1.2 喷管及扩压管
- 格式:pdf
- 大小:412.12 KB
- 文档页数:20
欢迎共阅《工程热力学》复习题汇总一填空题1.热力系统:忽略家用电热水器的表面散热,取正在加热不在使用的电热水器为控制体,(不包括电加热器),这是系统,把电加热器包括在研究对分装有许多隔板,每抽去一块隔板,让气体先恢复平衡再抽去下一块,问此过程为,理由为。
7.闭口系统热力学第一定律表达式:,稳流开口系统的热力学第一定律表达式为:;开口系统工质跟外界交换的技术功包括,可逆过程技术功的计算式为:;8 闭口容器内的气体从热源吸收了100kJ的热量,并对外膨胀作功消耗了40kJ,其中克服摩擦功5kJ,假设摩擦产生的耗散热全部用于增加工质的热力学能,根据闭口系统能量守恒方程式,系统热力学能增加量为。
工临界流速临界声速。
14.活塞式压缩机中,因的存在,使产气量降低,但理论上对单位质量气体耗功影响。
15.活塞式内燃机有三个循环特征性能参数,分别为。
16.活塞式内燃机循环过程与燃气轮机循环过程的主要区别可概括为。
17.刚性绝热气缸-活塞系统,B侧设有电热丝,判断下列4种情况分别是什么热A 0.06 MPaB 0.04MPaC 0.14 Mpa3.理想气体在某一过程中吸入3100kJ的热量,同时内能增加了150kJ,该过程是():A 膨胀过程,B 压缩过程C定容过程4.理想气体在某过程中吸入100kJ的热量,对外输出100kJ的功,此过程是()。
A压缩过程 B 绝热过程 C 定温过程5.一绝热刚体容器用隔板分成两部分,左边盛有高压理想气体,右边为真空,10.理想气体经某可逆过程后,其Δu和Δh的变化量为0,此过程为();若Δs=0,则此过程为();如w t=0,过程为();若w=0,过程为()。
A定容过程,B定压过程,C定温过程,D绝热过程11.某理想气体经历了一个内能不变的热力过程,则该过程中工质的焓变()A 大于零,B 等于零C小于零12. 单位千克理想气体可逆绝热过程的技术功等于A-Δh B Δu C Δh D -Δu13. 对于理想气体,下列各说法是否正确()17.有位发明家声称他设计了一种机器,当这台机器完成一个循环时,可以从单一热源吸收1000kJ的热,并输出1200kJ的功,这台热机()。
实验二喷管特性实验一、实验目的及要求1、验证并进一步加深对喷管中气流基本规律的理解,牢固树立临界压力、临界流速和最大流量等喷管临界参数的概念。
2、比较熟练地掌握用热工仪表测量压力(负压)、压差及流量的方法。
3、重要概念1的理解:应明确在渐缩喷管中,其出口处的压力不可能低于临界压力,流速不可能高于音速,流量不可能大于最大流量。
4、重要概念2的理解:应明确在缩放喷管中,其出口处的压力可以低于临界压力,流速可高于音速,而流量不可能大于最大流量。
5、应对喷管中气流的实际复杂过程有所了解,能定性解释激波产生的原因。
二、实验装置整个实验装置包括实验台、真空泵。
实验台由进气管、孔板流量计、喷管、测压探针真空表及其移动机构、调节图1喷管实验台1.进气管2. 空气吸气口3. 孔板流量计4. U形管压差计5. 喷管6.三轮支架7. 测压探压针 8.可移动真空表 9. 手轮螺杆机构 10. 背压真空表 11. 背压用调节阀12. 真空罐13. 软管接头进气管(1)为ф57×3.5无缝钢管,内径ф50。
.空气吸气口(2)进入进气管,流过孔板流量计(3)。
孔板孔径ф7,采用角接环室取压。
流量的大小可从U形管压差计(4)读出。
喷管(5)用有机玻璃制成。
配给渐缩喷管和缩放喷管各一只,见图2、3。
根据实验的要求,可松开夹持法兰上的固紧螺丝,向左推开进气管的三轮支架(6),更换所需的喷管。
喷管各截面上的压力是由插入喷管内的测压探压针(7)(外径ф1.2)连至“可移动真空表”(8)测得,它们的移动通过手轮~螺杆机构(9)实现。
由于喷管是透明的,测压探针上的测压孔(ф0.5)在喷管内的位置可从喷管外部看出,也可从装在“可移动真空表”下方的针在“喷管轴向坐标板”(在图中未画出)上所指的位置来确定。
喷管的排气管上还装有“背压真空表”背压用调节阀(11)调节。
真空罐(12)直径ф400,体积0.118m 3。
起稳定压的作用。
罐的底部有排污口,供必要时排除积水和污物之用。
第七章气体及蒸汽的流动思考、判断、证明、简答题(1) 流动过程中摩擦是不可避免的,研究定熵流动有何实际意义和理论价值。
解:实际流动过程都是不可逆的,势差、摩擦等不可逆因素都是不可避免的,而且不可逆因素的种类及程度是多种多样的。
因此,不可能直接从不可逆的实际流动过程的研究中,建立具有普遍意义的基本关系式。
流动问题的热力学分析方法,是暂且不考虑摩擦等不可逆因素,在完全可逆的理想条件下,建立具有普遍意义的基本关系式,然后,再根据实际工况加以修正。
“可逆”是纯理想化的假定条件。
采用可逆的假定,虽然是近似的,但也是合理的。
这不仅使应用数学工具来分析流动过程成为可能,而且,其分析结论为比较实际流动过程的完善程度,建立了客观的标准,具有重要的理论意义和实用价值。
(2) 喷管及扩压管的基本特征是什么?解:不能单从变截面管道的外形,即不能单从截面变化规律,来判断是喷管还是扩压管。
一个变截面管道,究竟是喷管还是扩压管,是根据气流在管道中的流速及状态参数的变化规律来定义的。
使流体压力下降、流速提高的管道称为喷管;反之,使流体压力升高、流速降低的管道称为扩压管。
对于喷管必定满足下列条件:d c>0;d p<0;d v>0;d h<0对于扩压管则必定满足:d c<0;d p>0;d v<0;d h>0(3) 在变截面管道中的定熵流动,判断d v/v与d c/c究竟是哪个大的决定因素是什么?解:连续方程的微分关系式为d A/A=d v/v -d c/c上式表明通道截面的相对变化率必须等于比容相对变化率与流速相对变化率之差值,否则就会破坏流动的连续性。
例如,当d v/v>d c/c时,气体的膨胀速率大于气流速度的增长率,这时截面积必须增大,应当有d A/A>0,否则就会发生气流堵塞的现象。
同理,当d v/v<d c/c时,必须有d A/A<0,否则就会出现断流的现象。
显然,如果破坏了流动的连续性,也就破坏了流动的稳定性。
所以,稳定流动必须满足连续方程。
第9章 气体和蒸汽的流动9.1基本要求1.深入理解喷管和扩压管流动中的基本关系式和滞止参数的物理意义,熟练运用热力学理论分析亚音速、超音速和临界流动的特点。
2.对于工质无论是理想气体或蒸汽,都要熟练掌握渐缩、渐缩渐扩喷管的选型和出口参数、流量等的计算。
理解扩压管的流动特点,会进行热力参数的计算。
3.能应用有摩擦流动计算公式,进行喷管的热力计算。
4.熟练掌握绝热节流的特性,参数的变化规律。
9.2 本章难点1239.3 例题例1:汽经节流0.1bar 多少?解气的h -s h 1s 1查得t 2=440℃; s 2=7.49kJ/(kg ·K) 因此,节流前后熵变量为Δs =s 2-s 1=7.94-7.1=0.84kJ/(kg ·K)Δs >0,可见绝热节流过程是个不可逆过程。
若节流流汽定熵膨胀至0.1bar ,由1h '=2250kJ/kg ,可作技术功为 kJ/kg 11002250335011=-='-h h若节流后的蒸汽定熵膨胀至相同压力0.1bar ,由图查得2h '=2512kJ/kg ,可作技术功为图9.22(211010c T T c h h p =-=-)K111587.11141000089.12180100222110≈=⨯⨯+=+=pc c T T 应用等熵过程参数间的关系式得:11010-⎪⎪⎭⎫⎝⎛=k k T T p pbar 0525.1110011151136.136.111010=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛=--k kT T p p喷管出口状态参数也可根据等熵过程参数之间的关系求得:11010-⎪⎪⎭⎫⎝⎛=k k T T p p即:136.136.121115343.00525.1-⎪⎪⎭⎫⎝⎛=T即喷管出口截面处气体的温度为828.67K 。
22220c h h +=m/s67.789)67.8281115(089.172.44)(72.44)(10002)(100022020202=-=-=-⨯⨯=-⨯=T T c T T c h h c p p因为喷管效率η=0.8822288.0c c ⨯='所以 m/s 740)67.789(88.022=⨯='c 喷管出口处气体的温度 )(2112T T T T --='η=861K 喷管出口处气体的密度: 由R =287J/kg ·K139.086128710343.052=⨯⨯='ρkg/m 3由质量流量 222v f c m = 出口截面积:438.0740139.0452=⨯=f m 2喉部截面处的温度(候部的参数为临界参数):1010)12(,)12(--+=+=k kc k kc k p p k p p∴ 5632.0)136.12(0525.1136.136.1=+=-c p bar 847.0)0525.15632.0()(36.136.0100===-k k c C p p T T K T T 8.944847.01115847.000=⨯=⨯=喉部截面处的密度:8.944287105632.05000⨯⨯==RT p ρ = 0.2077 kg/m 2喉部截面处的流速:)8.9441115(089.172.44)(72.4400-=-=C p T T c c=608.8 m/s 流量系数 c c =0.96200370.08.6082077.096.045m c c m f c f c mc d c c c d=⨯⨯===ρρ求得喷管喉部截面321.0=c f m 2例3 空气流经一断面为0.1m 2的等截面管道,且在点1处测得c 1=100m/s 、p 1=1.5bar 、t 1=100℃;在点2测得p 2=1.4bar 。
“热工基础”课程教学大纲课程编号:学时:48 (理论学时:44 实验学时:4 课外学时:58)学分:2.5适用对象:机械工程与自动化、材料科学与工程、航空航天和工程力学等专业本科生先修课程:高等数学,大学物理一、课程性质和目的(100字左右)性质:基础理论目的:通过本课程学习,使学生掌握包括热能与机械能相互转换基本理论和热量传递规律两方面的热工理论知识,获得有关热科学的基本分析计算训练和解决有关热工工程问题的基本能力。
同时还应为学生对热学科的建模和问题的处理奠定基础。
二、课程内容简介(200字左右)热工基础是研究热现象的一门技术基础课程,主要讲授热能与机械能相互转换基本理论和热量传递规律,以提高热能利用完善程度的一门技术基础课,是机械学科、材料学科、航空航天和建筑等学科相关专业的一门必修课程。
本课程为学生学习有关专业课程和将来解决热工领域的工程技术问题奠定坚实的基础。
三、教学基本要求1.掌握热能和机械能相互转换的基本规律(第一、第二定律),以解决工程实际中有关热能和机械能相互转换的能量分析计算和不可逆分析计算;2.掌握包括理想气体、蒸气和湿空气在内的常用工质的物性特点,能熟练应用常用工质的物性公式和图表进行物性计算;3.掌握不同工质热力过程和循环的基本分析方法,能对工质的热力过程和循环进行计算,具有解决实际工程中有关热能转换的能量分析和计算能力;4.掌握包括导热、对流换热、辐射换热三种热量传递方式的机理,进而掌握热量传递的基本规律和基本理论;5.能对较简单的工程传热问题进行分析和计算,具有解决较简单的传热问题,尤其解决是与力学分析有关的传热问题的能力。
四、教学内容及安排0绪论(能源概述)1、内容:能源和热能利用的基本知识:本学科研究对象,主要研究内容和方法。
2、要求:使学生掌握本学科的研究概况;了解能源和热能利用的概况,能源利用和社会、经济可持续发展的关系,节能的重大意义;正确认识、理解本课程与专业的关系。
喷管和扩压管教学设计一、设计目标本教学设计的目标是通过学习和实践,使学生掌握喷管和扩压管的基本原理、使用方法和安全注意事项。
通过本课程的学习,学生将能够正确使用喷管和扩压管,在农业、园艺、灌溉等领域中提高效率和效果。
二、教学内容1. 喷管和扩压管的定义和特点2. 喷管和扩压管的分类和材料3. 喷管和扩压管的工作原理4. 喷管和扩压管的安装和调试5. 喷管和扩压管的常见问题解决方法6. 喷管和扩压管的维护和保养三、教学步骤1. 导入环节介绍喷管和扩压管的应用领域和重要性,激发学生对本课程的兴趣。
2. 理论讲解通过课件和实物展示,详细讲解喷管和扩压管的定义、特点、分类和材料,以及工作原理。
引导学生正确理解和记忆相关概念和知识。
3. 实践操作给每个学生配备喷管和扩压管实物或模型,让他们实际操作和体验其中的原理。
教师可以演示操作步骤,然后让学生逐个操作,纠正错误并给予指导。
4. 问题解答鼓励学生提问喷管和扩压管使用中遇到的问题,并帮助他们解决。
教师可以提供常见问题的解决方法和技巧,培养学生独立解决问题的能力。
5. 总结复习结合实例,总结喷管和扩压管的重要性和使用注意事项。
强调学生在使用过程中要遵守操作规程和安全操作,保护自己和他人的安全。
四、教学评估1. 考核测试设计一份笔试或实际操作测试,以检验学生对喷管和扩压管的理解和掌握程度。
2. 作业评估布置一些课后作业,如编写使用方法、操作步骤等,检验学生对喷管和扩压管的理解和应用能力。
3. 实践应用让学生在实际场景中应用所学知识,通过观察和评估他们的表现,评估他们在实际操作中的技能和能力。
五、教学资源1. 喷管和扩压管的实物或模型2. 课件和教材3. 喷管和扩压管使用手册和说明书六、教学亮点1. 结合实物展示和实践操作,加深学生对喷管和扩压管的理解和记忆。
2. 引导学生在实际操作中发现和解决问题,培养学生的动手能力和解决问题的能力。
3. 结合实际应用场景,增强学生对喷管和扩压管的实际运用能力。
航空发动机的喷管工作原理及分类摘要:本文对喷管的作用及其原理进行了分析,除了比较常见的拉瓦尔喷管和亚声速喷管,本文还着重分析介绍了其他形式的喷管。
例如降噪喷管、推力矢量喷管、引射喷管等。
关键词:拉瓦尔喷管;降噪喷管;引射喷管喷管是涡喷和涡扇发动机排气系统的主要部件,其功用有两个方面,一是使高温、高压燃气的总焓有效地转化为燃气的动能;二是根据需要来改变发动机的工作状态以及改变推力的方向和大小。
混合器是混合排气式涡扇发动机所特有的部件,其功能是实现内外涵道气流的高效混合,为后续的加力燃烧室和喷管提供尽可能均匀的进气条件。
1 发动机对排气系统的要求及喷管的类型1.1对排气系统的要求为获得良好的发动机整机性能,对排气系统的要求主要有:(1)在各种飞行条件和发动机工作状态下,都能以最小的损失将燃气的焓转变为气体的动能。
(2)根据飞行需要有效地调节发动机的工作状态,并且外部阻力要小。
(3)有效地控制发动机推力的矢量(方向),满足垂直/短距起飞和高机动性能要求。
(4)能有效地抑制噪音和红外线辐射。
(5)结构简单,可靠性高,维修方便,寿命长。
1.2喷管的类型对喷管的分类有多种方法。
例如,根据设计状态下燃气在喷管中的膨胀程度,可分为亚声速喷管和超声速喷管两大类。
若根据喷管的几何尺寸是否可调,也可分为固定式喷管和可调式喷管。
若根据喷管的排气方向是否变化,有直喷式、反推式和推力矢量式喷管。
亚声速喷管的流道为收敛形。
它又包括几何固定式和几何可调式(主要是出口截面积可调)两种,分别称为固定式收敛喷管和可调式收敛喷管。
超声速喷管的流道为收敛-扩散形,又称为拉瓦尔喷管。
收敛-扩散形喷管也分为固定式和可调式两种,其中可调式指的是喷管的最小截面积(又称为喉道面积)和出口截面积均可调节。
除了收敛-扩散形喷管外,超声速喷管还有引射喷管、中心锥体式喷管等。
收敛形喷管和收敛-扩散形喷管一般都是轴对称的三维结构喷管。
但由于未来先进军用战斗机对机动性和隐身性能的需要,也有非轴对称喷管和二维结构喷管得到应用。
1.第一章 基本概念及定义 2.热能动力装置:从燃料燃烧中得到热能,以及利用热能所得到动力的整套设备(包括辅助设备)统称热能动力装置。
3.工质:热能和机械能相互转化的媒介物质叫做工质,能量的转换都是通过工质状态的变化实现的。
4.高温热源:工质从中吸取热能的物系叫热源,或称高温热源。
5.低温热源:接受工质排出热能的物系叫冷源,或称低温热源。
6.热力系统:被人为分割出来作为热力学分析对象的有限物质系统叫做热力系统。
7.闭口系统:如果热力系统与外界只有能量交换而无物质交换,则称该系统为闭口系统。
(系统质量不变) 8.开口系统:如果热力系统与外界不仅有能量交换而且有物质交换,则称该系统为开口系统。
(系统体积不变) 9.绝热系统:如果热力系统和外界间无热量交换时称为绝热系统。
(无论开口、闭口系统,只要没有热量越过边界) 10.孤立系统:如果热力系统和外界既无能量交换又无物质交换时,则称该系统为孤立系统。
11.表压力:工质的绝对压力>大气压力时,压力计测得的差数。
12.真空度:工质的绝对压力<大气压力时,压力计测得的差数,此时的压力计也叫真空计。
13.平衡状态:无外界影响系统保持状态参数不随时间而改变的状态。
充要条件是同时到达热平衡和力平衡。
14.稳定状态:系统参数不随时间改变。
(稳定未必平衡) 15.准平衡过程(准静态过程):过程进行的相对缓慢,工质在平衡被破环后自动恢复平衡所需的时间很短,工质有足够的时间来恢复平衡,随时都不致显著偏离平衡状态,那么这样的过程就称为准平衡过程。
它是无限接近于平衡状态的过程。
16.可逆过程:完成某一过程后,工质沿相同的路径逆行回复到原来的状态,并使相互作用所涉及的外界亦回复到原来的状态,而不留下任何改变。
可逆过程=准平衡过程+没有耗散效应(因摩擦机械能转变成热的现象)。
17.准平衡与可逆区别:准平衡过程只着眼工质内部平衡;可逆过程是分析工质与外界作用产生的总效果,不仅要求工质内部平衡,还要求工质与外界作用可以无条件逆复。
第六章气体与蒸汽的流动1. 答:改变气流速度主要是气流本身状态变化。
2. 答:气流速度为亚声速时图6-1中的1图宜于作喷管,2图宜于作扩压管,3图宜于作喷管。
当声速达到超声速时时1图宜于作扩压管,2图宜于作喷管,3图宜于作扩压管。
4图不改变声速也不改变压强。
3. 答:摩擦损耗包含在流体出口的焓值里。
摩擦引起出口速度变小,出口动能的减小引起出口焓值的增大。
4. 答:1)若两喷管的最小截面面积相等,两喷管的流量相等,渐缩喷管出口截面流速小于缩放喷管出口截面流速,渐缩喷管出口截面压力大于缩放喷管出口截面压力。
2) 若截取一段,渐缩喷管最小截面面积大于缩放喷管最小截面面积,则渐缩喷管的流量小于缩放喷管的流量,渐缩喷管出口截面流速小于缩放喷管出口截面流速,渐缩喷管出口截面压力大于缩放喷管出口截面压力。
5. 答:定焓线并不是节流过程线。
在节流口附近流体发生强烈的扰动及涡流,不能用平衡态热力学方法分析,不能确定各截面的焓值。
但是在距孔口较远的地方流体仍处于平衡态,忽略速度影响后节流前和节流后焓值相等。
尽管节流前和节流后焓值相等,但不能把节流过程看作定焓过程。
距孔口较远的地方属于焓值不变的过程所以=0第七章 压气机的压气过程1. 答:分级压缩主要是减小余隙容积对产气量的影响,冷却作用只是减小消耗功。
所以仍然需要采用分级压缩。
2. 答:绝热压缩时压气机不向外放热,热量完全转化为工质的内能,使工质的温度升高不利于进一步压缩容易对压气机造成损伤,耗功大。
等温压缩压气机向外放热,工质的温度不变,有利于进一步压缩耗功小,所以等温压缩更为经济。
3. 答:由第一定律能量方程式,dh t w h q +∆=定温过程,所以,同时则有多变过程绝热压缩过程,所以等温过程所作的功为图7-1中面积1-2T-m-n-1,绝热过程所作的功为图中面积1--f-n-1 多变过程所作的功为图中面积1-2’n -j-g-2n -.0=∆h s T q w w t c ∆-=-=-=21ln p p R s g =∆121ln p p T R w g c =q h w w t c -∆=-=()()12121111T T R k n k n T T c n k n q g v --⋅--=---=()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--=-=∆-1111112112112n n g g p p p T R k k T T T R k k T T c h ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-=-111121n n g c p p T R n n w 0=q ()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--=-=∆=-=-1111112112112k k g g p t c p p T R k k T T T R k k T T c h w w '2s答:多消耗的功量并不就是损失的做功能力损失。
第九章气体和蒸汽的流动1.基本概念稳态稳流:稳态稳流是指开口系统内每一点的热力学和力学参数都不随时间而变化的流动,但在系统内不同点上,参数值可以不同。
为了简化起见,可认为管道内垂直于轴向的任一截面上的各种参数都均匀一致,流体参数只沿管道轴向或流动方向发生变化。
音速:音速是微小扰动在物体中的传播速度。
定熵滞止参数:将具有一定速度的流体在定熵条件下扩压,使其流速降低为零,这时气体的参数称为定熵滞止参数。
减缩喷管:当进入喷管的气体是M < 1的亚音速气流时,这种沿着气体流动方向喷管截面积逐渐缩小的喷管称为渐缩喷管。
渐扩喷管:当进入喷管的气体是M > 1的超音速气流时,这种沿气流方向喷管截面积逐渐扩大的喷管称为渐扩喷管。
缩放喷管:如需要将M < 1的亚音速气流增大到M > 1的超音速气流,则喷管截面积应由d f < 0逐渐转变为d f > 0,即喷管截面积应由逐渐缩小转变为逐渐扩大,这种喷管称为渐缩渐扩喷管,或简称缩放喷管,也称拉伐尔(Laval)喷管。
临界参数:在渐缩渐扩喷管中,收缩部分为亚音速范围,而扩张部分为超音速范围。
收缩与扩张之间的最小截面处称为喉部,此处M=1,d f = 0。
该截面称为临界截面,具有最小截面积f min,相应的各种参数都称为临界值,如临界压力p c、临界温度T c、临界比体积v c、临界流速c c等。
应予注意,临界流速c c为临界截面处的当地音速。
节流:节流过程是指流体(液体、气体)在管道中流经阀门、孔板或多孔堵塞物等设备时,由于局部阻力,使流体压力降低的一种特殊流动过程。
这些阀门、孔板或多孔堵塞物称为节流元件。
若节流过程中流体与外界没有热量交换,称为绝热节流,常常简称为节流。
在热力设备中,压力调节、流量调节或测量流量以及获得低温流体等领域经常利用节流过程,而且由于流体与节流元件换热极少,可以认为是绝热节流。
冷效应区:在转回曲线与温度纵轴围成的区域内所有等焓线上的点恒有μj > 0,发生在这个区域内的绝热节流过程总是使流体温度降低,称为冷效应区。
第七章 气体的流动(Gas Flow)第一节 气体在喷管和扩压管中的流动主题1:喷管和扩压管的断面变化规律一、稳定流动基本方程气体在喷管和扩压管中的流动过程作可逆绝热过程,气体流动过程所依据的基本方程式有:连续性方程式、能量方程式、及状态方程式。
1、连续性方程连续性方程反映了气体流动时质量守恒的规律。
定值=⋅=vf mg ω写成微分形式ggd v dv f df ωω-=7-1它给出了流速、截面面积和比容之间的关系。
连续性方程从质量守恒原理推得,所以普遍适用于稳定流动过程,即不论流体的性质如何(液体和气体),或过程是否可逆。
2、能量方程能量方程反映了气体流动时能量转换的规律。
由式(3-8),对于喷管和扩压管中的稳定绝热流动过程,212122)(21h h g g -=-ωω 写成微分形式dh d g -=221ω7-23、过程方程过程方程反映了气体流动时的状态变化规律。
对于绝热过程,在每一截面上,气体基本热力学状态参数之间的关系:定值=k pv写成微分式0=+vdv k p dp 7-3二、音速和马赫数音速是决定于介质的性质及介质状态的一个参数,在理想气体中音速可表示为kRT kpv a ==7-4因为音速的大小与气体的状态有关,所以音速是指某一状态的音速,称为当地音速。
流速与声速的比值称为马赫数:M ag=ω 7-5利用马赫数可将气体流动分类为:m 2g v 222图7-1管道稳定流动示意图亚声速流动:1<M a g <ω超声速流动:1>M a g >ω 临界流动: 1=Ma g =ω三、促使气体流速变化的条件 1、力学条件由式(3-5),对于开口系统可逆稳定流动过程,能量方程⎰-∆=21vdp h q 或 vdp dh q -=δ,式中0=q δ所以 vdp dh = 7-6 联合(7-2)和(7-6)vdp d g g -=ωω7-7由式7-7可见,气体在流动中流速变化与压力变化的符号始终相反,表明气流在流动中因膨胀而压力下降时,流速增加;如气流被压缩而压力升高时,则流速必降低。