当前位置:文档之家› 哈尔滨地区屋面最薄处设计热工计算说明

哈尔滨地区屋面最薄处设计热工计算说明

哈尔滨地区屋面最薄处设计热工计算说明
哈尔滨地区屋面最薄处设计热工计算说明

哈尔滨地区屋面保温层

最薄处厚度设计热工计算说明

一、计算依据

依据GB50176-93《民用建筑热工设计规范》第4.1.1条的规定,设置集中采暖的建筑物,其围护结构的传热阻应根据技术经济比较确定,且应符合国家有关节能标准的要求,因此,哈尔滨地区屋面最小传热阻应按下式计算:

()[]i e i R t n t t R ?-=

?min 0 式中:

m in 0?R ——JK 保温屋面最薄弱部位最小传热阻值(m 2·K /W ); i t ——冬季室内计算温度(℃),一般居住建筑,取18℃;高级居住建筑,医疗、托幼建筑,取20℃;(本说明中按20℃取值)

e t ——屋面结构冬季室外计算温度(℃),按《民用建筑热工设计规范》GB50176-93第2.0.1条的规定采用; e t

n ——温差修正系数,按《民用建筑热工设计规范》 GB50176-93表4.1.1-1采用;

n

i R ——内表面换热阻(m 2·K /W ),一般取R i =0.11(m 2·K /W );

[]t ?——室内空气与屋面结构内表面之间允许温差(℃),按《民用建筑热工设计规范》GB50176-93表4.1.1-2采用。

室内空气与屋面结构内表面之间允许温差[]t ?(℃)取值

注:本数据摘自GB50176-93《民用建筑热工设计规范》表4.1.1-2。(本说明中按4.0℃取值)

二、计算结果

根据上述公式计算,哈尔滨地区围护结构最小传热阻应为:

()[]()[]4575.111.04

33-20min 0=?-=?-=?i e i R t n t t R (m 2·K /W ) 140mm 厚JK 保温屋面热阻为:

509.21

.106.006.06.180140=?+=?+=αλδ

R R (m 2·K /W )>m in 0?R 。 综上,可得知最薄处140mm 厚JK 保温屋面完全可以满足哈尔滨地区对围护结构最小传热阻的要求。

冬雨季施工方案(带混凝土热 工计算步骤 公式)

冬雨季施工方案 一、工程概况 本工程岚县秀容御苑10#、11#楼位于岚县西村北侧,北临滨河南路,东临秀容街。由山西伟厦广业房地产开发集团有限公司开发,山西国建工程设计有限公司设计,山西省第九地质工程勘察院勘察,山西五建集团有限公司承建。10#楼地下一层,地上三十层,地下一层为住宅用户的储藏间,地上一层二层为单户,三层以上为住宅。建筑总高度96米,建筑层高:地下一层4.0m,地上一层4.8m,地上二层4.2m,地上三层以上为住宅层高3.0m,顶层坡屋顶。住宅平面有三个单元组成,每单元1梯四户,共计336户,建筑总面积39529.48m2。其中商铺裙房结构为框架结构,主楼为钢筋混凝土剪力墙结构,基础采用钢筋混凝土灌注桩基础。11#楼地下一层,地上十层,地下一层为住宅用户的储藏间,地上一层以上为住宅。建筑总高度30.9米,建筑层高:地下一层3.3m,地上一层以上为住宅层高3.0m,。住宅平面有三个单元组成,每单元1梯三户,共计90户,建筑总面积9066.14m2,CFG桩复合地基筏板式基础。 二、冬施工程 当室外平均气温连续5d稳定低于5℃即进入冬期施工。(一)冬施包括施工内容 1、模板工程 2、钢筋工程 3、混凝土工程 4、地下室外墙防水工程 5、地下室周边回填土工程 (二)施工部署 1、组织措施 (1)建立以项目经理为组长的冬期施工领导小组。 (2)定期组织各工种施工人员对冬期施工方法进行学习交底。 组长范润峰

组员李存华 组员路晋凯 组员张治中 组员李文飞 2、准备工作 (1)本工程由专人(刘健龙)负责每日收集天气预报情况,及时向冬期施工领导小组成员汇报,及时掌握了解近期的天气变化以便采取必要的防护措施。 (2)提前将工地所需的保温材料(塑料布、岩棉、草袋等)热水炉、测温工具送到工地。 (3)落实责任制。各级施工技术管理人员、试验人员及施工人员应明确责任,并认真贯彻落实冬期施工措施。做好技术交底。在每个分项施工前,由项目技术负责人向施工班组作出书面交底,内容应包括冬期施工技术措施及外加剂的使用知识,并监督实施。 (4)建立冬季施工测温制度,测温派专人(李文飞)负责,发现异常及时反映并采取措施。项目技术负责人应绘制测温孔平面图,并向测温人员做详细交底。 (5)做好试块管理,混凝土试块除按正常规定组数制作外,还应增设一组与结构同条件养护的试块。冬期施工混凝土试块养护室的温、湿度应符合规范要求,标养试块与构件在相同条件下养护及转入常温养护28d的混凝土试块均应按时送试验室做抗压试验。 6)施工及生活用水管道用岩棉进行保温,以防冻裂。 7)办公室、仓库等临设工程在进入冬期施工前进行全面的检查及维修,确保不漏水、不积水、不塌降。 (三)模板分项工程 1、合模前,必须将模板内杂物清理干净,不得有积雪等杂物。

热工控制系统课程设计样本

热工控制系统课程设计 题目燃烧控制系统 专业班级: 能动1307 姓名: 毕腾 学号: 02400402 指导教师: 李建强 时间: .12.30— .01.12

目录 第一部分多容对象动态特性的求取 (1) 1.1、导前区 (1) 1.2、惰性区 (2) 第二部分单回路系统参数整定 (3) 2.1、广义频率特性法参数整定 (3) 2.2、广义频率特性法参数整定 (5) 2.3分析不同主调节器参数对调节过程的影响 (6) 第三部分串级控制系统参数整定....................... (10) 3.1 、蒸汽压力控制和燃料空气比值控制系统 (10) 3.2 、炉膛负压控制系统 (10) 3.3、系统分析 (12) 3.4有扰动仿真 (21) 第四部分四川万盛电厂燃烧控制系统SAMA图分析 (24) 4.1、送风控制系统SAMA图简化 (24) 4.2、燃料控制系统SAMA图简化 (25) 4.3、引风控制系统SAMA图简化 (27) 第五部分设计总结 (28)

第一部分 多容对象动态特性的求取 某主汽温对象不同负荷下导前区和惰性区对象动态如下: 导前区: 136324815.02++-S S 惰性区: 1 110507812459017193431265436538806720276 .123456++++++S S S S S S 对于上述特定负荷下主汽温导前区和惰性区对象传递函数, 能够用两点法求上述主汽温对象的传递函数, 传递函数形式为 w(s)= n TS K )1(+,再利用 Matlab 求取阶跃响应曲线, 然后利用两点法确 定对象传递函数。 1.1 导前区 利用MATLAB 搭建对象传递函数模型如图所示:

热工计算

一、窗节能设计分析 按《民用建筑热工设计规范》(GB50176-93)设计计算,设计依据: R o =R i +R+R e ……附2.4[GB50176-93] 在上面的公式中: R o :围护结构的传热阻(m2·K/W); R i :围护结构内表面换热阻,按规范取0.11m2·K/W; R e :围护结构外表面换热阻,按规范取0.04m2·K/W; R:围护结构热阻(m2·K/W); R=R 面板+R 中空层 =δ 面板/λ 面板 +R 中空层 =0.01/0.76+0.12 =0.133m2·K/W 在上面的公式中: δ 面板 :面板材料(玻璃)的总厚度(m); λ 面板 :面板材料的导热系数(W/m·K),按规范取0.76;

R 中空层 :中空玻璃中空空气层热阻值(m2·K/W),按规范取0.12; 故窗玻璃部分热阻 R o玻=R i +R+R e =0.11+0.133+0.04 =0.283m2·K/W 玻璃部分传热系数K 玻=1/ R o玻 =1/0.283 =3.5W/m2·K 常用普通铝型材传热系数K 铝 约=6.0 W/m2·K 整窗传热系数为玻璃和铝框传热系数按面积的加权平均值本工程铝框所占窗洞面积百分比=0.19 本工程玻璃所占窗洞面积百分比=0.71 故整窗传热系数K 窗=K 铝 X0.19 + K 玻 X0.71 =6.0X0.19+3.5X0.71 =3.6 W/m2·K 根据《公共建筑节能设计标准》GB50189-2005相关规定,本工程属于夏热冬冷地区。则外围护结构传热系数和遮阳系数应符合下表规定:

夏热冬冷地区围护结构传热系数和遮阳系数限值 本工程两主要立面窗墙比为0.47,故要求建筑外窗传热系数≤2.8. 根据上面计算,采用普通中空玻璃窗无法满足节能要求. 若采用6+9A+6LOW-E中空玻璃,非断热型材,外窗传热系数计算如下: 6+9A+6LOW-E中空玻璃传热系数约为1.5—2.1 W/m2·K,此处按最不利情况取为2.1 W/m2·K。 常用普通铝型材传热系数K 铝 约=6.0 W/m2·K 整窗传热系数为玻璃和铝框传热系数按面积的加权平均值 本工程铝框所占窗洞面积百分比=0.19 本工程玻璃所占窗洞面积百分比=0.71 故整窗传热系数K 窗=K 铝 X0.19 + K 玻 X0.71 =6.0X0.19+2.1X0.71 =2.6 W/m2·K<2.8 W/m2·K

砼冬季施工拌合水加热热工计算

砼冬季施工拌合水加热热工计算 冬季已经来临,冬季施工时由于其寒冷的的气候条件将会直接影响工程质量和进度。为保证冬期施工的顺利进行,减少冻害,应将配合比中的用水量降低至最低限度,办法是:控制塌落度。各项材料的温度,应满足混凝土拌合物搅拌合成后所需要的温度。当材料原有温度不能满足需要时,应采用一座5立方水箱的地炉对拌合水进行加热,加热温度控制在80度以内。 为了便于控制混凝土质量,必须对配合比进行了冬季施工热工计算。 现场对砂、石进行含水量的测试,获得平均值:Ps=3.5%,Pf=2.0%,Pg=0.7%, C30砼配合比如下: 水泥:砂:碎石:粉煤灰:水:外加剂=359:660:1146:63:177:3.804 下面根据施工配合比进行热工计算: 按《公路桥涵施工技术规范》要求,取混凝土入模温度T2=5℃,并考虑安微省当地较冷月份白天环境温度平均在0℃,如果浇筑混凝土的天气情况较差,按最不利条件:气温为零下5℃。 通过公式:T2=T1-(a*T+0.032N)(T1-Ta) N—混凝土转运次数;T—混凝土运输时间;a—温度损失系数;Ta—运输时环境温度 取N=1 a=0.25 T=1/3 h Ta=-5℃ 可得混凝土的出机温度T1=6.3℃ 通过公式:T1=T0-0.16(T0-Tb) 因为只在白天进行施工,并用热水对拌合机进行预热,取搅拌机温度Tb=0℃ 可得混凝土拌和物的温度T0=7.5℃ 通过公式: T0=[0.9(WcTc+WsTs+WfTf+WgTg)+4.2Tw(Ww-PsWs-PfWf-PgWg) +c1(PsWsTs+PfWfTf+PgWgTg)-c2(PsWs+PfWf+PgWg)]÷[4.2Ww+0.9(Wc+Ws+Wf+Wg)] 将数据代入上面公式得: T0=[0.9*(359*(-5)+660*(-5)+63*(-5)+1146*(-5))+4.2*69*(177-660*3.5%-63*2%-1146*0.7%)+2.1*(6 60*3.5%*(-5)+63*2%*(-5)+1146*0.7%*(-5))-335*(660*3.5%+63*2%+1146*0.7%)]/[4.2*177+0.9*(359+66 0+63+1146) ]=7.5℃ Ww、Wc、Ws、Wf、Wg——水、水泥、砂、粉煤灰、石的用量(㎏) Tw、Tc、Ts、Tf、Tg ———水、水泥、砂、粉煤灰、石的温度(℃) Ps、Pf、Pg———砂、粉煤灰、石的含水率(%) c1、c2———水的比热容(KJ/㎏·K)及溶解热(KJ/㎏)

数控加工工艺课程设计说明书(DOC 22页)

数控加工工艺课程设计说明书(DOC 22页)

《数控加工工艺》课程设计说明书 班级: 学号: 姓名】 指导老师:】

1.设计任务 本次课程设计是通过分析零件图,合理选择零件的数控加工工艺过程,对零件进行数控加工工艺路线进行设计,从而完成零件的数控加工程序的编写。使零件能在数控机床上顺利加工,并且符合零件的设计要求。 2.设计目的。 《数控加工工艺课程设计》是一个重要的实践性教学环节,要求学生运用所学的理论知识,独立进行的设计训练,主要目的有: 1 通过本设计,使学生全面地、系统地了解和掌握数控加工工艺和数控编程的基本内容和基本知识,学习总体方案的拟定、分析与比较的方法。 2 通过对夹具的设计,掌握数控夹具的设计原则以及如何保证零件的工艺尺寸。 3 通过工艺分析,掌握零件的毛坯选择方式以及相关的基准的确定,确定加工顺序。 4 通过对零件图纸的分析,掌握如何根据零件的加工区域选择机床以及加工刀具,并根据刀具和工件的材料确定加工参数。 5 锻炼学生实际数控加工工艺的设计方法,运用手册、标准等技术资料以及撰写论文的能力。同时培养学生的创新意识、工程意识和动手能力。 3.设计要求: 1、要求所设计的工艺能够达到图纸所设计的精度要求。 2、要求所设计的夹具能够安全、可靠、精度等级合格,所加工面充分暴露出来。 3、所编制的加工程序需进行仿真实验,以验证其正确

4.设计内容 4.1分析零件图纸 零件图如下: 1.该零件为滑台工作台,是一个方块形的零件。图中加工轮廓数据充分,尺寸 清晰,无尺寸封闭等缺陷。 2.其中有多个孔有明确的尺寸公差要求和位置公差要求,而无特殊的表面粗糙 度要求,如70+0.1、102+0.1、80+0.1、100+0.1、13.5+0.05、26+0.05.

混凝土热工计算在冬期施工中的运用

混凝土热工计算在冬期施工中的运用 本文着重介绍混凝土梁冬季施工技术的制定和实施的成功经验,简要叙述混凝土冬季施工的控制指标、热工计算以及保证措施,对于类似工程的冬季施工具有一定的指导和借鉴意义。 标签:冬季混凝土热工技术 0 引言 我国许多地方有较长的寒冷季节。随着我国民用建设基建工程的快速发展,由于受工期制约,许多工程的混凝土冬季施工是不可避免的。国内外对混凝土冬季施工理论和方法的探索研究认为,当环境温度降到5℃以下时,只要采用适当的施工方法,避免新浇混凝土早期受冻,使外露混凝土与冬季外界气温保持较小温差,也会取得像在天暖施工时的效果。 1 工程冬季施工概述 金石明知工程位于某市金石滩龙山小区北侧,由我公司建设。本工程为多层建筑,地下一层,地上4~5层,E6为地下车库,C3、C4、C5、D8、D9、D10、D11、D12、D13、D14为多层住宅。耐火等级为二级。建筑工程等级为一级,设计使用年限为50年。结构形式框架,抗震设防烈度7°,屋面防水等级Ⅲ级,地下室防水等级Ⅱ级。建筑风格采用西班牙建筑风格,屋面造型复杂,采用瓦屋面。该工程考虑本工程工期较紧、基础占地面积为997m2,混凝土量大,混凝土的表面系数大,散热快主体结构施工,为确保工期的如期实现,在保证质量的情况下,当外界气温在-10℃以上时,需进行混凝土冬期施工。本年度冬期混凝土施工项目主要为钻孔灌注桩,要求在施工现场混凝土浇筑时温度不低于5℃。 2 冬季施工的技术措施 2.1 冬季施工混凝土组成材料的要求 骨料:骨料中不得有冰块、雪团和有机物,应清洁、级配良好、质地坚硬;水:采用可饮用的自来水;外加剂:选用防冻剂,防冻剂的作用机理是在规定的负温下显著降低混凝土的液相冰点,使混凝土在液态不结冰,保证水泥的水化作用,在一定的时间内获得预期的强度,防冻剂应通过技术鉴定,符合质量标准,并经试验室试验掌握其性能;水泥:选择活性高、水化热大的普通硅酸盐水泥。 2.2 冬季混凝土搅拌及运输的要求 混凝土的搅拌:砼搅拌选用加热水的方法,80℃以上的热水不得与水泥直接接触,先将热水与骨料拌和而后再掺入水泥搅拌混凝土,以避免水泥假凝,砼搅拌的时间不得少于3分钟。另外,必要时对搅拌机周围进行防护并通暖保温。

核反应堆热工分析课程设计报告书详细过程版本

华扶#力*孑 课程设计报告 (20 13 一2014年度第二学期) 名称:核反应堆热工分析课程设计 题目:利用单通道模型进行反应堆稳态热工设计 院系:核科学与工程学院______________________ 班级:实践核1101班______________________ 学号:06 _________________________ 学生姓名:M _____________________ 指导教师:王胜飞__________________ 设计周数:Ul _______________________ 成绩:_____________________ 日期:2014 年6月19日

一、课程设计的目的与要求 反应堆热工设计的任务就是要设计一个既安全可靠又经济的堆芯输热系统。对于反应堆热工设讣,尤其是对动力堆,最基本的要求是安全。要求在整个寿期内能够长期稳泄运行,并能适应启动、功率调和停堆等功率变化,要保证在一般事故工况下堆芯不会遭到破坏,甚至在最严重的工况下,也要保证堆芯的放射性物质不扩散到周围环境中去。 在进行反应堆热工设计之前,首先要了解并确左的前提为: (1)根据所设计堆的用途和特殊要求(如尺寸、重量等的限制)选左堆型,确怎所用的核燃料、冷却剂、慢化剂和结构材料等的种类; (2)反应堆的热功率、堆芯功率分布不均匀系数和水铀比允许的变化范用: (3)燃料元件的形状、它在堆芯内的分布方式以及栅距允许变化的范H: <4)二回路对一回路冷却剂热工参数的要求: (5)冷却剂流过堆芯的流程以及堆芯进口处冷却剂流量的分配情况。 在设计反应堆冷却系统时,为了保证反应堆运行安全可靠,针对不同的堆型,预先规立了热工设计必须遵守的要求,这些要求通常就称为堆的热工设计准则。目前压水动力堆设计中所规左的稳态热工设计准则,一般有以下几点:< 1)燃料元件芯块内最高应低于英他相应燃耗下的熔化温度; (2)燃料元件外表而不允许发生沸腾临界: (3)必须保证正常运行工况下燃料元件和堆内构件得到充分冷却;在事故工况下能提供足够的冷却剂以排除堆芯余热: <4)在稳态额泄工况和可预计的瞬态运行工况中,不发生流动不稳左性。 在热工设计中,通常是通过平均通道(平均管)可以估算堆芯的总功率,而热通道(热管)则是堆芯中轴向功率最高的通道,通过它确定堆芯功率的上限,热点是堆芯中温度最高的点,代表堆芯热量密度最大的点,通过这个点来确?DNBR?J 热工课程设计主要是为了培养学生综合运用反应堆热工分析课程和英它先修课程的理论和实际知识,树立正确的设计思想,培养分析和解决实际问题的能力。通过本课程设计,达到以下目的: 1、深入理解压水堆热工设讣准则: 2、深入理解单通道模型的基本概念、基本原理。包括了平均通道(平均管)、热通道(热管)、热点等在反应堆设计中的应用; 3、掌握堆芯焰场的计算并求岀体现在反应堆安全性的主要参数:烧毁比DNBR,最小烧毁比MDNBR, 燃料元件中心温度及其最高温度,包壳表面温度及英最髙温度等; 4、求出体现反应堆先进性的主要参数:堆芯流量功率比,堆芯功率密度,燃料元件平均热流密度(热通量),最大热流密度,冷却剂平均流速,冷却剂出口温度等: 5、掌握压降的计算: 6、掌握单相及沸腾时的传热计算。 7、理解单通道模型的编程方法。 课程设计要求: 1.设计时间为一周;

导热系数、传热系数、热阻值概念及热工计算方法(简述实用版)

导热系数、传热系数、热阻值概念及热工计算方法 导热系数λ[W/(m.k)]: 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。导热系数可通过保温材料的检测报告中获得或通过热阻计算。 传热系数K [W/(㎡?K)]: 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。传热系数可通过保温材料的检测报告中获得。 热阻值R(m.k/w): 热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。单位为开尔文每瓦特(K/W)或摄氏度每瓦特(℃/W)。 传热阻: 传热阻以往称总热阻,现统一定名为传热阻。传热阻R0是传热系数K的倒数,即R0=1/K,单位是平方米*度/瓦(㎡*K/W)围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。 (节能)热工计算: 1、围护结构热阻的计算 单层结构热阻:R=δ/λ 式中:δ—材料层厚度(m);λ—材料导热系数[W/(m.k)] 多层结构热阻:R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m.k/w) δ1、δ2、---δn—各层材料厚度(m) λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻 R0=Ri+R+Re 式中: Ri —内表面换热阻(m.k/w)(一般取0.11) Re —外表面换热阻(m.k/w)(一般取0.04) R —围护结构热阻(m.k/w) 3、围护结构传热系数计算 K=1/ R0 式中: R0—围护结构传热阻 外墙受周边热桥影响条件下,其平均传热系数的计算 Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中:Km—外墙的平均传热系数[W/(m.k)] Kp—外墙主体部位传热系数[W/(m.k)]

核反应堆热工水力课程设计

一、设计要求 在设计反应堆冷却系统时,为了保证反应堆运行安全可靠,针对不同的堆型,预先规定了热工设计必须遵守的要求,这些要求通常就称为堆的热工设计准则。目前压水动力堆设计中所规定的稳态热工设计准则,一般有以下几点: 1.燃料元件芯块内最高应低于其他相应燃耗下的熔化温度; 2.燃料元件外表面不允许发生沸腾临界; 3.必须保证正常运行工况下燃料元件和堆内构件得到充分冷却;在事故工况下 能提供足够的冷却剂以排除堆芯余热; 4.在稳态额定工况和可预计的瞬态运行工况中,不发生流动不稳定性。 5.在热工设计中,通常是通过平均通道(平均管)可以估算堆芯的总功率,而 热通道(热管)则是堆芯中轴向功率最高的通道,通过它确定堆芯功率的上限,热点是堆芯中温度最高的点,代表堆芯热量密度最大的点,通过这个点来确定DNBR。 二、设计任务 某压水反应堆的冷却剂和慢化剂都是水,用二氧化铀作燃料,Zr-4作燃料包壳材料。燃料组件无盒壁,燃料元件为棒状,正方形排列,已知下列参数:系统压力P15.8M P a 堆芯输出热功率N t1820M W 冷却剂总流量W32500t/h 反应堆进口温度t f i n287℃堆芯高度L 3.60m 燃料组件数m121 燃料组件形式n0×n017×17 每个组件燃料棒数n265 燃料包壳外径d c s9.5m m 燃料包壳内径d c i8.6m m 燃料包壳厚度δc0.57m m 燃料芯块直径d u8.19m m 燃料棒间距(栅距)s12.6m m 两个组件间的水隙δ0.8m m UO2芯块密度ρUO2 95%理论密度旁流系数ζ5% 燃料元件发热占总发热份额F a97.4% 径向核热管因子 1.33 轴向核热管因子 1.520 热流量核热点因子= 2.022 热流量工程热点因子 1.03 焓升工程热点因子(未计入交混因子) 1.142 交混因子0.95 焓升核热管因子= 1.085

拌和站冬季施工措施及热工计算(1)

新建铁路朝阳至秦沈高铁凌海南站铁路联络线TJ-1标段2#拌和站冬季施工方案 编制: 审核: 批准: 中铁十九局集团有限公司朝凌客专TJ-1标项目经理部 二○一七年十一月

目录 一、编制依据 (1) 二、编制原则 (1) 三、冬期施工内容的确定 (2) 1、冬期施工一般规定 (2) 2、冬期施工的工程项目 (2) 3、冬施日期 (2) 4、流水段划分、劳动力配置及进度安排说明 (3) 四、冬期施工总体组织及规划 (3) 1、管理目标 (3) 2、组织机构 (3) 五、冬季施工措施 (4) 1、混凝土拌和物热工理论计算及经验数据 (5) 2、原材料选用 (6) 3、混凝土拌和保温措施 (6) 4、混凝土的运输 (7) 5、混凝土试件的制作 (8) 6、现场测温 (8) 六、质量、安全保证措施 (10) 1、质量保证措施 (10) 2、安全保证措施 (11)

3、环境保护措施 (13) 4、节能降耗措施 (13) 5、恶劣天气应急措施 (14) 6、冬季当气温急剧下降应对措施 (14) 7、冬季防风减灾应对措施 (14) 8、冬季防大雾应对措施 (14) 9、冬季施工过程的监控措施 (14) 七、冬期施工主要物资设备计划及人员培训计划 (14) 1、主要物资设备计划 (14) 2、人员培训计划 (15) 八、混凝土的热工计算 (16)

2#拌和站冬季施工方案 一、编制依据 《铁路混凝土工程施工技术规程》(Q/CR9207-2017) 《混凝土结构工程施工质量验收规范》(GB50204-2015) 《铁路混凝土工程施工质量验收标准》(TB10424-2010) 朝阳市当地的气候条件和施工条件调查情况 二、编制原则 1、在满足工程总体工期要求的情况下,不适宜在冬期施工的项目尽量避开不利季节,因工程需要必须进行冬期施工的项目应采取必要的防冻措施,确保工程质量。 2、随时掌握气候变化情况,及时对已施工的工程采取防护措施,做好防冻物资的备料工作。 3、冬期施工要注意结构混凝土的养护,采取必要的保温措施,保证施工生产的正常进行。 4、根据《铁路混凝土工程施工技术规程》规定,冬期施工期间,混凝土强度达到设计强度强度的60%之前,不得受冻;浸水冻融条件下的混凝土强度达到设计强度的75%之前,不得受冻。 5、混凝土在低温条件下强度能继续发展,并能满足施工工期的要求以及设计强度的要求。 6、在杜绝混凝土早期受冻的前提下,在最短的施工期限内,以最低的冬期施工费用,获得优良的施工质量。 7、结合我公司以往冬期施工方案和成功经验,结合工程实际情况,确保万无一失。

核反应堆热工分析课程设计报告书详细过程版本

课程设计报告 ( 20 13 -- 2014 年度第二学期) 名称:核反应堆热工分析课程设计 题目:利用单通道模型进行反应堆稳态热工设计院系:核科学与工程学院 班级:实践核1101班 学号:1111440306 学生:佳 指导教师:王胜飞 设计周数:1周 成绩:

日期:2014 年 6 月19 日

一、课程设计的目的与要求 反应堆热工设计的任务就是要设计一个既安全可靠又经济的堆芯输热系统。对于反应堆热工设计,尤其是对动力堆,最基本的要安全。要求在整个寿期能够长期稳定运行,并能适应启动、功率调节和停堆等功率变化,要保证在一般事故工况下堆芯不会遭到破坏,甚至在最严重的工况下,也要保证堆芯的放射性物质不扩散到周围环境中去。 在进行反应堆热工设计之前,首先要了解并确定的前提为: (1)根据所设计堆的用途和特殊要求(如尺寸、重量等的限制)选定堆型,确定所用的核燃料、冷却剂、慢化剂和结构材料等的种类; (2)反应堆的热功率、堆芯功率分布不均匀系数和水铀比允许的变化围; (3)燃料元件的形状、它在堆芯的分布方式以及栅距允许变化的围; (4)二回路对一回路冷却剂热工参数的要求; (5)冷却剂流过堆芯的流程以及堆芯进口处冷却剂流量的分配情况。 在设计反应堆冷却系统时,为了保证反应堆运行安全可靠,针对不同的堆型,预先规定了热工设计必须遵守的要求,这些要求通常就称为堆的热工设计准则。目前压水动力堆设计中所规定的稳态热工设计准则,一般有以下几点: (1)燃料元件芯块最高应低于其他相应燃耗下的熔化温度; (2)燃料元件外表面不允许发生沸腾临界; (3)必须保证正常运行工况下燃料元件和堆构件得到充分冷却;在事故工况下能提供足够的冷却剂以排除堆芯余热; (4)在稳态额定工况和可预计的瞬态运行工况中,不发生流动不稳定性。 在热工设计中,通常是通过平均通道(平均管)可以估算堆芯的总功率,而热通道(热管)则是堆芯中轴向功率最高的通道,通过它确定堆芯功率的上限,热点是堆芯中温度最高的点,代表堆芯热量密度最大的点,通过这个点来确定DNBR。 热工课程设计主要是为了培养学生综合运用反应堆热工分析课程和其它先修课程的理论和实际知识,树立正确的设计思想,培养分析和解决实际问题的能力。通过本课程设计,达到以下目的: 1、深入理解压水堆热工设计准则; 2、深入理解单通道模型的基本概念、基本原理。包括了平均通道(平均管)、热通道(热管)、热点等在反应堆设计中的应用; 3、掌握堆芯焓场的计算并求出体现在反应堆安全性的主要参数:烧毁比DNBR,最小烧毁比MDNBR,燃料元件中心温度及其最高温度,包壳表面温度及其最高温度等; 4、求出体现反应堆先进性的主要参数:堆芯流量功率比,堆芯功率密度,燃料元件平均热流密度(热通量),最大热流密度,冷却剂平均流速,冷却剂出口温度等; 5、掌握压降的计算;

热工控制系统课程设计56223

热工控制系统课程设计 ----某直流锅炉给水控制系统设计 二○一○年十二月 目录 第一部分多容对象动态特性的求取 (2) 第二部分单回路系统参数整定 (4) 一、广义频率特性法参数整定 (5) 二、临界比例带法确定调节器参数 (6) 三、比例、积分、微分调节器的作用 (9) 第三部分串级控制系统参数整定 (10) 一、主蒸汽温度串级控制系统参数整定 (10) 二、给水串级控制系统参数整定 (13) 三、燃烧控制系统参数整定 (15)

第四部分 某电厂热工系统图分析 ........................................................ 16 参考文献: (19) 第一部分 多容对象动态特性的求取 选取某主汽温对象特定负荷下导前区和惰性区对象动态特性如下: 导前区: 1 40400657 .12++-s s 惰性区: 1 1891542269658718877531306948665277276960851073457948202 .1234567+++++++s s s s s s s 对于上述特定负荷下主汽温导前区和惰性区对象传递函数,可以用两点法求上述主汽温对象的传递

函数,传递函数形式为n Ts K s W )1()(+=,利用Matlab 求取阶跃响应曲线,然后利用两点法确定对象 传递函数。 导前区阶跃响应曲线: 图1-1 由曲线和两点法可得: 657.1=K 637.28,663.0657.14.0)(4.01==?=∞t y 165.61,326.1657.18.0)(8.02==?=∞t y 2092.25.0075.12 121≈=??? ? ??+-=t t t n ,8.2016.22 1≈+≈n t t T 即可根据阶跃响应曲线利用两点法确定其传递函数:2 ) 18.20(657 .1)(+-= s s W 惰性区阶跃响应曲线:

冬季施工方案含热工计算

目录 第1章编制依据 (1) 第2章工程概况 (1) 2.1 工程气象特征 (1) 2.2 施工条件 (1) 2.3 冬季施工内容 (1) 铁路冬季施工工点 (2) 第3章冬季施工总体组织及规划 (2) 3.1 管理目标 (2) 3.2 组织机构 (2) 3.3 总体思路 (3) 3.4 冬季施工一般规定 (3) 第4章冬季施工技术要求 (3) 4.1 一般要求 (3) 4.2 施工要求 (3) 4.3 混凝土拌制要求 (4) 4.4 混凝土运输要求 (5) 第5章冬季施工准备及保温措施 (5) 5.1 施工前准备 (5) 5.2 混凝土拌和站保温措施 (5) 5.3 混凝土养护保温 (7) 5.4 混凝土运输设备保温 (8) 第6章冬季施工物资储备方案 (8) 6.1 冬施物资储备要求 (8) 6.2 冬施物资储备明细 (8) 冬施物资储备明细表 (9) 1

第7章冬季施工管理制度 (9) 7.1 施工现场管理 (9) 7.2 施工用电管理 (9) 第8章冬季施工质量保证措施 (9) 第9章冬季施工安全保证措施 (10) 9.1 安全管理措施 (10) 9.2 安全应急预案 (11) 第10章温度测试 (12) 10.1 观测点位置 (12) 10.2 观测次数及时间 (12) 10.3 观测方法 (12) 2

第1章编制依据 1、《铁路工程混凝土施工技术指南》铁建设(2010)241号 2、《铁路混凝土工程施工质量验收标准》(TB 10424-2010) 3、《铁路路基工程施工质量验收标准》(TB10414-2003) 4、《铁路桥涵工程施工质量验收标准》(TB10415-2003) 5、《铁路工程基本作业施工安全技术规范》TB10301-2009 5、新建铁路工程施工设计图纸 6、山西省地区气象资料 7、其它有关技术资料 第2章工程概况 2.1工程气象特征 沿线属暖温带亚湿润气候区,受海拔高程的影响,夏无酷暑、冬季寒冷,昼夜温差较大,冬季以西风或西北风为主,夏秋季以东北风为主。冻结期11月中旬至第二年3月中旬。按对铁路工程影响的气候分区盂县、昔阳属寒冷地区,阳泉、平定、昔阳县属温暖地区。历年极端最高气温41.7℃,历年极端最低气温- 18.9℃,历年平均气温11.2℃;年平均降水量546.5mm;最大冻结深度0.68m。 2.2施工条件 1)交通运输条件 沿线公路主要为平阳路、国道207,其它道路为村村通道路。 2)水、电条件 有施工引入线接入,可以满足施工用电要求。 沿线地下水不发育,施工、生活用水需采用接入自来水管网。 3)材料供应 沿线建筑材料丰富,所需水泥、碎石可由当地砂石料场供应,沿线无合格河砂。 各种规格的碎石和片石由阳泉采石场、三郊石场、南外环等采石场供应,由汽车运至施工现场。 建筑用中粗砂产自河北省滹沱河流域,由汽车运至施工现场。 混凝土有拌合站集中拌合后采用混凝土运输车运至施工现场。 2.3冬季施工内容 本标段冬季施工内容如下表:

换热站课程设计说明书

供热课程设计说明书 题目: 院(部): 专业: 班级: 姓名: 学号: 指导教师: 完成日期:

目录 摘要 (3) 第一章绪论 (4) 第二章热负荷计算 (6) 原始资料 负荷计算 第三章供热系统方案的选择 (11) 系统热源型式及热媒的选择 供热管道的平面布置类型 供热管道的定线原则 管道的保温与防腐 第四章设备的选择 (13) 热交换器选型 水泵的选择和计算 除污器选择 设计小结 (19) 参考文献 (21) 摘要 本设计名为长春市曙光苑小区室外供热管网和换热站工程设计。 随着国家计量供热的逐步推行,供热行业面临着新的机遇和挑战。计量供热是供热行业从粗放型管理方式向精细型管理方式的一次深刻转变。计量供热的主目标是节能环保。计量供热的成功实行必须依托高精确的热网调控。而热网的高精确调控基础是热网的设计和建设。这对我们供热系统的设计人员和施工人员提出了新的更高的要求。能否设计出满足热网精确调控需求的供热系统是当前我们设计人员面临的一道重要难题。

供热工程是现代化城市重要的基础设施,也是城市公共事业的一项重要设计。各地区都努力从现有条件出发,积极调整能源结构,研究多元化的供热方式,实现供热事业的可持续发展,实现计量供热的节能目标。计量供热不仅能给城市提供稳定的可靠地高品位热源,改善人民生活环境。而且能节约能源,减少城市污染。有利于城市美化,有效地利用城市空间。城市供热管网的设计,首先要在总体规划的指导下,既要为今后的发展留有余地,又要实事求是的对热负荷进行调查和计算。在了解热负荷的性质、类别、用途等多方面现场的资料后,进行供热外网的设计。 本次设计以节能建筑的热指标为基础,以热网的精确调节为最终目标,尽量降低热网的各项指标,尽量应用精确调节的阀门和设备,为计量供热打好基础。 本设计以经济、环保、节能为原则,通过借鉴以前的设计方法和经验,采用了合理的技术措施,使设计的各个系统达到了很好的使用效果。 关键词:集中供热;供热管网;换热站;节能; 第一章绪论 一、我国城市供热的技术走向 1,我国城市集中供热的技术方向,主要采用热电联产的型式,这是我国当前的具体情况决定的。当然,集中供热的首要前提是节约能源,但是当前我国电力紧张的局面也是不能忽视的。在供热的同时,生产一定量的电力,也能缓解部分用电的需要。 2,落实热负荷,是集中供热一切要素之首。没有准确的热负荷,热电站的建设将似海滩上的建筑,不仅不能节约燃料,更无经济效益可谈。 3,目前,我国建设资金短缺,无论是建设热源还是管网,耗资都相当大。因此,改造老凝汽式电站为热电厂,既可大大降低投资,也可缩短工期,且运行效益可立竿见影。这是集中供热应优先考虑的热源。 4,尽可能在老厂扩建供热机组,降低生产与非生产设施投资,并且技术上有比较强的后盾,安全生产有比较可靠的保证。

冬季施工混凝土热工计算

冬季施工混凝土热工计算 一、混凝土拌合物的理论温度计算 To=[0.9(Mce*Tce+Mcm*Tcm+Mg*Tg)+4.2*Tw(Mw-Wcm*Mcm-Wg*Mg)-C1(Wcm*Mcm*Tcm+Wg*Mg*Tg)-C2(Wcm*Mcm+Wg*Mg)]÷[4.2*Mw+0.9(Mce+Mcm+Mg)] ——(公式1) To—混凝土拌合物温度(℃) Mw、Mce、MCm、Mg—水、水泥、砂、石的用量(kg) Tw、Tce、Tcm、Tg—水、水泥、砂、石的温度(℃) Wcm、Wg—砂、石的含水率 C1、C2—水的比热容[kj/(kg.k)]及冰的溶解[kj/(kg.k)] 当骨料温度>0℃时,C1=4.2,C2=0 ≤0℃时, C1=2.1, C2=335 墙体混凝土配合比为: 水泥:砂:石:水(每立方量)=419:618:1100:190 砂含水量为5%,石含水量为0% 热水温度为80℃,水泥温度为5℃,砂温度为3℃,石温度为3℃。 根据公式1 To=[0.9(419×5+618×3+1100×3)+4.2×80(190-0.05×618)-4.20.05×618×3-2.1×0.05×618-335×0.05×618]÷ [4.2×190+0.9(419+618+1100)]=18.06 ℃ 二、混凝土拌合物的出机温度计算: T1= To-0.16(To-Tp) ——(公式2)

T1—混凝土拌合物出机温度(℃) Tp—搅拌机棚内温度(℃) 根据公式2 T1=18.06-0.16(18.06-6)=16.13℃ 三、混凝土拌合物经运输到浇筑时的温度计算 T2= T1-(a×t i+0.032n)×(T1+Th)——(公式3) T2—混凝土拌合物经运输到浇筑时温度(℃) t i—混凝土拌合物自运输到浇筑时的时间(h) n—混凝土拌合物转运次数 Th—混凝土拌合物运输时的环境温度(℃) a—温度损失系数(h-1) 当混凝土用搅拌车运输时:a=0.25 根据公式3 T2=16.13-(0.25×0.6+0.032×2)(16.13+5)=11.6℃ 四、考虑模板和钢筋的吸热影响,混凝土浇筑成型时的温度 计算: T3=(C1×M1×T1-C2×M2×T2-C3×M3×T3)/(C1×M1+C2×M2+C3×M3)——(公式4) T3—混凝土浇筑成型时的温度(℃) C1、C2、C3—混凝土、模板、钢材的比热容[kj/(kg.k)] 混凝土的比热容取1 kj/(kg.k) 钢材的比热容取0.48 kj/(kg.k)

供热课程设计计算说明书.doc

目录 第1章绪论 (1) 1.1设计目的 (1) 1.2工程概述 (1) 1.3设计任务 (1) 第2章设计依据 (2) 2.1主要参考资料 (2) 2.2设计范围 (2) 2.3设计参数 (2) 2.3.1 室外设计参数 (2) 2.3.2 室内设计参数 (3) 2.4设计原始资料 (3) 2.4.1 土建资料 (3) 2.4.2 建筑结构 (3) 2.5动力与能源资料 (3) 2.6其他资料 (3) 2.7朝向修正率 (4) 第3章供暖系统的设计热负荷 (5) 3.1热负荷组成 (5) 3.2负荷计算 (5) 3.2.1 围护结构计算参数 (5) 3.2.2主要计算公式 (5) 3.3热负荷计算 (7)

第4章热水供暖系统设计方案比较与确定 (8) 4.1循环动力 (8) 4.2供、回水方式 (8) 4.3系统敷设方式 (9) 4.4供、回水管布置方式 (9) 第5章散热器的选型及安装形式 (10) 5.1散热器的选择 (10) 5.2散热器的布置 (10) 5.3散热器的安装 (10) 5.4散热器的计算 (10) 第6章热水供暖系统水力计算 (11) 6.1确定系统原理图 (11) 6.2系统水力计算 (11) 6.2.1 散热器计算 (11) 6.2.2 户内水平系统水力计算 (12) 6.2.3 单元立管与水平干管采暖系统水力计算 (19) 附录 (23) 参考文献 (24) 总结 (25)

第1章绪论 1.1 设计目的 供热工程课程设计是本专业学生在学习完《供热工程》后的一次综合训练,其目的是让学生根据所学理论和专业知识,结合实际工程,按照工程设计规范、标准、设计图集和有关参考资料,独立完成建筑所要求的工程设计,掌握供暖系统的设计方法,了解设计流程,通过对系统的设计进一步掌握供热工程的专业知识,深入了解负荷计算、水力计算、散热器计算、系统选择的具体方法,从而达到具有能结合工程实际进行供暖系统设计的能力。 供热工程课程设计是建筑环境与设备专业培养学生解决实际问题能力的一个重要的教学实践环节,在建筑环境与设备专业的教学计划中占有重要的地位和作用。 1.2 工程概述 1.本工程为北京市某建筑小区,整个建筑物为3层,建筑总供暖面积约1800.26平方米。系统与室外管网连接,供水温度950C,回水温度700C.该工程采用接外热网下供下回式分户热水供暖系统,楼梯间不供热。热源由城市热网提供,引入口管径为DN50。 1.3 设计任务 本设计为整栋小区冬季热水供暖工程。设计主要内容为: (一)设计准备(收集和熟悉有关规范、标准并确定室内外设计参数) (二)采暖设计热负荷及热指标的计算 (三)散热设备选择计算 (四)布置管道和附属设备选择,绘制设计草图 (五)管道水力计算 (六)平面布置图、系统原理图等绘制 (七)设计及施工说明的编制

核反应堆热工分析课设

目录 一、设计任务 (1) 二、课程设计要求 (2) 三、计算过程 (2) 四、程序设计框图 (8) 五、代码说明书 (9) 六、热工设计准则和出错矫正 (10) 七、重要的核心程序代码 (11) 八、计算结果及分析 (17)

一、设计任务 某压水反应堆的冷却剂及慢化剂都是水,用二氧化铀作燃料,用Zr-4作包壳材料。燃料组件无盒壁,燃料元件为棒状,正方形排列。已知下列参数:系统压力 15.8MPa 堆芯输出功率 1820MW 冷却剂总流量 32100t/h 反应堆进口温度287℃ 堆芯高度 3.66m 燃料组件数 121 燃料组件形式17×17 每个组件燃料棒数 265 燃料包壳直径 9.5mm 燃料包壳内径 8.36mm 燃料包壳厚度 0.57mm 燃料芯块直径 8.19mm 燃料棒间距(栅距) 12.6mm 芯块密度 95% 理论密度旁流系数 5% 燃料元件发热占总发热的份额 97.4% 径向核热管因子 1.35 轴向核热管因子 1.528 局部峰核热管因子 1.11 交混因子 0.95 热流量工程热点因子 1.03 焓升工程热管因子 1.085 堆芯入口局部阻力系数 0.75 堆芯出口局部阻力系数 1.0 堆芯定位隔架局部阻力系数 1.05

若将堆芯自上而下划分为5个控制体,则其轴向归一化功率分布如下 表:堆芯轴向归一化功率分布(轴向等分5个控制体) 通过计算,得出 1. 堆芯出口温度; 2. 燃料棒表面平均热流及最大热流密度,平均线功率,最大线功率; 3. 热管的焓,包壳表面温度,芯块中心温度随轴向的分布; 4. 包壳表面最高温度,芯块中心最高温度; 5. DNBR在轴向上的变化; 6. 计算堆芯压降; 二、课程设计要求 1.设计时间为两周; 2.独立编制程序计算; 3.迭代误差为0.1%; 4.计算机绘图; 5.设计报告写作认真,条理清楚,页面整洁; 6.设计报告中要附源程序。 三、计算过程 目前,压水核反应堆的稳态热工设计准则有: (1)燃料元件芯块内最高温度应低于其相应燃耗下的熔化温度。 目前,压水堆大多采用UO2作为燃料。二氧化铀的熔点约为2805 ±15℃,经辐照后,其熔点会有所降低。燃耗每增加104兆瓦·日/吨铀,其熔点下降32℃。在通常所达到的燃耗深度下,熔点将降至2650℃左右。在稳态热工设计中,一般将燃料元件中心最高温度限制在2200~2450℃之间。 (2)燃料元件外表面不允许发生沸腾临界。

住宅楼工程冬季施工方案的热工计算.doc

热工计算 1.1.1.材料配合比及入模温度 冬施期间,混凝土所用的原材料为:水泥:P·042.5低碱水泥,外加剂:无氯低碱活性中砂与碎石。并且,确保冬施中所有混凝土中的碱含量低于3.0Kg/M3。冬施热工计算以下面C35的基准配合比为例进行计算。基准配合比为: 混凝土的入模温度为10℃,当时环境温度为-6℃。 1.1. 2.混凝土因钢筋及模板吸热后的温度 式中:T3—考虑模板和钢筋的吸热影响,混凝土成型完成时的温度(℃); C C—混凝土的比热容1KJ/Kg·K; C f—模板的比热容2.51KJ/Kg·K; T f—模板的温度,未预热时可采用当时的环境温度(-6℃)。 T s—钢筋的温度,未预热时可采用当时的环境温度(-6℃)。 3(2400110.0042.5 2.516203.00.486) 8.83 (2400142.5 1.9203.00.48) T ??-??-?? == ?+?+? ℃ 1.1.3.综合蓄热法养护过程温度计算及强度验算 蓄热法采用2层阻燃草纤被和1层塑料布

养护期间的平均温度计算如下: 楼板:M=A/V=2/0.14=14.28/m a m ce V t V m T t V e e T ce ce , /) /( ) / (+ ? - + - =- ? -? θ η η ?θ θ T m.a——混凝土养护开始到任一时刻t的平均气温-6℃ V ce——水泥水化速度系数——0.013 h-1 ω——通风系数——1.3 k——结构维护层的总传热系数 阻燃草纤被:k1=0.06w/m.k d1=0.06m 薄膜:k2=0.03w/m.k d2=0.001m 经计算:k=3.35kJ/m2h.k A.计算三个综合参数 θ=ω×K×M/ V ce×C c×ρ =1.3×3.35×14.28/(0.013×1×2400) =1.99 η= T3- T m.a+φ=8.83+6-45.04=-30.21 B计算混凝土养护至临界温度所需时间 , ce ce V t V t m a T e e T θ η? -?- =-+

相关主题
文本预览
相关文档 最新文档