高一数学必修4测试题
- 格式:doc
- 大小:278.00 KB
- 文档页数:6
1•设a 、b 、c 是单位向量,且 a -b = o ,贝U a c ? b c 的最小值为(D )2A.1B.2C. 2A. 2B. 2 2C. 1D.12r r rr r r r r r uu r r r 2解析Q a,b,c 是单位向量a c ?bc ago (a b)gs crr r _ r r r1 |ab|gc| 1 <2cos ab,c 1.2.2.已知向量a 2,1 ,ab 10,|ab| 5J2,则 |b|(C )A. .5B. .10C.5D. 25r r 宀 r 宀 r r r 宀“ r2 2 2 2解析 Q50 |a b| |a | 2a gD |b| 5 20 | b ||b| 5 故选 C.3.平面向量a 与b 的夹角为600, a (2,0) , b 1则a 2b ( B )A.、3B. 2 3C. 4D.2解析 由已知 |a|= 2,|a + 2b|2= a 2 + 4a b + 4b 2= 4+ 4X2X1 Xcos60° + 4= 12A a 2b2^3LUIUuiuuuu uiPC) = 2AP PM=2 AP PM cosO 2 -5.已知a 3,2 , b1,0,向量a b 与a2b 垂直,则实数的值为()1 A.—1 B.-1 C.—D.17766uuruur uuu UUJ uujruuu6.设 D 、E 、 F 分别是△ ABC 的三边 BC 、CA 、AB 上的点,且DC2BD,CE2EA, AF 2FB,UJLT 则ADUUU uuu uuu BE CF 与 BC(A)A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直(A )4444A.B.c.D.9339uu 由APUuu UJ uuuu 解析 2PM 知,p 为 ABC 的重心,根据向量的加法 ,PB P C2PM则 uur 4.在 ABC 中,M 是BC 的中点,AM=1,点P 在AM 上且满足学PALunn uur uuu uuu2PM ,则 PA (PB PC)等于uuruuu uiuuu uuu AP (PB1•设a 、b 、c 是单位向量,且 a -b = o ,贝U a c ? b c 的最小值为( D )27.已知a , b 是平面内两个互相垂直的单位向量,右向量 c 满足(ac) (b c)0,则 c 的最大值是(C )3 4uuu uuu uuur8.已知O 是厶ABC 所在平面内一点,D 为BC 边中点,且2OA OB OC 0,那么( A )则—的取值范围是mA .、3B . 2.3C .6 D . 2、616.在平行四边形 ABCD 中, uuu AE 1 uuu unr-AB, AF1 UULT一AD , CE 与BF 相交于G 点.的最小值为(B ) A. uuir unr AO ODunr uuir B. AO 2ODuuir uuirC. AO 3ODuur unr D. 2AO OD 9•设a5 ^2(4,3) , a 在b 上的投影为 ,b 在x 轴上的投影为2,且 | b |< 14,则 b 为(B ) (2,4)2,C .D . (2,) 10.设a, b 是非零向量,若函数f(x)(xa b) (a xb )的图象是一条直线, 则必有( A )11.设两个向量a ( 2,a//2cos C . |a|)和b|b|D . |a| |b|mm,—2 sin ,其中,m, 为实数.若a 2b ,A . [-6, 1]B. [4,]C. (-6, 1] D . [-1 , 6]12.已知向量a(1, n),(1, n ),若2a b 与b 垂直,则|a(C13•如图,已知正六边形 RP 2P 3P 4P 5P 6 ,F 列向量的数量积中最大的是(A. RP2 ,R F 3B. P 1P 2, P 1P4C. P 1P 2 , P 1 P 5D.P 1P 2 ,P 1P614.已知向量a 尢,|e |= 1,对任意t € R , 恒有|a - t e | 冷一e |,贝y ( B )A. a 丄 eB. e 丄(a - e )C.a 丄(a - e )D.(a + e )丄(a - e )15.已知向量 unr unr n uurOA , OB 的夹角为一,|OA| 4 ,3luu r|OB| 1,若点 M 在直线 OB 上,贝U |&A OM |uuu r uur r uuur AB a, AD b,则AG342 r 1 r 2 rA. a bB. a7 7 7 17.设向量a与b的夹角为A」10 B. 3b 73.10 10C.(2,1),C.1 r r 4 rb D. a7 72b (4,5),则cosD.18.已知向量a , b的夹角为3,且|a||b| 1 ,19.20.21.22.23.24.中,25.7等于D 则向量a与向量a 2b的夹角等于(5A .6已知向量A. [0, .2]已知单位向量A . 2.3在厶ABC 已知向量已知向量中,arOib-r-|b|其中b均为非零向量, 则| p |的取值范围是(B )B.[0,1]C.(0,2]D.[0,2]a,b的夹角为一,那么a2bAR 2RB,CP 2PR,若AP mAB nAC,贝U mC.a和b的夹角为120 ,B. 7|a| 2,且(2aOAA. [0,4]b) a,则|b |(0,2),OB (2,0),BCB .[冷C 2 cos ,2 sinC. [4,3T]),贝UOA与OC夹角的取值范围是(上海)直角坐标系xOy中,i, j分别是与x, y轴正方向同向的单位向量. 在直角三角形ABC若AB 2i A. 1 j, AC 3i k j,则k的可能值个数是(B. 2若四边形ABCD满足AB CDc.「uuu0 , (AB3uiur uuirAD) ACD. 4则该四边形一定是BA.直角梯形B.菱形C.矩形D.正方形ir r ir 26.已知向量m,n的夹角为一,且|m |6uuir D为BC边的中点,贝U | AD |(乜,订| 2 ,在△ABC中,uuuABir r uuur ir r2m 2n,AC 2m 6n,112427. A . 2 uuu|OA|已知A.3 B . uuu,|OB| .3 ,OA?O B =0 , AOCD . 8uuur 30o ,设OC uuu uuu mOA nOB (m, nR),则D. 28.如图, 其中45°直角三角板的斜边与 所对的直角边重合.若 x , y 等于B x 3, y 1B. 345°直角三角板和 30°直角三角板拼在一起, 直角三角板的 30°角 uuur y DA , uu u DB 30° uuu r DC 则A. C. x 2, y . 3 二、填空题 1. 若向量 a , b 满足 2. 3. 4. 5. 6. 7.8. 答案 .7 设向量 答案 1 3,y 3 3,y 1 3 1,b 2且a 与b 的夹角为—, 3 a (1,2), (2,3),若向量 a b 与向量c (4, 7)共线,则已知向量a 与b 的夹角为120°,且a b 4,那么 b (2a b)的值为答案 0 已知平面向量a (2,4) , b ( 1,2).答案 8,2b 的夹角为120 ,答案设向量 答案若向量 答案若向量 答案uuuAB60若 c a (a 则5a bb)b , 则|C|uu ur 2, ACuuu uur3, AB AC | J 19,则r r aba 与b 的夹角为60 , 1,则 a? a bCABa,b 满足2,(a b) a ,则向量a 与b 的夹角等于uuu UULT LUU LUT UJU9. O 为平面上定点,A, B, C 是平面上不共线的三若 (OB OC ) •OB OC 2OA)=0,贝U ABC 的形状是 __________________________ .等腰三角形答案 -2510.不共线的向量m^ , m 2的模都为2,若a3m i2m 2 , b 2mi 3m 2 ,则两向量a b 与a b 的夹角为 _________________ 90 ° 11 •定义一种运算 S a b ,在框图所表达的算法中揭示了这种运算“”的含义•那么,按照运算 “”的含义,计算 tan 15o tan300 tan300 tan 15o _________ 1 ___r r12、 已知向量 a (cos15o ,sin150), b ( sin 150, cos1S),贝y a b 的值为 ________ . 答案113、 已知 Rt △ ABC 的斜边BC=5 ,则 AB BC BC CA CA AB 的值等于y 轴平行的单位向量,若直角三角形ABC 中,uur r AB ir uuur r rj , AC 2i mj ,则实数 m=答案 —2或0三、解答题rr r r r r1、已知ia 4,|b| 3,(2a — 3b) (2a b) 61 ,r rr r(1 )求 a b 的值;求a 与b 的夹(3)求b 的值;r r r r 心解:(1)由(2a —3b) (2a b) 61 得4a r r 「2「2又由 k 4,|b| 3得 a 16, 9代入上式得64 4a b 2761 a br rr3b14.在直角坐标系xOy 中,i[j 分别是与x 轴,艸(13|fr!=4・得卜2・{妨=』_虛讪一&r5 52’uuuruur uur(2, 4),在向量OC 上是否存在点P ,使得PA PB ,若存在,求出点P 的坐标,若不存在,请说明理由。
高一必修4水平测试数学试卷注意:本试卷满分100分,附加题20分,考试时间100分钟.答案必须写在答题卷上,在试题卷上作答无效.6.函数是A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数7.设四边形ABCD 中,有DC =21AB ,且|AD |=|BC |,则这个四边形是A .平行四边形 B.矩形 C.等腰梯形 D.菱形8.有下列四种变换方式: ①向左平移4π,再将横坐标变为原来的21(纵坐标不变);②横坐标变为原来的21(纵坐标不变),再向左平移8π; ③横坐标变为原来的21(纵坐标不变),再向左平移4π;④向左平移8π,再将横坐标变为原来的21(纵坐标不变);其中能将正弦曲线x y sin =的图像变为)42sin(π+=x y 的图像的是A. ①和③B. ①和②C.②和③D.②和④ 9.函数3sin (2)26y x π=-+的单调递减区间是A. Z k k k ∈⎥⎦⎤⎢⎣⎡++-,23,26ππππ B. 52,2,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ C. Z k k k ∈⎥⎦⎤⎢⎣⎡++-,3,6ππππ D. 5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ 10.如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么||ϕ的最小值为 A.6π B.4π C.-3π D.2π二、填空题(本大题共5小题,每小题4分,共20分) 11.将0120化为弧度为__________.12.已知向量(3,1)a = ,(1,3)b = ,(,7)c k = ,若()a c -∥b ,则k = .13.已知tan a =4,tan β=3,,则tan(a+β)=_________. 14.函数22cos sin 2y x x =+的最小值是__________.15. 已知在平面直角坐标系中,A(-2,0),B(1,3),O 为原点,且OB OA OM βα+=,(其中α+β=1, α,β均为实数),若N(1,0) 的最小值是______________.三 、解答题(本大题共4小题,共40分,解答应写出必要的文字说明、证明过程或演算步骤)16. (10分)求值:(1))623tan(π-; (2)︒75sin17.(10分)已知tan 34πα⎛⎫+=⎪⎝⎭, 计算:(1) tan α (2) 2sin co s 3co s 25co s 23sin 2ααααα+-18.(10分)已知向量a , b 的夹角为60, 且||2a = , ||1b = , 若4c a b =- , 2d a b =+ ,求(1) a ·b;(2) ||c d + .19.(10分)已知函数()2sin()cos f x x x π=-.(1)求()f x 的最小正周期;(2)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值以及取得最大值、最小值时x 的值.附加题:(本大题共2小题,每小题10分,共20分. 省级示范性高中要把该题成绩记入总分,普通高中学生选做)1. (10分)已知函数()sin()(00π)f x A x A ϕϕ=+><<,,x ∈R 的最大值是1,其图像经过点π132M ⎛⎫⎪⎝⎭,.(1)求()f x 的解析式; (2)已知π02αβ⎛⎫∈ ⎪⎝⎭,,,且3()5f α=,12()13f β=,求()f αβ-的值.2. (10分)已知x k d x c b x a )(,1(),1,3(sin ),2,2(),1,sin 2(=-=-=+=→→→→∈R ,k ∈R), (1) 若[,]22x ππ∈-,且//()a b c +,求x 的值;(2) 若]32,6(ππ-∈x ,是否存在实数k ,使)(→→+d a ⊥)(→→+c b ? 若存在,求出k 的取值范围;若不存在,请说明理由。
高一数学必修4 模块测试卷试卷满分:100分 考试时间:60分钟一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1. 在0到2π范围内,与角3π-终边相同的角是( )A. 3πB. 23πC. 43πD. 53π2.α是一个任意角,则α的终边与3α+π的终边( )A. 关于坐标原点对称B. 关于x 轴对称C. 关于y 轴对称D. 关于直线y x =对称3. 已知向量(1,2)=-a ,(1,0)=b ,那么向量3-b a 的坐标是( ) A. (4,2)- B. (4,2)-- C. (4,2) D. (4,2)-4. 若向量(13)=,a 与向量(1,)λ=-b 共线,则λ的值为( ) A. 3- B. 3 C. 13-D. 135. 函数()f x 的图象是中心对称图形,如果它的一个对称中心是)0,2(π,那么()f x 的解析式可以是( )A. sin xB. cos xC. sin 1x +D. cos 1x +6. 已知向量(1,=a ,(2,=-b ,则a 与b 的夹角是( )A.6π B. 4π C. 3π D. 2π7. 为了得到函数cos(2)3y x π=-的图象,只需将函数cos 2y x =的图象( )A. 向左平移π6个单位长度 B. 向右平移π6个单位长度 C. 向左平移π3个单位长度 D. 向右平移π3个单位长度8. 函数212cos y x =- 的最小正周期是( ) A. 4π B. 2πC. πD. 2π9. 设角θ的终边经过点(3,4)-,则)4cos(πθ+的值等于( )A.B.C.D. 10. 在矩形ABCD中,AB =1BC =,E 是CD 上一点,且1AE AB ⋅=,则AE AC ⋅ 的值为( )A .3B .2 C.2 D.3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11. sin34π=______. 12. 若1cos , (0,)2αα=-∈π,则α=______.13. 已知向量(1,3)=-a ,(3,)x =-b ,且⊥a b ,则x =_____. 14.已知sin cos αα-=,则sin 2α=______.15. 函数2cos y x =在区间[,]33π2π-上的最大值为______,最小值为______. 16. 已知函数()sin f x x x =,对于ππ[]22-,上的任意12x x ,,有如下条件:①2212x x >;②12x x >;③12x x >,且1202x x +>.其中能使12()()f x f x >恒成立的条件序号是_______.(写出所有满足条件的序号) 三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)已知2απ<<π,4cos 5α=-. (Ⅰ)求tan α的值; (Ⅱ)求sin 2cos2αα+的值.18.(本小题满分12分)已知函数2()sin 12xf x x =+. (Ⅰ)求()3f π的值;(Ⅱ)求()f x 的单调递增区间;(Ⅲ)作出()f x 在一个周期内的图象.19.(本小题满分12分)如图,点P 是以AB 为直径的圆O 上动点,P '是点P 关于AB 的对称点,2(0)AB a a =>.(Ⅰ)当点P 是弧 上靠近B 的三等分点时,求AP AB ⋅的值;(Ⅱ)求AP OP '⋅的最大值和最小值.参考答案及评分标准一、选择题:本大题共10小题,每小题4分,共40分.1.D;2.A;3.D;4.A;5.B;6.C;7.B;8.C;9.C; 10.B.二、填空题:本大题共6小题,每小题4分,共24分.11. 2-; 12.32π; 13. 1-; 14. 1-; 15. 2,1-; 16. ①③. 注:一题两空的试题每空2分;16题,选出一个正确的序号得2分,错选得0分. 三、解答题:本大题共3小题,共36分.17.解:(Ⅰ)因为4cos 5α=-,2απ<<π,所以3sin 5α=, …………………3分 所以sin 3tan cos 4ααα==-. …………………5分(Ⅱ)24sin 22sin cos 25ααα==-, …………………8分27cos 22cos 125αα=-=, …………………11分 所以24717sin 2cos 2252525αα+=-+=-. …………………12分18.解:(Ⅰ)由已知2()sin 1363f πππ=+ …………………2分1122=+=. …………………4分(Ⅱ)()cos )sin 1f x x x =-+ …………………6分sin 1x x =-+2sin()13x π=-+. …………………7分函数sin y x =的单调递增区间为[2,2]()22k k k πππ-π+∈Z , …………………8分 由 22232k x k ππππ-≤-≤π+,得2266k x k π5ππ-≤≤π+.所以()f x 的单调递增区间为[2,2]()66k k k π5ππ-π+∈Z . …………………9分(Ⅲ)()f x 在[,]33π7π上的图象如图所示. …………………12分19.解:(Ⅰ)以直径AB 所在直线为x 轴,以O 为坐标原点建立平面直角坐标系.因为P 是弧AB 靠近点B 的三等分点, 连接OP ,则3BOP π∠=, …………………1分 点P 坐标为1(,)22a a . …………………2分又点A 坐标是(,0)a -,点B 坐标是(,0)a ,所以3()2AP a = ,(2,0)AB a =, …………………3分 所以23AP AB a ⋅=. …………………4分 (Ⅱ)设POB θ∠=,[0,2)θπ∈,则(cos ,sin )P a a θθ,(cos ,sin )P a a θθ'-所以(cos ,sin )AP a a a θθ=+,(cos ,sin )OP a a θθ'=-. …………所以22222cos cos sin AP OP a a a θθθ'⋅=+- 22(2cos cos 1)a θθ=+- (222119)2(cos cos )2168a a θθ=++- 222192(cos )48a a θ=+-. …………当1cos 4θ=-时,AP OP '⋅ 有最小值298a -当cos 1θ=时,AP OP '⋅ 有最大值22a . …………………12分。
宣威市第九中学第一次月考高一数学试卷本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分,满分150分,时间120分钟.第Ⅰ卷(选择题 共60分)一.选择题(每小题5分,共60分) 1.与32︒-角终边相同的角为( )A .36032k k Z ︒︒⋅+∈, B. 360212k k Z ︒︒⋅+∈, C .360328k k Z ︒︒⋅+∈, D. 360328k k Z ︒︒⋅-∈, 2. 半径为1cm ,中心角为150o 的弧长为( )A .cm 32B .cm 32πC .cm 65D .cm 65π3.点A(x,y)是300°角终边上异于原点的一点,则yx值为( ) A.3 B. - 3 C. 33 D. -334.下列函数中属于奇函数的是( )A. y=cos(x )2π+B. sin()2y x π=- C. sin 1y x =+ D.cos 1y x =-5.要得到函数x y sin =的图象,只需将函数⎪⎭⎫ ⎝⎛-=3sin πx y 的图象 ( )A. 向左平移3π B. 向右平移3π C. 向左平移32π D. 向右平移32π6. 已知点(sin cos tan )P ααα-,在第一象限,则在[02π],内α的取值范围是( ) A.π3π5ππ244⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U ,, B.ππ5ππ424⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭U ,, C.π3π53ππ2442⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U ,, D.ππ3ππ424⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U ,,7. 函数2sin(2)6y x π=+的一条对称轴是( )A. x = 3πB. x = 4πC. x = 2πD. x = 6π8. 函数)32sin(π-=x y 的单调递增区间是( )A .5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦ Z k ∈ B .52,21212k k ππππ⎡⎤-++⎢⎥⎣⎦ Z k ∈ C .5,66k k ππππ⎡⎤-++⎢⎥⎣⎦Z k ∈ D .52,266k k ππππ⎡⎤-++⎢⎥⎣⎦Z k ∈9.已知函数sin()(0,)2y x πωϕωϕ=+><的部分图象如图所示,则此函数的解析式为( ) A .sin(2)2y x π=+ B .sin(2)4y x π=+C .sin(4)2y x π=+ D .sin(4)4y x π=+ 10.在函数22sin ,sin ,sin(2),cos()323x y x y x y x y ππ===+=+中,最小正周期为π的函数的个数是( )A. 1个B. 2个C. 3个D.4个11.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于( )B. 1C. 0D.12.设a 为常数,且1>a ,[0,2x ∈π],则函数1sin 2cos )(2-+=x a x x f 的最大值为( ).A.12+aB.12-aC.12--aD.2a第Ⅱ卷(非选择题 共90分)二、填空题(每小题5分,共20分)13. 设角α的终边过点(4,3)P t t -(,0)t R t ∈>且,则2sin cos αα+=14. 函数1y tan 34x π⎛⎫=- ⎪⎝⎭的定义域为15.求使sin α>成立的α的取值范围是 16 关于函数f(x)=4sin ⎪⎭⎫⎝⎛+3π2x (x ∈R),有下列论断:①函数y=f(x)的表达式可改写为y=4cos(2x-π6); ②函数y=f(x)的最小正周期为2π;③函数y=f(x)的图象关于点⎪⎭⎫⎝⎛-0 6π,对称; ④函数y=f(x)的图象可由y=4sin2x 向左平移3π个单位得到. 其中正确的是 .(将你认为正确的论断的序号都填上) 一、选择题(每小题5分,共60分)二、填空题(每小题5分,共20分)13、 14、 15、 16、三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分10分)(1) ;(2)已知=αsin 21-,且α是第四象限角,求αcos 、αtan 的值.18.(本小题满分12分)已知51cos sin =+θθ,其中θ是ABC ∆的一个内角. (1)求θθcos sin 的值;(2)判断ABC ∆是锐角三角形还是钝角三角形; (3)求θθcos sin -的值.19.(本小题满分12分)已知tan 1tan 1αα=--,求(1)21sin sin cos ααα+的值;(2)设222sin ()sin (2)sin()322()cos ()2cos()f πθθθθθθπ++π-+--=π+--,求()3f π的值.20.(本小题满分12分)已知函数()2sin sin f x x x =+,02x π≤≤. 若方程m x f =)(有两个不同的实数根,求实数m 的取值范围.21(本小题满分12分)已知函数a x x +-=)62sin(2)(f π.(1)求函数f(x)的最小正周期; (2)求函数f(x)的单调递减区间;(3)若]2,0[x π∈时,f(x)的最小值为-2,求a 的值.22.(本小题满分12分)函数)2||,0,0)(sin(πϕωϕω<>>+=A x A y 的一段图象如图所示,根据图象求:(1))(x f 的解析式;(2)函数)(x f 的图象可以由函数sin ()y x x R =∈ 的图象经过怎样的变换得到?。
高一数学必修4试题附答案详解第I 卷一、选择题:(每小题5分,共计60分) 1. 下列命题中正确的是( )A .第一象限角必是锐角B .终边相同的角相等C .相等的角终边必相同D .不相等的角其终边必不相同2.已知角α的终边过点()m m P 34,-,()0≠m ,则ααcos sin 2+的值是( ) A .1或-1 B .52或 52- C .1或52- D .-1或52 3. 下列命题正确的是( )A 若→a ·→b =→a ·→c ,则→b =→c B 若||||b -=+,则→a ·→b =0 C 若→a //→b ,→b //→c ,则→a //→c D 若→a 与→b 是单位向量,则→a ·→b =1 4. 计算下列几个式子,①οοοο35tan 25tan 335tan 25tan ++,②2(sin35︒cos25︒+sin55︒cos65︒), ③οο15tan 115tan 1-+ , ④ 6tan 16tan 2ππ-,结果为3的是( ) A.①② B. ①③ C. ①②③ D. ①②③④5. 函数y =cos(4π-2x )的单调递增区间是 ( ) A .[k π+8π,k π+85π] B .[k π-83π,k π+8π]C .[2k π+8π,2k π+85π]D .[2k π-83π,2k π+8π](以上k ∈Z )6. △ABC 中三个内角为A 、B 、C ,若关于x 的方程22cos cos cos 02Cx x A B --=有一根为1,则△ABC 一定是( )A. 直角三角形B. 等腰三角形C. 锐角三角形D. 钝角三角形7. 将函数)32sin()(π-=x x f 的图像左移3π,再将图像上各点横坐标压缩到原来的21,则所得到的图象的解析式为( )A x y sin =B )34sin(π+=x yC )324sin(π-=x y D )3sin(π+=x y8. 化简10sin 1++10sin 1-,得到( )A -2sin5B -2cos5C 2sin5D 2cos59. 函数f(x)=sin2x ·cos2x 是 ( )A 周期为π的偶函数B 周期为π的奇函数C 周期为2π的偶函数 D 周期为2π的奇函数. 10. 若|2|= ,2||= 且(-)⊥ ,则与的夹角是 ( )(A )6π (B )4π (C )3π(D )π125 11. 正方形ABCD 的边长为1,记→-AB =→a ,→-BC =→b ,→-AC =→c ,则下列结论错误..的是 A .(→a -→b )·→c =0 B .(→a +→b -→c )·→a =0C .(|→a -→c | -|→b |)→a =→0 D .|→a +→b +→c |=212. 2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是θθ22cos sin ,251-则的值等于( )A .1B .2524-C .257D .-257二、填空题(本大题共4小题,每小题4分,共16分)13. 已知曲线y =Asin(ωx +ϕ)+k (A>0,ω>0,|ϕ|<π)在同一周期内的最高点的坐标为(8π, 4),最低点的坐标为(85π, -2),此曲线的函数表达式是 。
必修四 第1卷一 选择题: (每小题5分, 共计60分)1.下列命题中正确的是... .A. 第一象限角必是锐角B. 终边相同的角相等C. 相等的角终边必相同D. 不相等的角其终边必不相同2.已知角 的终边过点 , , 则 的值是( )A. 1或-1B. 或C. 1或D. -1或3.下列命题正确的是...)A 若 · = · , 则 =B 若 , 则 · =0C 若 // , // , 则 //D 若 与 是单位向量, 则 · =14.计算下列几个式子,① ,②2(sin35(cos25(+sin55(cos65(), ③ , ④ , 结果为 的是( )A.①...B.①...C.①②...D.①②③.5.函数y =cos( -2x)的单调递增区间..... )A. [k π+ , k π+ π]B. [k π- π, k π+ ]C. [2k π+ , 2k π+ π]D. [2k π- π, 2k π+ ](以上k ∈Z )6.△ABC 中三个内角为A 、B 、C, 若关于x 的方程 有一根为1, 则△ABC 一定是( )A.直角三角.B.等腰三角...C.锐角三角.D.钝角三角形7.将函数 的图像左移 ,再将图像上各点横坐标压缩到原来的 ,则所得到的图象的解析式为..)A x y sin =B )34sin(π+=x yC )324sin(π-=x y D )3sin(π+=x y 8.化简 + , 得到...)A -2sin5B -2cos5C 2sin5D 2cos59.函数f(x)=sin2x ·cos2x.....)A 周期为π的偶函数B 周期为π的奇函数C 周期为2π的偶函数 D 周期为2π的奇函数. 10.若|., .且( )⊥., 则 与 的夹角..... )(A )6π (B )4π (C )3π (D )π125 11.正方形ABCD 的边长为1, 记 = , = , = , 则下列结论错误的是A. ( - )· =0B. ( + - )· =0C. (| - | -| |) =D. | + + |=12.2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为 ,大正方形的面积是1,小正方形的面积是 的值等于.. )A. 1B.C.D. -二、填空题(本大题共4小题, 每小题4分, 共16分)13.已知曲线y=Asin((x +()+.(A>0,(>0,|(|<π)在同一周期内的最高点的坐标为 ( , 4), 最低点的坐标为( , -2), 此曲线的函数表达式是 。
高一数学平面向量测试题本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
一、 选择(5分×7=35分):1、以下命题正确的个数是 【 】①0AB BA +=; ②00AB ⋅=; ③AB AC BC -=; ④00AB ⋅=A 、1B 、2C 、3D 、42、假设向量(1,1)a =,(1,1)b =-,(1,2)c =-,那么c 等于 【 】A 、1322a b -+B 、1322a b -C 、3122a b -D 、3122a b -+ 3、(1,2)a =,(2,3)b x =-且a ∥b ,那么x = 【 】A 、-3B 、34-C 、0D 、344、以下命题中: ①假设0a b ⋅=,那么0a =或者0b =; ②假设不平行的两个非零向量a ,b 满足a b =,那么()()0a b a b +⋅-=; ③假设a 与b 平行,那么a b a b ⋅=⋅ ; ④假设a ∥b ,b ∥c ,那么a ∥c ;其中真命题的个数是 【 】A 、1B 、2C 、3D 、4 5、3a =,23b =,3a b ⋅=-,那么a 与b 的夹角是 【 】A 、150︒B 、120︒C 、60︒D 、30︒6、假设)()(),1,2(),4,3(b a b x a b a -⊥+-==且,那么实数x= 【 】A 、23B 、223C 、323D 、4237、在ΔABC 中,060,43=∠==BAC ,那么=⋅AC BA 【 】A 、6B 、4C 、-6D 、-4二、填充〔5分×4=20分〕:8、===x x a 则,13,5(9、(2,4),(2,6)MA MB =-=,那么12AB = 10、假设A(-1,-2),B(4,8),C(5,x),且A 、B 、C 三点一共线,那么x =11、向量(6,2)a =与(3,)b k =-的夹角是钝角,那么k 的取值范围是三、解答〔一共45分〕:12、A 〔1,0〕,B 〔4,3〕,C 〔2,4〕,D 〔0,2〕,试证明四边形ABCD 是梯形。
高一数学必修4模块测试题(人教A 版)时刻:120分钟 总分值:150分班级: 姓名: 学号:第I 卷(选择题, 共50分)一 、选择题(本大题共10小题,每题5分,共50分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的) 1.0sin 390=( ) A .21 B .21- C .23 D .23-2.以下区间中,使函数sin y x =为增函数的是 A .[0,]π B .3[,]22ππC .[,]22ππ-D .[,2]ππ3.以下函数中,最小正周期为2π的是( ) A .sin y x = B .sin cos y x x = C .tan2xy = D .cos 4y x = 4.已知(,3)a x =, (3,1)b =, 且a b ⊥, 那么x 等于 ( )A .-1B .-9C .9D .1 5.已知1sin cos 3αα+=,则sin 2α=( ) A .21 B .21- C .89 D .89- 6.要取得2sin(2)3y x π=-的图像, 需要将函数sin 2y x =的图像( )A .向左平移23π个单位B .向右平移23π个单位C .向左平移3π个单位D .向右平移3π个单位7.已知a ,b 知足:||3a =,||2b =,||4a b +=,那么||a b -=( )A B C .3 D .108.已知1(2,1)P -, 2(0,5)P 且点P 在12P P 的延长线上, 12||2||PP PP =, 那么点P 的坐标为 ( ) A .(2,7)-B .4(,3)3C .2(,3)3D .(2,11)-9.已知2tan()5αβ+=, 1tan()44πβ-=, 则tan()4πα+的值为 ( ) A .16 B .2213 C .322 D .131810.函数)sin(ϕω+=x y 的部份图象如右图,那么ϕ、ω能够取的一组值是( )A. ,24ππωϕ==B. ,36ππωϕ==C. ,44ππωϕ==D. 5,44ππωϕ==第II 卷(非选择题, 共60分)二、填空题(本大题共4小题,每题5分,共20分,把答案填在题中横线上) 11.已知扇形的圆心角为0120,半径为3,那么扇形的面积是 12.已知ABCD 为平行四边形,A(-1,2),B (0,0),C(1,7),那么D点坐标为 13.函数y =的概念域是 .14. 给出以下五个命题: ①函数2sin(2)3y x π=-的一条对称轴是512x π=; ②函数tan y x =的图象关于点(2π,0)对称; ③正弦函数在第一象限为增函数 ④若12sin(2)sin(2)44x x ππ-=-,那么12x x k π-=,其中k Z ∈ 以上四个命题中正确的有 (填写正确命题前面的序号)三、解答题(本大题共6小题,共80分,解许诺写出文字说明,证明进程或演算步骤) 15(本小题总分值12分) (1)已知4cos5,且为第三象限角,求sin 的值 (2)已知3tan =α,计算 ααααsin 3cos 5cos 2sin 4+- 的值16(此题总分值12分)已知α为第三象限角,()3sin()cos()tan()22tan()sin()f ππααπαααπαπ-+-=----.(1)化简()fα(2)假设31cos()25πα-=,求()f α的值17(本小题总分值14分)已知向量a , b 的夹角为60, 且||2a =, ||1b =, (1) 求 a b ; (2) 求 ||a b +.18(本小题总分值14分)已知(1,2)a =,)2,3(-=,当k 为何值时, (1) ka b +与3a b -垂直?(2) ka b +与3a b -平行?平行时它们是同向仍是反向?19(本小题总分值14分)某口岸的水深y (米)是时刻t (024t ≤≤,单位:小时)的函数,下面是天天时刻与水经太长期观测, ()y f t =可近似的看成是函数sin y A t b ω=+(1)依照以上数据,求出()y f t =的解析式(2)假设船舶航行时,水深至少要11.5米才是平安的,那么船舶在一天中的哪几段时刻能够平安的进出该港?20(本小题总分值14分)已知(3sin ,cos )a x m x =+,(cos ,cos )b x m x =-+, 且()f x a b = (1) 求函数()f x 的解析式; (2) 当,63x ππ⎡⎤∈-⎢⎥⎣⎦时, ()f x 的最小值是-4 , 求现在函数()f x 的最大值, 并求出相应的x 的值.参考答案:一、ACDAD DDDCC二、11.3π 12.(0,9) 13. [2,2]k k πππ+k Z ∈ 14. ①④ 三、15.解:(1)∵22cos sin 1αα+=,α为第三象限角∴ 3sin 5α===- (2)显然cos 0α≠∴ 4sin 2cos 4sin 2cos 4tan 24325cos 5cos 3sin 5cos 3sin 53tan 5337cos αααααααααααα---⨯-====++++⨯16.解:(1)()3sin()cos()tan()22tan()sin()f ππααπαααπαπ-+-=---- (cos )(sin )(tan )(tan )sin cos αααααα--=-=- (2)∵31cos()25πα-= ∴ 1sin 5α-= 从而1sin 5α=-又α为第三象限角∴cos α== 即()f α的值为5-17.解: (1) 1||||cos602112a b a b ==⨯⨯= (2) 22||()a b a b +=+22242113a ab b=-+=-⨯+=因此||3a b +=18.解:(1,2)(3,2)(3,22)ka b k k k +=+-=-+3(1,2)3(3,2)(10,4)a b -=--=-(1)()ka b +⊥(3)a b -,得()ka b +(3)10(3)4(22)2380,19a b k k k k -=--+=-== (2)()//ka b +(3)a b -,得14(3)10(22),3k k k --=+=- 现在1041(,)(10,4)333ka b +=-=--,因此方向相反。
高中数学习题必修4及答案篇一:人教版高一数学必修四测试题(含详细答案)高一数学考试(必修4)(特别适合按14523顺序的省份)必修4第1章三角函数(1)一、选择题:1.如果a={第一象限角},B={锐角},C={角度小于90°},那么a,B和C之间的关系是()a.b=a∩cb.b∪c=cc.acd.a=b=c2sin21200等于()?133c?d22223.已知sin??2cos?3sin??5cos5,那么tan?的值为b.2c.()16164.在下列函数中,最小正周期为π的偶数函数为()A.-223D.-23x1?tan2xa.y=sin2xb.y=cosc.sin2x+cos2xd.y=21?tan2x5.转角600的端边是否有点??4,a那么a的值是()04b?43c?43d6.得到函数y=cos(a.向左平移x?x?)的图象,只需将y=sin的图象()242??个单位b.同右平移个单位22c、将装置向左移动D.将装置向右移动447.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移?1个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象22Y=f(x)是()a.y=1?1?sin(2x?)?1b.y=sin(2x?)?122221.1.c、 y=sin(2x?)?1d。
罪(2x?)?一万二千四百二十四8.函数y=sin(2x+5?)的图像的一条对轴方程是()25.a、 x=-b.x=-c.x=d.x=42481,则下列结论中一定成立的是229.如果罪??余弦??()罪恶??2b.罪22罪??余弦??1d.罪??余弦??0c。
()10.函数y?2sin(2x??3)形象a.关于原点对称b.关于点(-11.功能y?罪(x?a.[,0)对称c.关于y轴对称d.关于直线x=对称66?2x?r是()??,]上是增函数b.[0,?]上是减函数22c、 [?,0]是减法函数D.[?,?]上限是一个减法函数12.功能y?()3,2k??a、 2k b、 2k??,2k??(k?z)(k?z)3.66??2??3.c、 2k3,2k(k?Z)d?2k23,2k2(kz)3二、填空:13.函数y?cos(x2)(x?[,?])的最小值是.863和2002年相同端边的最小正角度为_________015.已知sin??cos??1??,且,则cos??sin??.842如果设置一个??x | kx?k???,k?z?,b??x|?2?x?2?,3?然后是a?b=_______________________________________三、解答题:17.认识辛克斯吗?Coxx?1和0?x??。
高一数学必修4测试题一、选择题(本大题共12小题,每小题3分,共36分) 1.下列各角中,与角330°的终边相同的有是( )A .510°B .150°C .-150°D .-390° 2.若点P 在4π-的终边上,且|OP |=2,则点P 的坐标为( )A .(2,2)B .(2,2-)C .(2,2-)D .(2,2--)3.已知(2,3)a =,(,6)b x =-,若a 与b 共线,则x = ( )A .4B .3C .-3D .-4 4.若0cos sin >⋅θθ,则θ为( ) A .第一或第三象限角 B .第二或第三象限角C .第一或第四象限角D .第三或第四象限角5.设向量1(cos ,)2a α=的模为2,则cos 2α= ( )A .41-B .21-C .21 D .23 6.函数()sin()cos()1212f x x x ππ=--,则()f x 的最小正周期是( )A .2πB .2π C .πD .4π7.设M 是□ABCD 的对角线的交点,O 为任意一点(且不与M 重合),则OD OC OB OA +++ 等于( )A .OMB .2OMC .3OMD .4OM8.把函数x y sin =的图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),然后把图 象向左平移4π个单位,则所得到图象对应的函数解析式为 ( )A .)421sin(π+=x yB .)42sin(π+=x yC .)821cos(π+=x yD .)22sin(π+=x y。
第二章综合检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下列等式成立的是( ) A.MN →=NM →B .a ·0=0C .(a ·b )c =a (b ·c )D .|a +b |≤|a |+|b |[答案] D2.如果a ,b 是两个单位向量,那么下列四个结论中正确的是( )A .a =bB .a ·b =1C .a =-bD .|a |=|b | [答案] D[解析] 两个单位向量的方向不一定相同或相反,所以选项A ,C 不正确;由于两个单位向量的夹角不确定,则a ·b =1不成立,所以选项B 不正确;|a |=|b |=1,则选项D 正确.3.已知A (1,2),B (3,-1),C (3,4),则AB →·AC →等于( ) A .11 B .5 C .-1 D .-2 [答案] D4.在四边形ABCD 中,AB →·BC →=0,且AB →=DC →,则四边形ABCD 是( )A .平行四边形B .菱形C .矩形D .正方形[答案] C[解析] AB →=DC →表示AB →与DC →模相等,方向相同,AB 綊DC .故四边形ABCD 是平行四边形.又AB →·BC →=0,∴AB →⊥BC →,∴四边形ABCD 为矩形.5.在五边形ABCDE 中,(如图),AB →+BC →-DC →=( )A.AC →B.AD →C.BD →D.BE →[答案] B[解析] AB →+BC →-DC →=AB →+BC →+CD →=AD →. 6.若|a |=2,|b |=6,a ·b =-3,则|a +b |等于( ) A .23 B .34 C.23 D.34 [答案] D[解析] |a +b |2=(a +b )2=a 2+2a ·b +b 2=4-6+36=34.7.已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,且四边形ABCD 为矩形,则( )A .a +b +c +d =0B .a -b +c -d =0C .a +b -c -d =0D .a -b -c +d =0[答案] B[解析] BA →=OA →-OB →=a -b ,CD →=OD →-OC →=d -c ,又BA →=CD →,故a -b =d -c .8.如下图,M 、N 分别是AB 、AC 的一个三等分点,且MN →=λ(AC →-AB →)成立,则λ=( )A.12B.13 C.23 D .±13[答案] B[解析] MN →=13→且BC →=AC →-AB →.9.与向量a =(1,1)平行的单位向量为( ) A .(22,22)B .(-22,-22) C .(±22,±22)D .(22,22)或(-22,-22) [答案] D[解析] 与a 平行的单位向量为±a |a |10.若|a |=1,|b |=6,a ·(b -a )=2,则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π2[答案] C[解析] a ·(b -a )=a ·b -a 2=1×6×cos θ-1=2. cos θ=12,θ∈[0,π],故θ=π3.11.(2012·全国高考浙江卷)设a 、b 是两个非零向量( ) A .若|a +b |=|a |-|b |,则a ⊥b B .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b =|a |-|b |,则存在实数λ,使得a =λbD .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b | [答案] C[解析] 利用排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,则a 、b 共线,即存在实数λ,使得a =λb .如选项A :|a +b |=|a |-|b |时,a 、b 可为异向的共线向量;选项B :若a ⊥b ,由正方形得|a +b |=|a |-|b |不成立;选项D ;若存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立.12.已知△ABC 中,AB →=a ,AC →=b ,a ·b <0,S △ABC =154,|a |=3,|b |=5,则a 与b 的夹角为( )A .30°B .-150°C .150°D .30°或150°[答案] C[解析] 由a ·b <0可知a ,b 的夹角θ为钝角,又S △ABC =12|a |·|b |sin θ,∴12×3×5×sin θ=154,∴sin θ=12⇒θ=150°. 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则A 、B 、C 、D 四点中一定共线的三点是________.[答案] A ,B ,D[解析] BD →=BC →+CD →=(-5a +6b )+(7a -2b )=2a +4b =2(a +2b )=2AB →.14.已知向量a =(1,1),b =(2,-3),若k a -2b 与a 垂直,则实数k 等于________.[答案] -1[解析] (k a -2b )·a =0,[k (1,1)-2(2,-3)]·(1,1)=0,即(k -4,k +6)·(1,1)=0,k -4+k +6=0,∴k =-1.15.如图,两块斜边长相等的直角三角形拼在一起,若AD →=xAB →+yAC →,则x =________,y =________.[答案] 2+32 32[解析] 连接AE ,则AE ∥BD ,且BD =3AE ,∴BD →=3AE →=3×12(AB →+AC →)=32(AB →+AC →),则AD →=AB →+BD →=AB →+32(AB →+AC →)=2+32AB →+32AC →.16.关于平面向量a 、b 、c ,有下列三个命题: ①若a ·b =a ·c ,则b =c ;②若a =(1,k ),b =(-2,6),a ∥b ,则k =-3;③非零向量a 和b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角为60°. 其中真命题的序号为________.(写出所有真命题的序号) [答案] ②[解析] 当a =0时,①不成立;对于②,若a ∥b ,则-2k =6,∴k =-3,②成立;对于③,由于|a |=|b |=|a -b |,则以|a |,|b |为邻边的平行四边形为菱形,如图.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)已知O 、A 、B 是平面上不共线的三点,直线AB 上有一点C ,满足2AC →+CB →=0,(1)用OA →、OB →表示OC →;(2)若点D 是OB 的中点,证明四边形OCAD 是梯形. [解析] (1)2AC →+CB →=0, 2(OC →-OA →)+(OB →-OC →)=0. 2OC →-2OA →+OB →-OC →=0. ∴OC →=2OA →-OB →.(2)如图,DA →=DO →+OA →=-12OB →+OA →=12(2OA →-OB →).故DA →=12OC →.故四边形OCAD 为梯形.18.(本题满分12分)已知点O (0,0)、A (1,2)、B (4,5)及OP →=OA →+tAB →.求:(1)t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第二象限? (2)存在平行四边形OABP 吗?若存在,求出相应的t 值;若不存在,请说明理由.[解析] (1)OP →=OA →+tAB →=(1+3t,2+3t ). 若点P 在x 轴上,只需2+3t =0,即t =-23;若点P 在y 轴上,只需1+3t =0,即t =-13;若点P 在第二象限,则需⎩⎪⎨⎪⎧1+3t <0,2+3t >0,解得-23<t <-13.(2)假设存在平行四边形OABP ,则有OA →=(1,2),PB →=(3-3t,3-3t ).OA →=PB →,于是⎩⎪⎨⎪⎧3-3t =1,3-3t =2,无解,故不存在平行四边形OABP .[点拨] (1)中判断点P 的位置,即判断点P 的坐标的情况. (2)存在性探究问题一般先假设存在.19.(本题满分12分)已知向量a 、b 不共线,c =k a +b ,d =a -b , (1)若c ∥d ,求k 的值,并判断c 、d 是否同向; (2)若|a |=|b |,a 与b 夹角为60°,当k 为何值时,c ⊥d . [解析] (1)c ∥d ,故c =λd , 即k a +b =λ(a -b ). 又a 、b 不共线,∴⎩⎪⎨⎪⎧ k =λ,1=-λ.得⎩⎪⎨⎪⎧λ=-1,k =-1.即c =-d , 故c 与d 反向. (2)c ·d =(k a +b )·(a -b ) =k a 2-k a ·b +a ·b -b 2 =(k -1)a 2+(1-k )|a |2·cos60° 又c ⊥d ,故(k -1)a 2+1-k 2a 2=0.即(k -1)+1-k2=0.解得k =1.20.(本题满分12分)向量a 、b 、c 满足a +b +c =0,(a -b )⊥c ,a ⊥b ,若|a |=1,求|a |2+|b |2+|c |2的值.[解析] 由(a -b )⊥c 知(a -b )·c =0. 又c =-(a +b ),∴(a -b )·(a +b )=a 2-b 2=0.故|a |=|b |=1,又c 2=[-(a +b )]2=a 2+2a ·b +b 2=a 2+b 2=2, ∴|a |2+|b |2+|c |2=4.21.(本题满分12分)已知|a |=1,|b |=1,a 与b 的夹角为60°,x =2a -b ,y =3b -a ,则x 与y 的夹角的余弦值是多少?[解析] 由|a |=|b |=1,a 与b 的夹角为60°, 得a ·b =|a ||b |cos α=12.∵|x |2=x 2=(2a -b )2=4a 2-4a ·b +b 2=4-4×12+1=3,|y |2=y 2=(3b -a )2=9b 2-6a ·b +a 2=9-6×12+1=7,x ·y =(2a -b )·(3b -a )=7a ·b -2a 2-3b 2=-32,又x ·y =|x ||y |cos θ, ∴cos θ=x ·y |x ||y |=-2114.22.(12分)已知向量a =(3,-1),b =(12,32).(1)求证:a ⊥b ;(2)是否存在不等于0的实数k 和t ,使x =a +(t 2-3)b ,y =-k a +t b ,且x ⊥y ?如果存在,试确定k 和t 的关系;如果不存在,请说明理由.[解析] (1)a ·b =(3,-1)·(12,32)=32-32=0,∴a ⊥b .(2)假设存在非零实数k ,t 使x ⊥y ,则[a +(t 2-3)b ]·(-k a +t b )=0, 整理得-k a 2+[t -k (t 2-3)]a ·b +t (t 2-3)b 2=0.又a ·b =0,a 2=4,b 2=1.∴-4k +t (t 2-3)=0,即k =14(t 2-3t )(t ≠0),故存在非零实数k ,t ,使x ⊥y 成立,其关系为k =14(t 3-3t )(t ≠0).。
第一章 三角函数一、选择题1.已知 α 为第三象限角,则 2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限2.若sin θcos θ>0,则θ在( ). A .第一、二象限 B .第一、三象限C .第一、四象限 D .第二、四象限3.sin3π4cos 6π5tan ⎪⎭⎫ ⎝⎛3π4-=( ). A .-433B .433 C .-43 D .43 4.已知tan θ+θtan 1=2,则sin θ+cos θ等于( ). A .2B .2C .-2D .±25.已知sin x +cos x =51(0≤x <π),则tan x 的值等于( ). A .-43B .-34 C .43 D .34 6.已知sin α >sin β,那么下列命题成立的是( ). A .若α,β 是第一象限角,则cos α >cos β B .若α,β 是第二象限角,则tan α >tan β C .若α,β 是第三象限角,则cos α >cos β D .若α,β 是第四象限角,则tan α >tan β 7.已知集合A ={α|α=2k π±3π2,k ∈Z },B ={β|β=4k π±3π2,k ∈Z },C = {γ|γ=k π±3π2,k ∈Z },则这三个集合之间的关系为( ). A .A ⊆B ⊆CB .B ⊆A ⊆CC .C ⊆A ⊆BD .B ⊆C ⊆A8.已知cos (α+β)=1,sin α=31,则sin β 的值是( ).A .31B .-31C .322 D .-322 9.在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ). A .⎪⎭⎫ ⎝⎛2π ,4π∪⎪⎭⎫⎝⎛4π5 ,πB .⎪⎭⎫⎝⎛π ,4πC .⎪⎭⎫ ⎝⎛4π5 ,4πD .⎪⎭⎫ ⎝⎛π ,4π∪⎪⎭⎫ ⎝⎛23π ,4π510.把函数y =sin x (x ∈R )的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所表示的函数是( ). A .y =sin ⎪⎭⎫ ⎝⎛3π - 2x ,x ∈RB .y =sin ⎪⎭⎫⎝⎛6π + 2x ,x ∈RC .y =sin ⎪⎭⎫ ⎝⎛3π + 2x ,x ∈RD .y =sin ⎪⎭⎫ ⎝⎛32π + 2x ,x ∈R二、填空题11.函数f (x )=sin 2 x +3tan x 在区间⎥⎦⎤⎢⎣⎡3π4π ,上的最大值是 .12.已知sin α=552,2π≤α≤π,则tan α= . 13.若sin ⎪⎭⎫ ⎝⎛α + 2π=53,则sin ⎪⎭⎫⎝⎛α - 2π= .14.若将函数y =tan ⎪⎭⎫ ⎝⎛4π + x ω(ω>0)的图象向右平移6π个单位长度后,与函数y =tan ⎪⎭⎫ ⎝⎛6π + x ω的图象重合,则ω的最小值为 .15.已知函数f (x )=21(sin x +cos x )-21|sin x -cos x |,则f (x )的值域是 . 16.关于函数f (x )=4sin ⎪⎭⎫ ⎝⎛3π + 2x ,x ∈R ,有下列命题:①函数 y = f (x )的表达式可改写为y = 4cos ⎪⎭⎫ ⎝⎛6π - 2x ;②函数 y = f (x )是以2π为最小正周期的周期函数; ③函数y =f (x )的图象关于点(-6π,0)对称; ④函数y =f (x )的图象关于直线x =-6π对称. 其中正确的是______________.三、解答题17.求函数f (x )=lgsin x +1cos 2-x 的定义域.18.化简:(1))-()+(-)++()+()-(-)++(-αααααα︒︒︒︒180cos cos 180tan 360tan sin 180sin ;(2))-()+()-()++(πcos πsin πsin πsin n n n n αααα(n ∈Z ).19.求函数y =sin ⎪⎭⎫ ⎝⎛6π - 2x 的图象的对称中心和对称轴方程.20.(1)设函数f (x )=xax sin sin +(0<x <π),如果 a >0,函数f (x )是否存在最大值和最小值,如果存在请写出最大(小)值;(2)已知k <0,求函数y =sin 2 x +k (cos x -1)的最小值.参考答案一、选择题 1.D解析:2k π+π<α<2k π+23π,k ∈Z ⇒k π+2π<2α<k π+43π,k ∈Z .2.B解析:∵ sin θcos θ>0,∴ sin θ,cos θ同号.当sin θ>0,cos θ>0时,θ在第一象限;当sin θ<0,cos θ<0时,θ在第三象限. 3.A解析:原式=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-3πtan 6πcos 3πsin =-433. 4.D 解析:tan θ+θtan 1=θθcos sin +θθsin cos =θθcos sin 1=2,sin θ cos θ=21.(sin θ+cos θ)2=1+2sin θcos θ=2.sin θ+cos θ=±2. 5.B解析:由 得25cos 2 x -5cos x -12=0.解得cos x =54或-53. 又 0≤x <π,∴ sin x >0.⎩⎨⎧1=cos +sin 51=cos +sin 22x x x x若cos x =54,则sin x +cos x ≠51,∴ cos x =-53,sin x =54,∴ tan x =-34.6.D解析:若 α,β 是第四象限角,且sin α>sin β,如图,利用单位圆中的三角函数线确定α,β 的终边,故选D .7.B解析:这三个集合可以看作是由角±3π2的终边每次分别旋转一周、两周和半周所得到的角的集合. 8.B解析:∵ cos (α+β)=1, ∴ α+β=2k π,k ∈Z . ∴ β=2k π-α.∴ sin β=sin (2k π-α)=sin (-α)=-sin α=-31.9.C解析:作出在(0,2π)区间上正弦和余弦函数的图象,解出两交点的横坐标4π和45π,由图象可得答案.本题也可用单位圆来解.10.C解析:第一步得到函数y =sin ⎪⎭⎫ ⎝⎛+3πx 的图象,第二步得到函数y =sin ⎪⎭⎫ ⎝⎛+3π2x 的图象. 二、填空题 11.415. 解析:f (x )=sin 2 x +3tan x 在⎥⎦⎤⎢⎣⎡3π4π ,上是增函数,f (x )≤sin 23π+3tan 3π=415. 12.-2. 解析:由sin α=552,2π≤α≤π⇒cos α=-55,所以tan α=-2. 13.53. (第6题`)解析:sin ⎪⎭⎫ ⎝⎛α + 2π=53,即cos α=53,∴ sin ⎪⎭⎫⎝⎛α - 2π=cos α=53.14.21.解析:函数y =tan ⎪⎭⎫ ⎝⎛4π+x ω (ω>0)的图象向右平移6π个单位长度后得到函数y =tan ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛4π+6π-x ω=tan ⎪⎭⎫ ⎝⎛ωω6π-4π+x 的图象,则6π=4π-6πω+k π(k ∈Z ),ω=6k +21,又ω>0,所以当k =0时,ωmin =21. 15.⎥⎦⎤⎢⎣⎡221,-. 解析:f (x )=21(sin x +cos x )-21|sin x -cos x |=⎩⎨⎧)<()(x x x x x x cos sinsin cos ≥sincos 即 f (x )等价于min {sin x ,cos x },如图可知, f (x )max =f ⎪⎭⎫⎝⎛4π=22,f (x )min =f (π) =-1.16.①③.解析:① f (x )=4sin ⎪⎭⎫ ⎝⎛+3π2x =4cos ⎪⎭⎫ ⎝⎛--3π22πx=4cos ⎪⎭⎫ ⎝⎛+-6π2x=4cos ⎪⎭⎫ ⎝⎛-6π2x .② T =22π=π,最小正周期为π.③ 令 2x +3π=k π,则当 k =0时,x =-6π, ∴ 函数f (x )关于点⎪⎭⎫ ⎝⎛0 6π-,对称. ④ 令 2x +3π=k π+2π,当 x =-6π时,k =-21,与k ∈Z 矛盾. (第15题)∴ ①③正确. 三、解答题17.{x |2k π<x ≤2k π+4π,k ∈Z }. 解析:为使函数有意义必须且只需⎪⎩⎪⎨⎧-② 0 ≥1 cos 2①>0 sin x x先在[0,2π)内考虑x 的取值,在单位圆中,做出三角函数线. 由①得x ∈(0,π),由②得x ∈[0,4π]∪[47π,2π].二者的公共部分为x ∈⎥⎦⎤⎝⎛4π0,.所以,函数f (x )的定义域为{x |2k π<x ≤2k π+4π,k ∈Z }. 18.(1)-1;(2) ±αcos 2. 解析:(1)原式=αααααα cos cos tan tan sin sin -+--=-ααtan tan =-1.(2)①当n =2k ,k ∈Z 时,原式=)-()+()-()++(π2 cos π2sin π2sin π2sin k k k k αααα=α cos 2.②当n =2k +1,k ∈Z 时,原式=])+-([])++([])+-([]+)++([π12 cos π12sin π12sin π12sin k k k k αααα=-αcos 2.19.对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ;对称轴方程为x =2πk +3π(k ∈Z ). 解析:∵ y =sin x 的对称中心是(k π,0),k ∈Z ,∴ 令2x -6π=k π,得x =2πk +12π. ∴ 所求的对称中心坐标为⎪⎭⎫⎝⎛0 ,12π + 2πk ,k ∈Z . 又 y =sin x 的图象的对称轴是x =k π+2π, ∴ 令2x -6π=k π+2π,得x =2πk +3π. ∴ 所求的对称轴方程为x =2πk +3π(k ∈Z ). 20.(1)有最小值无最大值,且最小值为1+a ; (2)0. 解析:(1) f (x )=x a x sin sin +=1+xa sin ,由0<x <π,得0<sin x ≤1,又a >0,所以当sin x =1时,f (x )取最小值1+a ;此函数没有最大值.(2)∵-1≤cos x ≤1,k <0,(第17题)∴ k (cos x -1)≥0, 又 sin 2 x ≥0,∴ 当 cos x =1,即x =2k π(k ∈Z )时,f (x )=sin 2 x +k (cos x -1)有最小值f (x )min =0.期末测试题一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的. 1.sin 150°的值等于( ).A .21 B .-21C .23D .-23 3.在0到2π范围内,与角-34π终边相同的角是( ).A .6π B .3π C .32π D .34π 4.若cos α>0,sin α<0,则角 α 的终边在( ). A .第一象限B .第二象限C .第三象限D .第四象限5.sin 20°cos 40°+cos 20°sin 40°的值等于( ). A .41B .23 C .21 D .43 7.下列函数中,最小正周期为 π 的是( ). A .y =cos 4xB .y =sin 2xC .y =sin2x D .y =cos4x 10.函数y =2cos x -1的最大值、最小值分别是( ).A .2,-2B .1,-3C .1,-1D .2,-1 12.下列函数中,在区间[0,2π]上为减函数的是( ). A .y =cos xB .y =sin xC .y =tan xD .y =sin (x -3π) 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.已知角 α 的终边经过点P (3,4),则cos α 的值为 . 16.已知tan α=-1,且 α∈[0,π),那么 α 的值等于 . 18.某地一天中6时至14时的温度变化曲线近似 满足函数T =A sin (ωt +ϕ)+b (其中2π<ϕ<π),6 时至14时期间的温度变化曲线如图所示,它是上 述函数的半个周期的图象,那么这一天6时至14 时温差的最大值是 °C ;图中曲线对应的函数解析式是________________.三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤.19.(本小题满分8分) 已知0<α<2π,sin α=54.(1)求tan α 的值;(2)求cos 2α+sin ⎪⎭⎫ ⎝⎛2π + α的值.21.(本小题满分10分) 已知函数f (x )=sin ωx (ω>0).(1)当 ω=1时,写出由y =f (x )的图象向右平移6π个单位长度后得到的图象所对应的函数解析式; (2)若y =f (x )图象过点(3π2,0),且在区间(0,3π)上是增函数,求 ω 的值.期末测试题参考答案一、选择题:1.A 解析:sin 150°=sin 30°=21.2.B =0+9=3. 3.C 解析:在直角坐标系中作出-34π由其终边即知. 4.D 解析:由cos α>0知,α 为第一、四象限或 x 轴正方向上的角;由sin α<0知,α 为第三、四象限或y 轴负方向上的角,所以 α 的终边在第四象限.5.B 解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°=23. 7.B 解析:由T =ωπ2=π,得 ω=2.10.B 解析:因为cos x 的最大值和最小值分别是1和-1,所以函数y =2cos x -1的最大值、最小值分别是1和-3.12.A 解析:画出函数的图象即知A 正确. 二、填空题: 15.53.解析:因为r =5,所以cos α=53. 16.43π.解析:在[0,π)上,满足tan α=-1的角 α 只有43π,故 α=43π. 18.20;y =10sin (8πx +43π)+20,x ∈[6,14].解析:由图可知,这段时间的最大温差是20°C .因为从6~14时的图象是函数y =A sin (ωx +ϕ)+b 的半个周期的图象,所以A =21(30-10)=10,b =21(30+10)=20. 因为21·ωπ2=14-6,所以 ω=8π,y =10sin ⎪⎭⎫⎝⎛ϕ + 8πx +20.将x =6,y =10代入上式,得10sin ⎪⎭⎫ ⎝⎛⨯ϕ + 68π+20=10,即sin ⎪⎭⎫⎝⎛ϕ + 43π=-1,由于2π<ϕ<π,可得 ϕ=43π.综上,所求解析式为y =10sin ⎪⎭⎫ ⎝⎛43π + 8πx +20,x ∈[6,14].三、解答题:19.解:(1)因为0<α<2π,sin α=54, 故cos α=53,所以tan α=34.(2)cos 2α+sin ⎪⎭⎫⎝⎛α + 2π=1-2sin 2α +cos α=1-2532+53=258.21.解:(1)由已知,所求函数解析式为f (x )=sin ⎪⎭⎫ ⎝⎛6π - x .(2)由y =f (x )的图象过⎪⎭⎫⎝⎛0 , 32π点,得sin 32πω=0,所以32πω=k π,k ∈Z .即 ω=23k ,k ∈Z .又ω>0,所以k ∈N*. 当k =1时,ω=23,f (x )=sin 23x ,其周期为34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上是增函数; 当k ≥2时,ω≥3,f (x )=sin ωx 的周期为ωπ2≤32π<34π, 此时f (x )在⎪⎭⎫ ⎝⎛3π ,0上不是增函数. 所以,ω=23.。
高一数学必修4练习题一、三角函数1. 判断下列函数的奇偶性:(1) y = sin(x)(2) y = cos(x + π)(3) y = tan(2x)2. 求下列函数的定义域:(1) y = arcsin(x 1)(2) y = arccos(2x^2 3)3. 化简下列表达式:(1) sin^2(x) + cos^2(x)(2) tan(x) cot(x)(3) sin(x + π/2) cos(x π/2)二、三角恒等变换1. 利用三角恒等变换化简下列表达式:(1) sin^2(x) + cos^2(x)(2) 1 2sin^2(x)(3) tan^2(x) + 12. 求证下列等式:(1) sin(α + β)sin(α β) = sin^2(α) sin^2(β)(2) cos(α + β)cos(α β) = cos^2(α) sin^2(β)三、解三角形1. 在△ABC中,已知a=5,b=8,A=45°,求B的度数及边c的长度。
2. 在△AB C中,已知b=10,c=12,B=60°,求A的度数及边a的长度。
3. 在△ABC中,已知a=6,b=8,C=120°,求A、B的度数。
四、平面向量1. 已知向量a=(2,3),求向量a的模长。
2. 已知向量a=(4,3),求向量a的单位向量。
3. 已知向量a=(1,2),向量b=(2,3),求向量a与向量b的夹角。
五、复数1. 写出下列复数的代数形式:(1) 2(cosπ/3 + isinπ/3)(2) 3e^(iπ/4)2. 求下列复数的模:(1) 1 + i(2) 3 4i3. 已知复数z满足|z 1| = |z + 1|,求复数z在复平面上的几何位置。
六、空间几何与立体几何1. 在空间直角坐标系中,点A(1, 2, 3)到原点的距离是多少?2. 给定平面方程3x 4y + z = 7,求该平面上的一个单位法向量。
高一数学试题(必修4)(特别适合按14523顺序的省份)必修4 第一章三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C2 等于()A B C D3.已知的值为()A.-2 B.2 C.D.-4.下列函数中,最小正周期为π的偶函数是()A.y=sin2xB.y=cos C .sin2x+cos2x D. y=5 若角的终边上有一点,则的值是()A B C D6.要得到函数y=cos()的图象,只需将y=sin的图象()A.向左平移个单位 B.同右平移个单位C.向左平移个单位 D.向右平移个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象则y=f(x)是()A.y= B.y=C.y=D.8. 函数y=sin(2x+)的图像的一条对轴方程是()A.x=-B. x=- C .x=D.x=9.若,则下列结论中一定成立的是()A. B. C. D.10.函数的图象()A.关于原点对称 B.关于点(-,0)对称 C.关于y轴对称 D.关于直线x=对称11.函数是()A.上是增函数 B.上是减函数C.上是减函数D.上是减函数12.函数的定义域是()A.B.C. D.二、填空题:13. 函数的最小值是 .14 与终边相同的最小正角是_______________15. 已知则 .16 若集合,,则=_______________________________________三、解答题:17.已知,且.a)求sinx、cosx、tanx的值.b)求sin3x – cos3x的值.18 已知,(1)求的值(2)求的值19. 已知α是第三角限的角,化简20.已知曲线上最高点为(2,),由此最高点到相邻的最低点间曲线与x轴交于一点(6,0),求函数解析式,并求函数取最小值x的值及单调区间必修4 第一章三角函数(2)一、选择题:1.已知,则化简的结果为()A. B. C. D. 以上都不对2.若角的终边过点(-3,-2),则( )A.sin tan>0 B.cos tan>0C.sin cos>0 D.sin cot>03 已知,,那么的值是()A B C D4.函数的图象的一条对称轴方程是()A. B. C. D.5.已知,,则tan2x= ( ) A. B. C. D.6.已知,则的值为()A. B. 1 C. D. 2 7.函数的最小正周期为()A.1 B. C. D.8.函数的单调递增区间是()A. B.C. D.9.函数,的最大值为()A.1 B. 2 C. D.10.要得到的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位 D.向右平移个单位11.已知sin(+α)=,则sin(-α)值为()A. B. — C. D. —12.若,则()A. B. C. D.二、填空题13.函数的定义域是14.的振幅为初相为15.求值:=_______________16.把函数先向右平移个单位,然后向下平移2个单位后所得的函数解析式为________________________________三、解答题17 已知是关于的方程的两个实根,且,求的值18.已知函数,求:(1)函数y的最大值,最小值及最小正周期;(2)函数y的单调递增区间19.已知是方程的两根,且,求的值20.如下图为函数图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线对称的函数解析式必修4 第三章三角恒等变换(1)一、选择题:1.的值为 ( )A 0BC D2.,,,是第三象限角,则()A B C D3.设则的值是( )A B C D4. 已知,则的值为()A B C D5.都是锐角,且,,则的值是()A B C D6. 且则cos2x的值是()A B C D7.在中,的取值域范围是 ( )A B C D8. 已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为()A B C D9.要得到函数的图像,只需将的图像()A、向右平移个单位B、向右平移个单位C、向左平移个单位D、向左平移个单位10. 函数的图像的一条对称轴方程是()A、 B、 C、 D、11.若是一个三角形的最小内角,则函数的值域是( )A B C D12.在中,,则等于 ( )A B C D二、填空题:13.若是方程的两根,且则等于14. .在中,已知tanA ,tanB是方程的两个实根,则15. 已知,则的值为16. 关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图像关于点成中心对称图像;④将函数的图像向左平移个单位后将与的图像重合.其中正确的命题序号(注:把你认为正确的序号都填上)三、解答题:17. 化简18. 求的值.19. 已知α为第二象限角,且sinα=求的值.20.已知函数,求(1)函数的最小值及此时的的集合。
高一数学 三角函数练习一、填空题:1、若α是第四象限角,则πα-是第 象限角,2πα-是第 象限角。
2、已知,2tan =αααααcos 9sin 4cos 3sin 2--= 。
3、角π316化为)20,(2παπα<<∈+Z k k 的形式是 4、角的终边在第一象限和第三象限的平分线上的角的集合为5、若sin θcos θ>0,则θ在第 象限解析:答案:B ;∵sin θcos θ>0,∴sin θ、cos θ同号。
当sin θ>0,cos θ>0时,θ在第一象限,当sin θ<0,cos θ<0时,θ在第三象限,6、已知3sin 5α=-,且α是第四象限角,tan α= 若函数f (x )=log a (x +1)(a >0,a ≠1)的定义域和值域都是[0,1],则a 等于 解析:f (x )=log a (x +1)的定义域是[0,1],∴0≤x ≤1,则1≤x +1≤2当a >1时,0=log a 1≤log a (x +1)≤log a 2=1,∴a =2;当0<a <1时,log a 2≤log a (x +1)≤log a 1=0,与值域是[0,1]矛盾综上,a =27、函数1+=x x y 的值域为 8、设U 是全集,非空集合P 、Q 满足P Q U ,若求含P 、Q 的一个集合运算表达式,使运算结果为空集∅,则这个运算表达式可以是______ 解析:构造满足条件的集合,实例论证U ={1,2,3},P ={1},Q ={1,2},则(U C Q )={3},(U C P )={2,3},易见(U C Q )∩P =∅答案:(U C Q )∩P9、已知下列各个角:πα7111-=,πα65112=,93=α,︒-=8554α;其中是第三象限的角是10、当0<α<π时,化简ααααc o s s i n 21c o s s i n 21++-11、已知sin cos 2θθ-=,则44sin cos θθ+= 12、已知35a b c ==,且112a b+=,求c 的值解:由3a c =得:log 31a c =,即log 31c a =,∴1log 3c a =; 同理可得1log 5c b =,∴由112a b+= 得 log 3log 52c c +=, ∴log 152c =,∴215c =,∵0c >,∴c =13、定义在区间(-∞,+∞)的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)上的图象与f(x)的图象重合,设a>b>0,给出下列不等式①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b); ③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a)其中正确不等式的序号是14、一个半径为R 的扇形,它的周长为R 4,则这个扇形所含弓形的面积为 设f (x )=1214+-x x -2x +1,已知f (m )=2,求f (-m ) 解:∵f (m )=2,∴1214+-m m -2m①∴1214+-m m -2m =2-1 ∴f (-m )=1214+---m m +2m +1=m m 212141⋅-+2m +1 =12441+-⋅-m m m +2m +1=1241+-m m +2m +1=-1214+-m m + 2m +1 =-(1214+-m m -2m )+1=-(2-1)+1=2二、解答题:15、已知角︒=45α;(1)在区间]0,720[︒︒-内找出所有与角α有相同终边的角β;(2)集合⎭⎬⎫⎩⎨⎧∈︒+︒⨯==Z k k x x M ,451802|,⎭⎬⎫⎩⎨⎧∈︒+︒⨯==Z k k x x N ,451804|那么两集合的关系是什么?解析:(1)所有与角α有相同终边的角可表示为:)(36045Z k k ∈︒⨯+︒,则令 ︒≤︒⨯+︒≤︒-036045720k ,得 ︒-≤︒⨯≤︒-45360765k解得 36045360765-≤≤-k 从而2-=k 或1-=k 代回︒-=675β或︒-=315β(2)因为{}Z k k x x M ∈︒⨯+==,45)12(|表示的是终边落在四个象限的平分线上的角的集合;而集合{}Z k k x x N ∈︒⨯+==,45)1(|表示终边落在坐标轴或四个象限平分线上的角的集合,从而:M N Ø。
第三章测试一、选择题(本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin105°cos105°的值为( )A.14 B .-14 C.34 D .-34解析 原式=12sin210°=-12sin30°=-14.答案 B2.若sin2α=14,π4<α<π2,则cos α-sin α的值是( ) A.32 B .-32 C.34 D .-34解析 (cos α-sin α)2=1-sin2α=1-14=34. 又π4<α<π2,∴cos α<sin α,cos α-sin α=-34=-32.答案 B3已知180°<α<270°,且sin(270°+α)=45,则tan α2=( )A .3B .2C .-2D .-3答案 D4.在△ABC 中,∠A =15°,则 3sin A -cos(B +C )的值为() A. 2 B.22 C.32 D. 2解析 在△ABC 中,∠A +∠B +∠C =π,3sin A -cos(B +C )=3sin A +cos A =2(32sin A +12cos A )=2cos(60°-A )=2cos45°= 2.答案 A5.已知tan θ=13,则cos 2θ+12sin2θ等于( )A .-65B .-45 C.45 D.65 解析 原式=cos 2θ+sin θcos θcos 2θ+sin 2θ=1+tan θ1+tan 2θ=65. 答案 D6.在△ABC 中,已知sin A cos A =sin B cos B ,则△ABC 是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形解析 ∵sin2A =sin2B ,∴∠A =∠B ,或∠A +∠B =π2.答案 D7.设a =22(sin17°+cos17°),b =2cos 213°-1,c =32,则( )A .c <a <bB .b <c <aC .a <b <cD .b <a <c解析 a =22sin17°+22cos17°=cos(45°-17°)=cos28°,b =2cos 213°-1=cos26°,c =32=cos30°,∵y =cos x 在(0,90°)内是减函数,∴cos26°>cos28°>cos30°,即b >a >c .答案 A8.三角形ABC 中,若∠C >90°,则tan A ·tan B 与1的大小关系为( )A .tan A ·tanB >1 B. tan A ·tan B <1C .tan A ·tan B =1D .不能确定解析 在三角形ABC 中,∵∠C >90°,∴∠A ,∠B 分别都为锐角.则有tan A >0,tan B >0,tan C <0.又∵∠C =π-(∠A +∠B ),∴tan C =-tan(A +B )=-tan A +tan B 1-tan A ·tan B<0, 易知1-tan A ·tan B >0,即tan A ·tan B <1.答案 B9.函数f (x )=sin 2⎝ ⎛⎭⎪⎫x +π4-sin 2⎝ ⎛⎭⎪⎫x -π4是( ) A .周期为π的奇函数 B .周期为π的偶函数C .周期为2π的奇函数D .周期为2π的偶函数解析 f (x )=sin 2⎝⎛⎭⎪⎫x +π4-sin 2⎝ ⎛⎭⎪⎫x -π4=cos 2⎝ ⎛⎭⎪⎫π4-x -sin 2⎝ ⎛⎭⎪⎫x -π4 =cos 2⎝⎛⎭⎪⎫x -π4-sin 2⎝ ⎛⎭⎪⎫x -π4=cos ⎝ ⎛⎭⎪⎫2x -π2=sin2x . 答案 A10.y =cos x (cos x +sin x )的值域是( )A .[-2,2] B.⎣⎢⎡⎦⎥⎤1+22,2 C.⎣⎢⎡⎦⎥⎤1-22,1+22 D.⎣⎢⎡⎦⎥⎤-12,32 解析 y =cos 2x +cos x sin x =1+cos2x 2+12sin2x =12+22⎝ ⎛⎭⎪⎫22sin2x +22cos2x =12+22sin(2x +π4).∵x ∈R , ∴当sin ⎝ ⎛⎭⎪⎫2x +π4=1时,y 有最大值1+22; 当sin ⎝ ⎛⎭⎪⎫2x +π4=-1时,y 有最小值1-22.∴值域为⎣⎢⎡⎦⎥⎤1-22,1+22.答案 C 11.2cos10°-sin20°sin70°的值是( ) A.12 B.32 C. 3D. 2 解析 原式=2cos (30°-20°)-sin20°sin70°=2(cos30°·cos20°+sin30°·sin20°)-sin20°sin70°=3cos20°cos20°= 3. 答案 C12.若α,β为锐角,cos(α+β)=1213,cos(2α+β)=35,则cos α的值为( ) A.5665 B.1665 C.5665或1665 D .以上都不对解析 ∵0<α+β<π,cos(α+β)=1213>0,∴0<α+β<π2,sin(α+β)=513.∵0<2α+β<π,cos(2α+β)=35>0,∴0<2α+β<π2,sin(2α+β)=45.∴cos α=cos[(2α+β)-(α+β)]=cos(2α+β)cos(α+β)+sin(2α+β)sin(α+β)=35×1213+45×513=5665.答案 A二、填空题(本大题共4小题,每题5分,共20分.将答案填在题中横线上)13.已知α,β为锐角,且cos(α+β)=sin(α-β),则tan α=________.解析 ∵cos(α+β)=sin(α-β),∴cos αcos β-sin αsin β=sin αcos β-cos αsin β.∴cos α(sin β+cos β)=sin α(sin β+cos β).∵β为锐角,∴sin β+cos β≠0,∴cos α=sin α,∴tan α=1.答案 114.已知cos2α=13,则sin 4α+cos 4α=________.解析 ∵cos2α=13,∴sin 22α=89.∴sin 4α+cos 4α=(sin 2α+cos 2α)2-2sin 2αcos 2α=1-12sin 22α=1-12×89=59.答案 5915.sin (α+30°)+cos (α+60°)2cos α=________. 解析 ∵sin(α+30°)+cos(α+60°)=sin αcos30°+cos αsin30°+cos αcos60°-sin αsin60°=cos α,∴原式=cos α2cos α=12.答案 1216.关于函数f (x )=cos(2x -π3)+cos(2x +π6),则下列命题:①y =f (x )的最大值为2;②y =f (x )最小正周期是π;③y =f (x )在区间⎣⎢⎡⎦⎥⎤π24,13π24上是减函数;④将函数y =2cos2x 的图象向右平移π24个单位后,将与已知函数的图象重合.其中正确命题的序号是________.解析 f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+cos ⎝ ⎛⎭⎪⎫2x +π6 =cos ⎝ ⎛⎭⎪⎫2x -π3+sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫2x +π6=cos ⎝ ⎛⎭⎪⎫2x -π3-sin ⎝ ⎛⎭⎪⎫2x -π3 =2·⎣⎢⎡⎦⎥⎤22cos ⎝ ⎛⎭⎪⎫2x -π3-22sin ⎝ ⎛⎭⎪⎫2x -π3 =2cos ⎝⎛⎭⎪⎫2x -π3+π4 =2cos ⎝ ⎛⎭⎪⎫2x -π12, ∴y =f (x )的最大值为2,最小正周期为π,故①,②正确. 又当x ∈⎣⎢⎡⎦⎥⎤π24,13π24时,2x -π12∈[0,π],∴y =f (x )在⎣⎢⎡⎦⎥⎤π24,13π24上是减函数,故③正确.由④得y =2cos2⎝ ⎛⎭⎪⎫x -π24=2cos ⎝ ⎛⎭⎪⎫2x -π12,故④正确. 答案 ①②③④三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知向量m =⎝ ⎛⎭⎪⎫cos α-23,-1,n =(sin x,1),m 与n 为共线向量,且α∈⎣⎢⎡⎦⎥⎤-π2,0. (1)求sin α+cos α的值;(2)求sin2αsin α-cos α的值. 解 (1)∵m 与n 为共线向量,∴⎝⎛⎭⎪⎫cos α-23×1-(-1)×sin α=0, 即sin α+cos α=23.(2)∵1+sin2α=(sin α+cos α)2=29,∴sin2α=-79. ∴(sin α-cos α)2=1-sin2α=169.又∵α∈⎣⎢⎡⎦⎥⎤-π2,0,∴sin α-cos α<0.∴sin α-cos α=-43.∴sin2αsin α-cos α=712. 18.(12分)求证:2-2sin ⎝⎛⎭⎪⎫α+3π4cos ⎝ ⎛⎭⎪⎫α+π4cos 4α-sin 4α=1+tan α1-tan α. 证明 左边=2-2sin ⎝ ⎛⎭⎪⎫α+π4+π2cos ⎝ ⎛⎭⎪⎫α+π4(cos 2α+sin 2α)(cos 2α-sin 2α)=2-2cos 2⎝ ⎛⎭⎪⎫α+π4cos 2α-sin 2α=1-cos ⎝ ⎛⎭⎪⎫2α+π2cos 2α-sin 2α=1+sin2αcos 2α-sin 2α=(sin α+cos α)2cos 2α-sin 2α=cos α+sin αcos α-sin α=1+tan α1-tan α.∴原等式成立. 19.(12分)已知cos ⎝ ⎛⎭⎪⎫x -π4=210,x ∈⎝ ⎛⎭⎪⎫π2,3π4. (1)求sin x 的值;(2)求sin ⎝ ⎛⎭⎪⎫2x +π3的值. 解 (1)解法1:∵x ∈⎝ ⎛⎭⎪⎫π2,3π4,∴x -π4∈⎝ ⎛⎭⎪⎫π4,π2, 于是sin ⎝ ⎛⎭⎪⎫x -π4= 1-cos 2⎝ ⎛⎭⎪⎫x -π4=7210.sin x =sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x -π4+π4 =sin ⎝ ⎛⎭⎪⎫x -π4cos π4+cos ⎝ ⎛⎭⎪⎫x -π4sin π4=7210×22+210×22 =45.解法2:由题设得22cos x +22sin x =210,即cos x +sin x =15.又sin 2x +cos 2x =1,从而25sin 2x -5sin x -12=0,解得sin x =45,或sin x =-35,因为x ∈⎝ ⎛⎭⎪⎫π2,3π4,所以sin x =45. (2)∵x ∈⎝ ⎛⎭⎪⎫π2,3π4,故 cos x =-1-sin 2x =-1-⎝ ⎛⎭⎪⎫452=-35. sin2x =2sin x cos x =-2425. cos2x =2cos 2x -1=-725.∴sin ⎝ ⎛⎭⎪⎫2x +π3 =sin2x cos π3+cos2x sin π3=-24+7350.20.(12分)已知向量a =⎝ ⎛⎭⎪⎫cos 3x 2,sin 3x 2,b =⎝ ⎛⎭⎪⎫cos x 2,-sin x 2,c =(3,-1),其中x ∈R .(1)当a ⊥b 时,求x 值的集合;(2)求|a -c |的最大值.解 (1)由a ⊥b 得a ·b =0,即cos 3x 2cos x 2-sin 3x 2sin x 2=0, 则cos2x =0,得x =k π2+π4(k ∈Z ),∴x 值的集合是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π2+π4,k ∈Z .(2)|a -c |2=⎝ ⎛⎭⎪⎫cos 3x 2-32+⎝ ⎛⎭⎪⎫sin 3x 2+12 =cos 23x 2-23cos 3x 2+3+sin 23x 2+2sin 3x 2+1 =5+2sin 3x 2-23cos 3x 2=5+4sin ⎝ ⎛⎭⎪⎫3x 2-π3, 则|a -c |2的最大值为9.∴|a -c |的最大值为3.21.(12分)某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 cm ,求割出的长方形桌面的最大面积(如图).解 连接OC ,设∠COB =θ,则0°<θ<45°,OC =1.∵AB =OB -OA =cos θ-AD =cos θ-sin θ,∴S 矩形ABCD =AB ·BC =(cos θ-sin θ)·sin θ=-sin 2θ+sin θcos θ=-12(1-cos2θ)+12sin2θ=12(sin2θ+cos2θ)-12=22cos ⎝ ⎛⎭⎪⎫2θ-π4-12. 当2θ-π4=0,即θ=π8时,S max =2-12(m 2).∴割出的长方形桌面的最大面积为2-12 m 2.22.(12分)已知函数f (x )=sin(π-ωx )cos ωx +cos 2ωx (ω>0)的最小正周期为π.(1)求ω的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )在区间⎣⎢⎡⎦⎥⎤0,π16上的最小值. 解 (1)因为f (x )=sin(π-ωx )cos ωx +cos 2ωx .所以f (x )=sin ωx cos ωx +1+cos2ωx 2=12sin2ωx +12cos2ωx +12 =22sin ⎝ ⎛⎭⎪⎫2ωx +π4+12.由于ω>0,依题意得2π2ω=π.所以ω=1. (2)由(1)知f (x )=22sin ⎝ ⎛⎭⎪⎫2x +π4+12.所以g (x )=f (2x )=22sin ⎝ ⎛⎭⎪⎫4x +π4+12. 当0≤x ≤π16,π4≤4x +π4≤π2.所以22≤sin ⎝ ⎛⎭⎪⎫4x +π4≤1. 因此1≤g (x )≤1+22.故g (x )在区间⎣⎢⎡⎦⎥⎤0,π16上的最小值为1.。
1.下列命题中正确的是( )A .第一象限角必是锐角B .终边相同的角相等C .相等的角终边必相同D .不相等的角其终边必不相同2.已知角α的终边过点()m m P 34,-,()0≠m ,则ααcos sin 2+的值是 ( )A .1或-1B .52或52-C .1或52- D .-1或523.下列命题正确的是( )A .若→a ·→b =→a ·→c ,则→b =→cB .若|||b -=+,则→a ·→b =0C .若→a //→b ,→b //→c ,则→a //→c D .若→a 与→b 是单位向量,则→a ·→b =14.计算下列几个式子,①οοοο35tan 25tan 335tan 25tan ++,②2(sin35︒cos25︒+sin55︒cos65︒), ③οο15tan 115tan 1-+ , ④ 6tan16tan2ππ-,结果为3的是( )A .①②B .③C .①②③D .②③④5.函数y =cos(4π-2x )的单调递增区间是 ( ) A .[k π+8π,k π+85π] B .[k π-83π,k π+8π]C .[2k π+8π,2k π+85π]D .[2k π-83π,2k π+8π](以上k ∈Z )6.△ABC 中三个内角为A 、B 、C ,若关于x 的方程22cos cos cos 02Cx x A B --=有一根为1,则△ABC 一定是 ( )A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形 7.将函数)32sin()(π-=x x f 的图像左移3π,再将图像上各点横坐标压缩到原来的21,则所得到的图象的解析式为( )A .x y sin =B .)34sin(π+=x yC .)324sin(π-=x y D .)3sin(π+=x y8. 化简10sin 1++10sin 1-,得到( ) A .-2sin5 B .-2cos5 C .2sin5 D .2cos59.函数f(x)=sin2x·cos2x 是( )A .周期为π的偶函数B .周期为π的奇函数C .周期为2π的偶函数 D .周期为2π的奇函数. 10.若|2|= ,2||= 且(b a -)⊥a ,则a 与b 的夹角是( )A .6πB .4πC .3πD .π125 11.正方形ABCD 的边长为1,记→-AB =→a ,→-BC =→b ,→-AC =→c ,则下列结论错误..的是( )A .(→a -→b )·→c =0B .(→a +→b -→c )·→a =0C .(|→a -→c | -|→b |)→a =→D .|→a +→b +→c |=213.已知曲线y =Asin(ωx +ϕ)+k (A>0,ω>0,|ϕ|<π)在同一周期内的最高点的坐标为(8π, 4),最低点的坐标为(85π, -2),此曲线的函数表达式是 .14.设sin α-sin β=31,cos α+cos β=21, 则cos(α+β)= .15.已知向量OP X OB OA OP 是直线设),1,5(),7,1(),1,2(===上的一点(O 为坐标原点),那么⋅的最小值是___________.16.关于下列命题:①函数x y tan =在第一象限是增函数;②函数)4(2cos x y -=π是偶函数; ③函数)32sin(4π-=x y 的一个对称中心是(6π,0);④函数)4sin(π+=x y 在闭区间]2,2[ππ-上是增函数; 写出所有正确的命题的题号: 。
2.2.1课时作业1.已知正方形ABCD 的边长为1,AB →=a ,AD →=b ,则|a +b |为( ) A .1 B. 2 C .2 D .2 2答案 B2.下列各式不正确的是( )①a +(b +c )=(a +c )+b ;②AB →+BA →≠0;③AC →=DC →+AB →+BD →. A .②③ B .② C .①D .③ 答案 B3.在平行四边形ABCD 中,O 是对角线的交点,下列结论正确的是( )A.AB →=CD →,BC →=AD →B.AD →+OD →=DA →C.AO →+OD →=AC →+CD →D.AB →+BC →+CD →=DA →答案 C4.a ,b 为非零向量,且|a +b |=|a |+|b |,则( ) A .a ∥b ,且a 与b 方向相同 B .a ,b 是共线向量且方向相反 C .a =bD .a ,b 无论什么关系均可 答案 A5.如图,在正六边形ABCDEF 中,若AB =1,则|AB →+FE →+CD →|=( ) A .1 B .2 C .3 D .2 3 答案 B6.在Rt △ABC 中,若∠A =90°,|AC →|=2,|AB →|=3,则AC →+AB →的模等于( ) A.13 B .2 2 C .3D .5 答案 A解析 由题意知|AB →+AC →|=|AB →|2+|AC →|2=22+32=13,应选A. 7.向量(AB →+MB →)+(BO →+BC →)+OM →化简后等于( )A.BC →B.AB →C.AC →D.AM →答案 C8.已知O 是△ABC 内的一点,且OA →+OB →+OC →=0,则O 是△ABC 的( ) A .垂心 B .重心 C .内心D .外心答案 B9.如图,已知梯形ABCD ,AD ∥BC ,则OA →+AB →+CD →+BC →=______.答案 OD →10.已知正方形ABCD 的边长为1,则|AB →+BC →+AD →+DC →|等于________. 答案 2 2解析 |AB →+BC →+AD →+DC →|=|2AC →|=2 2.11.若a 表示向东走8 km ,b 表示向北走8 km ,则|a +b |=________km ,a +b 的方向是________.答案 82 北偏东45°解析 如图,a +b =OA →+AB →=OB →. ∵|a |=8,|b |=8,∴△OAB 为等腰直角三角形,∴|a +b |=|OB →|=8 2.方向是北偏东45°.12.如图(1),已知向量a 、b 、c ,求作向量a +b +c .解析 如图(2),在平面内任取一点D ,作DA →=a ,AB →=b ,BC →=c ,作DB →、DC →,则DB →=a+b ,DC →=(a +b )+c =a +b +c .∴向量DC →即为所作向量.13.如图所示,在四边形ABCD 中,AC →=AB →+AD →,试判断四边形的形状.解析 由向量加法的三角形法则,得AC →=AB →+BC →. ∵AC →=AB →+AD →,∴AD →=BC →,即AD ∥BC 且|AD →|=|BC →|,∴四边形ABCD 是平行四边形. 14.如图所示,P ,Q 是△ABC 的边BC 上两点,且BP =QC. 求证:AB →+AC →=AP →+AQ →. 证明 AB →=AP →+PB →,AC →=AQ →+QC →,∴AB →+AC →=AP →+PB →+AQ →+QC →. 因为PB →和QC →大小相等、方向相反, 所以PB →+QC →=0.故AB →+AC →=AP →+AQ →+0=AP →+AQ →.2.2.2课时作业1.给出下列3个向量等式:①AB →+CA →+BC →=0;②AB →-AC →-BC →=0;③AC →-BC →-AB →=0.其中正确的等式的个数为( ) A .0 B .1 C .2 D .3答案 C 解析 ①③对.2.如右图,▱ABCD 中,下列等式中错误的是( ) A.AD →=AB →+BD → B.AD →=AC →+CD → C.AD →=AB →+BC →+CD →D.AD →=DC →+CA → 答案 D解析 DC →+CA →=DA →.3.若O ,E ,F 是不共线的任意三点,则以下各式中成立的是( ) A.EF →=OF →+OE → B.EF →=OF →-OE → C.EF →=-OF →+OE → D.EF →=-OF →-OE →答案 B4.下列命题中,正确的是( )A .差向量的方向是由被减向量的终点指向减向量的终点B .若a 、b 是任意两个向量,则|a |-|b |=|a -b |C .与a 方向相反的向量叫做a 的相反向量D .从一个向量减去一个向量,等于加上这个向量的相反向量 答案 D5.在下列各等式中,正确的个数为( )①a -b =b -a; ②a +b -c =a -c +b ;③b -(-a )=b +a; ④0-a =-a ;⑤|a -b |=|b +a |; ⑥|a +b |=|a |+|b |. A .5 B .4 C .3 D .1答案 C6.边长为1的正三角形ABC 中,|AB →-BC →|的值为( ) A .1 B .2 C.32D. 3 答案 D7.如图,在四边形ABCD 中,设AB →=a ,AD →=b ,BC →=c ,则DC →等于( )A .a -b +cB .b -(a +c )C .a +b +cD .b -a +c答案 A8.若|AB →|=8,|AC →|=5,则|BC →|的取值范围是( ) A .[3,8]B .(3,8)C .[3,13]D .(3,13)答案 C解析 BC →=AC →-AB →(1)当AB →、AC →同向时,|BC →|=8-5=3; (2)当AB →、AC →反向时,|BC →|=8+5=13; (3)当AB →、AC →不共线时,3<|BC →|<13. 综上,可知3≤|BC →|≤13.9.已知△ABC 是以A 为直角顶点的直角三角形,则在下列各等式中不成立的为( ) A .|AC →-AB →|=|AC →+AB →| B .|AC →-AB →|=|CB →| C .|AB →-AC →|2=|AB →|2+|BC →|2 D .|BC →+CA →|2+|AC →|2=|BC →|2答案 C10.如图所示,在梯形ABCD 中,AD ∥BC ,AC 与BD 交于O 点,则BA →-BC →-OA →+OD →+DA →=________. 答案 CA →11.判断正误.(1)设非零向量a 、b ,则|a +b |=|a -b |⇔a ⊥b .(2)AB →+BC →+CA →=0⇔A 、B 、C 是某个三角形三个顶点. 答案 (1)正确 (2)不正确12.如图,在边长为1的正方形ABCD 中,设AB →=a ,AD →=b ,AC →=c ,求|a -b +c |.答案 |a -b +c |=213.如图四边形ABCD 的边AD 、BC 的中点分别为E 、F , 求证:EF →=12(AB →+DC →).证明 EF →=12(EB →+EC →)=12(EA →+AB →+ED →+DC →)=12(AB →+DC →)(∵EA →+ED →=0) 14.设平面内有四边形ABCD 和O ,OA →=a ,OB →=b ,OC →=c ,OD →=d ,若a +c =b +d ,试判断四边形ABCD 的形状.解析 ∵a +c =b +d ,即OA →+OC →=OB →+OD →. ∴OA →-OB →=OD →-OC →.即BA →=CD →.∴BA 綊CD. 故四边形ABCD 是平行四边形. ►重点班·选做题15.任给向量a ,b ,则下列各项中正确的是( ) A .|a +b |=|a |+|b | B .|a -b |=|a |-|b | C .|a -b |≤|a |-|b | D .|a -b |≤|a |+|b |答案 D16.已知|a |=|b |=1,|a +b |=1,则|a -b |=( ) A .1 B. 3 C.32D .2答案 B分析 根据向量的平行四边形法则,以a 和b 为邻边表示向量a +b 和a -b ,再根据向量模的关系判断平行四边形的形状求解.解析 如右图所示,根据向量加法的平行四边形法则可知,当|a |=|b |=1,|a +b |=1时,平行四边形ABDC 为菱形.又|a +b|=1, ∴△ABD 为正三角形.∴∠ABD =60°.容易得出|a -b|=|CB →|=2|OB →|=2|AB|2-|AO|2=2·12-(12)2= 3.。
高一数学必修4测试题
第I 卷
一、选择题:(每小题5分,共计60分) 1. 下列命题中正确的是( )
A .第一象限角必是锐角
B .终边相同的角相等
C .相等的角终边必相同
D .不相等的角其终边必不相同 2.已知角α的终边过点()m m P 34,-,()0≠m ,则ααcos sin 2+的值是( )
A .1或-1
B .
52或52- C .1或52- D .-1或5
2
3. 下列命题正确的是( )
A 若→
a ·→
b =→
a ·→
c ,则→
b =→
c B 若|||b -=+,则→
a ·→
b =0 C 若→
a //→
b ,→
b //→
c ,则→
a //→
c D 若→
a 与→
b 是单位向量,则→
a ·→
b =1 4. 计算下列几个式子,① 35tan 25tan 335tan 25tan ++,
②2(sin35︒cos25︒+sin55︒cos65︒), ③
15tan 115tan 1-+ , ④ 6
tan 16tan 2
ππ-,结果为3的是( ) A.①② B. ①③ C. ①②③ D. ①②③④
5. 函数y =cos(
4π
-2x )的单调递增区间是 ( ) A .[k π+8π,k π+85π] B .[k π-83π,k π+8
π
]
C .[2k π+8π,2k π+85π]
D .[2k π-83π,2k π+8
π
](以上k ∈Z )
6. △ABC 中三个内角为A 、B 、C ,若关于x 的方程22
cos cos cos 02
C
x x A B --=有一根为1,则△ABC 一定是( )
A. 直角三角形
B. 等腰三角形
C. 锐角三角形
D. 钝角三角形
7. 将函数)3
2sin()(π
-
=x x f 的图像左移
3
π
,再将图像上各点横坐标压缩到原来的21,则所
得到的图象的解析式为( )
A x y sin =
B )34sin(π+=x y
C )324sin(π
-=x y D )3sin(π+=x y
8. 化简10sin 1++10sin 1-,得到( )
A -2sin5
B -2cos5
C 2sin5
D 2cos5
9. 函数f(x)=sin2x ·cos2x 是 ( )
A 周期为π的偶函数
B 周期为π的奇函数
C 周期为
2π的偶函数 D 周期为2
π
的奇函数. 10. 若|2|= ,2||= 且(-)⊥ ,则与的夹角是 ( )
(A )
6π (B )4π (C )3π
(D )π12
5 11. 正方形ABCD 的边长为1,记→
-AB =→
a ,→-BC =→
b ,→-AC =→
c ,则下列结论错误..
的是 A .(→a -→b )·
→c =0 B .(→a +→b -→c )·→
a =0 C .(|→a -→c | -|→
b |)→a =→0 D .|→a +→b +→
c |=2
12. 2002年8月,在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三
角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是
θθ22cos sin ,25
1
-则的值等于( )
A .1
B .2524-
C .257
D .-25
7
二、填空题(本大题共4小题,每小题4分,共16分)
13. 已知曲线y =Asin(ωx +ϕ)+k (A>0,ω>0,|ϕ|<π)在同一周期内的最高点的坐标为
(
8π, 4),最低点的坐标为(8
5π, -2),此曲线的函数表达式是 。
14. 设sin α-sin β=3
1
,cos α+cos β=21, 则cos(α+β)= 。
15. 关于x 的方程a x x =+cos 3sin (0≤x ≤2
π
)有两相异根,则实数a 的取值范围是_____________
16. 关于下列命题:①函数x y tan =在第一象限是增函数;②函数)4
(
2cos x y -=π是偶函
数; ③函数)32sin(4π-=x y 的一个对称中心是(6
π
,0);④函数)4sin(π+=x y 在闭区
间]2
,2[π
π-上是增函数; 写出所有正确的命题的题号: 。
第II 卷
一、选择题:(每小题5分共计60分)
二、填空题:(每小题4分,共计16分)
13、______________14、_______________15、____________________ 16、_______________ 三、解答题:
17.(本小题12分) (1) 化简
)
2
4(cos 22sin cos sin 12x
x x
x
-∙+π
(2) cos40︒cos80︒cos160︒
18. (本小题12分)已知4
34π
<α<π,40π<β<,
53)4cos(-=+απ,135)43sin(=β+π,求()βα+sin 的值.
19. (本小题12分)已知向量)23s i n
23(c o s x x ,=a ,)2
sin 2(cos x x -=,b ,)13(-=,c ,其中R ∈x .
(Ⅰ)当b a ⊥时,求x 值的集合; (Ⅱ)求||c a -的最大值.
20. (本小题12分)已知函数y= 4cos 2x+43sinxcosx -2,(x ∈R )。
(1)求函数的最小正周期;(2)求函数的最大值及其相对应的x 值; (3)写出函数的单调增区间;(4)写出函数的对称轴。
21. (本小题12分)设函数()()sin 0,2
2f x x π
πωϕωϕ⎛⎫
=+>-<<
⎪⎝
⎭
,给出下列三个论断:
①()f x 的图象关于直线6
x π
=-
对称;②()f x 的周期为π; ③()f x 的图象关于点
,012π⎛⎫
⎪⎝⎭
对称. 以其中的两个论断为条件,余下的一个论断作为结论,写出你认为正确的一个命题,
并对该命题加以证明.
22. (本小题14分)设、是两个不共线的非零向量(R t ∈) (1)记),(3
1
,,t +=
==那么当实数t 为何值时,A 、B 、C 三点共线? (2)若 1201||||夹角为与且b a b a ==,那么实数x 为何值时||b x a -的值最小?
高一数学必修4测试题参考答案
一、选择题:(每小题5分共计60分)
二、填空题:(每小题4分,共计16分) 13、1)4
2sin(3++=π
x y 14、72
59
-
15、)2,3[∈a 16、③ 三、解答题:
17. (1)2sinx (2) 81- 18.-6563 19.(1)⎭⎬⎫⎩⎨⎧∈+Z k k x ,24|ππ (2) 3
20.(1)T=π (2)4),(6
max =∈+=y Z k k y ππ
(3))(],6
,
3
[Z k k k ∈++-
ππ
ππ
(4)对称轴2
6
π
π
k x +
=
,()Z k ∈ 21.由①②⇒③或由②③⇒①
22. (1)t=21 (2)当2
1
-=x 时,||x -的值最小。