基因突变和基因重组
- 格式:doc
- 大小:54.00 KB
- 文档页数:21
浅析基因突变和基因重组一、如何区分基因突变与基因重组基因突变和基因重组都能引起遗传性状的改变,为生物变异提供了极为丰富的原材料,在生物的进化中具有重要的作用和意义。
但它们却存在着本质区别,主要体现在以下三个方面:①时期不同:基因重组主要发生在减数第一次分裂过程中(通过基因工程定向改造生物性状也属于基因重组引起的生物变异),是通过有性生殖的过程实现的;基因突变发生在细胞分裂间期DNA复制时,既可发生在体细胞中(一般不能遗传),也可发生在生殖细胞中(可以遗传)。
②原因不同:基因重组是由控制不同性状的基因随非同源染色体的自由组合(即随机重组)或同源染色体的非姐妹染色单体间的交叉互换(即交换重组)而引起的;基因突变是由于复制过程中,染色体上的DNA分子受到物理因素(如激光)、化学因素(如亚硝酸)或生物因素(如病毒)的作用而使基因内部脱氧核苷酸的种类、数量或排列顺序发生局部改变,从而改变了遗传信息,包括自然突变和人工诱变。
③结果不同:基因重组没有新基因的产生,只是原有基因重新组合,产生了新的基因型,从而使性状进行了重新组合;基因突变的基因结构发生了改变,产生了新基因。
二、基因突变一定会引起生物性状的改变吗众所周知,生物的性状是受基因控制的,但基因突变不一定引起生物性状的改变,如以下7种情形:1、改变的碱基位于基因的内含子中。
一般情况下,内含乎是没有功能的,它不是mRNA的一部分,不能编码蛋白质,内含子的突变不直接影响蛋白质的功能。
此种情形,一般不会引起生物性状的改变。
2、突变发生在无调节功能的非编码区中。
基因的非编码区对基因的表达起着重要的调节作用,决定着基因是否表达为蛋白质,在这些片段发生基因突变,如果不影响其调控功能的发挥,蛋白质仍然正常合成,就不会改变生物的性状。
3、同义突变。
由于密码子具有简并性,因此,单个碱基置换可能只改变mRNA上的特定密码子,但不影响它所编码的氨基酸,一般也不会引起生物性状的改变。
基因突变和基因重组知识点基因突变和基因重组是生物学中重要的概念和研究方向。
基因突变是指DNA序列发生变化,而基因重组是指DNA片段在染色体上的重新组合。
本文将分别介绍基因突变和基因重组的概念、机制以及在生物学研究和应用中的重要性。
一、基因突变基因突变是指DNA序列发生变化,包括点突变、插入突变和缺失突变等。
点突变是指单个核苷酸的改变,包括错义突变、无义突变和同义突变。
错义突变导致氨基酸序列的改变,可能会影响蛋白质的功能;无义突变导致氨基酸序列的提前终止,导致蛋白质缺失;同义突变则不改变氨基酸序列。
插入突变是指在DNA序列中插入额外的核苷酸,导致序列的改变;缺失突变是指DNA序列中丢失了一段核苷酸,导致序列的缺失。
基因突变可以通过多种方式引起,包括自然突变、诱变剂诱导突变以及人工基因编辑技术等。
自然突变是指在自然环境中发生的突变事件,可以是正常的生物进化过程中产生的;诱变剂诱导突变是指通过化学物质或辐射等外部因素诱导DNA序列的突变;人工基因编辑技术包括CRISPR/Cas9等工具,可以精确地对DNA序列进行编辑。
基因突变在生物学研究中起着重要的作用。
通过研究基因突变,可以揭示基因与表型之间的关系,帮助理解遗传疾病的发生机制。
此外,基因突变也是进化过程中的重要驱动力,通过基因突变的积累和选择,物种可以适应环境的变化。
二、基因重组基因重组是指DNA片段在染色体上的重新组合,包括同源重组和非同源重组。
同源重组是指来自同一染色体的两个DNA片段之间的重组,可以促进基因的重组和遗传多样性的产生;非同源重组是指来自不同染色体的DNA片段之间的重组,可以导致染色体的结构变化。
基因重组的机制包括交叉互换和非同源重组。
交叉互换是指同源染色体间的互换DNA片段,通过交叉互换,不同染色体上的基因片段可以重新组合,增加基因的多样性。
非同源重组是指来自不同染色体的DNA片段之间的重组,可以导致染色体的结构变化,例如染色体间的倒位、插入和删除等。
专题20 基因突变和基因重组考点一 基因突变1.基因突变和染色体变异均属于突变,其中在光学显微镜下可见的可遗传变异为染色体变异,分子水平上发生的变异为基因突变和基因重组,只在减数分裂过程中发生的变异为基因重组,真、原核生物和病毒共有的变异类型为基因突变。
2.基因突变(1)概念:DNA 分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变,叫做基因突变。
(2)时间:主要发生在有丝分裂间期或减数第一次分裂前的间期。
(3)突变特点①普遍性:一切生物都可以发生。
②随机性:可以发生在生物个体发育的任何时期;在细胞内不同DNA 分子上和同一DNA 分子的不同部位上。
③低频性:自然状态下,突变频率很低。
④不定向性:一个基因可以向不同的方向发生突变,产生一个以上的等位基因,还可能发生回复突变。
(4)意义:①新基因产生的途径;②生物变异的根本来源;③生物进化的原始材料。
1.变异类型的概述考点分布重点难点 备考指南 1.基因突变及其与性状的关系 2.基因重组及其与基因突变的比较 3.基因突变的实例4.基因重组发生的时期 1.基因突变的特征和原因 2.基因重组及其意义 理解并掌握基因突变的概念。
理解镰刀型细胞贫血症的病因。
理解并掌握基因重组的概念。
理解掌握基因重组的时期。
2.基因突变对蛋白质与性状的影响①基因突变对蛋白质的影响碱基对影响范围对氨基酸序列的影响替换小除非终止密码提前出现,否则只改变1个氨基酸或不改变氨基酸序列增添大不影响插入位置前的序列而影响插入位置后的序列缺失大不影响缺失位置前的序列而影响缺失位置后的序列②基因突变不一定导致生物性状改变的原因a.突变可能发生在非编码蛋白质的脱氧核苷酸序列中。
b.基因突变后形成的密码子与原密码子决定的是同一种氨基酸(密码子的简并性)。
c.基因突变若为隐性突变,如AA→Aa,不会导致性状的改变。
3.基因突变的机理、原因及特点(1)在细胞分裂间期易发生基因突变的原因是细胞分裂的间期进行DNA复制,DNA复制时需要解旋成单链,单链DNA容易受到内、外因素的影响而发生碱基对的改变。
基因突变和基因重组概述基因突变和基因重组是基因组学研究领域中非常重要的概念。
它们是指生物体中发生的基因序列变化,可以导致遗传信息的改变和多样性的产生。
本文将分别介绍基因突变和基因重组的概念、类型、机制和在生物进化和生物工程领域的应用。
一、基因突变基因突变是指个体或群体中基因序列的改变。
它可以是由于DNA复制、染色体重组、突变诱发剂等因素导致的。
基因突变可以发生在染色体水平,称为染色体突变,也可以发生在DNA水平,称为点突变。
基因突变包括基因点突变、插入突变、缺失突变和反转突变等多种类型。
基因点突变是指单个碱基的改变,可能会导致氨基酸序列的改变或者起始密码子的改变,从而影响蛋白质的结构和功能。
点突变又可以细分为错义突变、无义突变和同义突变等类型。
插入突变是指新的DNA序列插入到基因组中,并导致整个基因组的改变。
而缺失突变则是指部分DNA序列从基因组中丢失,也会导致整个基因组的改变。
反转突变是指DNA序列的逆转,导致DNA序列在基因组中的倒位。
基因突变的发生机制可以通过各种条件下的DNA复制错误、DNA损伤和DNA修复等过程来解释。
为了维持遗传信息的完整性和稳定性,细胞具有多种修复机制,如错误配对修复、缺失修复和链切割修复等。
然而,当修复机制发生错误或者被不适当的刺激激活时,就可能产生基因突变。
基因突变在生物进化的过程中起到了重要的作用。
它为生物体的自然选择提供了多样性基础,通过改变个体的适应性和生存能力,可以促进物种的适应性进化。
此外,基因突变也是人类遗传性疾病的重要原因之一,比如先天性疾病和癌症等。
基因工程领域借助基因突变的特性,可以进行基因编辑和基因改造,包括基因敲除、基因插入、基因修饰和基因定位等。
这些技术可以用于生物材料的生产、农业作物的改良和人类疾病的治疗等方面。
二、基因重组基因重组是指DNA分子在染色体水平上的重组。
它是基因组演化和生殖发育的重要过程。
基因重组可以是同源染色体间的交换,称为同源重组;也可以是非同源染色体间的交换,称为非同源重组。
基因突变和基因重组1. 简介基因突变和基因重组是生物学中两个重要的概念。
基因突变指的是DNA序列的改变,可以导致基因的功能变化,进而对生物体的性状产生影响。
而基因重组则是指在DNA分子水平上,通过基因片段的重新组合,产生新的组合,从而增加了基因的多样性。
本文将对基因突变和基因重组进行详细的介绍和解释。
2. 基因突变2.1 类型基因突变可以分为多种类型,常见的有点突变、插入突变、缺失突变和倒位突变等。
•点突变是指DNA序列中的一个碱基发生改变,可以分为错义突变、无义突变和同义突变。
错义突变是指由于碱基改变导致氨基酸序列发生改变,从而影响蛋白质的结构和功能;无义突变是指由于点突变导致密码子变成终止密码子,使得蛋白质提前终止合成;同义突变是指点突变虽然改变了DNA序列,但由于遗传密码的冗余性,不改变蛋白质的氨基酸序列。
•插入突变是指在DNA序列中插入了一个或多个碱基,导致整个序列移位,进而影响基因的编码能力。
•缺失突变是指DNA序列中丢失了一个或多个碱基,导致DNA序列发生改变,进而影响基因的编码能力。
•倒位突变是指DNA序列的一部分发生了翻转,导致DNA序列的排列顺序发生改变,从而影响基因的编码能力。
2.2 影响基因突变可以导致生物体的性状发生变化,可能是有害的、无害的或有益的。
有害突变会导致基因功能的丧失或异常,从而引发一系列疾病。
无害突变是指突变对生物体没有显著影响,这种突变在进化中有可能积累起来,从而产生新的特征。
有益突变是指突变导致了基因的新功能,使得生物体能够适应环境的挑战,进而提高生存的机会。
3. 基因重组基因重组是指在DNA分子水平上,通过基因片段的重新组合,产生新的组合,从而增加了基因的多样性。
基因重组可分为两种类型,即同源重组和非同源重组。
•同源重组是指在相同染色体上的同源DNA片段之间的重组。
在生物体的有丝分裂过程中,同源染色体可以通过互换DNA片段来重新组合,从而产生新的基因组组合。
基因突变和基因重组的区别二者有什么不
同
基因重组是指非等位基因间的重新组合。
能产生大量的变异类型,但只产生新的基因型,不产生新的基因。
基因突变是指基因在结构上发生碱基对组成或排列挨次的转变。
那么二者有什么不同?
基因突变和基因重组的不同是什么
1、二者在发生的时期有所不同:基因突变主要发生在有丝分裂间期或减数第一次分裂前的间期,而基因重组主要发生在减数第一次分裂前期和减数第一次分裂后期。
2、二者在变异的结果上是不同的:基因突变的结果是产生新基因(等位基因),而基因重组的结果是产生新的基因型。
基因突变遗传吗,能治吗
基因突变不肯定是不行遗传变异,而不是肯定不能遗传,这点请留意
主要分两种状况
1 假如是在受精卵分裂时发生的突变,就有可能是可遗传的,由于全身的细胞都是由受精卵发育来的
2 假如是已经差不多成形的胎儿以及之后的整个生命过程中突变则又可分3种状况
A 发生在体细胞的突变这种是不行遗传的
B 发生在生殖细胞的突变假如那个突变了的生殖细胞胜利地与对方结合形成受精卵的话那么就把突变遗传下去了; 假如那个突变的生殖细胞没有被用到那也就没有遗传下去
C假如是体细胞发生的基因突变只能在本体体现,而只有生殖细胞的基因突变才有可能遗传给下一代
总的的来说就是基因突变在配子或性染色体中可遗传给后代,而发生在体细胞中不会遗传给后代。
一般来说不好治疗,除非采纳基因治疗的方法去除致病基因或者导入正常的外源基因。
基因突变和基因重组的概念1. 基因突变:小变化,大影响嘿,朋友们,今天咱们聊聊基因突变和基因重组这俩有意思的概念。
先说说基因突变吧。
这就像是在你平常的生活中,不小心踩到香蕉皮,摔了一跤,结果改变了你的一整天。
基因突变就是DNA序列的一个小小变化,这种变化可能是因为环境因素、自然选择,或者就是纯粹的“运气不好”造成的。
你知道吗,有些突变其实并不是什么坏事,反而能让生物更适应环境。
就像有的人总能在考试前突击,结果考得比平时还好,这就是突变的魅力所在。
1.1 突变的类型好吧,突变可不止一种。
首先,有“点突变”,就像一颗调皮的小石子,可能改变了一个单词,导致你整个句子意思变了。
接着是“插入突变”,这个就像是在你最爱的披萨上加了个榴莲,哎呀,味道可就完全不一样了。
最后是“缺失突变”,就是把某个重要的配料给忘了,披萨瞬间变得平淡无味。
每种突变的结果可都不一样,有的可能让你变得更强,有的可就让你变成“背景板”。
1.2 突变的影响而且,突变的影响真是五花八门。
有些突变对生物没什么影响,像“隐性”的存在,默默无闻;而有些则可能导致疾病,变成了人们心中的“隐患”。
举个简单的例子,某些基因突变可能让你更容易得糖尿病或者癌症,但同样的突变也可能让你拥有超强的抗病能力,真是“有得必有失”啊!2. 基因重组:创意无限的拼图游戏接下来,我们再来聊聊基因重组。
这就像是在拼图,突然发现你手里多了一块新的拼图,拼出来的画面比以前更加丰富多彩。
基因重组发生在生殖细胞形成的过程中,两个亲本的基因组合在一起,形成新的基因组合。
就像你从爸爸那里继承了一双大脚,从妈妈那里得到了迷人的笑容,结果你就成了“超能选手”。
2.1 重组的过程说到重组,这过程可复杂了。
简单来说,就是在减数分裂的时候,亲本的基因交叉,像是跳了一场交谊舞,最终的结果就是全新的组合。
有些重组能让后代更具适应性,这就像是在“为未来打基础”。
想想看,这就像是家里的锅碗瓢盆,混合在一起,做出了一道新菜,味道更上一层楼。
基因突变和基因重组基因突变是指遗传信息中的突发性的改变,它可以产生新的遗传信息,并在后代中得以保留。
基因突变可以发生在DNA序列的单个碱基或多个碱基上,导致遗传物质的改变,进而产生新的基因型和表型。
基因突变可以分为点突变和染色体突变两大类。
点突变是指基因序列中的碱基替换、插入或缺失,导致DNA序列的改变。
点突变包括错义突变、无义突变和同义突变等。
错义突变是指一个氨基酸被另一个氨基酸所取代,导致蛋白质的结构和功能发生改变。
无义突变是指在编码DNA序列中出现终止密码子,导致蛋白质的产生过程过早结束,从而产生缺陷蛋白质或完全失去蛋白质功能。
同义突变是指对蛋白质编码区中的一些核苷酸进行替换,但不影响氨基酸的导致的改变。
这种突变不会改变蛋白质的氨基酸组成和功能。
染色体突变是基因序列中大片的DNA序列发生改变,包括染色体缺失、重复、倒位和易位等。
例如,染色体重复会导致染色体上的一部分序列出现多次,这可能导致有害突变的积累。
染色体易位是指染色体上的一部分与另一个染色体上的一部分进行交换,可能导致致命的突变。
基因重组是指DNA序列的片段重新排序和重组的过程。
基因重组主要发生在有交换互補性的DNA分子之间。
基因重组可以是同源重组或非同源重组。
同源重组是指在染色体上的相同区域发生的DNA片段的交换。
这种重组有助于基因的修复和多样性的产生。
非同源重组是指不同染色体上或不同基因之间的DNA片段发生交换,这种重组一般不利于基因的保存和多样性的产生。
基因突变和基因重组是生物进化的重要机制。
基因突变为生物种群提供了遗传多样性基础,是物种适应环境变化和进化的重要驱动力。
一些有利的突变可以提高生物的适应性并传递给下一代。
基因重组则可以产生新的遗传组合,增加生物多样性,提高种群的适应性。
此外,基因突变和基因重组在遗传工程和生物技术中也有广泛的应用。
科学家可以通过基因突变和基因重组技术来改变生物的性状和功能,用于农业和医学等领域。
例如,转基因技术就是通过基因重组将植物或动物的基因导入到其他物种中,使其具有新的性状或功能,以增加农作物的产量或改善人类的健康。
基因突变和基因重组【课标要求】1.概述碱基的替换、增添或缺失会引起基因中碱基序列的改变2.阐明基因中碱基序列的改变有可能导致它所编码的蛋白质及相应的细胞功能发生变化,甚至带来致命的后果3.阐明进行有性生殖的生物在减数分裂过程中,染色体所发生的自由组合和交换,会导致控制不同性状的基因重组,从而使子代出现变异课前检测一、基因突变基因突变的定义:【跟踪训练1】下图表示双链DNA分子上的若干片段,请据图判断:(1)DNA分子中发生碱基的替换、增添或缺失,而引起的DNA碱基序列的改变,叫作基因突变( )(2)基因突变改变了基因的数量和位置( )(3)基因突变的结果是产生了新基因( )(4)基因突变只发生在细胞分裂前的间期( )(5)基因突变一定能传递给后代( )【合作探究】(1)结合表格分析突变①、突变②、突变③均发生了碱基的替换,三者对氨基酸序列的影响有什么不同?哪种情况对蛋白质的相对分子质量影响较大?(2)表中正常核苷酸序列第19个密码子的碱基A缺失、第19个密码子的碱基A、C缺失、第19个密码子的三个碱基同时缺失,三种情况下分别可能会对蛋白质中的氨基酸序列有何影响?【拓展应用】1.如果DNA分子发生突变,导致编码正常血红蛋白多肽链的mRNA序列中一个碱基被另一个碱基替换,但未引起血红蛋白中氨基酸序列的改变,其原因可能是?二、基因重组【自主学习】观察下图并判断基因重组的类型【跟踪训练2】基因型为AaBb(两对基因独立遗传)的某二倍体生物有以下几种细胞分裂图像,下列说法正确的是( )A.图甲中基因a最可能来源于染色体的互换B.图乙中基因a不可能来源于基因突变C.丙细胞产生的子细胞发生的变异属于染色体结构变异D.图丁中基因a的出现最可能与基因重组有关三、基因突变与基因重组的异同【自主学习】完成下列表格类型基因突变基因重组实质发生改变,产生的基因控制不同性状的基因时间主要发生在细胞的分裂期主要在减数第一次分裂期和期适用范围生物都可发生自然条件下,发生在的过程中意义应用杂交育种【课堂小结】画出本节课的思维导图。
高中生物基因突变和基因重组知识点归纳高中生物基因突变和基因重组知识点归纳基因突变是指DNA序列中的改变,它是生物遗传变异的基础。
而基因重组则是指DNA分子之间的片段重新组合,从而形成新的基因组合。
这两个概念都是遗传学中非常重要的内容,下面我们将对其进行归纳总结。
基因突变的类型:1. 点突变:指的是DNA序列中某个碱基的改变,包括替换、插入和缺失三种情况。
替换突变是指一个碱基被另一个取代,插入突变是指一个新的碱基被插入到DNA序列中,缺失突变则是指一个或多个碱基从DNA序列中缺失。
2. 突变的原因:突变可以由内源性因素例如DNA复制错误、DNA修复错误等导致,也可以由外源性因素例如辐射、化学物质等引起。
基因突变的影响:1. 突变对蛋白质的编码能力有影响:点突变可能导致密码子改变,进而改变蛋白质的氨基酸序列,影响蛋白质的结构和功能。
2. 突变对性状的影响:突变可能导致基因表达的变化,从而影响性状的表现。
3. 突变对个体适应性的影响:突变在自然选择中起到了重要的作用,有利突变可能被保存下来,还有部分突变可能导致疾病的发生。
基因重组的类型:1. 交互重组:指两条染色体的非姐妹染色单体之间的相互交换,促使等位基因的组合发生改变。
2. 合成重组:指两条染色单体互相连续段的重组,形成新的染色体组合。
3. 基因转座:指基因从一个位点转移到另一个非同源位点的过程。
它可以导致基因组结构的改变。
基因重组的影响:1. 产生新的基因组合:基因重组可以导致新的基因组合出现,使得个体对环境的适应能力增强。
2. 基因重组还是突变:基因重组不一定导致新的基因出现,有时只是导致现有基因的重新组合。
因此,基因重组和突变是两个不同的概念。
基因突变和基因重组对生物进化的影响:1. 生物进化是指物种在长期演化过程中,适应环境变化而产生的遗传变异和适应性改变。
基因突变和基因重组是遗传变异的重要来源,它们为生物进化提供了遗传学基础。
2. 突变和重组的存在使得物种能够积累适应新环境的遗传变异,并导致物种的多样性。
《基因突变和基因重组》讲义一、引言生命的奥秘在于其遗传信息的传递和变化。
基因,作为生命的密码,决定了生物体的特征和性状。
而基因突变和基因重组则是基因发生变化的两种重要方式,它们在生物的进化、物种的多样性以及遗传疾病的产生等方面都起着至关重要的作用。
二、基因突变(一)基因突变的概念基因突变是指基因在结构上发生碱基对组成或排列顺序的改变。
这就好像是基因这本“生命之书”中的文字出现了错误或变动。
(二)基因突变的原因1、自发突变在生物体内,DNA 复制过程中偶尔会出现错误,导致碱基配对发生偏差,从而引发基因突变。
2、诱发突变外部因素如物理因素(如紫外线、X 射线等)、化学因素(如亚硝酸、碱基类似物等)和生物因素(如某些病毒)都可能损伤 DNA,造成基因突变。
1、随机性基因突变可以发生在生物个体发育的任何时期,也可以发生在细胞内不同的 DNA 分子上以及同一 DNA 分子的不同部位。
2、低频性在自然状态下,基因突变的频率通常很低。
3、不定向性一个基因可以向不同的方向发生突变,产生一个以上的等位基因。
4、多害少利性大多数基因突变会破坏生物体与现有环境的协调关系,对生物往往是有害的,但也有少数是有利的。
(四)基因突变的意义1、新基因的产生基因突变是生物变异的根本来源,为生物进化提供了原始材料。
2、物种的适应性进化一些有利的基因突变能够使生物更好地适应环境的变化,从而在自然选择中得以生存和繁衍。
三、基因重组基因重组是指在生物体进行有性生殖的过程中,控制不同性状的基因重新组合。
(二)基因重组的类型1、减数第一次分裂前期,同源染色体上的非姐妹染色单体之间发生交叉互换。
在联会时,同源染色体的非姐妹染色单体之间可能会发生片段的交换,从而导致基因重组。
2、减数第一次分裂后期,非同源染色体上的非等位基因自由组合。
随着同源染色体的分离,非同源染色体自由组合,其上的非等位基因也随之自由组合,产生多种配子。
(三)基因重组的意义1、增加遗传多样性通过基因重组,后代可以产生与亲本不同的基因型组合,丰富了生物的遗传多样性。
名词1、基因突变:是指基因结构的改变,包括DNA碱基对的增添、缺失或改变。
2、基因重组:是指控制不同性状的基因的重新组合。
3、自然突变:有些突变是自然发生的,这叫~。
4、诱发突变(人工诱变):有些突变是在人为条件下产生的,这叫~。
是指利用物理的、化学的因素来处理生物,使它发生基因突变。
5、不遗传的变异:环境因素引起的变异,遗传物质没有改变,不能进一步遗传给后代。
6、可遗传的变异:遗传物质所引起的变异。
包括:基因突变、基因重组、染色体变异。
语句:1、基因突变①类型:包括自然突变和诱发突变②特点:普遍性;随机性(基因突变可以发生在生物个体发育的任何时期和生物体的任何细胞。
突变发生的时期越早,表现突变的部分越多,突变发生的时期越晚,表现突变的部分越少。
);突变率低;多数有害;不定向性(一个基因可以向不同的方向发生突变,产生一个以上的等位基因。
)。
③意义:它是生物变异的根本来源,也为生物进化提供了最初的原材料。
④原因:在一定的外界条件或者生物内部因素的作用下,使得DNA复制过程出现小小的差错,造成了基因中脱氧核苷酸排列顺序的改变,最终导致原来的基因变为它的等位基因。
这种基因中包含的特定遗传信息的改变,就引起了生物性状的改变。
⑤实例:a、人类镰刀型贫血病的形成:控制血红蛋白的DNA上一个碱基对改变,使得该基因脱氧核苷酸的排列顺序——发生了改变,也就是基因结构改变了,最终控制血红蛋白的性状也会发生改变,所以红细胞就由圆饼状变为镰刀状了。
b、正常山羊有时生下短腿“安康羊”、白化病、太空椒(利用宇宙空间强烈辐射而发生基因突变培育的新品种。
)。
⑥引起基因突变的因素:a、物理因素:主要是各种射线。
b、化学因素:主要是各种能与DNA发生化学反应的化学物质。
c、生物因素:主要是某些寄生在细胞内的病毒。
⑦人工诱变在育种上的应用:a、诱变因素:物理因素---各种射线(辐射诱变),激光(激光诱变);化学因素—秋水仙素等b、优点:提高突变率,变异性状稳定快,加速育种进程,大幅度地改良某些性状。
基因突变和基因重组基因突变和基因重组【课前复习】在学习新课程前必须复习有关DNA的复制、基因控制蛋白质的合成、表现型与基因型的关系等知识,这样既有利于掌握新知识,又便于将新知识纳入知识系统中。
温故——会做了,学习新课才能有保障1.DNA分子的特异性决定于A.核糖的种类B.碱基的种类C.碱基的比例D.碱基对的排列顺序答案:D2.基因对性状控制的实现是通过A.DNA的自我复制B.DNA控制蛋白质的合成C.一个DNA上的多种基因D.转运RNA携带氨基酸答案:B3.下列关于基因型与表现型关系的叙述中,错误的是A.表现型相同,基因型不一定相同B.基因型相同,表现型一定相同C.在相同生活环境中,基因型相同,表现型一定相同D.在相同生活环境中,表现型相同,基因型不一定相同答案:B4.实现或体现遗传信息的最后阶段是在细胞的哪一部分中进行的A.线粒体中B.核糖体中C.染色质中D.细胞质中答案:B知新——先看书,再来做一做1.变异的类型有_________和_________两种。
后者有三个来源_________、___________、___________。
2.基因突变(1)概念:由于DNA分子中发生碱基对的___________、___________或___________,而引起的基因结构的改变,就叫做基因突变。
(2)实例:镰刀型细胞贫血症①根本原因:控制合成血红蛋白的DNA 分子的一个___________发生改变。
②直接原因:血红蛋白多肽链中___________被___________代替。
(3)结果:基因突变使一个基因变成它的___________基因,并且通常会引起—定的___________型的变化。
(4)类型:___________和___________。
(5)意义:基因突变是生物变异的___________来源,为生物进化提供了最初的___________材料。
(6)基因突变的特点:①基因突变在生物界中是___________存在的;②基因突变是___________发生的;③自然状态下,一种生物的突变率很___________;④大多数基因突变对生物体是___________的;⑤基因突变是___________的。
(7)人工诱变在育种上的应用①人工诱变的概念:指利用___________因素或___________因素来处理生物,使生物发生基因突变。
②优点:提高___________率,创造变异新类型,培育优良品种。
3.基因重组(1)概念指生物体进行___________的过程中,控制不同性状的基因的___________。
(2)类型①随着非同源染色体的自由组合,导致___________的自由组合。
②随同源染色体上的非姐妹染色单体的交换而使___________基因发生交换,导致___________上的基因重新组合。
(3)意义:为生物变异提供了及其丰富的来源,是形成生物___________的重要原因之一。
【学习目标】1.知道变异的类型、人工诱变在育种上的应用。
2.记住遗传的变异的三个来源。
3.记住基因突变的概念、特点及意义。
4.记住基因重组的概念、类型及意义。
【基础知识精讲】课文全解:1.变异的类型(1)不遗传的变异:仅由环境影响造成的。
(2)可遗传变异:由遗传物质的改变引起的,其来源有基因突变、基因重组、染色体变异三种。
2.基因突变概念:由于DNA分子中发生碱基对的增添、缺失或改变,而引起的基因结构的改变,就叫做基因突变。
实例:镰刀型细胞贫血症。
控制合成血红蛋白的DNA分子的碱基序列发生改变,由变成,即DNA分子上的一个碱基对发生改变,由变成,结果血红蛋白多肽链中谷氨酸被缬氨酸代替,导致镰刀型细胞贫血症。
原理如图6—10—1。
图6—10—1(3)结果:基因突变是染色体的某一个位点上基因的改变,使一个基因变成它的等位基因,并且通常会引起—定的表现型的变化。
(4)类型:按突变生成的过程分,有自然突变和诱发突变两种。
(5)基因突变(自然突变)的特点:①基因突变在生物界中是普遍存在的。
②基因突变是随机发生的。
不论是对于个体、细胞、基因、或对于所影响的性状来讲,突变的发生都是一个随机事件。
例如,在一系列试管中,接种一定量的不含突变型的细菌,经过一定时间的培养以后,测定每一试管中的某一特定突变型的细菌数,就可以看到这些试管中突变型细菌数的分布符合于按照随机分布所预测的情况。
这一实验结果说明基因突变对个体来讲是随机的。
③自然状态下,一种生物的突变率很低。
④大多数基因突变对生物体是有害的。
突变往往是有害的,有时甚至是致死的。
因为长期进化的结果,生物体内的基因基本上都是对环境适应的,一旦出现新的基因,就有可能导致不适应的性状出现,所以基因突变多数是有害的少数是有利的。
例如,水稻、玉米等植物中常产生白化苗的突变。
这种突变型由于不能形成叶绿素,会在幼苗期死亡。
但是,也有些突变是有利的,例如突变产生的植物抗病性、耐旱性、早熟、茎秆坚硬等等。
基因突变的利与害是相对而言的,例如,短腿安康羊的突变,在家养的情况下,是“安康”的,即有利突变,但在野生情况下就不“安康”了。
⑤基因突变是不定向的。
一个基因可以朝着不同的方向发生突变,形成多种突变。
如:A→a1、A→a2、A→a3,a1、a2、a3之间也可以互相转变。
这样,A、a1、a2、a3…都在同一点上,都是等位基因。
这种同一位点的许多等位基因,叫做复等位基因。
复等位基因是指群体范围来说的,就一个二倍体个体来说,只能有其中一对等位基因。
例如,人类A、B、O血型的遗传就是受三个复等位基因控制的。
(6)意义:基因突变是生物变异的根本来源,为生物进化提供了最初的原始材料。
(7)人工诱变在育种上的应用①人工诱变的概念:指利用物理因素或化学因素来处理生物,使生物发生基因突变。
②优点:提高突变率,创造变异新类型,培育优良品种。
3.基因重组(1)概念:指生物体进行有性生殖的过程中,控制不同性状的基因的重新组合。
(2)类型:①随着非同源染色体的自由组合,导致非等位基因的自由组合。
②随同源染色体上的非姐妹染色单体的交换而使等位基因发生交换,导致染色单体上的基因重新组合。
(3)意义:为生物变异提供了极其丰富的来源,是形成生物多样性的重要原因之一。
问题全解:61.什么叫变异?不可遗传的变异和可遗传变异的区别是什么?亲代与子代以及子代个体之间的差异叫变异。
不可遗传的变异是仅仅由环境条件的改变而引起的;可遗传的变异是遗传物质的改变而引起的。
62.遗传的变异有几个来源?遗传的变异有三个来源,即基因突变、基因重组和染色体变异。
63.基因突变产生的原因、特点及实质是什么?原因:在DNA复制的过程中,可能由于各种原因而发生差错,使碱基的排列顺序发生局部的改变,从而改变了遗传信息。
因此,基因突变是在一定的外界环境条件或者生物内部因素的作用下,由于基因中脱氧核苷酸的种类、数量和排列顺序的改变而产生的。
“基因突变的特点”见“课文全解2—(5)(6)”。
实质:DNA分子中碱基对的增添、缺失或改变而引起的基因结构的改变。
64.基因突变有何意义?主要有哪些应用?意义:基因突变是生物变异的根本来源,为生物进化提供了最初的原始材料。
应用:主要体现在生物育种上,可以利用物理的或化学的因素来处理生物,使它发生基因突变,即人工诱变。
用这种方法可以创造变异,从中选择培育出优良品种。
65.基因突变有哪几种类型?基因突变有两种类型,即自然突变和诱发突变。
66.为什么基因突变一般都是有害的?现在生活的生物都是经过长期的进化过程,被自然环境选择下来的,所有的形态的、结构的和生理的特性都是对生物的生存有利的。
基因突变是在大量优良性状的基础上变异,而这些变异大多数对生物的生存是不利的。
所以说一般都是有害的。
但有些突变使生物更加适合所变化的环境,这些突变就是有利的。
67.什么叫基因重组?基因重组有何意义?见“课文全解3”。
【学习方法指导】1.关于对基因突变的概念的理解,首先要结合对镰刀型细胞贫血症病因的分析去理解基因突变的概念,并且还应该注意联系已有的DNA复制与基因控制蛋白质合成的知识来体会基因突变的真正含义。
2.关于基因突变的特点,它是理解人工诱变育种的基础,应注意理解:(1)普遍性,基因突变是普遍存在的,不论原核生物还是真核生物,都可发生基因突变。
在人工诱变育种中可对几乎所有生物进行处理。
(2)随机性,生物个体的任何部位,只要有DNA分子复制,都可能发生基因突变。
在人工诱变育种中可对几乎所有器官或组织进行处理。
(3)低频性,自然情况下突变率很低,另一方面体现了遗传物质的相对稳定性,但诱发可提高突变率。
(4)有害性,因为基因突变多数是有害的,少数是有利的。
所以在人工诱变育种中要大量地处理供试材料,才可能从中获得人们所需要的突变基因。
(5)不定向性,一个基因可朝不同方向形成多种突变,产生复等位基因。
在人工诱变育种中可以得到多种突变基因。
【知识拓展】1.关于镰刀型细胞贫血症人类的镰刀型细胞贫血症是一种遗传性贫血症。
患者在缺氧的情况下,原来呈圆盘状的红细胞变成镰刀形,失去输送氧气的功能,许多红细胞还会因此而破裂造成严重的贫血,甚至引起病人的死亡。
1949年确定了镰刀型细胞贫血症的突变基因,1957年英国学者英格兰姆阐明了镰刀型细胞贫血症的分子机制。
正常人的血红蛋白是由两条α链和两条β链相互结合构成的四聚体,α链和β链分别由141个和146个氨基酸连接组成;英格兰姆发现患者是因为β链中第六个氨基酸发生变化引起的(正常人的是谷氨酸,患者的是缬氨酸)。
2.关于基因突变的种类和结果按基因突变的原因分,有以下两种:(1)碱基替换突变即DNA分子中一对碱基被另一对碱基取代而引起的基因突变,如果一个嘌呤被另一个嘌呤代替或一个嘧啶被另一个嘧啶代替,这种碱基替换称为转换。
如果一个嘌呤被一个嘧啶代替或一个嘧啶被一个嘌呤代替,这种碱基替换称颠换。
例如:镰刀型细胞贫血症的突变为颠换。
(2)移码突变指基因内部DNA的碱基序列中,丢失或插入1个或几个脱氧核苷酸对,从而使基因中脱氧核苷酸对的排列顺序发生改变而引起的突变。
基因突变产生的结果:(1)多数基因突变并不引起生物性状的改变。
①不具遗传效应的DNA片段中的“突变”不引起性状变异。
在DNA分子中,有的片段带有遗传信息,有的片段不带遗传信息,如果突变发生在不带遗传信息的片段中,则这种突变不会有遗传效应,更不会引起性状的改变。
②由于多种密码子决定同样一种氨基酸,因此某些基因突变也不引起生物性状的改变。
例如:UUU和UUG都是苯丙氨酸的密码子,当U和G相互置换时,不会改变密码子的功能,因为决定氨基酸的还是苯丙氨酸。
③某些突变虽改变了蛋白质中个别氨基酸的个别位置的种类,但并不影响该蛋白质的功能。