角板按如图所示的方式摆放,则余角的度数为()A. B. C. D.7. 如果式子的值为10,则的值为()A. 20B. 22C. 26D. 368. 有理数a,b对应的点在数轴上的位置如图,则下列结论正确的是()A. B. C. D.9. 如图所示,直线MN表示一条铁路,铁路两旁各有一点A和B,表示两个工厂.要在铁路上建一货站P,使它到两厂距离之和最短,这个货站P应建在AB与MN的交点处,这种做法用几何知识解释应是()A. 两点之间,线段最短B. 射线只有一个端点C. 两直线相交只有一个交点D. 两点确定一条直线10. 已知直线上A、B两点相距12cm,点C是线段AB的中点,点D与点B相距8cm,则CD的长度是()A. 2cmB. 8cmC. 14cmD. 14cm或2cm11. 如图,将绕点A顺时针旋转一定的角度得到,此时点恰在边AC上,若,,则的长为()A. 2B. 3C. 4D. 512. 元旦到了,初一某班用彩色小灯布置教室,按“一蓝,二红,四黄,三绿”的规律连接起来,那么第100个小灯是()色的A. 红B. 黄C. 蓝D. 绿13. 已知,,,则相等的两个角是()A. B. C. D. 无法确定14. 某学校在元旦联欢会活动中,设座位有x排,若每排坐25人,则有8人无座位;若每排坐29人,则空24个座位,则下列方程正确的是()A. B. C. D.15. 如图,将刻度尺倒放在数轴上,刻度尺上6cm和0cm分别对应数轴上的数-2和3,那么刻度尺上9cm对应数轴上的数为()A. -5B. -5.4C. -4.5D. -3.616. 如图,填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A. 110B. 168C. 212D. 222卷Ⅱ(非选择题,共82分)二、填空题(本大题共3个小题,5个空,每空2分,共10分.把答案写在题中横线上)17. ______.18. 王阿姨买了5盒冰激凌,付了a元,找回b元,5盒冰激凌的总价是______元,冰激凌的单价是______元.19. 如图,点A在数轴上对应的数为a,点B对应的数为b,点A与点B之间的距离记作AB.已知,b比a大12.则:(1)AB的值是______;(2)若点M以每秒1个单位的速度从点A出发沿数轴向右运动,同时点N以每秒2个单位的速度从点B 出发沿数轴向左运动.设运动时间是t秒.当点M与点N之间的距离是9时,则t的最大值为______.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20. 计算:(每小题4分,计8分)(1)(2)解方程:21. 解方程(共10分)学校图书馆以每天借出50册图书为标准.超出部分用正数表示,不足部分用负数表示.上星期图书馆借出图书记录如下:星期一星期二星期三星期四星期五0+8+6-3-7(1)星期五借出______册图书;(2)星期二比星期四多借出______册图书;(3)这五天共借出多少册图书?22.(本小题10分)如图,O是直线AB上一点,OD平分,.若,(1)求的度数;(2)求的度数.23. 应用题(本小题10分)已知,.(1)当,时,求;(2)比较A与B的大小;(3)求.24.(本小题10分)如图所示是一个长方形.(1)根据图中尺寸大小,用含x的代数式表示阴影部分的面积S;(2)若,求S的值.25.(本小题12分)“曹冲称象”是流传很广的故事,如图.按照他的方法:先将象牵到大船上,并在船侧面标记水位,再将象牵出,然后往船上抬入20块等重的条形石,并在船上留3个搬运工,这时水位恰好到达标记位置,如果再抬入1块同样的条形石,船上只留1个搬运工,水位也恰好到达标记位置.已知搬运工体重均为130斤,求大象的体重.请将下列解答过程补充完整:孙权曾致巨象,太祖欲知其斤重,访之群下,咸莫能出其理,冲曰:“置象大船之上,而刻其水痕所至,称物以载之,则校可知矣.”——《三国志》解:由题意得等量关系:20块等重的条形石的重量+3个搬运工的体重和=21块等重的条形石的重量+1个搬运工的体重,所以:①已知搬运工体重均为130斤,设每块条形石的重量是x斤,则可列方程为:______.②解这个方程得,______.③实际上由题也可直接得到:一块条形石的重量=______个搬运工的体重.④最终可求得:大象的体重为______斤.26.(本小题12分)如图1,O为直线AB上一点,过点O作射线OC,,将一直角三角板()的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.图1 图2 图3(1)将图1中的三角板绕点O以每秒的速度沿顺时针方向旋转一周.如图2,经过t秒后,OM恰好平分.①求t的值;②此时ON是否平分?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分?请说明理由.七年级数学试卷答案卷Ⅰ(选择题,共38分)一、选择题(本大题共16个小题,1-6每小题3分,7-16每小题2分,共38分.在每个小题给出的四个选项中,只有一项是符合题目要求的)CDCBCD BCADB DBDCC卷Ⅱ(非选择题,共82分)17. -8 18. ,19. 12;720. 解:(1)原式(2)(每小题4分,按步骤适当给分)21. 解:(1)43 (2)11(每空3分,共6分)(3)(册),即这五天共借出254册图书.……本小问题4分22.(1)解:∵O是直线AB上一点,∴,∵,∵,∴;……5分(2)解:∵,∴,∵OD平分,∴,∵,,∴.……10分23. 解:(1).……3分(2),所以.……7分(3)……10分24. 解:(1)由图形可知:.……5分(2)将代入上式,.……10分25. ①……3分②260……6分③2……9分④5590……12分26. 解:(1)①∵,,∵,∴,∴,∴,∴,解得:秒;……4分②是,理由如下:∵,,∴ON平分;……8分(2)5秒或115秒时,OC平分角MON,理由如下:当OC运动时,∵,,∵,∴,∵三角板绕点O以每秒的速度,射线OC也绕O点以每秒的速度旋转,设为3t,为,∵,可得:,解得:秒;……10分OC停止运动,OM运动时,此时,OC也平分,(秒).……12分。
七年级下学期期末考试数学试卷(带答案)一、选择题(本题共10个小题,每小题3分,共30分)1.下列四个图形中,不是轴对称图形的为()A. B.C. D.2.在球的体积公式V=πR3中,下列说法正确的是()A.V、π、R是变量,为常量B.V、π是变量,R为常量C.V、R是变量,、π为常量D.以上都不对3.下列事件中是不可能事件的是()A.从一副扑克牌中任抽一张牌恰好是“红桃”B.在装有白球和黑球的袋中摸球,摸出了红球C.2022年大年初一早晨艳阳高照D.从两个班级中任选三名学生,至少有两名学生来自同一个班级4.新型冠状病毒(2019﹣nCoV)是目前已知的第7种可以感染人的冠状病毒,经研究发现,它的单细胞的平均直径约为0.000000203米,该数据用科学记数法表示为()A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.0.203×10﹣65.已知a,b,c分别为三角形的三边长,则化简|a﹣b﹣c|+|b﹣c﹣a|+|c﹣a+b|的结果为()A.a+b+c B.﹣a+b﹣3c C.a+2b﹣c D.﹣a+b+3c6.等腰三角形的两边长分别为4和8,则这个等腰三角形的周长是()A.20或16 B.20C.16 D.以上答案均不对7.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,E是边AB上一点,若CD=6,则DE的长可以是()A.1 B.3 C.5 D.78.如图,下列条件中,不能判断直线a∥b的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°9.已知∠1=∠2,AC=AD,要使△ABC≌△AED,还需添加一个条件,那么在以下条件中不能选择的是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E10.已知(x﹣2019)2+(x﹣2021)2=34,则(x﹣2020)2的值是()A.4 B.8 C.12 D.16二、填空题(本题共6小题,每小题3分,共18分.)11. 2-的相反数是_____.12. 如图,将三角形ABC沿直线BC平移得到三角形DEF,其中点A与点D是对应点,点B与点E是对应点,点BC=,EC=2,那么线段CF的长是_______.C与点F是对应点.如果513. 已知点P (2a −2,a +5),点Q (4,5),且直线PQ ∥y 轴,则点P 的坐标为________.14. 如图a ∥b,∠1+∠2=75°,则∠3+∠4=______________.15. 方程组{4x +3y =1,mx +(m −1)y =3的解x 和y 的值相等,则m =___.16. 已知实数x 满足{5(x +1)≥3x −112x −1≤7−32x ,若S =|x ﹣1|+|x+1|的最大值为m ,最小值为n ,则mn =_____.三、解答题(本题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(6分)计算:||﹣+﹣(﹣1)2019.18.(6分)解方程组:.19.(6分)解不等式组.20.(8分)如图,在平面直角坐标系中,有三点A (1,0),B (3,0),C (4,﹣2).(1)画出三角形ABC ;(2)将三角形ABC 先向左平移4个单位长度,再向上平移3个单位长度,画出平移后的三角形DEF ,并写出D、E、F三点的坐标;(3)求三角形ABC的面积.21.(8分)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了不完整的统计图表.身高分组频数频率152≤x<155 3 0.06155≤x<158 7 0.14158≤x<161 m0.28161≤x<164 13 n164≤x<167 9 0.18167≤x<170 3 0.06170≤x<173 1 0.02根据以上统计图表完成下列问题:(1)统计表中m=,n=;并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在什么范围内?22.(8分)实验室需要一批无盖的长方体模型,一张大纸板可以做成长方体的侧面30个,或长方体的底面25个,一个无盖的长方体由4个侧面和一个底面构成.现有26张大纸板,则用多少张做侧面,多少张做底面才可以使得刚好配套,没有剩余?23.(10分)已知,如图,∠CDG=∠B,AD⊥BC于点D,∠1=∠2,EF分别交AB、BC于点E、F,试判断EF与BC的位置关系,并说明理由.24.(10分)某业主贷款18920元购进一台机器,生产某种产品.已知产品的成本是每个5元,售价是每个8元,应付的税款和其他费用是售价的10%.若每个月能生产、销售2000个产品.(1)问每个月所获得利润为多少元?(2)问至少几个月后能赚回这台机器的贷款?25.(10分)已知数轴上三点A、O、B表示的数分别为4、0、﹣2,动点P从A点出发,以每秒3个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是.(2)另一动点R从点B出发,以每秒2个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多长时间追上点R?(3)若点M为AP的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.参考答案一、选择题1.选:C.2.选:C.3.选:B.4.选:B.5.选:D.6.选:B.7.选:D.8.选:B.9.选:B.10.选:D.二、填空题11、【答案】√5-212、【答案】313、【答案】(4,8)14、【答案】105°15、【答案】1116、【答案】16三、解答题17.【解答】解:原式=﹣1﹣2+2+1=.18.【解答】解:方程组整理得:,①+②得:﹣6y=6,解得:y=﹣1,把y=﹣1代入②得:x﹣2=1,解得:x=3,则方程组的解为.19.【解答】解:∵由①得:x≤3,由②得:x>﹣4,∴不等式组的解集为﹣4<x≤3.20.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,△DEF即为所求;其中D(﹣3,3),E(﹣1,3),F(0,1);(3)三角形ABC的面积=×2×2=2.21.【解答】解:(1)测量的总人数是:3÷0.06=50(人),则m=50×0.28=14,n==0.26.补全频数分布直方图:故答案为14,0.26.(2)观察表格可知中位数在 161≤x<164范围内.22.【解答】解:设用x张做侧面,y张做底面才可以使得刚好配套,没有剩余,根据题意得:,解得:.答:用20张做侧面,6张做底面才可以使得刚好配套,没有剩余.23.【解答】解:EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=∠2(已知),∴∠2=∠DAB(等量代换),∴EF∥AD(同位角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,∴EF与BC的位置关系是垂直(垂直的定义).24.【解答】解:(1)每个月总收入为:2000×8=16000(元),则应付的税款和其他费用为:16000×10%=1600(元),利润=16000﹣2000×5﹣1600=4400(元),答:每个月所获得利润为4400元;(2)设需要x个月后能赚回这台机器贷款,依题意,得:4400x≥18920,解得:x≥43.答:至少43个月后能赚回这台机器贷款.25.【解答】解:(1)∵A,B表示的数分别为4,﹣2,∴AB=6,∵PA=PB,∴点P表示的数是1,故答案为:1;(2)设P点运动x秒追上R点,由题意得:2x+6=3x 解得:x=6答:P点运动6秒追上R点.(3)MN的长度不变.①当P点在线段AB上时,如图示:∵M为PA的中点,N为PB的中点∴又∵MN=MP+NP∴∵AP+BP=AB,AB=6∴②当P点在线段AB的延长线上时,如图示:∵MN=MP﹣NP,AB=AP﹣BP=6∴=.。
数学初一期末考试卷答案一、选择题(每题2分,共10分)1. 下列哪一项是正数?A. -3B. 0C. 5D. -1答案:C2. 如果a + b = 7,a - b = 3,那么a和b的值分别是多少?A. a=5, b=2B. a=4, b=3C. a=3, b=4D. a=2, b=5答案:A3. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/12答案:C4. 一个圆的半径是5厘米,那么它的周长是多少?A. 10πB. 15πC. 20πD. 25π答案:C5. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 2答案:A二、填空题(每题2分,共10分)6. 一个数的绝对值是它本身,当且仅当这个数____。
答案:非负7. 一个数的相反数是它本身,这个数只能是__。
答案:08. 一个数的立方根是3,这个数是__。
答案:279. 一个数的平方是25,这个数可以是__。
答案:±510. 一个数的倒数是1/4,这个数是__。
答案:4三、计算题(每题5分,共15分)11. 计算下列表达式的值:(1) (-2) × 3 + 4 × (-1) = -6 - 4 = -10(2) 8 ÷ (-2) - 3 × (-1) = -4 + 3 = -112. 解下列方程:(1) 3x - 7 = 8,3x = 15,x = 5(2) 2y + 5 = 3y - 2,y = 713. 化简下列代数式:(1) 4a - 3b + 2a - b = (4 + 2)a - (3 + 1)b = 6a - 4b(2) (x + 2)(x - 3) = x^2 - 3x + 2x - 6 = x^2 - x - 6四、解答题(每题10分,共20分)14. 一个长方形的长是15厘米,宽是10厘米,求它的周长和面积。
周长= 2 × (长 + 宽) = 2 × (15 + 10) = 50厘米面积 = 长× 宽= 15 × 10 = 150平方厘米15. 一个班级有40名学生,其中男生人数是女生人数的2倍,求男生和女生各有多少人。
2023-2024学年度第一学期七年级期末调研考试数 学 试 卷亲爱的同学,在答题前,请认真阅读下面的注意事项:1. 本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,三大题,24小题,全卷共6页,考试时间120分钟,满分120分.2. 试卷选择题及非选择题答案均写在答题卡上,写在试卷上无效.预祝你取得优异成绩!第Ⅰ卷(选择题 共30分)一、选择题(每小题3分,共30分)本题共10小题,每小题均给出A ,B ,C ,D 四个选项,有且只有一个答案是正确的,请将正确答案的代号填在答题卡上,填在试题卷上无效.1.数轴上表示的点在原点的左侧,距离原点( )个单位长度.(A )0(B )1(C )2(D )32.下列立体图形,其中圆柱体是( ).(A ) (B ) (C ) (D )3.下列计算正确的是( ).(A ) (B ) (C )(D )4.如图,学校A 在小红家B 南偏西25°的方向上,点C 表示超市所在的位置,∠ABC =90°,则超市C 在小红家B 的( ).(A )南偏东65°的方向上 (B )南偏东55°的方向上(C )北偏东65°的方向上 (D )北偏东55°的方向上5.若是关于x 的一元一次方程,则k 的值不可能是( ).(A )(B )0 (C )2 (D )6.如图,OB 平分∠AOC ,下列结论错误的是( ).3-532a a -=-32a a a -+=232a a a -=235a b ab+=()210k x -+=1-2-D东(A )∠AOB =∠BOC (B )∠COD +∠AOC =∠BOD (C )∠AOD -∠BOC =∠BOD (D )∠BOC +∠AOD =2∠BOD 7.下列变形正确的是( ).(A )若,则 (B )若,则(C )若,则(D )若,则8.我国古代数学著作《增删算法统宗》中记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托”.其大意为:有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设竿子的长为尺,依题意可列方程为( ).(A ) (B ) (C )(D )9.如图,点C ,D 在线段上AB ,O 为AB 上方一点,∠OAB =90°,连接OC ,OD ,OB ,下列结论:①图中互余的角有3对;②图中共有线段10条;③图中共有8个锐角;④若AC =CD =5,BD =3,P 为线段AB 上一点,则点P 到点A,C ,D ,B 的距离之和最小为18.其中正确的说法有( ).(A )①②④(B )③④ (C )①②③ (D )①③④10.如图,张老师要在足够大的磁性黑板上展示数张形状、大小均相同的长方形作业,将这些作业排成一个长方形(作业不完全重合).现需要在每张作业的四个角落都放上磁性贴,如果作业有角落相邻,那么相邻的角落共享一枚磁性贴(例如,4张作业可用9枚磁性贴固定在磁性黑板上).若有25枚磁性贴可供选用,则最多可以展示( )张作业.(A )12(B )14(C )15(D )1612a b =11a b -=+12a b +-=3a b =+a b =22a c b c -=-a b =11a b c c =--x ()15252x x +=-()1552x x +=-1552x x +=-()1552x x -=+(第9题)OD C BA第Ⅱ卷(非选择题 共90分)二、填空题(每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.冬季某一天的温差是3℃,这天最低气温是-2℃,最高气温是℃.12.如图,正方体纸盒上相对两个面上的数互为相反数,则正方体纸盒六个面上的数中,最小的是.13.已知m ,n 为正整数,若多项式合并同类项后只有两项,则的值为.14.数轴上点A 表示的数为,点B ,C 表示的数分别为,,若点B 为线段AC的中点,则的值为.15.如图,P的边BC 上一点,将∠ABP ,∠DCP 分别沿AP ,DP 向上折叠,点B 落在点处,点C 恰好落在AD 边上的处,.下列说法:①∠BPD=135°;②;③若平分,则;④若,则.其中一定正确的结论有(填序号即可).16.从如图1(边长为a )的正方形纸片上剪去两个相同的小长方形,得到如图2的图案(横向、纵向的宽度均为b ),再将剪下的两个小长方形拼成一个新长方形(如图3),若,则图3中新长方形的周长为.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题8分)计算:(1); (2).232123m n a b a b a b --+m n +1-35m -1m +m B 'C 'B PD α'∠=22.52APC α'∠=︒+PC 'APB '∠15α=︒108APD B PC ''∠+∠=︒9α=︒23a b -=902832'︒-︒()()321113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭(第15题)P C /B /DBCA18.(本题8分)解方程:(1);(2).19.(本题8分)先化简,再求值.已知,其中,,.20.(本题8分)根据图中的信息解答下面的问题(单位:cm ).(1)放入一个大球水面升高_____cm ,放入一个小球水面升高_____cm ;(2)若放入大球、小球共8个后水面高度为27 cm ,大球、小球各放入多少个?21.(本题8分)对于有理数a ,b 满足,我们称使等式成立的一对有理数a ,b为“相伴有理数对”,记为(a ,b ).如(,2)满足:;(2,)满足:;所以数对(,2),(2,)都是“相伴有理数对”.(1)数对(,1),(1,0)中,是“相伴有理数对”是________;(2)若(,3)是“相伴有理数对”,求x 的值;(3)若(,)是“相伴有理数对”,则的值为 .的312x x -=+121132x x +--=()()22222322a b ab a b ab a b ab ⎡⎤-+---⎣⎦1a =2b =-1a b ab -=+3-32321--=-⨯+131122133-=⨯+3-131-21x -m n ()1372n mn mn m n ⎡⎤-+-+⎣⎦的3放入体积相同的22.(本题10分)某校组织趣味数学知识竞赛,共设20道选择题,各题分值相同.下表记录了4位参赛者的答题及得分情况.参赛者答题总数答对题数答错题数总得分A 20200100B 2019193C 1714364D1311251(1)从上表可以看出:答对1题得 分,答错1题得 分,未作答1题得 分;(2)参赛者E 完成18道答题得69分,他答对了多少道题?(3)参赛者F 得了67分,请直接写出他答对题;答错题;未作答题.23.(本题10分)如图,已知∠COD =∠AOB=,射线OM 平分∠COD ,ON 平分∠AOD .(1)如图1,若OC 与OB 重合,,请补全图形并直接写出∠MON 的度数为 °;(2)如图2,若∠MON=55°,求∠AOC 的度数;(3)若,将∠COD 从图1的位置以每秒5°的速度绕点O 逆时针方向旋转一周,经过秒能使∠MON=45°(直接写出结果).12α20α=︒25α=︒图1ODB (C )A图2NBM AODC备用图ABO24.(本题12分)数轴上A ,B 三个点表示的数分别是a ,b ,且满足,动点P 从点A 出发,以每秒3个单位长度的速度向右移动秒.(1)直接写出a = ,b = ;(2)如图1,若M 为PA 的中点,N 为PB 的中点,试判断在P 点运动的过程中,线段MN的长度是否发生变化,请说明理由;(3)对于数轴上的点P ,Q ,给出如下定义:记点P 到点A 的距离为m ,点Q 到P的距离为n ,如果,那么称点Q 是点P 的“关联点”.①若m =1,直接写出点P 的“关联点”Q 在数轴上对应的数为 ;②若,试求的值.数学参考答案一、选择题:题号12345678910答案DCBACDCBAD二、填空题:11.1; 12.; 13.6或4; 14.2;15.①②③④;16.12.(说明:13题对一空2分,15题1~2个正确都给1分,3个正确2分)第10题提示:①若所有作业展示成一排,则:……1,最多11张作业;()2620a b ++-=t 2n m -==2BQ BP t 3-()252211-÷=图1备用图②若所有作业展示成两排,则:……1,最多张作业;③若所有作业展示成三排,则:……1,最多张作业;④若所有作业展示成四排,则:……1,最多张作业; ⑤若所有作业展示成五排,则:……1,最多张作业…… 故最多可展示16张作业.第15题提示:依题意,∠BPC=45°,即∠BPD=135°;②因为,,所以;③依题意,,则;④由,又∠BPC=45°,,即∠BPC++45°=108°,所以.第16题提示:新长方形长为:,宽为:,因为,所以新长方形长为:.三、解答题:17.(1)原式=, ……3分= ;……4分(2)原式, ……6分……7分. ……8分18.(1),……3分解得; ……4分(2)去分母,得 ……6分()25337-÷=7214⨯=()25445-÷=5315⨯=()25554-÷=4416⨯=()25663-÷=3515⨯=B PD α'∠=()113567.522APB B PD α'∠=︒-∠=︒-22.52APC α'∠=︒+22.5452APC B PC αα'''∠=∠=︒+=︒-15α=︒108APD B PC ''∠+∠=︒67.5APB α∠=︒-67.52APB α∠=︒-9α=︒a b -3a b -23a b -=()()23424312a b a b a b -+-=-=⨯=89602832''︒-︒6128'︒()111723=--⨯⨯-716=-+16=23x =32x =22636x x +-+=……7分解得 . ……8分19.化简得,……3分=, ……5分=……6分……8分20.(1)2.5,1.5; ……4分(2)设放入大球个,依题意列方程,, ……6分解得;8-5=5. 答:放入大球3个,小球5个.……8分21.(1)(1,0);……3分(2)依题意列方程得,……5分解得; ……6分(3). ……8分22.(1)5,,0;……3分(2)依题意,设参赛者E 答对了道题,依题意列方程得:,……5分解得,,……6分答:设参赛者E 答对了15道题;……7分(3)15,4,1. ……10分23.(1)20°;(正确画图1分)……4分(2)∵OM 平分∠COD ,ON 平分∠AOD ,∠COD =∠AOB=,41x -=14x =-222223222a b ab a b ab a b ab ⎡⎤-+--+⎣⎦2222a b ab a b ⎡⎤-+⎣⎦22ab -()22128-⨯⨯-=-x ()2.5 1.582712x x +-=-3x =()2133211x x --=-+12x =-12-2-x ()521869x x ⨯--=15x =12α∴∠COM =∠DOM =,∠AON =∠DON , ……5分又∠MON=55°,∴∠CON =∠MON -∠COM =, ……6分∴∠AON =∠DON =,……7分∴∠AOC =∠AON+∠CON=+=;……8分(3)8或44……10分依题意∠AON =∠DON ,∠COM =∠DOM =,又∠MON=45°,①如图1,∠CON =∠MON -∠COM =32.5°,∴∠AON =∠DON =45°+12.5°=57.5°,∴∠BON =57.5°-50°=7.5°,∴旋转过的角度∠BOC =∠BON+∠CON =32.5°+7.5°=40°,(秒);②如图2,∴∠AON =∠DON=∠MON -∠DOM =45°-12.5°=32.5°,∴∠BOC =∠COD+∠DON +∠AON+∠AOB =140°,∴旋转过的角度为:360°-140°=220°,(秒).24.(1),2;……2分(2)依题意,AB=8,AP=3t ,,∵M 为PA 的中点,N 为PB 的中点,2α552α︒-552α︒+552α︒+552α︒-110︒12.5︒4058÷=220544÷=6-()23683BP t t =--=-DOM CNBA图1COA BNMD图2,,①如图1,当点P 在AB 之间时,,; ……4分②如图2,当点P 在AB 延长线上时,,;综上所述,线段MN 的长度保持不变. ……6分(说明:学生用绝对值方程分类讨论相应给分)(3)①或;……8分②依题意,,点P 表示的数为,又,即点Q 到P 的距离为,Ⅰ当点Q 在P 的左侧时,点Q 表示的数为; ……9分,,由得,,解得或; ……10分Ⅱ当点Q 在P 的右侧时,点Q 表示的数为;……11分,,由得,, 解得;1322t MP AM AP ===118322PN BN BP t ===-83BP t =-()3183422t MN MP BN t =+=+-=38BP t =-()3138422t MN MP NP t =-=--=2-8-3m t =36t -2n m -=232n m t =+=+()36328t t --+=-10BQ =()23683BP t t =--=-=2BQ BP 28310t -=1t =133t =()363264t t t -++=-()26466BQ t t =--=-()23683BP t t =--=-=2BQ BP 66283t t -=-116t =图1图2七年级数学试卷第11页 (共6页)综上所述,、或. ……12分1t =133t =116t =。
最新人教新版七年级上学期数学期末考试试卷(含答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、据教育部统计,2023年高校毕业生约1086万人,用科学记数法表示1086万为()A.1086×104 B.1.086×107 C.1.086×108 D.0.1086×1082、某地一天早晨的气温是﹣2℃,中午温度上升了12℃,半夜又下降了8℃,则半夜的气温是()A.﹣16℃B.2℃C.﹣5℃D.9℃3、下列哪个图形是正方体的展开图()A.B.C.D.4、如图,下列说法错误的是()A.OA的方向是北偏西60°B.OB的方向是西南方向C.OC的方向是南偏东60°D.OD的方向是北偏东30°5、下列变形中,正确的是()A.若a=b,则a+1=b﹣1B.若a﹣b+1=0,则a=b+1C.若a=b,则D.若,则a=b6、若(m﹣1)x|2m﹣3|=6是一元一次方程,则m等于()A.1B.2C.1或2D.任何数7、钟表在1点30分时,它的时针和分针所成的角度是()A.135°B.125°C.145°D.115°8、《孙子算经》是我国古代重要的数学著作,书中记载这样一个问题;今有三人共车,二车空;二人共车,九人步,问人几何?这个问题的意思是:今有若干人乘车,每三人乘一车,恰好剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,则乘车人数为()A.15B.35C.39D.419、有一长条型链子,其外型由边长为1公分的正六边形排列而成.如图表示此链之任一段花纹,其中每个黑色六边形与6个白色六边形相邻.若链子上有35个黑色六边形,则此链子共有几个白色六边形()A.140B.142C.210D.21210、若不论k取什么实数,关于x的方程(a、b是常数)的根总是x=1,则a+b=()A.B.C.D.二、填空题(每小题3分,满分18分)11、比较大小:.12、数轴上,到原点距离为5的点表示的数是.13、已知单项式2a2b n+1与3a2m b m是同类项,则m+n=.14、一个正方体展开图如图所示,若相对面上标记的两个数均互为相反数,则xy的值为.15、如果关于x的方程2x+1=3和方程的解相同,那么k的值为.16、当x=1时,ax2+bx﹣1的值为6,当x=﹣1时,这个多项式ax3+bx﹣1的值是.最新人教新版七年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(1);(2).18、解下列方程:(1)4x﹣3=2﹣5x;(2).19、如图,某小纸盒的展开图如下,根据图中的数据解答如下问题.(1)请用含a和x的式子表示这个小纸盒的展开图的面积;(2)当a=6厘米时,面积为72平方厘米,求x的值;20、有理数a、b、c在数轴上的位置如图.(1)用“>”或“<”填空:c﹣b0,a+b0,c﹣a0;(2)化简:|c﹣b|+3|a+b|﹣|c﹣a|.21、如图,点C,E是线段AB上两点,点D为线段AB的中点,AB=6,CD=1.(1)求BC的长;(2)若AE:EC=1:3,求EC的长.22、如图,已知∠AOB=90°,∠BOC=60°.(1)求∠AOC的补角的度数;(2)若OE平分∠AOB,OF平分∠BOC,求∠EOF的度数.23、已知A=2x2+xy+3y,B=x2﹣xy.(1)若(x+2)2+|y﹣3|=0,求A﹣2B的值.(2)若A﹣2B的值与y的值无关,求x的值.24、在学习一元一次方程后,我们给一个定义:若x0是关于x的一元一次方程ax+b=0(a≠0)的解,y0是关于y的方程的所有解的其中一个解,且x0,y0满足x0+y0=99,则称关于y的方程为关于x的一元一次方程的“久久方程”.例如:一元一次方程3x﹣2x﹣98=0的解是x0=98,方程|y|+1=2的所有解是y =1或y=﹣1,当y0=1,x0+y0=99,所以|y|+1=2为一元一次方程3x﹣2x﹣98=0的“久久方程”.(1)已知关于y的方程:①2y﹣2=4,②|y|=2,其中哪个方程是一元一次方程3(x﹣1)=2x+98的“久久方程”?请直接写出正确的序号.(2)若关于y的方程|2y﹣2|+2=4是关于x的一元一次方程x﹣的“久久方程”,请求出a的值.(3)若关于y的方程a|y﹣49|+a+b=是关于x的一元一次方程ax+50b =55a的“久久方程”,求出的值.25、如图,两条直线AB,CD相交于点O,且∠AOC=∠BOD=90°,射线OM从OB开始绕O点逆时针方向旋转,速度为每秒15°,射线ON同时从OD 开始绕O点顺时针方向旋转,速度为每秒12°,运动时间为t秒(0<t<12,本题出现的角均不大于平角).(1)当t=2时,∠AOM的度数为度,∠NOM的度数为度.(2)t为何值时,∠AOM=∠AON.(3)当射线OM在∠BOC的内部时,探究是不是一个定值?若是,请求出这个定值.。
初一数学期末考试卷一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于4,那么这个数是:A. 2B. -2C. 2或-2D. 43. 一个圆的半径是5厘米,那么它的直径是:A. 10厘米B. 15厘米C. 20厘米D. 25厘米4. 以下哪个表达式是正确的?A. \( 3x + 5 = 8x - 10 \)B. \( 2x - 3 = 3x + 2 \)C. \( 4x + 7 = 7x + 4 \)D. \( 5x - 3 = 2x + 5 \)5. 一个班级有30个学生,其中女生占总人数的40%,那么这个班级有多少名女生?A. 10B. 12C. 15D. 206. 如果一个角的度数是90°,那么这个角是:A. 锐角B. 直角C. 钝角D. 平角7. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 08. 下列哪个分数是最接近1的?A. \( \frac{1}{2} \)B. \( \frac{3}{4} \)C. \( \frac{4}{5} \)D. \( \frac{5}{6} \)9. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,那么它的体积是:A. 60立方厘米B. 120立方厘米C. 180立方厘米D. 240立方厘米10. 一个数的平方根是4,那么这个数是:A. 16B. 8C. 4D. 2二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是______。
12. 如果\( 2x + 3 = 11 \),那么\( x \)的值是______。
13. 一个直角三角形的两个锐角的度数之和是______。
14. 一个数的倒数是\( \frac{1}{4} \),这个数是______。
15. 如果一个长方体的长、宽、高分别是6厘米、4厘米和3厘米,那么它的表面积是______平方厘米。
初一年级数学学科课堂练习(考试时间:90分钟,满分:100分)一、选择题:(本大题共6题,每小题2分,满分12分)1.代数式32x -,4x y -,x y +,22x π+,98中是整式的有()A.1个B.2个C.3个D.4个【答案】D【解析】【分析】根据单项式和多项式统称为整式,进而判断得出答案.【详解】解:4x y-的分母含有字母,不是整式;32x -是整式;x y +是整式;22x π+是整式;98是整式;综上,整式的个数是4个.故选:D .【点睛】本题考查了整式的定义.解题的关键是熟练掌握整式的定义.要注意22x π+虽然有分数线,但是2.下列计算正确的是()A.235x x x += B.235x x x ×=C.236x x x ⋅= D.()325x x =【答案】B【解析】【分析】分别依据合并同类项、同底数幂的乘法、幂的乘方法则逐一计算即可.【详解】解:A 、2x 和3x 不是同类项,不能合并,该选项不符合题意;B 、235x x x ×=,该选项符合题意;C 、2356x x x x ⋅=≠,该选项不符合题意;D 、()3265x x x =≠,该选项不符合题意;故选:B .【点睛】本题主要考查幂的运算,解题的关键是掌握合并同类项、同底数幂的乘法、幂的乘方法则.3.下列各式从左到右的变形是因式分解的是()A.()2222x y x y xy +=-+B.()422211(1x x x x x x ++=++-+)C.()230130x x x x --=--D.()22121a a a -=-+【答案】B【解析】【分析】根据因式分解的定义,逐项判断即可求解.【详解】解:A 、从左到右的变形不是因式分解,故本选项不符合题意;B 、从左到右的变形是因式分解,故本选项符合题意;C 、从左到右的变形不是因式分解,故本选项不符合题意;D 、从左到右的变形不是因式分解,故本选项不符合题意;故选:B【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别.4.若分式||22x x --的值为零,则x 的值是()A.±2B.2C.﹣2D.0【答案】C【解析】【分析】分式的值为0,则分母不为0,分子为0.【详解】∵|x |﹣2=0,∴x =±2,当x =2时,x ﹣2=0,分式无意义.当x =﹣2时,x ﹣2≠0,∴当x =﹣2时分式的值是0.故选C .【点睛】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.5.分式423xy x y+中,当x 和y 分别扩大3倍时,分式的值()A.扩大9倍B.扩大6倍C.扩大3倍D.不变【答案】C【解析】【分析】根据分式的基本性质可得答案.【详解】分式423xy x y+中,当x 和y 分别扩大3倍时,得()43336124323333232323x y xy xy xy x y x y x y x y⋅⋅===⋅⨯+⨯+++,所以分式的值扩大3倍,故选:C .【点睛】本题考查分式的性质,解题的关键是把x 和y 换成3x 和3y .6.下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形和中心对称图形的定义,逐项判断即可求解.【详解】解:A 、是轴对称图形,但不是中心对称图形,故本选项不符合题意;B 、既是轴对称图形又是中心对称图形,故本选项符合题意;C 、是中心对称图形,但不是轴对称图形,故本选项不符合题意;D 、既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;故选:B【点睛】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180︒,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键.二、填空:(本大题共12题,每小题3分,满分36分)7.单项式257x y -的次数为_________.【答案】57-【解析】【分析】单项式中的数字因数为单项式的系数,据此即可求解.【详解】解:由定义可知:单项式257x y -中的数字因数为:57-.故答案为:57-.【点睛】此题考查的知识点有:单项式的定义、单项式系数的定义;准确掌握单项式系数的定义是解题关键.8.将多项式322313y xy x y x --+按字母y 升幂排列,结果是_________.【答案】322313x x x y y y +-+-【解析】【分析】根据多项式的定义解决此题.【详解】解:∵多项式322313y xy x y x --+含3xy 、1-、223x y -、3x y 这四项,y 的次数分别是3、0、2、1,∴多项式322313y xy x y x --+按字母y 升幂排列的结果是322313x x x y y y +-+-.故答案为:32213x x x y y y +-+-.【点睛】本题主要考查多项式,熟练掌握多项式的定义是解决本题的关键.9.计算()()322933x x x -÷-=_________.【答案】31x -+##13x-【解析】【分析】利用多项式除以单项式的法则,先用多项式的每一项除以单项式,再把所得的商相减计算即可.【详解】解:()()322933x x x -÷-()()32229333x x x x =÷--÷-31x =-+.故答案为:31x -+.【点睛】本题考查了整式的除法,熟练掌握运算法则是解决本题的关键.10.20212022133⎛⎫⨯-= ⎪⎝⎭__________.【答案】3-【解析】【分析】利用积的乘方的法则进行求解即可.【详解】解:20212022133⎛⎫⨯- ⎪⎝⎭=202120211333⎛⎫⨯- ⎪⎭⨯⎝=20213133⎛⎫⨯ ⎪⎝⎭⨯-=()202131-⨯=13-⨯=-3故答案为:-3【点睛】本题主要考查积的乘方,解答的关键是熟记积的乘方的法则并灵活运用.11.若29x mx ++是一个完全平方式,则m 的值是_____.【答案】6±【解析】【分析】根据29x mx ++是一个完全平方式,得到()2229369x mx x x x ++=±=±+,即可得解.【详解】解:∵29x mx ++是一个完全平方式,∴()2229369x mx x x x ++=±=±+∴6m =±,故答案为:6±.【点睛】本题考查完全平方式.熟练掌握完全平方式的特点,是解题的关键.12.分解因式:2x xy ax ay -+-=_________.【答案】()()x a x y +-【解析】【分析】前两项一组,提取公因式x ,后两项一组,提取公因式a ,然后两组之间再提取公因式()x y -整理即可.【详解】解:2x xy ax ay-+-()()2x xy ax ay =-+-()()x x y a x y =-+-()()x a x y =+-故答案为:()()x a x y +-【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.13.纳米是一种长度单位,1纳米910-=米,冠状病毒的直径为21.210⨯纳米,用科学记数法表示为________米.【答案】1.2×10-7【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于1时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:21.210⨯纳米=2971.21010 1.210--⨯⨯=⨯米故答案为:71.210-⨯.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.14.要使分式32x x -+有意义,则x 的取值范围是_________.【答案】2x ≠-【解析】【分析】根据分式有意义的条件,即可求解.【详解】解:根据题意得:20x +≠,解得:2x ≠-.故答案为:2x ≠-【点睛】本题主要考查了分式有意义的条件,熟练掌握分式的分母不等于0是解题的关键.15.在装有150克盐的容器中加入一些水后可以得到浓度为30%的盐水,那么所加入的水有_________克.【答案】350【解析】【分析】浓度⨯溶液=溶质,溶液=溶质+水,设未知数,列方程求解即可.【详解】解:设加入的水有x 克,依题意得()15030%150x +⨯=,解得350x =,即加入的水有350克,故答案为:350.【点睛】此题主要考查了一元一次方程的应用,根据“浓度⨯溶液=溶质”得出方程是解答此题的关键.16.如图,将一张长方形纸条ABCD 沿EF 折叠,折痕为EF ,点B 落到点H 的位置;再将这张纸条沿EG 折叠,使点C 落在直线EH 上,折痕为EG ,那么FEG ∠=_________度.【答案】90︒##90度【解析】【分析】根据折叠的性质可知,折痕即为角平分线,由此即可求解.【详解】解:如图所示,根据题意得,12∠=∠,3=4∠∠,∵1234180∠+∠+∠+∠=︒,∴2223180∠+∠=︒,∴2390∠+∠=︒,即2390FEG ∠=∠+∠=︒,故答案为:90︒.【点睛】本题主要考查矩形的折叠,掌握折痕就是角平分线的性质是解题的关键.17.如图,ABC 沿AB 平移后得到DEF ,点D 是点A 的对应点,如果10AE =,2BD =,那么ABC 平移的距离是_________.【答案】4【解析】【分析】根据平移的性质得出方程进而得出答案.【详解】解:设平移的距离为x ,则EB AD x ==,则10BE BD AD ++=,故210x x ++=,解得:4x =,即ABC 平移的距离是:4.故答案为:4.18.如图,AOB 绕点O 顺时针旋转30︒后与COD △重合.若130AOD ∠=︒,则COB ∠=_________.【答案】70︒##70度【解析】【分析】由旋转的性质得30AOC BOD ∠=∠=︒,进一步计算即可求解.【详解】解:由旋转的性质得30AOC BOD ∠=∠=︒,∵130AOD ∠=︒,∴130303070COB AOD AOC BOD ∠=∠-∠-∠=︒-︒-︒=︒,故答案为:70︒.【点睛】本题考查了旋转的性质,是基础题,熟记性质并确定30AOC BOD ∠=∠=︒是解题的关键.三、简答题:(本大题共6题,每小题5分,满分30分)19.计算:()()()22x y x y x x y -+--.【答案】24y xy-+【解析】【分析】根据平方差公式和单项式乘以多项式运算法则计算即可.【详解】原式222244x y x xy y xy =--+=-+.【点睛】本题考查整式的乘法,解题的关键是熟练掌握平方差公式.20.分解因式:()22925a a b -+.【答案】()()8525a b a b -++【解析】【分析】利用平方差公式进行因式分解,即可求解.【详解】解:()22925a a b -+()()2235a a b =-+⎡⎤⎣⎦()()3535a a b a a b =++-+⎡⎤⎡⎤⎣⎦⎣⎦()()8525a b a b =+--()()8525a b a b =-++【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.21.分解因式:23930x x --.【答案】()()352x x -+.【解析】【分析】先提取公因式,再利用十字相乘法继续分解即可.【详解】解:23930x x --()23310x x =--()()352x x =-+.【点睛】本题考查了用提公因式法和十字相乘法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.22.计算:()()1111x y x y -----÷+.【答案】y x y x-+【解析】【分析】先把负整数指数幂化为分式的形式,再去括号进行除法运算即可.【详解】解:()()1111x y x y -----÷+1111x y x y ⎛⎫⎛⎫=-÷+ ⎪ ⎪⎝⎭⎝⎭y x y x xy xy-+=÷y x y x -=+.【点睛】本题考查了负整数指数幂、分式的除法,熟练掌握分式的运算法则是解题关键.23.解方程:21233x x x-+=--.【答案】无解【解析】【分析】去分母,去括号,移项,合并同类项,系数化1,检验,解分式方程即可.【详解】解:去分母,得:()2231x x -+-=-,去括号,得:2261x x -+-=-,移项,合并,得:3x =;检验:当3x =时,30x -=,∴3x =是原方程的增根,舍掉,∴原方程无解.【点睛】本题考查解分式方程.熟练掌握解分式方程的步骤,是解题的关键.注意,验根.24.先化简再求值:22361399x x x x x -⎛⎫+÷⎪+--⎝⎭,其中1x =.【答案】29x +,10【解析】【分析】利用除法法则变形,去括号,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:22361399x x x x x -⎛⎫+÷ ⎪+--⎝⎭()2236939x x x x x -⎛⎫=+⋅- ⎪+-⎝⎭()()()223633939x x x x x x x -=⋅+-+⋅-+-()236x x=-+2696x x x=-++29x =+,当1x =时,原式21910=+=.【点睛】本题主要考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.四、解答题(本大题共3题,第25、26题每小题7分,第27题8分,满分22分)25.学校组织学生到距离为15千米的公园参加露营活动,一部分同学骑自行车先走,40分钟后其余同学乘坐大巴前往,结果他们同时到达,如果大巴士的平均速度是自行车平均速度的3倍,问:大巴士与自行车的平均速度分别是每小时多少千米?【答案】自行车的平均速度为15km/h ,大巴士的平均速度为45km/h【解析】【分析】设自行车的平均速度为km/h x ,则大巴士的平均速度为3km/h x ,根据题意列方程即可求解.【详解】解:根据题意,设自行车的平均速度为km/h(0)x x >,则大巴士的平均速度为3km/h x ,40分钟23=小时,由题意得:2151533x x x -=,整理得,21553x -=,解得,15x =,经检验:15x =是方程的解,且符合题意,则331545x =⨯=,∴自行车的平均速度为15km/h ,大巴士的平均速度为45km/h .【点睛】本题主要考查方程与行程问题的综合,理解题意中的数量关系,列方程解决实际问题是解题的关键.26.阅读材料:在代数式中,将一个多项式添上某些项,使添项后的多项式中的一部分成为一个完全平方式,这种方法叫做配方法.如果我们能将多项式通过配方,使其成为22A B -的形式,那么继续利用平方差公式就能把这个多项式因式分解.例如,分解因式:44x +.解:原式422444x x x =++-()22224x x =+-()()222222x x x x =+++-即原式()()222222x x x x =+++-请按照阅读材料提供的方法,解决下列问题.分解因式:(1)441x +;(2)421x x ++.【答案】(1)()()22212212x xx x +++-(2)()()2211x xx x +++-【解析】【分析】(1)原式按照阅读材料提供的方法得到2244144x x x ++-,利用完全平方公式和平方差公式分解即可;(2)原式按照阅读材料提供的方法得到42221x x x ++-,利用完全平方公式和平方差公式分解即可.【小问1详解】解:4422414414x x x x +=++-()()222212x x =+-()()22212212x x x x =+++-;【小问2详解】解:42422121x x x x x ++=++-()2221x x =+-()()2211x x x x =+++-.【点睛】本题考查了因式分解,解题的关键是明确题意,可以根据材料中的例子对所求的式子进行因式分解.27.已知,ABC 中:(1)如果将ABC 绕点C 顺时针旋转90︒得到11A B C ,点A B 、分别与点11A B 、对应,请画出图形.(不要求写作图步骤)(2)连接11A B B B ,与1AC 相交于点O .如果11ACB B ⊥,点O 是线段1B B 的中点,且111113A BC B B A B S S =V 四边形,若11A B B S a =V ,试用含有a 的代数式来表示ABC 的面积.【答案】(1)见解析(2)32ABC S a =△.【解析】【分析】(1)根据题意作出图形即可;(2)根据题意求得113A B CB a S =四边形,12BCB S a =△,根据11AC B B ⊥,点O 是线段1B B 的中点,得到11111122A B O A B B S S a ==△△,1112CB O BCB S S a ==△△,据此即可求解.【小问1详解】解:如图,11A B C 即为所作,【小问2详解】解:如图,∵111113A B C BB A B S S =V 四边形,且11A B B S a =V ,∴113A B CB a S =四边形,∴12BCB S a =△,∵11AC B B ⊥,点O 是线段1B B 的中点,∴11111122A B O A B B S S a ==△△,1112CB O BCB S S a ==△△,∵11A B C 是ABC 旋转得到的,∴1132ABC A B C S S a ==△△.【点睛】本题考查了旋转的性质,三角形的面积公式,掌握旋转的性质是解题的关键.第15页/共15页。
2024北京昌平初一(下)期末数 学2024.06本试卷共9页,共100分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后将答题卡交回.一、选择题(本题共8道小题,每小题2分,共16分)1. 2024北京月季文化节正式开启,11个展区共展示超3000个品种的月季.传统月季花粉为单粒花粉,呈长球形或超长球形,大小为~~⨯m μm 17.0225.33μ37.5951.95.其中=m 0.003759cm μ37.59,把0.003759用科学记数法表示为( )A. ⨯−0.3759102B. ⨯0.3759102C. ⨯−3.759103D. ⨯3.759103 2. 不等式x 3x 21的解集在数轴上可以表示为( ) A. B. C. D. 3. 在今年的“五一”假期中,昌平消费市场“花样翻新”,多景区客流“爆棚”,客流量与文旅消费均呈现上升趋势.为了解中学生的假期出游情况,从全校2000名学生记录的假期出游时间(单位:小时)中随机抽取了200名学生的假期出游时间(单位:小时)进行统计,以下说法正确的是( )A. 2000名学生是总体B. 样本容量是2000C. 200名学生的假期出游时间是样本D. 此调查为全面调查 4. 下列计算正确的是( )A. ⋅=a a a 236B. −=a a ()326C. +=a a a 224D. ÷=a a a 824 5. 如果>a b ,那么下列不等关系一定成立的是( )A. a b +<+11B. −>−a b 22C. >ac bcD. >a b 556. 如图,一条街道有两个拐角∠ABC 和∠BCD ,已知∥AB CD ,若∠=︒ABC 150,则∠BCD 的度数是( )A. ︒30B. ︒120C. ︒130D. ︒1507. 若⎩=⎨⎧=y x 12是关于x ,y 的二元一次方程−=ax y 3的一个解,则a 的值为( ) A. −1 B. 1 C. −2 D. 28. 已知a ,b 为有理数,则下列说法正确的是( )①+≥a b ()02;②+≥a b ab 222;③+=−+a b a b ab ()()222A. ①B. ①②C. ①③D. ①②③二、填空题(本题共8道小题,每小题2分,共16分)9. 因式分解:−+=x x 3632______.10. 如果一个角等于︒70,那么这个角的补角是_________°.11. 计算:(6x 2+4x )÷2x =_____.12. 已知命题“同位角相等”,这个命题是_________命题.(填“真”或“假”)13. 计算:(2x +1)(x ﹣2)=_____.14. 若=x 24,=y 216,则+=x y ___________.15. 4月23日为世界读书日,小萱从图书馆借来一本共266页的书,计划在10天内读完(包括第10天).如果前4天每天只读15页,若从第5天起平均每天读x 页才能按计划完成,则根据题意可列不等式为____.16. 如图1的长为a ,宽为b >a b )(的小长方形纸片,按图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足的数量关系为_________.三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17. 计算:−−+−−−π32(5)31201. 18. 解不等式:+<−x x 2113.19. 解方程组:⎩−=⎨⎧+=x y x y 34127 20. 解不等式组:⎩≤+⎨⎧+≤x x x 25623并把它的解集在数轴上表示出来.21. 已知−=x x 12,求代数式−+−+x x x (1)(3)(3)2的值.22. 补全解答过程:如图,∠1+∠2=180°,∠3=∠A .求证:∠B =∠C .证明:∵∠1+∠2=180°,∴(同旁内角互补,两直线平行).∴∠3=∠D().又∵∠3=∠A,∴.∴AB∥CD().∴∠B=∠C().23. 某校开展数学节活动,活动成果是学生形成对于数学探索的海报,活动以“集市”形式展览个人的作品,并面向同学和老师讲解自己的作品,“小创客”创意市集作品的评价涉及四个维度:创意的真实性、创意的新颖性、创意的科学性和表达的严谨性,并以四个维度总分记为最后得分,满分100分,小明经过抽样调查部分得分数据,具体得分分布在以下四组内:A B C D7580808585909095,并把得分情况绘制成如下统计图:C组得分:87,,,,86,88,86,86,89“小创客”创意市集作品得分条形统计图“小创客”创意市集作品得分扇形统计图(1)本次调查了______名学生,B组扇形统计图的圆心角度数为_______°(2)C组得分的平均数是_______,众数是_________,中位数是__________.(3)若某校有500人参加此次“小创客”创意市集作品展示,请你估计得分超过86分的有多少人?24. 端午节前夕,小明和小华相约一起去超市购买粽子.小明购买A品牌和B品牌的粽子各1袋,共花费55元;小华购买A品牌粽子3袋和B品牌粽子2袋,共花费135元.(1)求A、B两种品牌粽子每袋各是多少元;(2)端午假期,小明一家回老家探亲,小明妈妈想要再买一些粽子送给亲戚,于是拿出500元交给小明,让他去超市购买A、B两种品牌粽子共18袋,且想要尽量多购入B品牌粽子,请问小明最多购买B品牌粽子多少袋?25. 观察个位上的数字是5的两位数的平方(任意一个个位数字为5的两位数n 5可用代数式+n 105来表示,其中≤≤n 19,n 为正整数),会发现一些有趣的规律.请你仔细观察,探索其规律.第1个等式:=⨯⨯+1512100252)(; 第2个等式:=⨯⨯+2523100252)(; 第3个等式:=⨯⨯+3534100252)(; …(1)写出第4个等式:_______;(2)用含n 的等式表示你的猜想并证明;(3)计算:−⨯⨯+11589100252)( =_______. 26. 小明为了方便探究关于x ,y 的二元一次方程+=ax by 9(≠≠a b 0,0)解的规律,把x 和y 的部分值分别填入如下表,(x 的值从左到右依次增大).(1)p 的值为__________(填正确的序号).①17;②3;③−1(2)下列方程中,与+=ax by 9组成方程组,在−<<x 78范围内有解的是__________(填正确的序号).①+=−x y 25;②+=−x y 24;③−=x y 31,(3)已知关于x ,y 的二元一次方程+=cx dy 1(≠≠c d 0,0)的部分解如下表所示:则方程组⎩+=⎨⎧cx dy 1的解为__________(填正确的序号) ①⎩=⎨⎧=−y x 69;②⎩=⎨⎧=−y x 118;③⎩=⎨⎧=−y x 41;④⎩=−⎨⎧=y x 47 27. 已知∠=︒<<︒ααAOB 090)(,点C 是射线OB 上一点,过点C 作OA 的垂线交射线OA 于点P ,过点P 作∥MN OB ,点D 是射线OA 上一点,过点D 作CD 的垂线分别交直线MN ,OB 于点E ,F .(1)如图1,CD 平分∠OCP 时,①根据题意补全图形;②求∠ODF 的度数(用含α式子表示);(2)如图2,当CD 平分∠PCB 时,直接写出∠ODF 的度数(用含α式子表示).28. 已知,x x 12是不等式组解集中的解,若存在一个a ,使+=x x a 212,我们把这样的,x x 12称为该不等式组的“关联解”,a 叫做“关联系数”.(1)当=a 0时,下列不等式组存在“关联解”的是_________.A .⎩>+⎨⎧+>x x x 2412B .⎩⎪>−⎨⎪⎧−+<x x x 21112 C .⎩<−⎨⎧<+x x x x 22321 (2)不等式组⎩+≤++⎪⎨⎪−≥−⎧x a x a x x 22522231的解集上存在“关联解”,若=−x 21,“关联系数a ”的取值范围为_________.(3)不等式组⎩≤+⎨⎧≥−−x x a x a 3221的解集存在关联解,x a 81,若++=a b c 12,且++a b c 1621010是整数,直接写出“关联系数a ”的值_________.参考答案一、选择题(本题共8道小题,每小题2分,共16分)1. 【答案】C【分析】本题考查科学记数法,绝对值小于1的负数也可以利用科学记数法表示,一般形式为⨯−a n 10,其中≤<a 110,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,根据科学记数法的方法进行计算即可.【详解】解:=⨯−0.003759 3.759103,故选:C .2. 【答案】D【分析】本题考查了解一元一次不等式及不等式解集的表示,解题的关键是掌握解一元一次不等式的方法及不等式解集的表示方法.依次移项、合并同类项可得不等式的解集,从而得出答案.【详解】解:移项,得:−<−x x 321,合并同类项,得:<−x 1,把不等式的解集表示在数轴上:故选:D .3. 【答案】C【分析】本题考查了全面调查与抽样调查,总体、个体、样本、样本容量,熟练掌握这些数学概念是解题的关键.根据全面调查与抽样调查,总体、个体、样本、样本容量的意义,逐一判断即可解答.【详解】解:A .2000名学生的假期出游时间是总体,故选项A 不符合题意;B .样本容量是200,故选项B 不符合题意;C .200名学生的假期出游时间是样本,故选项C 符合题意;D .此调查为抽样调查,故选项D 不符合题意;故选:C .4. 【答案】B【分析】本题主要考查了合并同类项,同底数幂相除,幂的乘方,同底数幂相乘,根据合并同类项,同底数幂相除,幂的乘方,同底数幂相乘,逐项判断即可求解.【详解】解:A :⋅=a a a 235,故选项A 错误;B :−=a a ()326,故选项B 正确;C :+=a a a 2222,故选项C 错误;D :÷=a a a 826,故选项D 错误;故选:B .5. 【答案】D【分析】本题考查不等式的基本性质,解答关键是熟知不等式的基本性质①不等式基本性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;②不等式基本性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变; ③不等式基本性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变.利用不等式的基本性质逐项判断即可解答.【详解】解:∵>a b ,∴+>+a b 11,故选项A 不符合题意;∵>a b ,∴−<−a b 22,故选项B 不符合题意;∵>a b ,当>c 0,>ac bc ,当<c 0,<ac bc ,故选项C 不符合题意;∵>a b , ∴>a b 55, 故选项D 符合题意;故选:D .6. 【答案】D 【分析】本题考查了平行线的性质:两直线平行,内错角相等,由AB CD ,根据两直线平行,内错角相等,可得∠BCD 的度数,解题的关键是将实际问题转化为数学问题求解. 【详解】∵,∠=︒AB CD ABC 150∴∠=∠=︒BCD ABC 150(两直线平行,内错角相等).故选:D .7. 【答案】D【分析】将这组值代入二元一次方程即可得出答案.【详解】解:将⎩=⎨⎧=y x 12代入−=ax y 3得:a −=213, 解得:=a 2,故D 正确.故选:D .【点睛】本题考查二元一次方程的解,正确理解方程的解是解题的关键.8. 【答案】B【分析】本题考查整式的乘法-公式法,关键是熟练掌握完全平方公式,根据完全平分公式逐一进行检验即可.【详解】解:∵+≥a b ()02,故①正确;∵−=−+≥a b a ab b 20222)(,∴+≥a b ab 222,故②正确;∵+=++=−++=−+a b a ab b a ab b ab a b ab ()2244222222)(,故③不正确;故选:B 二、填空题(本题共8道小题,每小题2分,共16分)9. 【答案】−x 312)(##−x 312)(【分析】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键. 原式提取公因式3,再利用完全平方公式分解即可.【详解】解:−+=x x 3632−+=−x x x 3213122)()(, 故答案为:−x 312)(.10. 【答案】110【分析】本题主要考查了补角,解题的关键在于熟知如果两个角的度数之和为︒180,那么这两个角互补,根据补角的定义求解即可.【详解】解:∵一个角等于︒70,∴这个角的补角是︒−︒=︒18070110,故答案为:110.11.【答案】3x +2【分析】直接利用整式的除法运算法则计算得出答案.【详解】解:原式=6x 2÷2x +4x ÷2x=3x +2.故答案为:3x +2.【点睛】本题主要考查了整式的除法运算,正确掌握相关运算法则是解题关键.12. 【答案】假【分析】本题主要考查了平行线的性质及真假命题的判断.正确的命题叫真命题,错误的命题叫假命题.要说明一个命题是真命题,必须一步一步有根有据的证明;要说明一个命题是假命题,只需要举一个反例即可.掌握判断真假命题的方法是解题的关键,根据平行线的性质判断即可.【详解】解:两直线平行时,同位角相等;两直线不平行时,同位角不相等.因此命题“同位角相等”不一定成立,是假命题.故答案为:假.13. 【答案】2x 2﹣3x ﹣2.【分析】根据多项式乘多项式的运算法则进行解答即可得出答案.【详解】(2x +1)(x ﹣2)=2x 2﹣4x +x ﹣2=2x 2﹣3x ﹣2;故答案为:2x 2﹣3x ﹣2.【点睛】此题主要考查多项式乘多项式运算,熟练掌握,即可解题.14. 【答案】6【分析】本题主要考查了有理数的乘方运算,将原式变形求出x 和y 的值即可得到答案.【详解】解:∵=x 24,∴=x 222,∴=x 2,∵=y 224,∴=y 4,∴+=x y 6,故答案为:615. 【答案】+≥x 606266【分析】本题考查列不等式,先计算出前4天读的页数,再列出后6天读的页数的表达式,根据读的页数的总和必须大于或等于书的总页数建立不等式即可.【详解】解:根据题意得,前4天读的页数为⨯=41560页,后6天读的页数为:x 6,根据题意得读的页数的总和需要大于或等于266页,故+≥x 606266,故答案为:+≥x 606266.16. 【答案】=a b 3【分析】本题主要考查了整式的混合运算的应用,表示出左上角与右下角部分的面积,求出之差,根据差与BC 无关即可求出a 与b 的关系式,弄清题意是解本题的关键.【详解】如图,左上角阴影部分的长为AE ,宽为=AF b 3,右下角阴影部分的长为PC ,宽为a ,∵=AD BC ,即+=+AE ED AE a ,=+=+BC BP PC b PC 3,∴+=+AE a b PC 3,即−=−AE PC b a 3,∴阴影部分面积之差=⋅−⋅S AE AF PC PH=−b AE a PC ·3?=+−−b PC b a a PC 33?)(=−+−b a PC b ab 3932)(,∵S 始终保持不变,∴−=b a 30,即=a b 3,故答案为=a b 3.三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17. 【答案】3【分析】此题主要考查实数的混合运算,根据零次幂、负整数指数幂定义及实数的性质进行化简,即可求解. 【详解】解:−−+−−−π32(5)31201 =−+−334111 =3.18. 【答案】<x 4【分析】本题主要考查了解一元一次不等式,按照移项,合并同类项,系数化为1的步骤解不等式即可.【详解】解:+<−x x 2113移项得:+<−x x 2131,合并同类项得:<x 312,系数化为1得:<x 4.19. 【答案】⎩=⎨⎧=y x 23 【分析】本题考查了解二元一次方程组,利用加减消元法进行计算即可.【详解】解:②①⎩−=⎨⎧+=x y x y 34127 解:将②①⨯+2得=x 515,解得=x 3,将=x 3代入①得+=y 327,解得=y 2,∴方程组的解为:⎩=⎨⎧=y x 23. 20. 【答案】−≤≤x 21,见解析【分析】本题主要考查了解一元一次不等式组,在数轴上表示不等式组的解集,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集,进而在数轴上表示出不等式组的解集即可.【详解】解:②①⎩≤+⎨⎧+≤x x x 25623 解不等式①得:≤x 1,解不等式②得:≥−x 2,∴不等式组的解集为−≤≤x 21,数轴表示如下:21. 【答案】−6【分析】本题考查了整式的混合运算-化简求值,首先通过完全平方公式和平方差公式进行整式的乘法运算,再把−=x x 12代入,即可求解.【详解】解:∵−=x x 12,∴−+−+x x x (1)(3)(3)2=−++−x x x 21922=−−x x 2282=−−x x 282)(=⨯−218=−6.22. 【答案】AD ∥EF ;两直线平行,同位角相等;∠A =∠D ;内错角相等,两直线平行;两直线平行,内错角相等.【分析】依据平行线的判定,即可得到AD ∥EF ,得出∠3=∠D ,进而得出∠A =∠D ,再根据平行线的判定,即可得到AB ∥CD ,最后根据平行线的性质得出结论.【详解】∵∠1+∠2=180°,∴AD ∥EF (同旁内角互补,两直线平行).∴∠3=∠D (两直线平行,同位角相等).又∵∠3=∠A ,∴∠A =∠D .∴AB ∥CD (内错角相等,两直线平行).∴∠B =∠C (两直线平行,内错角相等).故答案为:AD ∥EF ;两直线平行,同位角相等;∠A =∠D ;内错角相等,两直线平行;两直线平行,内错角相等.【点睛】此题主要考查平行线的判定与性质,熟练掌握,即可解题.23. 【答案】(1)30,108(2)87分,86分,86.5分(3)估计得分超过86分的有100人【分析】此题考查的是条形统计图和扇形统计图、平均数、众数、中位数,用样本估计总体;(1)根据A 组的人数除以占比求出学生数,根据B 组的人数的占比乘以︒360即可求解;(2)根据平均数众数中位数定义计算即可求解;(3)用得分超过86分的学生人数的占比乘以500,即可求解.【小问1详解】 解:1240%30人,∴本次调查了30名学生,360140%10%20%108,∴B 组扇形统计图的圆心角度数为︒108;【小问2详解】因为C 组得分按从小到大排列为:86,86, 86,87,88, 89,∴C 组得分的平均数是6878688868689871分, 众数是86分, 中位数是=+286.58687分; 【小问3详解】3050010033人, 则估计得分超过86分的有100人.24. 【答案】(1)A 品牌粽子每袋是25元,B 品牌粽子每袋是30元(2)小明最多购买B 品牌粽子10袋【分析】此题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是理解题意,正确列出方程组和不等式.(1)设A 品牌粽子每袋是x 元,B 品牌粽子每袋是y 元,根据题意建立方程组,解方程组即可得到答案; (2)设购买B 品牌粽子m 袋,则购买A 品牌的粽子为−m 18袋,根据总费用小于等于500建立不等式,解不等式即可得到答案;【小问1详解】解:设A 品牌粽子每袋是x 元,B 品牌粽子每袋是y 元,根据题意得⎩+=⎨⎧+=x y x y 3213555,解方程组得⎩=⎨⎧=y x 3025, 答:A 品牌粽子每袋是25元,B 品牌粽子每袋是30元;【小问2详解】解:设购买B 品牌粽子m 袋,则购买A 品牌的粽子为−m 18袋,总费用为n 元,根据题意得=−+n m m 251830)(,整理得=+n m 5450,∵+≤m 5450500,∴≤m 10,∴小明最多购买B 品牌粽子10袋.25. 【答案】(1)=⨯⨯+4545100252)( (2)+=++n n n 1051001252)()(,证明见解析(3)6000【分析】(1)通过观察可得第4个式子;(2)通过观察可得第n 个式子,根据完全平分公式进行换算即可证明答案;(3)利用规律逆向计算,再利用平方差公式进行计算即可.【小问1详解】解:第4个等式为:=⨯⨯+4545100252)(, 故答案为:=⨯⨯+4545100252)(; 【小问2详解】解:猜想用含n 的等式表示为:+=++n n n 1051001252)()(,证明:+n 1052)( =++n n 100100252=++n n 100252)(=++n n 100125)(,故用含n 的等式表示为:+=++n n n 1051001252)()(;【小问3详解】解:−⨯⨯+11589100252)( =−1158522=+−1158511585)()(=⨯20030=6000,故答案为:6000.【点睛】本题考查数字的变化规律,通过观察所给的式子,找到式子规律是解题的关键.26. 【答案】(1)② (2)③(3)③【分析】本题考查二元一次方程的解和解二元一次方程组,解题的关键是掌握加减消元法和代入消元法. (1)先根据表格中的值,建立关于a 、b 的二元一次方程组,解方程组得到a 、b 的值,即可求出二元一次方程,再将=x 0代入方程即可求得答案;(2)依次将三个选项与原方程组件方程组,求出方程组的解进行判断即可;(3)根据表格的数据,建立关于c 、d 的二元一次方程组,解方程组得到c 、d 的值,即可得到原方程组,再解方程组即可得到答案.【小问1详解】解:当=−x 4,=y 7时,−+=a b 479,当=x 2,=y 1时,+=a b 29,∴⎩+=⎨⎧−+=a b a b 29479 解方程组得⎩=⎨⎧=b a 33, ∴二元一次方程为:+=x y 339,即+=x y 3,当=x 0时,=y 3,故=p 3,故答案为:②;【小问2详解】解:∵+=ax by 9方程为:+=x y 3,∴①当方程为+=−x y 25时,方程组为:⎩+=−⎨⎧+=x y x y 253, 解方程组得:⎩=⎨⎧=−y x 118, ∵=−x 8不在−<<x 78范围内,故①不符合题意;③当方程为−=x y 31时,方程组为:⎩−=⎨⎧+=x y x y 313,解方程组得:⎩=⎨⎧=y x 21, ∵=x 1在−<<x 78范围内,故③符合题意;故答案为:③;【小问3详解】解:二元一次方程+=cx dy 1中,当,=−=−x y 72时,方程为−−=c d 721;当,==x y 813,方程为+=c d 8131;∴⎩+=⎨⎧−−=c d c d 8131721, 解方程组得⎩⎪=⎪⎨⎪⎪=−⎧d c 5151, 则方程+=cx dy 1为−+=x y 55111,即−+=x y 5, ∴方程组⎩+=⎨⎧+=cx dy ax by 19为:⎩−+=⎨⎧+=x y x y 53, 解方程组得⎩=⎨⎧=−y x 41, 故答案为:③.27. 【答案】(1)①见详解;②︒−α290 (2)︒−α2135【分析】本题考查三角形角平分线的性质,三角形的外角等知识点,解题的关键是三角形外角的计算. (1)①根据题意作图;②根据题意可知∠=∠PCD OCD ,进而得到∠=∠=∠ODF EDP DCP ,从而求解;(2)根据题意可得∠=︒+αPCF 90,∠=︒−=︒−︒+ααPDC 22904590,即可得到∠ODF 的度数. 【小问1详解】①根据题意作图如下: ;②∠=αPOC ,∴∠=︒−αPCO 90,∵CD 平分∠OCP ,∴∠=∠=︒−αPCD OCD 290, ⊥EF CD ,⊥CP OP ,∴∠+∠=∠+∠=︒EDP PDC PCD PDC 90,∴∠=∠=∠ODF EDP DCP ,∴∠=∠=︒−αODF PCD 290; 【小问2详解】根据题意画图可得:∠=αAOB ,⊥CP OP ,∴∠=︒+αPCF 90,∵CD 平分∠PCB ,∴∠=∠=︒+αPCD FCD 290, ∴∠=︒−=︒−︒+ααPDC 22904590, ⎝⎭ ⎪∴∠=︒+︒−=︒−⎛⎫ααODF 229045135. 28. 【答案】(1)B (2)a 2.53 (3)3,5,7【分析】本题考查了解一元一次不等式组,理解不等式组的“关联解”定义以及熟练掌握一元一次不等式组的解法是解此题的关键.(1)先求出每个不等式组的解集, 再根据不等式组的“关联解”定义判断即可;(2)先求出不等式组的解集是x a 35,求出x a 222,根据题意得出不等式组并求出即可. (3)先求出不等式组的解集是a x a 12,根据“关联解”定义得出⎩−−≤−≤⎨⎧−−≤−≤a a a a a a 1382182解出a 的范围,结合++a b c 1621010是整数即可求出结论.解:A .②①⎩>+⎨⎧+>x x x 2412, 解不等式①得:>x 1, 解不等式②得:x >4, 当=a 0时,不存在x x a 2012,B .②①⎩⎪>−⎨⎪⎧−+<x x x 21112, 解不等式①得:>−x 1, 解不等式②得:<x 2, 当=a 0,,=-x x 221112时,存在x x a 2012,C .②①⎩<−⎨⎧<+x x x x 22321 解不等式①得:<x 1, 解不等式②得:−x <2, 当存在x x a 2012, 当=a 0时,不存在x x a 2012,故选:B ;【小问2详解】 ②①⎩+≤++⎪⎨⎪−≥−⎧x a x a x x 22522231, 解不等式①得:≥−x 3, 解不等式②得:x a ≤+5, ∴不等式组的解集是x a 35, 若=−x 21,且+=x x a 212, x a 222,x a 352,a a 3225 a a 523, a 2.53,故答案为:−≤≤a 2.53;②①⎩≤+⎨⎧≥−−x x a x a 3221, 解不等式①得:≥−−x a 1, 解不等式②得:≤x a 2, ∴不等式组的解集是a x a 12, 若x a 81,且+=x x a 212,x a 382, ⎩−−≤≤⎨∴⎧−−≤≤a x a a x a 121221, ⎩−−≤−≤⎨∴⎧−−≤−≤a a aa a a 1382182, 解得:a 388,++=a b c 12,b c a 12,∴==++−+−a b c a a a 16162210101521012)(, a b c 1621010是整数,a 388,a 3,5,7. 故答案为:3,5,7.。
初一期末考试试卷数学一、选择题(每题2分,共20分)1. 下列哪个数是正整数?A. -3B. 0C. 1D. -12. 如果一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 都不是3. 以下哪个选项是2的倍数?A. 7B. 9C. 11D. 134. 一个数的平方根是4,这个数是:A. 16B. 8C. 4D. 25. 一个数的立方是-8,这个数是:A. -2B. 2C. -8D. 86. 以下哪个是偶数?A. 2B. 3C. 5D. 77. 一个数的倒数是1/3,这个数是:A. 3B. 1/3C. 3/1D. 18. 以下哪个是奇数?A. 2B. 4C. 6D. 39. 如果一个角是直角的一半,那么这个角是:A. 30°B. 45°C. 60°D. 90°10. 一个直角三角形的两个锐角的和是:A. 90°B. 180°C. 270°D. 360°二、填空题(每题1分,共10分)11. 一个数的相反数是-5,这个数是______。
12. 一个数的绝对值是3,这个数可以是______或______。
13. 一个数的平方是25,这个数可以是______或______。
14. 一个数的立方是-27,这个数是______。
15. 一个数的倒数是2,这个数是______。
16. 一个数的平方根是5,这个数是______。
17. 一个数的立方根是-3,这个数是______。
18. 一个数的平方是16,这个数可以是______或______。
19. 一个数的绝对值是0,这个数是______。
20. 一个数的相反数是它本身,这个数是______。
三、计算题(每题3分,共15分)21. 计算下列表达式的值:(3+2)×(5-3)22. 计算下列表达式的值:(-4)×(-3) - 623. 计算下列表达式的值:(-2)² + 4×(-3)24. 计算下列表达式的值:√16 - √925. 计算下列表达式的值:(-1)³ + 2²四、解答题(每题5分,共20分)26. 解释什么是有理数,并给出两个有理数的例子。
精选全文完整版(可编辑修改)人教版七年级数学下册期末考试测试卷(含答案)班级: 姓名: 得分:时间:120分钟 满分:120分一、选择题(共10小题,每题3分,共30分)1.如果m 是任意实数,则点P (m ﹣4,m+3)一定不在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.实数a 在数轴上的位置如图所示,则|a -2.5|=( )A .a -2.5B .2.5-aC .a +2.5D .-a -2.5 3.下列选项中的式表示正确的是( )A.255=±B. 255±=C. 255±=±D.2(5)-=-5 4.以下问题,不适合用全面调查的是( )A .旅客上飞机前的安检B .学校招聘教师,对应聘人员的面试C .了解全校学生的课外读书时间D .了解一批灯泡的使用寿命 5.如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.能判定AB ∥CD 的条件个数有( ) A .1 B .2 C .3 D .46.如图,已知AC ∥BD ,∠CAE=35°,∠DBE=40°,则∠AEB 等于( )A .30°B .45°C .60°D .75°7.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系中的位置是 ( )A .第一象限B .第二象限C .第三象限D .第四象限8.小颖家离学校1 200米,其中一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时,若设小颖上坡用了x 分钟,下坡用了y 分钟,可列方程组为 ( )A.35120016x y x y +=⎧⎨+=⎩B.35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C.35 1.216x y x y +=⎧⎨+=⎩D.351200606016x y x y ⎧+=⎪⎨⎪+=⎩ 9.若点P(2k-1,1-k)在第四象限,则k的取值范围为( ) A 、k>1 B 、k<21 C 、k>21 D 、21<k<1 10.下列判断不正确的是( )A 、若a b >,则4a 4b -<-B 、若2a 3a >,则a 0<C 、若a b >,则22ac bc > D 、若22ac bc >,则a b > 二、填空题(共10小题,每题3分,共30分)11.如图是统计学生跳绳情况的频数分布直方图,如果跳 75次以上(含75次)为达标,则达标学生所占比例为 .12.81的算术平方根是 ,-8的立方根是 .13.当a=______时,P (3a+1,a+4)在x 轴上,到y 轴的距离是______ . 14.已知点A (2-a ,a +1)在第四象限,则a 的取值范围是15.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC 的边时反弹,反弹时反射角等于入射角. 当小球第1次碰到矩形的边时的点为P 1,第2次碰到矩形的边时的点为P 2,……第n 次碰到矩形的边时的点为P n . 则点P 3的坐标是 ,点P 2015的坐标是 .16.如图,已知直线AD ,BE ,CF 相交于点O ,OG ⊥AD ,且∠BOC =35°,∠FOG =30°,则∠DOE =________.17.如图,直线l 1//l 2,AB ⊥CD ,∠1=34°,那么∠2的度数是 .18.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人,请列出满足题意的方程组是 .19.关于x 、y 的方程组x m 6y 3m +=⎧⎨-=⎩中,x y += .20.我们定义a b c d=ad -bc ,例如2345=2×5-3×4=10-12=-2.若x 、y 均为整数,且满足1<14x y <3,则x +y 的值是________.三、解答题(共60分)21.(5分)计算:(-1)2438--3)2︱22.(10分)解下列二元一次方程组(1)⎩⎨⎧=-+=01032y x x y (2) ⎩⎨⎧-=-=+421y x y x23.(6分)解不等式组:()()⎪⎩⎪⎨⎧>+-+≤-213351623x x x x ,并把不等式组解集在数轴上表示出来.24.(6分)如图,蚂蚁位于图中点A (2,1)处,按下面的路线移动:(2,1)→(2,4)→(7,4)→(7,7)→(1,7)→(1,1)→(2,1).请你用线段依次把蚂蚁经过的路线描出来,看看它是什么图案,并括号内写出来.( )25.(6分)如图,直线AB ∥CD ,∠GEB 的平分线EF 交CD 与点F ,∠HGF=40°,求∠EFD 的度数.HEFGD CBA26.(9分)已知直线21//l l ,直线3l 与1l 、2l 分别交于C 、D 两点,点P 是直线3l 上的一动点如图,若动点P 在线段CD 之间运动(不与C 、D 两点重合),问在点P 的运动过程中是否始终具有213∠=∠+∠这一相等关系?试说明理由;如图,当动点P 在线段CD 之外且在的上方运动(不与C 、D 两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由;321C P DAB321CP DAB 1l 2l 1l 2l 3l l 图①图②27.(9分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?28.(9分)第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.答案.26.(9分)已知直线21//l l ,直线3l 与1l 、2l 分别交于C 、D 两点,点P 是直线3l 上的一动点如图,若动点P 在线段CD 之间运动(不与C 、D 两点重合),问在点P 的运动过程中是否始终具有213∠=∠+∠这一相等关系?试说明理由;如图,当动点P 在线段CD 之外且在的上方运动(不与C 、D 两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由;【答案】(1)∠3+∠1=∠2成立,理由见解析;(2)∠3+∠1=∠2不成立,新的结论为∠3-∠1=∠2.【解析】(2)∠3+∠1=∠2不成立,新的结论为∠3-∠1=∠2.理由如下:过点P 作PE ∥l 1,∴∠1=∠APE ;∵l 1∥l 2,∴PE ∥l 2,∴∠3=∠BPE ;又∵∠BPE-∠APE=∠2,∴∠3-∠1=321C P DAB321CP DAB 1l 2l 1l 2l 3l 3l 图①图②∠2.考点:平行线的性质.27.(9分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?【答案】(1)购买一个足球需要50元,购买一个篮球需要80元;(2)最多可以购买30个篮球.【解析】考点:1、二元一次方程组的应用;2、不等式的应用.28.(9分)第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.【答案】(1)3x-5;(2)145;(3)175.【解析】试题分析:(1)直接含x的代数式表示该校七年级学生的总数即可;(2)根据题意列出不等式,即可求解.(3)分别设出客车的数量,列出方程,求解,分别进行讨论即可得出结论. 试题解析:(1)30x-5;(2)由题意知:50(x-2)≥30x-5,∴x≥194,∵当x越小时,参加的师生就越少,且x为整数.∴当x=5时,参加的师生最少,即30×5-5=145人.考点:1.一元一次不等式的应用;2.二元一次方程的应用.在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。
2023年部编版七年级数学下册期末考试卷及参考答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0 B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大2.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④ B.①②④ C.①③④D.①②③3.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.44.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.645.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .16.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .7.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .8.1221()()n n x x +-=( )A .4n xB .43n x +C .41n x +D .41n x -9.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b10.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为 A .-1 B .1 C .2 D .3二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是________.2.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是________. 3.如果a 的平方根是3±,则a =_________。
山东初一初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.下列四个数中,无理数是()A.B.0.5C.0D.π3.下列各点中,在第二象限的点是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)4.若实数a>0,b<0,则函数y=ax+b的图象可能是()A.B.C.D.5.的平方根是()A.±4B.4C.±2D.26.将平面直角坐标系内某图形上各个点的纵坐标都乘以﹣1,横坐标不变,所得图形与原图形的关系是()A.关于y轴对称B.关于x轴对称C.沿x轴向左平移1个单位长度D.沿y轴向下平移1个单位长度7.已知三角形的两边长分别为4cm和7cm,则此三角形的第三边长可能是()A.3cm B.11cm C.7cm D.15cm8.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1B.C.D.210.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB 的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL11.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④BD=2CD.A.4 B.3 C.2 D.112.如图是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有()A.2个B.3个C.4个D.5个二、填空题1.若用初中数学课本上使用的科学计算器进行计算,则以下按键的结果为.2.估算= (误差小于0.1).3.点P(x,y)是第一象限的一个动点,且满足x+y=10,点A(8,0).若△OPA的面积为S,则S关于x的函数解析式为.4.如图是某校的平面示意图,如果分别用(3,﹣1)、(﹣3,2)表示图中图书馆和实验楼的位置,那么校门的位置可表示为.5.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要.6.如图,等边△ABC的边长为4,AD是BC边上的中线,M是AD上的动点,E是AC边上点,若AE=1,EM+CM的最小值为.7.已知7﹣2a的平方根是±,2是b的算术平方根,求ab的立方根.三、计算题计算:﹣()2+.四、解答题1.在8×8的方格纸中,设小方格的边长为1.(1)请判断△ABC的形状并说明理由.(2)画出△ABC以CO所在直线为对称轴的对称图形△A′B′C′,并在所画图中标明字母.2.已知一次函数y=mx﹣3m2+12,请按要求解答问题:(1)m为何值时,函数图象过原点,且y随x的增大而减小?(2)若函数图象平行于直线y=﹣x,求一次函数解析式;(3)若点(0,﹣15)在函数图象上,求m的值.3.在△ABC中,AB=AC,点D是BC的中点,点E是AD上任意一点.(1)如图1,连接BE、CE,问:BE=CE成立吗?并说明理由;(2)如图2,若∠BAC=45°,BE的延长线与AC垂直相交于点F时,问:EF=CF成立吗?并说明理由.4.某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.(1)有月租费的收费方式是(填①或②),月租费是元;(2)分别求出①、②两种收费方式中y与自变量x之间的函数关系式;(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.5.如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?6.如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,点D为AC边上的动点,点D从点C出发,沿边CA向A 运动,当运动到点A时停止,若设点D运动的速度为每秒1个单位长度,当运动时间t为多少秒时,以点C、B、D为顶点的三角形是等腰三角形?7.如图,已知直线y=﹣2x+8与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式;(3)在(2)的条件下,坐标平面内是否存在点P(除点B外),使得△APC与△ABC全等?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由.山东初一初中数学期末考试答案及解析一、选择题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【答案】A【解析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【考点】轴对称图形.2.下列四个数中,无理数是()A.B.0.5C.0D.π【答案】D【解析】根据无理数的定义(无理数是指无限不循环小数)判断即可.解:A、不是无理数,故本选项错误;B、不是无理数,故本选项错误;C、不是无理数,故本选项错误;D、是无理数,故本选项正确;故选D.【考点】无理数.3.下列各点中,在第二象限的点是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)【答案】A【解析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.解:A、(﹣3,2)在第二象限,故本选项正确;B、(﹣3,﹣2)在第三象限,故本选项错误;C、(3,2)在第一象限,故本选项错误;D、(3,﹣2)在第四象限,故本选项错误.故选:A.【考点】点的坐标.4.若实数a>0,b<0,则函数y=ax+b的图象可能是()A.B.C.D.【解析】根据一次函数图象与系数的关系进行判断.解:一次函数y=ax+b,当a>0,图象经过第一、三象限;当b<0,图象与y轴的交点在x轴下方.故选C.【考点】一次函数图象与系数的关系.5.的平方根是()A.±4B.4C.±2D.2【答案】C【解析】根据算术平方根的意义,可得16的算术平方根,再根据平方根的意义,可得答案.解:=4,±=±2,故选:C.【考点】平方根;算术平方根.6.将平面直角坐标系内某图形上各个点的纵坐标都乘以﹣1,横坐标不变,所得图形与原图形的关系是()A.关于y轴对称B.关于x轴对称C.沿x轴向左平移1个单位长度D.沿y轴向下平移1个单位长度【答案】B【解析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.解:将平面直角坐标系内某图形上各个点的纵坐标都乘以﹣1,横坐标不变,所得图形与原图形的关系是关于x轴对称,故选:B.【考点】关于x轴、y轴对称的点的坐标.7.已知三角形的两边长分别为4cm和7cm,则此三角形的第三边长可能是()A.3cm B.11cm C.7cm D.15cm【答案】C【解析】已知三角形的两边长分别为4cm和7cm,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围.解:设第三边长为x,则由三角形三边关系定理得7﹣4<x<7+4,即3<x<11.因此,本题的第三边应满足3<x<11,把各项代入不等式符合的即为答案.3,11,15都不符合不等式3<x<11,只有7符合不等式,故答案为7cm.故选C.【考点】三角形三边关系.8.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm【答案】C【解析】首先根据折叠可得AD=BD,再由△ADC的周长为17cm可以得到AD+DC的长,利用等量代换可得BC 的长.解:根据折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm),∵AD=BD,∴BD+CD=12cm.【考点】翻折变换(折叠问题).9.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1B.C.D.2【答案】D【解析】根据勾股定理进行逐一计算即可.解:∵AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,∴AC===;AD===;AE===2.故选D.【考点】勾股定理.10.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB 的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.HL【答案】B【解析】结合图形根据三角形全等的判定方法解答.解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA).故选B.【考点】全等三角形的应用.11.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④BD=2CD.A.4 B.3 C.2 D.1【解析】①根据作图的过程可以判定AD是∠BAC的角平分线;②利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;③利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三合一”的性质可以证明点D在AB的中垂线上;④根据直角三角形的性质得出AD=2CD,再由线段垂直平分线的性质得出AD=BD,进而可得出结论.解:①根据作图的过程可知,AD是∠BAC的平分线.故①正确;②如图,∵在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=30°,∴∠3=90°﹣∠2=60°,即∠ADC=60°.故②正确;③∵∠1=∠B=30°,∴AD=BD,∴点D在AB的中垂线上.故③正确;∵∠2=30°,∴AD=2CD.∵点D在AB的中垂线上,∴AD=BD,∴BD=2CD.故④正确.故选A.【考点】作图—基本作图;角平分线的性质;线段垂直平分线的性质.12.如图是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有()A.2个B.3个C.4个D.5个【答案】C【解析】根据轴对称图形的概念求解.解:如图所示,有4个位置使之成为轴对称图形.故选C.【考点】利用轴对称设计图案.二、填空题1.若用初中数学课本上使用的科学计算器进行计算,则以下按键的结果为.【答案】﹣5【解析】根据开立方,开平方,可得答案.解:原式=4﹣9、﹣5,故答案为:﹣5.【考点】无理数.2.估算= (误差小于0.1).【答案】5.0或5.1.【解析】根据5<<5.1,可得答案.解:∵52=25,5.12=26.01,∴5<<5.1,∴估算到0.1约等于5.0或5.1,故答案为:5.0或5.1.【考点】估算无理数的大小.3.点P(x,y)是第一象限的一个动点,且满足x+y=10,点A(8,0).若△OPA的面积为S,则S关于x的函数解析式为.【答案】S=﹣4x+40.【解析】根据题意画出图形,进而利用三角形面积公式求出答案.解:如图所示:过点P作PF⊥x轴于点F,∵点P(x,y)是第一象限的一个动点,且满足x+y=10,∴y=10﹣x,∵点A(8,0),△OPA的面积为S,∴S关于x的函数解析式为:S=×8(10﹣x)=﹣4x+40.故答案为:S=﹣4x+40.【考点】坐标与图形性质.4.如图是某校的平面示意图,如果分别用(3,﹣1)、(﹣3,2)表示图中图书馆和实验楼的位置,那么校门的位置可表示为.【答案】(0,﹣2).【解析】先根据图书馆和实验楼的坐标画出直角坐标系,然后利用y轴上点的坐标特征写出校门的位置所在坐标.解:如图,校门的位置可表示为(0,﹣2).故答案为(0,﹣2).【考点】坐标确定位置.5.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要.【答案】10cm.【解析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.解:将长方体展开,如图,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,∴根据两点之间线段最短,AB′==10cm.【考点】平面展开-最短路径问题.6.如图,等边△ABC的边长为4,AD是BC边上的中线,M是AD上的动点,E是AC边上点,若AE=1,EM+CM的最小值为.【答案】【解析】要求EM+CM的最小值,需考虑通过作辅助线转化EM,CM的值,从而找出其最小值求解.解:连接BE,与AD交于点M.则BE就是EM+CM的最小值,过B作BN⊥AC于N,∵△ABC是等边三角形,∴AN=AC,∵等边△ABC的边长为4,∴AC=4,∵AE=1,∴NE=1,BN=AB=2,∴BE===,∴EM+CM的最小值为,故答案为:.【考点】轴对称-最短路线问题;等边三角形的性质.7.已知7﹣2a的平方根是±,2是b的算术平方根,求ab的立方根.【答案】2【解析】根据7﹣2a的平方根是±,2是b的算术平方根,可以求得a、b的值,从而可以求得ab的立方根.解:∵7﹣2a的平方根是±,2是b的算术平方根,∴,b=22=4,解得,a=2,b=4,∴,即ab的立方根是2.【考点】立方根;平方根;算术平方根.三、计算题计算:﹣()2+.【答案】﹣1.4【解析】原式利用二次根式性质,平方根及立方根定义计算即可得到结果.解:原式=2﹣0.4﹣3=﹣1.4.【考点】实数的运算.四、解答题1.在8×8的方格纸中,设小方格的边长为1.(1)请判断△ABC的形状并说明理由.(2)画出△ABC以CO所在直线为对称轴的对称图形△A′B′C′,并在所画图中标明字母.【答案】(1)直角三角形;(2)见解析【解析】(1)根据勾股定理求出各边的平方,进而可得出结论;(2)画出各点关于直线CO的对称点,再顺次连接即可.解:(1)∵AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB2+AC2=BC2,∴△ABC是直角三角形;(2)如图所示.【考点】作图-轴对称变换.2.已知一次函数y=mx﹣3m2+12,请按要求解答问题:(1)m为何值时,函数图象过原点,且y随x的增大而减小?(2)若函数图象平行于直线y=﹣x,求一次函数解析式;(3)若点(0,﹣15)在函数图象上,求m的值.【答案】(1)当m=﹣2时,函数图象过原点,且y随x的增大而减小;(2)一次函数解析式是y=﹣x+9;(3)m的值是±3.【解析】(1)根据函数图象过原点,且y随x的增大而减小,可知m<0,﹣3m2+12=0,该函数为正比例函数;(2)根据函数图象平行于直线y=﹣x,可知m=﹣1,从而可以得到一次函数解析式;(3)根据点(0,﹣15)在函数图象上,可以得到一次函数解析式,从而可以得到m的值.解:(1)∵一次函数y=mx﹣3m2+12,函数图象过原点,且y随x的增大而减小,∴解得,m=﹣2,即当m=﹣2时,函数图象过原点,且y随x的增大而减小;(2)∵一次函数y=mx﹣3m2+12,函数图象平行于直线y=﹣x,∴m=﹣1,∴﹣3m2+12=﹣3×(﹣1)2+12=9,∴一次函数解析式是y=﹣x+9;(3)∵一次函数y=mx﹣3m2+12,点(0,﹣15)在函数图象上,∴m×0﹣3m2+12=﹣15,解得,m=±3,即m 的值是±3.【考点】一次函数的性质.3.在△ABC 中,AB=AC ,点D 是BC 的中点,点E 是AD 上任意一点.(1)如图1,连接BE 、CE ,问:BE=CE 成立吗?并说明理由;(2)如图2,若∠BAC=45°,BE 的延长线与AC 垂直相交于点F 时,问:EF=CF 成立吗?并说明理由.【答案】(1)成立.(2)成立.见解析【解析】(1)成立,根据等腰三角形的性质就可以求出∠BAE=∠CAE ,再证明△ABE ≌△ACE 就可以得出结论;(2)成立,由BF ⊥AC ,∠BAC=45°就可以求出AF=BF ,在由条件证明△AEF ≌△BCF 就可以得出结论. 解:(1)成立.理由:∵AB=AC ,D 是BC 的中点,∴∠BAE=∠CAE .在△ABE 和△ACE 中,∴△ABE ≌△ACE ( SAS ) ∴BE=CE .(2)成立.理由:∵∠BAC=45°,BF ⊥AF . ∴△ABF 为等腰直角三角形 ∴AF=BF…由(1)知AD ⊥BC ,∴∠EAF=∠CBF在△AEF 和△BCF 中, .∴△AEF ≌△BCF ( AAS ), ∴EF=CF .【考点】全等三角形的判定与性质;等腰三角形的性质.4.某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x (分钟)与收费y (元)之间的函数关系如图所示.(1)有月租费的收费方式是 (填①或②),月租费是 元;(2)分别求出①、②两种收费方式中y 与自变量x 之间的函数关系式;(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.【答案】(1)①;30;(2)y 1=0.1x+30; y 2=0.2x ;(3)见解析【解析】(1)根据当通讯时间为零的时候的函数值可以得到哪种方式有月租,哪种方式没有,有多少;(2)根据图象经过的点的坐标设出函数的解析式,用待定系数法求函数的解析式即可;(3)求出当两种收费方式费用相同的时候自变量的值,以此值为界说明消费方式即可.解:(1)①;30;(2)设y 1=k 1x+30,y 2=k 2x ,由题意得:将(500,80),(500,100)分别代入即可:500k 1+30=80,∴k 1=0.1,500k 2=100,∴k 2=0.2故所求的解析式为y 1=0.1x+30; y 2=0.2x ;(3)当通讯时间相同时y 1=y 2,得0.2x=0.1x+30,解得x=300;当x=300时,y=60.故由图可知当通话时间在300分钟内,选择通话方式②实惠;当通话时间超过300分钟时,选择通话方式①实惠;当通话时间在300分钟时,选择通话方式①、②一样实惠.【考点】一次函数的应用.5.如图,某地方政府决定在相距50km 的A 、B 两站之间的公路旁E 点,修建一个土特产加工基地,且使C 、D 两村到E 点的距离相等,已知DA ⊥AB 于A ,CB ⊥AB 于B ,DA=30km ,CB=20km ,那么基地E 应建在离A 站多少千米的地方?【答案】基地E 应建在离A 站多少20千米的地方.【解析】由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE 和直角三角形CBE 中利用斜边相等两次利用勾股定理得到AD 2+AE 2=BE 2+BC 2,设AE 为x ,则BE=10﹣x ,将DA=8,CB=2代入关系式即可求得.解:设基地E 应建在离A 站x 千米的地方.则BE=(50﹣x )千米在Rt △ADE 中,根据勾股定理得:AD 2+AE 2=DE 2∴302+x 2=DE 2…(3分)在Rt △CBE 中,根据勾股定理得:CB 2+BE 2=CE 2∴202+(50﹣x )2=CE 2又∵C 、D 两村到E 点的距离相等.∴DE=CE ∴DE 2=CE 2 ∴302+x 2=202+(50﹣x )2解得x=20∴基地E 应建在离A 站多少20千米的地方.【考点】勾股定理的应用.6.如图,在Rt △ABC 中,∠ABC=90°,AB=4,BC=3,点D 为AC 边上的动点,点D 从点C 出发,沿边CA 向A 运动,当运动到点A 时停止,若设点D 运动的速度为每秒1个单位长度,当运动时间t 为多少秒时,以点C 、B 、D 为顶点的三角形是等腰三角形?【答案】当运动时间t 为2.5或3或3.6秒时,以点C 、B 、D 为顶点的三角形是等腰三角形.【解析】由勾股定理求出AC ,分三种情况:①CD=BD 时,∠C=∠DBC ,证出BD=AD ,得出CD=AD=AC=2.5,即可得出结果;②当CD=BC 时,CD=3,即可得出结果;③当BD=BC 时,过点B 作BF ⊥AC 于F ,则CF=DF ,由三角形的面积求出BF ,由勾股定理求出CF ,得出CD ,即可得出结果.解:∵∠ABC=90°,AB=4,BC=3,∴AC==5,分三种情况:①CD=BD 时,∠C=∠DBC , ∵∠C+∠A=∠DBC+∠DBA=90°, ∴∠A=∠DBA , ∴BD=AD ,∴CD=AD=AC=2.5,即t=2.5;②当CD=BC 时,CD=3,即t=3; ③当BD=BC 时,过点B 作BF ⊥AC 于F ,如图所示:则CF=DF ,△ABC 的面积=AB•BC=AC•BF ,∴BF==2.4,∴CF===1.8,∴CD=3.6,即t=3.6.综上所述:当运动时间t为2.5或3或3.6秒时,以点C、B、D为顶点的三角形是等腰三角形.【考点】勾股定理;等腰三角形的判定.7.如图,已知直线y=﹣2x+8与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式;(3)在(2)的条件下,坐标平面内是否存在点P(除点B外),使得△APC与△ABC全等?若存在,直接写出符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)A(4,0),C(0,8);(2)y=﹣x+8;(3)满足条件的点P有三个,分别为:(0,0),(,),(﹣,).【解析】(1)已知直线y=﹣2x+8与x轴、y轴分别交于点A、C,即可求得A和C的坐标;(2)根据题意可知△ACD是等腰三角形,算出AD长即可求得D点坐标,最后即可求出CD的解析式;(3)将点P在不同象限进行分类,根据全等三角形的判定方法找出所有全等三角形,找出符合题意的点P的坐标.解:(1)令y=0,则﹣2x+8=0,解得x=4,∴A(4,0),令x=0,则y=8,∴C(0,8);(2)由折叠可知:CD=AD,设AD=x,则CD=x,BD=8﹣x,由题意得,(8﹣x)2+42=x2,解得x=5,此时AD=5,∴D(4,5),设直线CD为y=kx+8,把D(4,5)代入得5=4k+8,解得k=﹣,∴直线CD的解析式为y=﹣x+8;(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图1,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=5,AP=BC=4,PD=BD=8﹣5=3,由AD×PQ=DP×AP得:5PQ=3×4,∴PQ=,∴x=4+=,把x=代入y=﹣x+8得y=,P此时P(,)③当点P在第二象限时,如图2,同理可求得:PQ=,在RT△PCQ中,CQ===,∴OQ=8﹣=,此时P(﹣,),综上,满足条件的点P有三个,分别为:(0,0),(,),(﹣,).【考点】一次函数综合题.。
初一数学期末考试试题及答案一、选择题1. 下列哪个数是整数?A) √2 B) 3.14 C) 0.5 D) -1.5答案:D) -1.52. 计算:2 + 3 × 4 - 5 ÷ 1A) 5 B) 10 C) 13 D) 19答案:C) 133. 已知一个球体的半径为3cm,求其体积。
A) 9π cm³ B) 12πcm³ C) 18π cm³ D) 27π cm³答案:A) 9π cm³4. 下列哪个是负数?A) 8 B) -5 C) 0 D) 2/3答案:B) -55. 已知a = 3,b = 2,求 a² + b² = ?A) 5 B) 7 C) 10 D) 13答案:D) 13二、填空题1. 已知一个长方形的长为15 cm,宽为8 cm,求其面积为 ______ cm²。
答案:1202. 已知一个圆的直径为12 cm,求其半径为 ______ cm。
答案:63. 两个数相加得28,较大的数是20,则较小的数是 ______。
答案:84. 已知一个正方形的边长为5 cm,求其周长为 ______ cm。
答案:205. 用下划线填空,使得等式成立:13 × 7 = ______ ÷ 91答案:1001三、简答题1. 解方程:2x + 5 = 15解答:首先,我们将方程转化为2x = 15 - 5得到 2x = 10然后,我们将2x除以2,得到 x = 5所以方程的解为:x = 52. 用正方形面积的公式计算一个正方形的边长为6 cm的面积。
解答:正方形的面积公式为:面积 = 边长 ×边长将边长6 cm代入公式,得到:面积 = 6 cm × 6 cm = 36 cm²所以正方形的面积为36 cm²。
四、应用题1. 小明比小华身高多10 cm,小华的身高是130 cm,求小明的身高。
2023年人教版七年级数学下册期末考试卷带答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( )A .10B .52C .20D .322.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .3.8的相反数的立方根是( ) A .2B .12C .﹣2D .12-4.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩5.如图,按各组角的位置判断错误的是( )A .∠1与∠4是同旁内角B .∠3与∠4是内错角C .∠5与∠6是同旁内角D .∠2与∠5是同位角6.下列二次根式中,最简二次根式的是( ) A 15B 0.5C 5D 507.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图,已知AE是ΔABC的角平分线,AD是BC边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE的大小是()A.5°B.13°C.15°D.20°10.已知三条不同的射线OA、OB、OC有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB,其中能确定OC平分∠AOB的有()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是.2.在数轴上表示实数a2(5)a-|a-2|的结果为____________.3.12与最简二次根式51a +是同类二次根式,则a=________. 4.若216x mx ++是一个完全平方式,则m =________5.如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C岛看A ,B 两岛的视角∠ACB =________.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程: (1)x -12(3x -2)=2(5-x ) (2)24x +-1=236x -2.甲乙两人同时解方程85mx ny mx ny +=-⎧⎨-=⎩①②由于甲看错了方程①,得到的解是42x y =⎧⎨=⎩,乙看错了方程中②,得到的解是25x y =⎧⎨=⎩,试求正确m ,n 的值.3.如图,直线AB ,CD 相交于点O .OF 平分∠AOE ,OF ⊥CD 于点O . (1)请直接写出图中所有与∠AOC 相等的角:______. (2)若∠AOD =150°,求∠AOE 的度数.4.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.5.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.6.小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:(1)小林以折扣价购买商品A、B是第次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、C6、C7、A8、D9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、3.3、24、±85、70°6、5三、解答题(本大题共6小题,共72分)1、(1)x=6(2 x=02、74n=-,38m=.3、(1)∠BOD,∠DOE;(2)∠AOE=120°.4、证明略.5、(1)150,(2)36°,(3)240.6、(1)三;(2)商品A的标价为90元,商品B的标价为120元;(3)6折.。
20232024学年全国初一上数学人教版期末考试试卷一、选择题(每题2分,共20分)1. 下列数中,不是有理数的是()A. 3/4B. 2C. √5D. 0.52. 下列式子中,正确的是()A. 3 + 2 = 5B. 3 2 = 5C. 3 × 2 = 5D. 3 ÷ 2 = 53. 下列图形中,不是直线的是()A. 直线ABB. 线段ABC. 射线ABD. 曲线AB4. 下列式子中,不是同类项的是()A. 3x + 2yB. 4x 2yC. 3x + 2xD. 4y 2y5. 下列式子中,正确的是()A. 2^3 = 8B. 2^4 = 16C. 3^2 = 9D. 3^3 = 276. 下列式子中,正确的是()A. 1/2 + 1/3 = 5/6B. 1/2 1/3 = 1/6C. 1/2 × 1/3 = 1/6D. 1/2 ÷ 1/3 = 3/27. 下列式子中,正确的是()A. (2 + 3) × 4 = 20B. 2 + 3 × 4= 20C. 2 × (3 +4) = 20 D. 2 × 3 + 4 = 208. 下列式子中,正确的是()A. 2^3 × 2^4 = 2^7B. 2^3 ÷ 2^4 = 2^1C. 2^3 + 2^4 = 2^7D. 2^3 2^4 = 2^19. 下列式子中,正确的是()A. 3x + 2y = 5B. 3x 2y = 5C. 3x × 2y = 5D. 3x ÷ 2y = 510. 下列式子中,正确的是()A. (x + y)^2 = x^2 + 2xy + y^2B. (x y)^2 = x^2 2xy + y^2C. (x + y)^2 = x^2 2xy + y^2D. (x y)^2 = x^2 + 2xy + y^2二、填空题(每题2分,共20分)1. 下列数中,不是有理数的是()A. 3/4B. 2C. √5D. 0.52. 下列式子中,正确的是()A. 3 + 2 = 5B. 3 2 = 5C. 3 × 2 = 5D. 3 ÷ 2 = 53. 下列图形中,不是直线的是()A. 直线ABB. 线段ABC. 射线ABD. 曲线AB4. 下列式子中,不是同类项的是()A. 3x + 2yB. 4x 2yC. 3x + 2xD. 4y 2y5. 下列式子中,正确的是()A. 2^3 = 8B. 2^4 = 16C. 3^2 = 9D. 3^3 = 276. 下列式子中,正确的是()A. 1/2 + 1/3 = 5/6B. 1/2 1/3 = 1/6C. 1/2 × 1/3 = 1/6D. 1/2 ÷ 1/3 = 3/27. 下列式子中,正确的是()A. (2 + 3) × 4 = 20B. 2 + 3 × 4 = 20C. 2 × (3 +4) = 20 D. 2 × 3 + 4 = 208. 下列式子中,正确的是()A. 2^3 × 2^4 = 2^7B. 2^3 ÷ 2^4 = 2^1C. 2^3 + 2^4 = 2^7D. 2^3 2^4 = 2^19. 下列式子中,正确的是()A. 3x + 2y = 5B. 3x 2y = 5C. 3x × 2y = 5D. 3x ÷ 2y = 510. 下列式子中,正确的是()A. (x + y)^2 = x^2 + 2xy + y^2B. (x y)^2 = x^2 2xy + y^2C. (x + y)^2 = x^2 2xy + y^2D. (x y)^2 = x^2 + 2xy + y^2三、解答题(每题10分,共30分)1. 解方程:2x + 3 = 72. 解不等式:3x 2 < 53. 求解:2^3 × 2^4 ÷ 2^2四、应用题(每题10分,共20分)1. 小明有10元钱,他买了一支铅笔和一本笔记本,铅笔的价格是2元,笔记本的价格是5元。
第2题图nmba70°70°110°第3题图CBA2112第六题图DCB A 333222111DCBA 60060060060040040040040020020020020000sssst t tt DC B A FED CBA ED CBA 七年级数学(下)期末考试卷姓名:一、填空题(把你认为正确的答案填入横线上,每小题3分,共30分)1、计算)1)(1(+-x x = 。
2、如图,互相平行的直线是 。
3、如图,把△ABC 的一角折叠,若∠1+∠2 =120°,则∠A = 。
4、如图,转动的转盘停止转动后,指针指向黑色区域的概率是 。
|5、汽车司机在观后镜中看到后面一辆汽车的车牌号为 ,则这辆车的实际牌照是 。
6、如图,∠1 =∠2 ,若△ABC ≌△DCB ,则添加的条件可以是 。
7、将一个正△的纸片剪成4个全等的小正△,再将其中的一个按同样的方法剪成4个更小的正△,…如此下去,结果如下表:所 剪 次 数1 2 3 4 … n@正三角形个数471013…an则=na 。
8、已知412+-kx x 是一个完全平方式,那么k 的值为 。
9、近似数万精确到 位,有 位有效数字,用科学计数法表示为 。
%10、两边都平行的两个角,其中一个角的度数是另一个角的3倍少20°,这两个角的度数分别是 。
二、选择题(把你认为正确的答案的序号填入刮号内,每小题3分,共24分)11、下列各式计算正确的是 ( )A . a 2+ a 2=a 4B. 211aa a =÷- C. 226)3(x x = D. 222)(y x y x +=+12、在“妙手推推推”游戏中,主持人出示了一个9位数 ,让参加者猜商品价格,被猜的价格是一个4位数,也就是这个9位数从左到右连在一起的某4个数字,如果参与者不知道商品的价格,从这些连在一起的所有4位数中,猜中任猜一个,他猜中该商品的价格的概率是 ( )A.91B. 61C. 51D. 31 13、一列火车由甲市驶往相距600㎞的乙市,火车的速度是200㎞/时,火车离乙市的距离s (单位:㎞)随行驶时间t (单位:小时) 变化的关系用图表示正确的是 ( )#14、如左图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是 ( )15、教室的面积约为60m ²,它的百万分之一相当于 ( )A. 小拇指指甲盖的大小B. 数学书封面的大小 <C. 课桌面的大小D. 手掌心的大小16、如右图,AB ∥CD , ∠BED=110°,BF 平分∠ABE,DF 平分∠CDE,则∠BFD= ( ) A. 110° B. 115° ° D. 130° 17、平面上4条直线两两相交,交点的个数是 ( )A. 1个或4个B. 3个或4个C. 1个、4个或6个D. 1个、3个、4个或6个18、如图,点E 是BC 的中点,AB ⊥BC , DC ⊥BC ,AE 平分∠BAD ,下列结论: ① ∠A E D =90° ② ∠A D E = ∠ C D E ③ D E = B E ④ AD =AB +CD ,四个结论中成立的是 ( )876954521乙甲BA OEDCBA/时A. ① ② ④B. ① ② ③(C. ② ③ ④D. ① ③三、解答题(共66分)19、计算(每小题4分,共12分)(1)201220112)23()32()31(-⨯--- (2)的值求22,10,3b a ab b a +==-(3)〔225)2)(()2(y y x y x y x -+--+〕÷()2y|20、(6分) 某地区现有果树24000棵,计划今后每年栽果树3000棵。
(1)试用含年数x (年)的式子表示果树总棵数y (棵);(2)预计到第5年该地区有多少棵果树,21、(8分)小河的同旁有甲、乙两个村庄(左图),现计划在河岸AB 上建一个水泵站,向两村供水,用以解决村民生活用水问题。
(1) 如果要求水泵站到甲、乙两村庄的距离相等,水泵站M 应建在河岸AB 上的何处(2)如果要求建造水泵站使用建材最省,水泵站M 又应建在河岸AB 上的何处22、(8分)超市举行有奖促销活动:凡一次性购物满300元者即可获得'一次摇奖机会。
摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、 40元。
一次性购物满300元者,如果不摇奖可返还现金15元。
(1)摇奖一次,获一等奖的概率是多少(2)老李一次性购物满了300元,他是参与摇奖划算还是领15元现金划算,请你帮他算算。
:23、(8分)如图,已知△ABC 中,AB = AC,点D 、E 分别在AB 、AC 上,且BD = CE,如何说明OB=OC 呢解:∵AB=AC ∴∠A B C =∠A C B ( )又∵BD = CE ( ) BC = CB ( )∴△BCD ≌△CBE ( )∴∠( ) = ∠( ) ∴OB = OC ( )。
24、(8分)下表是1990年~2005年我国农村居民人均纯收入情况的统计表,根据表格数据,回答下(1) 把上表转换成象形统计图(2)你能从图中获取哪些信息(写2条)?25、(8分)星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图像回答下列问题。
(1)玲玲到达离家最远的地方是什么时间离家多远(2)她何时开始第一次休息休息了多长时间 (3)她骑车速度最快是在什么时候车速多少 (4)玲玲全程骑车的平均速度是多少{26、(10分)把两个含有45°角的直角三角板如图放置,点D 在AC 上连接AE 、BD ,试判断AE与BD 的关系,并说明理由。
.一、选择题(每小题3分,共24分)1.数学课上老师给出下面的数据,( )是精确的 A 、2002年美国在阿富汗的战争每月耗费10亿美元 B 、地球上煤储量为5万亿吨以上 C 、人的大脑有1×1010个细胞 D 、七年级某班有51个人2.如图,圆盘被等分成8个扇形,转盘上的指针可以自由地转动,如果指针不会停留在分界线上,那么指针停留在偶数区域的概率是( ) A 、81 B 、41 C 、21 D 、1¥3.如图,∠1=∠2,由此可得哪两条直线平行( )A 、AB ∥CD B 、AD ∥BC C 、A 和B 都对D 、无法判断4.下面四个图形中∠1与∠2是对顶角的图形有( )个A 、0B 、1C 、2D 、35.下列等式成立的是()A 、ab b a b a 4)()(22+-=+B 、22)()(y x y x +-=--C 、532)()()(b a a b b a -=--D 、2))(())((z y x y x z y x z y x --+=+--+》6.近似数003070.0-用科学记数法表示,应该是( )A 、31007.3-⨯- B 、310070.3-⨯- C 、3107.3-⨯- D 、41007.3-⨯-7.能铺滿地面的正多边形的是( )A 、正五边形B 、正六边形C 、正七边形D 、正八边形8.如图,在方格纸中有四个图形<1>、<2>、<3>、<4>,其中面积相等的图形是( )A 、 <2>和<3>B 、 <1>和<2>C 、 <2>和<4>D 、 <1>和<4>二、填空题(每小题4分,共32分)9.单项式bx a 27-的系数是_________,次数是________/10.三角形的三边长分别为2, 5, x , 若x 为奇数,则该三角形的周长为11.在2002年世界杯足球预选赛亚洲“十强”赛中,规定胜一场得3分,平一场得1分,负一场得0分;中国队共赛8场获得19分,那么中国队胜 场。
12.一组数据2,7,5,6,4,6,8,10;那么它的众数是平均数是 。
13.某商店销售商品时,先按进价的150%标价,后为吸引顾客,再打八折销售,此时每件仍可获利100元,那么该商品的进价是 。
14.袋子里装有3个红球,5个白球,2个黑球,每个球除颜色外其余都相同,随机取出一个球,取到红球的可能性是 。
15.线段、角、三角形、正方形、半圆这些图形中,一定是轴对称图形 的是 。
16.如图,AD ⊥BC 于D ,那么以AD 为高且为一边 ~的三角形有 。
三、计算题(每小题6分,共24分)17.)1)(1()2(2-+-+x x x18.解方程:-2 x = 2#19.完成下列推理说明:如图,已知AB ∥DE ,且有∠1=∠2,∠3=∠4, ∵AB ∥DE (已知)∴∠1=∠3( ) ∵∠1=∠2,∠3=∠4(已知)∴∠2=∠4( ) ∴BC ∥EF (_________________________)、20.如图,已知AB ∥CD ,∠A =∠C ,若∠ADB =65°,求∠DBC 的度数?四、变量分析题(10分)甲骑自行车、乙骑摩托车沿相同路线 由A 地到B 地,行驶过程中路程与时间 的函数关系的图象如图所示,根据图象 解答下列问题:(1) 谁先出发先出发多少时间% 谁先到达终点先到多少时间(2)分别求出甲、乙两人的行驶速度五、应用题(10分,用心想一想,你一定是生活中的智者)“五一”节期间,某校由4名教师和若干名学生组成的旅游团到A 地旅游,甲、乙两旅行社的服务质量相同,且组织到A 地旅游的价格都是每人300元;该单位在联系时,甲旅行社的收费标准是:如果买4张全票,则其余人按七五折优惠;乙旅行社的收费标准是:5人以上(含5人)可购买团体票(团体票是按原价的八折优惠)。
(1) 【 (2) 问当多少名学生参加旅游时,无论选择哪家旅行社的费用都一样 (3) 若有10名学生参加旅游,应选择哪家旅行社更省针钱、…】七年级数学(下)期末考试卷答案一、二、"三、19、 , 29,y x 2123+ 20、x y 300024000+=,5=y x 时, 21、如图:22、P 一等奖=161,60×161+50×81+40×41=20 20﹥15 ∴选择摇奖。
23、等边对等角 、 已知 、 SAS 、 ∠ DCB 、 等角对等边。
24、图略 ,(1)农村居民纯收入不断增加,特别是进入2000年后增幅更大; (2)2005年农村人均纯收入达3865元;(3)2005年农村人均纯收入是1990年的5倍多;(供参考).25、(1)12点,30千米 (2)10:30 , 30 分钟 (3)13~15点,15千米/小时(4)10千米/小时26、延长BD 交AE 于F ,证△BCD ≌△ACE ,可得BD=AE ,BD ⊥AE .参考答案一、DCBAABBB二、9、-7, 4 ; 10、15 ; 11、6; 12、6,6;13、750元; 14、 ; 15、线段、正方形、半圆; 16、△ABD 、△ADE 、△ACD 。