第二章 波函数
- 格式:ppt
- 大小:523.50 KB
- 文档页数:40
第二章 状态波函数和薛定谔方程本章引入描述量子体系状态的波函数,给出波函数的几率波解释和态的叠加原理两个量子力学的基本假设,在此基础上建立非相对论量子力学的基本方程——薛定谔(Schr ödinger)方程,并通过几个具体实例介绍定态薛定谔方程的解法。
§2.1 波函数的几率波解释1.波函数由第一章的讨论可知,微观粒子的波粒二象性是对粒子运动的一种统计性的反映。
数学上,把这种具有统计性的物质波(粒子波)用一个物理量ψ来描述,称为波函数。
它是位置),,(z y x 和时间t 的复值函数,表示为ψ或),,,(t z y x ψ。
微观体系的状态总可以用一个波函数(,)t ψr 来完全描述,即从这个波函数可以得出体系的所有性质,且(,t)ψr 和C t ψ(r,)(C 为比例常数)描写同一量子状态。
引入波函数来描写微观粒子的运动状态是量子力学的基本假设之一。
2.波函数的几率波解释在历史上,人们对波函数的解释曾有过不同的看法。
有人认为波是由它所描写的粒子组成的;也有人认为粒子是无限多波长不同的平面波叠加而成的波包。
除以上两种观点外,还有其它一些不同的看法。
但是,这些看法都与实验事实相矛盾,而被物理学家们普遍接受的解释是玻恩(Born)提出的统计解释,即几率波解释。
为了说明玻恩的解释,我们首先来考察电子的双缝衍射试验。
在电子的双缝衍射实验中,电子枪发射强电子束时,荧光屏上马上显示出明暗相间的双缝衍射条纹,这是电子的波动性的表现。
当电子枪发射弱电子束时,屏上接收的只是一个一个的亮点(电子),这体现了电子的微粒性。
若对弱电子束的衍射作长时间的曝光,则得到的衍射花样与强电子束的衍射花样完全相同。
实验表明,在出现亮条纹的地方,亮点较密集,电子投射的数目较多,即电子投射几率较大;而在比较暗的地方,达到的电子数目较少,即电子投射的几率较小。
电子在衍射实验中所揭示的波动性质,可看成是大量电子在同一个实验中的统计结果,也可以认为是单个电子在多次相同实验中显示的统计结果。
第二章 波函数与薛定谔方程2.1 设22()exp )2(x x A αψ-=,α为常数, 求归一化常数A . 解:由波函数满足的归一化条件()21x dx ψ+∞-∞=⎰有2222222222()exp 12()x x x x dx A dx A e dx A e dx αααψ+∞+∞+∞+∞---∞-∞-∞-∞-====⎰⎰⎰⎰由积分公式2x e dx +∞--∞=⎰有()()222211x x y e dx ed xe dy ααα+∞+∞+∞----∞-∞-∞===⎰⎰⎰即22221x A e dx A α+∞--∞==⎰,归一化常数A =2.2 设粒子波函数为(,,)x y z ψ ,求在(,)x x dx +范围中找到粒子的概率.解:在(,)x x dx +范围内找到粒子的概率为2(,,)x y z dydz dx ψ+∞+∞-∞-∞⎛⎫⎪⎝⎭⎰⎰.2.3 设在球坐标系中,粒子波函数表为(,,)r ψθϕ,求:(1)在球壳(,)r r dr +中找到粒子的概率;(2)在(,)θϕ方向的立体角d Ω中找到粒子的概率.解:(1)在球壳(,)r r dr +中找到粒子的概率为()22|(,,)|r d r dr ψθϕΩ⎰; (2)在(,)θϕ方向的立体角d Ω中找到粒子的概率()22|(,,)|r r dr d ψθϕΩ⎰.2.4求平面单色波为00()p i x p x ψ⎛⎫⎪⎝⎭=在动量表象中的形式. 解:由坐标表象与动量表象间傅里叶变换式()()121,t (,)e2ipx p x t dx ϕψπ+∞--∞=⎰得单色平面波动量表象中的形式为()()()()001112122111,t ()e e 222ii p x px px p p x dx e dx ϕψπππ⎛⎫ ⎪⎝⎭+∞+∞---∞-∞⎛⎫ ⎪ ⎪⎝⎭==⎰⎰()()001e2i p p xdx p p δπ+∞---∞==-⎰即平面单色波的波函数在动量表象中的表示形式为()()00,p p t p p ϕδ=-.2.5 粒子在0x x =点的量子态为δ函数00()()x x x x ψδ=-,试在动量表象中写出此量子态的形式.解:由坐标表象与动量表象间傅里叶变换式()()121,t (,)e 2i px p x t dx ϕψπ+∞--∞=⎰得δ函数在动量表象中量子态的形式为()()()()00012211211()e e21,t ()2e 2ip i ip x x x x p p x dx x x dx δϕπψππ+∞-----∞+∞∞-===⎰⎰即量子态为δ函数的波函数在动量表象中表示形式为()()00121,t e2i px x p ϕπ-=.2.6 证明从单粒子薛定谔方程得出的粒子速度场是非旋的,即求证0v ∇⨯=,其中/v j ρ=,ρ为概率密度,j 为概率流密度.证明:概率密度为()()(),,,r t r t r t ρψψ*=概率流密度为()()()()(),,,,,2j r t r t r t r t r t mi ψψψψ**⎡⎤⎣⎦=∇-∇根据薛定谔方程式可导出几率守恒方程,并定义几率流密度()()()()()(),,ln ,ln ,2,,2r t r t jv r t r t mi r t r t miψψψψρψψ***⎡⎤⎡⎤⎢⎥⎣⎦⎢⎥⎣⎦∇∇==-=∇-∇()()()()()ln ,ln ,l 2,,n 2r t i m r r t r t t mi ψψψψ**⎡⎤⎣⎦=∇-=∇可见v 正比于一个标量场()(),,r t r t ψψ* 的对数的梯度.梯度场无旋,故v是一个无旋场(0v ∇⨯=).2.7 设粒子在复势场()()()12V r V r iV r =+ 中运动,其中()1V r 和()2V r为实数,证明粒子的概率不守恒,并求出在某一空间体积中粒子概率“丧失”或“增加”的速率.解:根据薛定谔方程及其复数共轭形式()22122i V iV t m ψψψ∂=-∇++∂ (2.7.1)()22122i V iV t mψψψ***∂-=-∇+-∂ (2.7.2)ψ**(2.7.1) -ψ*(2.7.2)得()222222i iV t t m ψψψψψψψψψψ*****⎛⎫ ⎪⎝⎭∂∂+=-∇-∇+∂∂()2222iV mψψψψψψ***=-∇⋅∇-∇+ (2.7.3)即()()222V t mi ψψψψψψψψ****∂+∇⋅∇-∇=∂,可以写为 22j V tρρ∂+∇⋅=∂(2.7.4)其中()()(),,,r t r t r t ρψψ*=,()()()()(),,,,,2j r t r t r t r t r t mi ψψψψ**⎡⎤⎣⎦=∇-∇.上式右边不为零,这意味着粒子的几率不守恒.将上式对空间Ω积分,则得3322Sd r jds d rV t ρρΩΩ∂+=∂⎰⎰⎰ 故某一空间体积中粒子概率“丧失”或“增加”的速率为3322S V d r jds d r t ρρΩΩ∂=-+∂⎰⎰⎰ .2.8 设()()()1212,0E E r c r c r ψψψ=+ ,问(),0r ψ是否为定态,为什么?求(),r t ψ.解:(1)由于定态是体系能量具有确定值的状态,而题中波函数(),0r ψ处于能量1E 的本征态()1E r ψ与能量2E 的本征态()2E r ψ 的叠加状态,故(),0r ψ 不是定态;(2) t 时刻的波函数为()()()121212,i i E t E t E E r t c r e c r eψψψ--=+.2.9 计算1ikr e ψ=和2ikr e r ψ-=相应的概率流密度,并由所得结果说明这两个波函数描述的是怎样传播的波.解:由微商关系式:x y z e e e x y z∂∂∂∇=++∂∂∂ ,r r r e r ∇==,3211r r e r r r ∇=-=-(1)1ψ的概率流密度为:1ikr e r ψ=,1ikr e rψ-*= ()()()2122211ikr ikrikr ikrik ik ikr r r r e r e r ikr e e ikre r e r r rr r r ikr e e r ψ⎛⎫⎪⎝⎭∇-∇-∇-∇-∇=∇===∇= 或()111111ikrikrikr ikr ikr ikr ikr ikr r r r ikr e e ike e e e ike r e r e e e rrr r r r r r ψ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-∇=∇=∇+∇=∇+-∇=-= ()()()2212211ikrikr ikr ikr ikr i r r i r k k e r e r ikr e e ikre r e r r rr r r ikr e e r ψ-*------⎛⎫⎪⎝⎭∇-∇+-∇-∇=∇===--∇=+∇ ()()()()()11111,,,,,2j r t r t r t r t r t mi ψψψψ**⎡⎤⎣⎦=∇-∇()()22112ikrikrikr ikr r r ikr e ikr e e e e e mi r r r r --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦-+=--112r ikr ikr e mi r r ⎛⎫ ⎪⎝⎭--=+2rk e mr =即()12,r k j r t e mr=描述的是沿径向向外传播的球面波; (2) 2ψ的概率流密度为:2ikr e r ψ-=,2ikr e rψ*= ()()()2222211ikr ikrikr ikr ikri r kr ikr e r e r ikr e e ikre r e ikr e e r r r rr r r ψ-------⎛⎫⎪⎝⎭∇-∇+-∇-+∇-∇=∇===-∇= ()()()2222211ikr ikrikr ikrikr ikr r ikr e r e r ikr e e ikre r ik e r r rr r r e r e r ψ*⎛⎫⎪⎝⎭∇-∇-∇-∇=∇====∇∇- ()()()()()22222,,,,,2j r t r t r t r t r t mi ψψψψ**⎡⎤⎣⎦=∇-∇()()22112ikrikr ikr ikrr r ikr e ikr e e e e e mi r r r r --⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦+-=-- ()33112r ikr ikr e mi r r ⎛⎫ ⎪ ⎪⎝⎭-+-=-2rk e mr =-即()22,r k j r t e mr=-描述的是沿径向向内传播的球面波.2.10 粒子在一维势场中运动,若所处的外场均匀但与时间有关,即()(),V x t V t =,试用分离变量法求解一维薛定谔方程.解:由一维薛定谔波动方程()()()222,,,2i x t V x t x t t m x ψψ⎡⎤⎢⎥⎣⎦∂∂=-+∂∂ , 采用分离变量法求特解,令其特解可表示为()()(),x t x f t ψϕ=,带入一维薛定谔波动方程有()()()()()()()()()()2222i x f t x f t V t x f t t m x ϕϕϕ∂∂=-+∂∂ ()()()()()()()()2222x i f t f t x V t x f t t m xϕϕϕ∂∂=-+∂∂方程两边同时除以()()x f t ϕ可得()()()()()22212f t i x V t f t t m x x ϕϕ∂∂=-+∂∂ ()()()()()22212f t i V t x f t t m x x ϕεϕ∂∂-=-≡∂∂其中ε是既不依赖于t ,也不依赖于x 的常数.(1)此时关于时间部分为:()()()f t i V t f t tε∂-=∂ 方程两边同时对时间t 积分得()()()()()()00000ln tt t t t df i d d V d d i f d V d t f d d ττττετττττε-=⇒-=⎰⎰⎰⎰⎰()()()()00ln ti V d t ti f t V d t f t e ττεττε⎛⎫ ⎪⎝⎭-+⎛⎫ ⎪⎝⎭⎰=-+⇒=⎰(2)关于坐标的部分为:()()()()2222221202d d m x x x m x dx dx εϕεϕϕϕ-=⇒+=此二阶齐次微分方程的解为()x Ae ϕ±=由上述两部分可知()()()()0,t i V d t x t x f t Ae eττεψϕ⎛⎫ ⎪ ⎪⎝⎭-+±⎰==其中A 和ε均为常数,分别由归一化条件和初试条件决定.2.11 粒子在无限深方势阱中(0x a <<)中运动,对处于定态()n x ψ的粒子,证明:2ax =,()222226112a x x n π⎛⎫ ⎪⎝⎭-=-, 0p =,()222n p p mE -=,讨论n →∞的情况,并与经典计算结果比较.解:一维无限深方势阱内(0x a <<)粒子的波函数为()n n x x a πψ⎛⎫⎪⎝⎭=, 能量本征值为22222n n E ma π= .(1) ()()0n n n x n x x x x x dx dx a a ππψψ+∞*-∞⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭==⎰⎰200cos 12sin 1222a a n x a n x x x a dx dx a a ππ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭==⎰⎰ 0020022cos sin 1111122aaa a n x n x x a a dx dx x a a a n πππ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-=⎰⎰2a=(2)()222202n x a n x x x x dx a a ππ⎛⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝-=-⎰22222002212sin 1cos 222a a a n x a n x x dx x dx a a a a ππ⎛⎫⎛⎫⎧⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎨⎬ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎩⎭⎝⎭⎝⎭=-=--⎰⎰ 22220000112112cos cos 4a a a a n x a n xx dx x dx dx x dx a a a a a aππ=--+⎰⎰⎰⎰2222222260132412a a a a n n ππ⎛⎫ ⎪⎝⎭=--+=-(3)()()()(n n i i n x n x p x x dx dx a a ππψψ+∞*-∞⎛⎫⎛⎫-∇-∇ ⎪ ⎪⎝⎭⎝⎭==⎰⎰22022sin cos sin aan n x n x n n x i dx i dx a a a a a πππππ⎛⎫⎛⎫⎛⎫⎪ ⎪⎪⎝⎭⎝⎭⎝⎭-=-=⎰⎰0022022cos cos 222sin aaaa n x i n x n a a a n n x n i dx i a a a ππππππ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-==-=-⎰0=(4)()()222222220sin 2sin an n n x x x a n x p p x x dx dx a a ππψψ+∞*-∞⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∂∂--∂∂-==⎰⎰2222222230022sin sin sin a an n x n a a a a n x n x dx dx a a πππππ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭--==⎰⎰002222223301221cos sin 222a a a n x a n x x a n a n n a a dx πππππ⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪⎨⎬ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎪⎪⎩⎭-==-⎰22222n mE n a π==2.12 考虑质量为m 的粒子被限制在宽度为a 的一维无限深势阱();;0,2,2ax V x a x ⎧⎪⎪⎨⎪⎪⎩<=∞> 中运动,(1)粒子的能级和相应的波函数;(2)粒子处于基态的动量分布. 解:(1)在阱内体系所满足的定态薛定谔方程是2222d E m dx ψψ=- ,2a x < (2.12.1)在阱外,定态薛定谔方程为()2222V x d E m dx ψψψ+=- ,2a x > (2.12.2) (2.12.2)式中,()x V →∞.根据波函数所满足的连续性和有限性条件,只有当0ψ=时,(2.12.2)式才能成立,所以有0ψ=,2ax >(2.12.3) 该条件为解(2.12.1)式时所需的边界条件.为书写简便,引入记号1222mEα⎛⎫⎪⎝⎭= (2.12.4) 则(2.12.1)式简写为2220d dx αψψ+=,2a x <它的解是sin cos A x B x ψαα=+,ax <(2.12.5) 根据ψ的连续性,由(2.12.3)式20a ψ⎛⎫± ⎪⎝⎭=,代入(2.12.5),有22sin cos 0aaA B αα+=, 22sin cos 0aaA B αα-+=.由此得到2sin 0aA α=,2cos 0aB α=. (2.12.6)A 和B 不能同时为零,否则ψ到处为零,这在物理上是没有意义的.因此,我们得到两组解:(1) 0A =,2cos 0aα= (2.12.7) (2) 0B =,2sin 0aα= (2.12.8)由此可求得22anαπ=,1,2,3,n = (2.12.9)对于第一组解,n 为奇数;对于第二组解,n 为偶数. 0n =对应于ψ恒为零的解,n 等于负整数时解与n 等于相应正整数时解线性相关(仅差一负号),都不取.由(2.12.4)式和(2.12.9)式,得到体系的能量为22222n n E maπ= ,n 为正整数. (2.12.10) 将(2.12.7)式、(2.12.8)式依次代入(2.12.5)式中,并考虑(2.12.9)及(2.12.3)两式,得到一组解的波函数为sin ,20,2n n aA x n x a a x πψ⎧<⎪⎪=⎨⎪>⎪⎩为正偶数 (2.12.11)另一组解的波函数为cos ,20,2n n aB x n x a a x πψ⎧<⎪⎪=⎨⎪>⎪⎩为正奇数 (2.12.12)由归一化条件21dx ψ∞-∞=⎰可得常数A B ==(2)粒子处于基态时1n =,体系的能量为22122E ma π= ,波函数为1x aπψ=,对应于动量空间的波函数为:()()221a a i i px px p x e dx x e dx a πϕψ∞---∞-⎫⎛⎫⎪ ⎪⎪⎝⎭⎭==⎰22c os 2aipx a ap x e dx a π--⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭==⎰ 其中积分项2cosaipx a x edx a π--⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⎰采用两次分部积分求出: 222222cossin sin a i px a a ai ipx px a a x e a a a ix edx x pe dx a a πππππ------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=-⎰⎰222sin i ai a p p aipx a i eep a a x e dx a πππ---⎛⎫⎛⎫⎛⎫=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰ (I)222222cossincos aipx a a aiipx px a a x e a a a ix edx x pe dx a a πππππ------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=---⎰⎰2cos aipx a i a p x e dx aππ--⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=-⎰ (II) 结合(I)、(II)两式可得2222222222cos 2cos i a i a p p ai px a a ap a e e a p p a x e dx a πππππ---⎛⎫⎪⎛⎫⎛⎫⎛⎫⎝⎭+= ⎪ ⎪ ⎪-⎝⎭⎛⎫⎛⎫⎝⎭⎝⎭- ⎪ ⎪⎝⎭⎝⎭=⎰即()22cos a i px a ap a p x e dx a ππϕ--⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭== . 粒子处于基态的动量分布为()222224cos 221ap ap a p p a a p a πππϕπ⎛⎫ ⎪⎝⎭=⎡⎤⎛⎫⎛⎫++ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦=2.14 粒子在如图所示的势阱中运动,设粒子处于第n 个束缚态,相应的能级为n E ,如0n V E ,求粒子在阱外出现的概率.解:00E V <<的情况下粒子处于束缚态:在阱外2ax ≥,定态波动方程为 ()022220V d m E dx ψψ--=令β=考虑到束缚态边界条件(x →∞处,()0x ψ→),方程应取如下形式的解(),2,2xx a Ae x x a Be x ββψ-⎧⎪⎪⎨⎪⎪⎩≥=≤-常数A 与B 由归一化条件确定(由于势场具有对称性A B =).在阱内2ax ≤,定态波动方程表示为22220d mE dx ψψ+= 令k =波函数偶宇称态的解为()cos x C kx ψ ,奇宇称态的解为()sin x D kx ψ . (a) 偶宇称态,波函数()x ψ及其微商()x ψ'在2ax =处是连续的; 22cos cos 2a a x x a xaC kx C k AeAe ββ==--=⇒=()()222cos sin 2xa a x x aAeC kx akC k Ae βββ-==-''-=⇒=-两式相比可得到能级公式为tan 2ka kβ=. 如0n V E ,k β=→=,()2122n ka π+→ ()2222222222+xa a aa a xB A A Aee e e dx Bedx dx x ββββββββψ∞------∞+===⎰⎰⎰阱外带入关系式2cos 2aa C k Ae β-=得()222cos 2C kax dx ψβ=⎰阱外()222221sin 22cos aa C C a ka kdx C kx dx x ψ-+==⎰⎰阱内由于()2122n ka π+→,所以2cos 02ka →,sin 0ka →,粒子出现在阱外的概率远小于粒子出现在阱内的概率()()2222C a dx dx x x ψψ≈≈⎰⎰全空间阱内粒子出现在阱外的概率为()()220222c cos 2=o 2=s =222C k ka V a E dxC a a dxa x x βββψψ⎰⎰全空间阱外22220222221cos 21tan 112ka k k E k V a k ββ⎝⎭====+⎛⎫+ ⎪+⎝⎭=+⎝⎭⎝⎭.2.16 利用厄米多项式的递推关系()()()11220n n n H H nH ξξξξ+--+=,()()12n n H nH ξξ-=',求证()()111()n n n x x x x ψα-+⎤⎥⎥⎦=+,()()11()n n n d x x x dx ψα-+⎤⎥⎥⎦=, 并由此证明()n x ψ态下0x =,2nE V =,0p =,222n p m E T ==. 证明:(1)谐振子波函数()()22n n x H ξψξ-=,其中xξα=,α=关于Hermite 多项式有递推关系()()()11220n n n H H nH ξξξξ+--+=22ξ-得()()()22222211220n n n H H H ξξξξξξ---+--+=()()()2222221102n n n H H H ξξξξξξα---+--+= (*)()()()1120n n n x x xx αψ+--+=由此即得()()111()n n n x x x x ψα-+⎤⎥⎥⎦=(2) 由()()2n n x H ξψξ-=,()()()()()()()()222222x x x n n n n d d d dx dx dx d dx x H x e H x e H x αααψααα---⎫⎫⎛⎫⎪⎪ ⎪=+⎨⎬⎪ ⎪⎪⎭⎝⎭⎭= ()()()()()2222212x x n n x e H x e n H x αααααα---⎫⎛⎫⎪ ⎪=-+⎬⎪⎪⎝⎭⎭(()()()()2222212x x n n x H x n H x ααααα---=-+代入(*)的变形式得()()()222222112n n n H H H ξξξαξξξ---+-=+()(()()()()2222212x x n n n d x dx x H x n H x αααψαα---=-+()()()()22222112122x n n n H H n H x αξξαξξα--+---=-++⎫⎪⎪⎭()()()1112n n n x x x αψ⎫⎪⎪⎭+--=- ()()11n n x x α-+⎤⎥⎥⎦=(3)()()111n n n n nx x dx dx x x ψαψψ+∞+∞**-∞-+-∞⎤⎥⎥⎦==⎰⎰()()11n n n n x x dx dx ψψψψ-++∞+∞**-∞-∞=0=(4)()222222111222n n n n n n V m x m x m x V dx dx dx ωωωψψψψψψ+∞+∞+∞***-∞-∞-∞⎛⎫ ⎪⎝⎭====⎰⎰⎰由(1)得()()111()n n n x x x x ψα-+⎤⎥⎥⎦=+再乘以x 得()()2111()n n n x x x x ψψψα-+⎤⎥⎥⎦=()()()()2211n n n n x x x x αα-+⎫⎤⎤⎪⎥⎥⎪⎥⎦⎦⎤⎥=⎭⎥⎦()()()()2222112n n n n x x x ψα-+⎤⎥⎦=++ ()()()()()222222112n n n n n n x xdx n dx x x x ψψψψα+∞+∞**-∞-∞-+⎧⎫⎤⎨⎬⎩=⎭=⎥⎦+++⎰⎰()()()()222002112n n n n n n x dx n x dx x dx ψψψψψψα+∞+∞**-++∞∞*--∞-∞⎫⎪=++⎬⎪⎩⎭⎰ ()2212n α=+()()222222212111122221112222n n n n E m x m m V ωωωωα=++⎛⎫=+= ⎪⎝⎭==(5)()()11n n n n n n n d d i dx dx i i x dx d p d x x xψψψψψα+∞+∞+∞**-∞-∞-+*-∞--⎤⎛⎫-⎥ ⎪⎝⎭⎥⎦===⎰⎰⎰()()11000n n n n i x x dx dx ψψαψψ-++∞+∞**-∞-∞⎫⎪=-=⎬⎪⎭(6)()()22221121222nn n nnd dm dx m dxxpT dxmx dxαψψψ+∞+∞**-∞--∞+⎧⎫⎤⎪⎪⎥⎨⎬⎥⎪⎪⎛⎫--⎪⎝⎭⎦⎩⎭===⎰⎰()()()() 222 2n nn nn n mx x dx dx x x αααψψ+∞+∞*-*-∞∞+-⎧⎫⎧⎫⎤⎤⎪⎪⎪⎪⎥⎥⎨⎬⎨⎬⎥⎥⎪⎪⎪⎪⎫⎪-⎬⎪⎭⎦⎦⎩⎭⎩⎭=()()()()220022214nn n nnndx dxx xnmx dxψψψψαψψ+∞+∞**-∞+-∞-⎫⎪⎪⎬⎪⎪⎪⎩⎭+∞*-∞+-=-⎰⎰⎰()222111222212144nm nn Enm mωωα⎛⎫⎪⎪⎝⎭⎛⎫⎪⎝⎭+==+=+=2.17 质量为m的粒子处于势阱()220;,1,20;xxxm xVω∞⎧>=≤⎪⎨⎪⎩中,求粒子的可能能量.提示:利用谐振子波函数()nxψ的奇偶性()()()1nn nx xψψ-=-.解:线性谐振子对应于本正函数()()221212122!xn nnx e H xnαααπψ-⎛⎫⎪=⎪⎝⎭,α=的本征值为12nE nω⎛⎫=+⎪⎝⎭.题中0x≤区域,粒子的波函数满足()0xϕ=.0x>区域粒子的波函数满足边界条件()00ϕ=,()0ϕ∞=,由波函数的连续性可知()00ϕ=.由谐振子波函数()nxψ的奇偶性条件()()()1nn nx xψψ-=-,我们得知只有当n取奇数时连续性条件才被满足,故此时粒子的可能能量值为()1321222nE n nωω⎛⎫⎛⎫=++=+⎪ ⎪⎝⎭⎝⎭,0,1,2,n=.相应的本正函数为()()21n nx xϕ+=.()()()222222121011122n n n A x dx A x dx A x dx ψψϕ+∞+∞+∞++-∞====⎰⎰⎰,故A =.2.18 设()1,r t ψ 和()2,r t ψ 是不含时势场()V r中薛定谔方程的两个解,证明对变量变化的全空间积分312d x ψψ*⎰与时间无关,即3120d d x dtψψ*=⎰. 证明:由题意得()1,r t ψ 和()2,r t ψ分别满足薛定谔波动方程()()()()22111,,,2i r t r t V r r t t m ψψψ∂=-∇+∂ (2.18.1) ()()()()22222,,,2i r t r t V r r t t mψψψ∂=-∇+∂ (2.18.2) ()1,r t ψ*⨯ ()2.18.2 - ()2,r t ψ⨯()2.18.1*()()()()()()()()222122112,,,,,,2i r t r t r t r t r t r t t mψψψψψψ***∂=∇-∇∂()()()()()22112,,,,2r t r t r t r t mψψψψ**=∇⋅∇-∇上式对全空间进行积分()()()()()()()()233122112,,,,,,2i r t r t d x r t r t r t r t d x t mψψψψψψ***∂=∇⋅∇-∇∂⎰⎰ ()()()()()22112,,,,2r t r t r t r t ds m ψψψψ**=∇-∇⋅⎰由于无穷远处波函数为零,积分项()()()()()2112,,,,r t r t r t r t ψψψψ**∇-∇⎰ 为零,即()()()132,0,d d x dtr t r t ψψ*= .。
第二章波函数和薛定谔方程2.1 波函数的统计解释与态叠加原理1、波函数的统计解释上一章已说到,为了表示粒子的波粒二象性,可以用复数形式的平面波束描写自由粒子。
自由粒子是不受力场作用的,它的能量与动量都是常量。
如果粒子受到随时间及位置等变化的力场的作用,它的能量和动量就不再是常量,或者不再都是常量。
这时,粒子就不能用平面波来描写,设这时描写粒子的波是某一个函数,这个函数就称为波函数。
它描写粒子所处的状态,所以也称为态函数,它通常是一个复数。
究竟怎样理解波函数和它所描写的粒子之间的关系呢?对于这个问题,曾经有过各种不同的看法。
例如,将波看作是由它所描写的粒子构成的,这种看法是不对的。
我们知道,衍射现象是由波的干涉而产生的,如果波果真是由它所描写的粒子构成,则粒子流的衍射现象应当是由于构成波的这些粒子相互作用而形成的。
但事实证明,在粒子流的衍射实验中,照片上所显示出来的衍射图形与入射粒子流的强度无关,如果减少入射粒子流强度,即使粒子是一个一个地被衍射,虽然一开始照片上的点子看起来是毫无规则的,但当足够长的时间后,如果落在照片上的粒子数基本上保持不变,则所得到的衍射图形是相同的。
这说明每一个粒子被衍射的现象与其他粒子无关,衍射图形不是由粒子之间的相互作用而产生的。
除了上面的看法外,还有其他一些企图解释波函数的尝试,但都因与实验事实不符而被否定。
为人们所普遍接受的对波函数的解释,是由玻恩(Born)首先提出的统计解释:波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成比例。
按照这种解释,描写粒子的波及是几率波。
按照波函数的几率解释,很容易理解衍射实验:每一个粒子都具有波性,所以每一个粒子都被衍射。
但如果粒子数很少,则统计性质显示不出来,所以在照片上的点子看起来好象是毫无规则的;如果粒子数目足够大,则在波的强度最大的地方,粒子投射在这里的几率也最大,便出现衍射极大,在波的强度最小的地方,粒子投射在这里的几率也最小,便出现衍射极小。
量子力学第二章波函数和薛定谔方程山东大学期末考试知识点复习量子力学第二章波函数和薛定谔方程山东大学期末考试知识点复习山东大学期末考试知识点述评第二章波函数和薛定谔方程1.微粒运动状态描述(1)波函数波函数ψ(r,t)是描述微观粒子状态的复值函数,波函数需要满足的标准条件为单值性、连续性和有界性,实际体系的波函数满足平方可积条件,即(2)波函数的意义波函数的模平方给出t时刻粒子出现在位置r邻域单位体积内的概率,即概率密度。
因此,标准的波函数应该是归一化的,即满足归一化条件非标准化波函数可以通过乘以标准化因子进行标准化。
(3)波函数的性质波函数ψ(r,t)满足叠加原理,如果ψi(r,t),i=1,2,…为微观粒子的可能状态,则这也是一种可能的状态。
山东大学期末考试知识点复习2.微态演化(1)薛定谔方程状态ψ(r,t)随时间演化满足薛定谔方程在…之间称为哈密顿算符,u(r,t)是势能,若已知初始状态ψ(r,0),由薛定谔方程可求出任意时刻t的状态ψ(r,t)。
(2)连续性方程由薛定谔方程可以推出连续性方程在…之间称为概率流密度,即沿着给定方向单位时间通过单位截面的概率,连续性方程是概率守恒定律的定域表现。
(3)定态薛定谔方成若体系的哈密顿不显含时间,即势场u不含t时,薛定谔方程可以分离变量,得到定态波函数解其中e是能量本征值,ψe(R)是相应的本征函数,满足稳态薛定谔方程山东大学期末考试知识点复习3.一维束缚稳态问题的描述(1)一维束缚定态问题由下面的方程和边界条件组成束缚态能量满足条件e<U(±∞). (2)束缚定态解的性质束缚定态中的能量取值不连续,形成能级,同一能级只对应一个本征函数,无简并现象,第n个能级en,n∈n对应的本征函数ψn(x)有n个内部零点(不包括边界)。
束缚态本征函数ψN(x)可以归一化,且归一化本征函数满足正交归一化本征函数集合具有完备性,任何平方可积函数ψ(x)都可以展开为归一化本征函数的线性组合,即其中膨胀系数为(3)典型实例:一维简谐振子一般的解析势阱在其极小值附近都可以近似为简谐振子势,其标准形式为在上述势场中,粒子作束缚运动,能级为山东大学期末考试知识点复习相应的本征函数为简谐振子的本征函数满足递推关系4.一维散射问题(1)问题描述以能量e>u(±∞)自左边向势场u(x)入射的粒子满足下面的方程和边界条件(2)问题的重要性(3)典型实例:粒子对方势垒的透射山东大学期末考试知识点述评能量为e的粒子入射到一个宽度为a,高度为u0的方形势垒反射系数和透射系数分别为。