弧度制-中职数学基础模块教案设计
- 格式:docx
- 大小:37.83 KB
- 文档页数:5
《弧度制的应用》教学设计【课题选材】《弧度制》选自李广全、李尚志主编高等教育出版社出版中等职业教育课程改革国家规划新教材《数学》(基础模块)上第五章第二节的第二课时。
【课时】一课时(45分钟)【授课类型】新授课【授课班级】121旅游管理专业【授课人数】42人【设计理念】人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展,教师在教学设计的时候力求做到“生活问题数学化”,通过“水车博物园”的“水车”展现数学知识、专业知识与生活实际密切相关。
课堂上指导学生改变“在听中学”的传统学习方式,为学生创造“做中学”、“尝试中学”、“体验中学”的生态课堂,倡导学生自主探究、合作交流,让课堂教学真正成为学生培养能力的主阵地,提高学生的数学素养为学生今后的发展做好准备。
【教材地位】三角函数是基本的初等函数,它是描述周期现象的重要数学模型。
前面学习了角的概念的推广,弧度制的学习为后继学习任意角的三角函数等知识作铺垫,具有承上启下的作用。
学生在初中学习了角度制下的弧长公式和面积公式,而弧度制下的弧长公式与扇形面积公式有了更为简单好用,并且为以后立体几何的学习打好基础。
【教材处理】为能让学生切身体验生活中处处有数学,本教学设计问题背景,采用旅游管理专业中导游模拟形式展开设计,以“水车博物园”的“水车”为背景材料,对教材进行化抽象为形象的处理,以学生已有的知识经验为新知识的出发点,在学生动脑、动手、动口的全面参与下探究知识的形成过程。
注重学生知识的迁移、思维的转化和方法的创新,从而实现能力的提升。
【学情分析】对于旅游管理专业的学生,学数学的热情远低于学习专业课的热情,因此教师改变教学模式与评价模式,通过与专业的有机结合,激发学生的好奇心和创造力,使学生重新扬起学习数学的热情与动力。
【教学目标】(一)知识目标1. 了解弧度制下弧长公式的推导;2.掌握弧长公式解决一些简单的实际问题.(二)技能目标:1.通过弧长的应用,培养运用知识解决具体问题的意识和能力;2.通过公式的推导,渗透数形结合、从一般到特的数学思想和方法,培养学生良好的数学思维能力。
5.1.2弧度制(教案)-【中职专用】高一数学同步精品课堂(人教版2021·基础模块上册)一、教学目标1.了解弧度制的定义及其特点,掌握角度制与弧度制的互相转换法。
2.能用弧度制来表示角度的大小。
3.能用改变弧度制的方法来化简三角函数表达式。
4.能够解决相关的应用问题。
二、教学重难点1.弧度制的概念及其特点。
2.弧度制与角度制的互相转换法的应用。
3.弧度制的应用解题技巧。
三、教学方法1.结合图形、实例及计算等教学方法,让学生形成直观的感性认识和逐步形成自己的思想体系。
2.通过问题导入和探究的方式进行引导学生作出自己的猜想,然后慢慢进行总结,这样对于学生的思维能力和臆想能力的提升很有帮助。
3.课堂上进行适当的讨论和交流,很有利于学生互相之间的沟通和思维碰撞,能带来很好的学习效果。
四、教学过程1.开场导入通过引导学生回忆一些角度制的知识点,并引出了弧度制,告诉学生弧度制是一种更为科学的表示角度大小的方法,并且弧度制有很多应用场景,为今后学习数学打下了基础。
2.教学核心2.1 弧度制的特点和定义(1)介绍弧度制由来的历史。
(2)弧度制是通过取圆的弧长与半径之比来度量角度大小的方法。
(3)对于单位圆,长度为1的圆弧所对的角,就是一个弧度。
(4)一个周角(360度)等于2π弧度2.2 角度制与弧度制的互相转换法(1)角度制转弧度制:弧度 = 角度×π/180°(2)弧度制转角度制:角度 = 弧度×180°/π(3) 给出若干实际问题,让学生练习上述转换法,并采用心算转换与计算器计算两种方法,增加学生的活跃性。
2.3 弧度制的应用(1)三角函数的表达式可用弧度制改变角度的大小。
(2)开展实际问题的训练和探究。
3.巩固及拓展老师要求学生做一份与标准时间有关的简单综合练习,同学们需要将角度制和弧度制结合起来,计算出不同时区之间的时间差。
四、课堂小结本节课首先向学生介绍了弧度制的概念及其特点,并且通过实际例子的计算进行了弧度制与角度制的互相转换,最后通过练习实际问题,以让学生掌握弧度制在三角函数中的应用方法,同时向学生展示了弧度制在实际问题中的作用,可以使解答问题变得更为简单直观。
北师大中职数学《三角函数》单元教学设计课中教学环节教学内容教师活动学生活动设计意图、媒体资源等(一)情景导入【情景激趣】2016年9月25日,具有我国自主知识产权的世界最大单口径、最灵敏的球面射电望远镜“中国天眼”在贵州平塘落成启用.这个500米口径球面射电望远镜主要用于实现巡视宇宙中的中性氢、观测脉冲星等科学目标和空间飞行器测量与通信等应用目标.思考:在衡量天体之间的距离时,我们可以用光年、米的单位制来度量;对于面积,我们可以用平方米、公顷等不同的单位制来度量;质量可以用千克、吨等不同的单位制来度量.角的大小,我们是否也能用不同的单位制来度量?【播放图片】【发布任务】1.全班分小组,明确小组长的任务.2.讨论每组具体的对象有哪些【观看图片】【小组讨论】1.分组讨论,由组长记录.2.每个小组长归纳总结并展示.情境问题有效激发学生好奇心,增强学习热情,更主动参与到课堂学习过程中.同时通过相关射电望远镜的介绍,增强了同学们民族自豪感.(二)合作探究【分析理解】我们知道,角可以以度为单位进行度量,把周角的1360所对应的圆心角规定为1度的角,记为1︒.这种以度为单位来度量角的单位制,叫作角度制.今天,我们学习一种在数学和其他科学研究中,经常使用的另一种度量角的单位制---弧度制.【引导分析】引导学生对角度值表示角的具体规定的回顾,注重对1︒的角的大小进行感知,为后续认识1rad的角的大小进行对比感知和区分.【完成任务】1.学生举手发表自己的分析过程.2.利用投影仪对学生的分析过程进辅助展示.激发学生好奇心,增强学习热情,主动学习.(三)抽象概括1.【抽象概括】在数学和其他科学研究中,经常使用另一种度量角的单位制---弧度制.我们规定,长度等于半径的圆弧所对的圆心角叫作1弧度的角,弧度单位用符号rad表示,读作弧度.1弧度的角就记作1rad,读作“1弧度”.如图1所示.在半径为r的圆中,若弧长为l的弧所对的圆心角为αrad,则α的大小为lrα=.α的正负由α的始边到终边的旋转方向决定,逆时针方向旋转为正,顺时【发布任务】1.引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.【完成任务】1.引导学生积极发言,声音宏亮地齐声朗读概念内容,抓住关键字词,并做好笔记.2.加深对弧度制,弧度的概念理解和记忆.1.培养学生的数学抽象核心素养.2.引导学生养成良好的学习习惯.3.带领学生理解弧度制和角度制的意义4.帮助学生进一步全面理解角度制与弧度图1(2)1805 5286.44π︒=⨯≈︒.提示:弧度化角度时,如果式子里有 π,直接由π转化成180︒,更简洁.例 3 利用科学计算器,把下列各角进行弧度与角度的互化. (结果精确到0.01)(1)-5.6; (2)15413'︒解 (1)先将科学计算器的精确度设置为0.01,再将科学计算器设置为角度计算模式,科学计算器Ⅰ按,科学计算器Ⅱ按.依次按下列各键: 计算器结果显示:所以 5.6 320.86rad -≈-︒.(2)先将计算器精确度设置为0.01,再将计算器设置为弧度计算模式,科学计算器Ⅰ按,科学计算器Ⅱ按.之后依次按下列各键. 计算器结果显示:所以 ()15413 2.69.rad ︒'≈1.【对照练习】附录1:学生知识储备检测1.在0︒~360︒之间,与50-︒角终边相同的角是 ,则50-︒角是第 象限角.2.终边在x 轴上的角的集合为: .3.1度的角是怎么规定的: .4.圆的半径为r ,则圆周长为: ,圆的面积为 .附录2:知识检测1.填空:(1)360°= rad;180°= rad;1°= rad; (2)1rad= °.2.把下列各角度化为弧度.(1)390°; (2)140°; (3)225°; (4)330°. 3.把下列各弧度化为角度.(1) 94π (2) 56π-北师大中职数学《三角函数》单元教学设计一、教学目标 1.知识与技能:-学生能够正确理解角的概念推广,包括正角、负角、零角以及象限角的概念。
《5.2.1弧度制》教学设计【课题】弧度制【课时】 1课时(45分钟)【授课类型】新授课【设计理念】通过创设符合学生认知规律的问题情景,挖掘学生内在潜能,借助几何画板,让学生在做中学,学中思,亲身体会创造过程,理解弧度制概念的“来龙去脉”,领悟蕴涵其中的数学思想和方法,进一步培养学生的自主探究能力,逻辑推理能力,形成缜密的思维,养成探究的习惯,真正体现学生的主体地位.【内容解析】本节课选自高等教育出版社出版的《数学(基础模块)》上册第五章第二节第一课时《弧度制》.学生在初中已接触了角度制及圆的相关知识、高中又学习了任意角的概念,在此基础上来学习本节内容.弧度制是《三角函数》的重要概念之一,它是研究三角函数图象与性质的基本立足点,也是后续学习立体几何及微积分的理论基础,同时在物理学的研究中有着广泛应用.因此,本节课起着“承前启后”的作用.【学情简析】学生数学基础较好,思维活跃,有良好的平面几何基础,具备较强的计算机操作及信息处理能力,并会简单操作几何画板,这些特点为本堂课的有效教学提供了质的保障.【教学目标】知识与技能:(1)理解弧度制概念,正确领会1弧度角的含义;(2)能正确进行角度和弧度的换算,熟记特殊角的弧度数;过程与方法:(1)经历弧度制概念的形成过程,体会类比的数学思想,提高观察、分析、逻辑推理的能力;(2)通过弧度制与角度制换算关系的推导,会用联系的观点看问题;情感态度价值观:通过对弧度制概念的构建及两种角的度量制的比较,增强学生自主探究的能力,培养合作交流意识,养成良好的学习习惯. 【教学重点和难点】重点: 弧度制的概念、角度制与弧度制的换算关系难点:弧度制概念的建立关键点:1弧度角的定义【教学方法】教法:情境导入法任务驱动法实践操作法学法: 类比发现法自主探究法交流反馈法【教学用具】电子教室、多媒体、几何画板、网络测试平台、腾讯微博【教学过程】登录百度,搜索“角的度量制有哪些?”启发式课堂小结:今天你收获了什么?【教学反思】本节课以两个知识点的探究为主线,立足教材,贴近学生,着眼于概念本身的发现过程,实现了四个注重:注重几何画板辅助教学,让概念的内涵得到动态的生成;注重学生活动参与教学,让活跃的思维留下冷静的思考;注重及时评价反馈教学,让多样的评价推动有效的课堂;注重拓展任务延伸教学,让多彩的生活丰富教学的资源.。
课题《弧度制》(福建省福州财政金融职业中专学校数学学科李淑英)【课题】弧度制(高等教育出版〈数学(基础模块)上册〉第5.2.1节)【课时】1课时【设计理念】遵循以学生为主体,教师引导的原则,让学生在实际操作中获取知识,在练习中巩固知识;体现学生是学习的主人,教师是课堂的组织者。
【设计亮点】学生动手,主动参与;计算器的使用【职业背景分析】本次上课的对象是商务英语专业的学生,该专业要求学生必须具备一定的数学知识以达到为专业服务的目的,同时通过学习数学可以培养他们的逻辑思维能力,提高他们的文化素养。
【学情分析】针对中职学生的特点,理解力不够强,但动手能力较强,故本课堂以“学生为主”,主动学,主动练为原则,达到让学生真正动手,动脑这一目的。
在本堂课之前学生已经熟悉角的概念,角度制等【教学目标】1.知识目标:(1)理解弧度制的定义(2)理解角度制与弧度制的换算关系.2.能力目标:(1)会进行角度与弧度的换算;(2)会利用计算器进行角度与弧度的换算;(3)培养学生的计算技能与计算工具使用技能.3.情感目标:(1)通过动手强化学生的参与意识,培养合作精神,提高学习的兴趣(2)培养学生勤于思考的学习习惯(3)渗透辩证统一的思想【重点难点】重点:弧度制的概念,弧度与角度的换算.难点:弧度制的概念.【重点、难点剖析】弧度制是教材中新引进的新概念,是度量角的另一种方法.弧度是学生不容易理解的概念,深刻理解一弧度角的意义是突破难点的关键.【教学方法及策略】(1)为了突破难点,本节课设计先让学生动手实验操作,观察思考,然后发现弧长与半径之比的性质,从而理解弧度制定义的合理性,为弧度制的建立打下基础,做好充分准备.这样设计学生能较容易地建立弧度制概念,降低学习的难度。
(2)通过观察,探究,明晰弧度制与角度制的换算关系;(3)在练习,讨论中,深化、巩固知识,培养计算技能;(4)在操作实践中,培养计算工具使用技能;【教学平台及资源】多媒体辅助教学【教学过程】一.新课引入:1.引例:若基亚N86的主屏参数:1600万色AMOLED彩色屏幕;240×320像素,2.6英寸,其中2.6英寸是多少厘米?分析:这里的“英寸”是英制中的长度单位,1英寸=2.5400厘米2.请学生举出生活中还有哪些类似的单位换算的例子3.引入课题:在角度的度量里面,也有类似的情况,一个是角度制,另外一个就是这节课要研究的角的另外一种度量制---弧度制。
教案名称:中职数学基础模块上册《弧度制》word教案课时安排:2课时教学目标:1. 理解弧度制的概念和意义。
2. 掌握弧度制与角度制的转换方法。
3. 能够运用弧度制进行简单的三角函数计算。
教学重点:弧度制的概念和意义,弧度制与角度制的转换方法。
教学难点:弧度制的理解和运用。
教学准备:教师准备PPT和教学素材。
教学过程:第一课时一、导入(5分钟)1. 复习角度制的概念和转换方法。
2. 提问:为什么我们需要引入弧度制?二、新课讲解(15分钟)1. 讲解弧度制的概念:以半圆的弧长作为角度的度量单位。
2. 讲解弧度制与角度制的转换方法:π弧度等于180度。
3. 举例说明弧度制的运用:计算三角函数值。
三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固弧度制的理解和运用。
2. 教师对学生的练习进行指导和讲解。
四、总结(5分钟)1. 回顾本节课的内容,让学生加深对弧度制的理解。
2. 提醒学生注意弧度制与角度制的区别和转换方法。
第二课时一、复习(5分钟)1. 复习上节课的内容,提问学生对弧度制的理解和运用。
2. 复习弧度制与角度制的转换方法。
二、深入学习(15分钟)1. 讲解弧度制在三角函数计算中的应用。
2. 举例说明弧度制在解决实际问题中的应用。
三、课堂练习(10分钟)1. 让学生独立完成练习题,巩固弧度制的理解和运用。
2. 教师对学生的练习进行指导和讲解。
四、拓展(10分钟)1. 引导学生思考弧度制在其他领域的应用。
2. 让学生举例说明弧度制在实际问题中的应用。
五、总结(5分钟)1. 回顾本节课的内容,让学生加深对弧度制的理解。
2. 提醒学生注意弧度制与角度制的区别和转换方法。
教学评价:通过课堂练习和课后作业的完成情况,评价学生对弧度制的理解和运用能力。
观察学生在课堂上的参与度和提问回答情况,了解学生的学习效果。
教案名称:中职数学基础模块上册《弧度制》word教案课时安排:2课时教学目标:1. 理解弧度制的概念和意义。
4.2弧度制(教案)-【中职专用】高一数学同步精品课堂(高教版2021·基础模块上册)一、教学目标:1. 理解弧度制的概念和意义。
2. 掌握角度和弧度的相互转换方法。
3. 掌握弧度制下常用三角函数的定义和基本性质。
4. 能够解决一些与弧度制相关的问题,如弧长、扇形面积等。
二、教学重点与难点:1. 弧度制的概念和意义。
2. 角度和弧度的相互转换方法。
3. 弧度制下常用三角函数的定义和基本性质。
三、教学过程:1. 引入(5分钟)通过引入一道与弧度相关的问题,如:圆心角为60度的圆弧所对的弧长为多少?来引出本节课的主题:弧度制。
2. 概念和意义(10分钟)介绍弧度的概念和意义,弧度是一个角所对圆周的弧长等于半径时所对应的角度量。
让学生思考为什么需要引入弧度制,引导学生理解弧度制的优越性。
3. 角度和弧度的相互转换方法(15分钟)介绍角度和弧度的相互转换方法,弧度制下一周为2π,因此一角度等于π/180弧度,一弧度等于180/π度。
教师通过简单的实例让学生熟练掌握角度和弧度的相互转换方法。
4. 弧度制下常用三角函数的定义和基本性质(20分钟)介绍弧度制下常用三角函数的定义和基本性质,如正弦函数、余弦函数和正切函数等。
让学生了解三角函数的周期、对称性和单调性等性质,并通过实例让学生熟练掌握计算弧度制下常用三角函数的方法。
5. 应用实例(10分钟)通过一些应用实例,如计算弧长、扇形面积等,让学生将所学的知识应用到实际问题中,锻炼学生的思维能力和解决问题的能力。
6. 课堂练习(10分钟)通过一些简单的题目让学生巩固所学知识,并在老师的指导下解决一些更加复杂的问题。
四、教学总结:通过本节课的学习,学生了解了弧度制的概念和意义,掌握了角度和弧度的相互转换方法,熟练掌握了弧度制下常用三角函数的定义和基本性质,并能够应用所学的知识解决一些实际问题。
这将为学生今后的学习和生活提供很好的基础。
弧度制-中职数学基础模块教案设计
教学过程:
揭示课题:5.2弧度制。
回顾知识:角的分类,终边相同角的表示方法。
创设情境,兴趣导入:通过视频引入圆的图形,引入角度。
问题:角是如何度量的?角的单位是什么?
将圆周的圆弧所对的圆心角叫做1度角,记作1°。
1度等
于60分(1°=60′),1分等于60秒(1′=60″)。
以度为单位来度量角的单位制叫做角度制。
通过温度单位类比,引入角度不同度量单位:一个体温
98度的人,为什么没有发烧?
动脑思考探索新知:
弧度概念较为抽象,讲解时注重分析关键点:弧长与角的对应关系。
通过填写表格,观察得出弧长与半径的比值。
通过观看动画,得出弧长与半径的比值与半径无关,只与圆心角的大小有关。
引入弧度定义:弧长l与半径r的比值。
弧度制相关概念:弧度数,1弧度角,将等于半径长的圆弧所对的圆心角叫1弧度角。
教学重点:弧度制的概念,弧度与角度的换算。
教学难点:弧度制的概念。
教学设计:
1.由问题引入弧度制的概念。
2.通过观察和探究,明晰弧度制与角度制的换算关系。
3.在练和讨论中,深化、巩固知识,培养计算技能。
4.结合实例了解知识的应用。
教学备品:教案、教材、教学课件等。
课时安排:1课时(45分钟)。
1.弧度制是一种以弧度为单位来度量角的单位制。
2.若圆的半径为r,圆心角∠AOB所对的圆弧长为L,则
弧度制中∠AOB的大小为L/r。
3.弧度制中,正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。
4.换算公式:360°=2πrad,即180°=πrad。
1°=π/180 rad。
5.在弧度制中,通常可以省略单位“弧度”或“rad”的书写。
例1:将45°化为弧度。
根据换算公式1°=π/180 rad,可得45°=45π/180 rad=π/4 rad。
例2:将3π/4化为角度。
根据换算公式1 rad=180/π°,可
得3π/4=3π/4×180/π°=135°。
例3:将19π/36和-31π/6化为形如α+2kπ(≤α<2π)的角,并指出它们所在的象限。
19π/36=π/2+2π/9,所在的象限为第一象限;-31π/6=-π/6-2π,所在的象限为第二象限。
练题:将60°、-5π/6和7π/3分别化为弧度制,并将-π/4
和5π/6分别化为角度制。
掌握情况:本课程主要讲解了角度和弧度的概念及其转换方法。
学生需要掌握角度的度数表示法和弧度制的定义,同时能够熟练地进行度数和弧度之间的转换。
纠错答疑:在研究过程中,老师会及时纠正学生的错误,解答他们的疑问。
同时,学生可以在课后向老师请教,加深对知识点的理解。
巡视指导:老师会定期巡视学生的研究情况,及时发现问题并给予指导。
同时,老师还会提供相关的研究资源和参考资料,帮助学生更好地掌握知识。
将下列各角化成度:(1) 180°;(2) 270°;(3) 270°;(4) 180°。
本次课研究了角度和弧度的转换方法,其中重点和难点是弧度制的定义和应用。
学生需要通过练来加强对知识点的理解和掌握。
在研究过程中,我采用了听讲、笔记和练相结合的研究方法,通过反复练,我已经能够熟练地进行角度和弧度之间的转换。
为了进一步掌握弧度制的应用,我将阅读教材中关于弧度制的由来的部分,并完成相应的题。
同时,我还将进行实践调查,了解弧度制在实际应用中的情况。
通过本次课程的研究,我不仅掌握了角度和弧度的转换方法,还培养了自主研究和实践探究的能力。
我将继续努力,将所学知识应用到实际生活中,实现学以致用的目标。