油气数学地质
- 格式:pdf
- 大小:183.48 KB
- 文档页数:25
数学地质学进展及其在油气资源勘探开发中的应用杨 苗(油气资源与勘探技术教育部重点实验室(长江大学),长江大学电子信息学院 434023) 摘 要:数学地质是运用数学的理论和方法研究地质学基础理论和解决地质学中实际问题的地质学分支,核心是从量的方面研究和解决地质科学问题。
本文回顾了数学地质学概念和其历史发展的萌芽、形成、发展、普及、推广,提高、完善阶段五个阶段;,介绍了数学地质的内容和方法,以及数学地质在石油地质勘探开发中的应用,最后展望了近年国内外数学地质的现状与发展方向。
关键词:数学地质学;油气勘探;现状;发展1 数学地质学概念数学地质是在地质学与数学互相渗透,紧密结合的基础上产生的一门边缘学科。
它是运用数学的理论和方法研究地质学基础理论和解决地质学中实际问题的地质学分支。
电子计算技术是数学地质研究的主要技术手段,目的是从量的方面研究和解决地质科学问题。
它的出现反映地质学从定性的描述阶段向着定量研究发展的新趋势,为地质学开辟了新的发展途径。
其应用范围是极其广泛的,几乎渗透到地质学的各个领域,目前在国际上已经有了比较普遍的开展,对某些地质问题的研究取得不少的实际效果。
关于对数学地质的其它几种观点:1.1 地质数学的观点,加拿大F.P阿格特伯格—地质数学包括用于地壳研究的所有的数学方法。
1.2 随机过程的观点,苏联维斯捷列乌斯—数学地质是关于地质过程的概念随机模型的建立、检验和解释的科学。
1.3 计算机的观点,美国J.W.哈博D.F梅里亚姆—数学地质就是指计算机在地质学中的应用。
1.4 赵鹏大院士提出—数学地质是研究地壳运动数量规律性的科学。
2 数学地质学的发展历史数学地质学的思想来源很早,开始于18世纪中叶,20世纪50年代才逐步形成一门独立的边缘学科,其发展可大致分为以下五个阶段:2.1 萌芽阶段(1840~1935年)。
是在地质学中应用数学的初步尝试及在个别方面进行少量分散研究。
如1840年莱伊尔通过对古生物化石的统计分析进行第三系地层的划分。
油气田开发地质学的现状及发展趋势油气田开发地质学是一门综合性极强的学科,不仅仅涵括地质学、地理学、资源学等多门学科,同时还必须结合工科开发工程的技术,该学科的发展在很大程度上推动了我国油田技术开采技术。
在本文当中我们将从学科的由来、现状、发展、未来和主要研究方向等几个方面去进行研究,深入分析学科发展的重要性,旨在能够促进我国油气开发研究工作的发展。
标签:油气田;工程开发;资源开采1 发展趋势及现状自上个世纪九十年代初期,现代油气开发地质学产生发展到今天已经有接近三十年的历史了,在这个特殊的历史时期,该学科所面临的挑战以及承担的重任远远的超过了以往所有时期。
现阶段研究的重点不再是学科在实际当中的开发利用情况,而是利用系统理论的知识克服开发过程当中所面临的油气藏演化与动态描述技术等难关。
这些问题都是传统地质学科尚未真正解答的问题,也是现代油气田开发当中所面临的重要技术障碍,同时这些问题也是学科发展的重要研究方向。
油气田的开发工作的研究最终的目的都是为了提高油气开采率,在保证生态环境效益的同时实现经济利益的最大化。
结合现阶段油气田行业的发展趋势,我们可以大致预测未来油气田开发地质学主要朝以下几个方向发展:(1)油气藏描述技术随着时代的变迁也在不断的发展当中,现阶段利用计算机技术、非线性技术、测试分析技术、非接触式监测技术以及地质统计理论知识,能够更加精准高效的获取油气藏所对应的三维立体结构变化信息,能够保证对油气藏的经营反应更加的敏捷到位。
(2)由于资源利用的速度越来越快,现阶段越来越多的非常规性油气资源开始投入开采,采取深层高压的开发模式,使得当前许多老油田的开发已经进入到了中后期。
我们有理由相信未来对于油气藏理化知识以及地质检测评价技术的需求会越来越迫切。
(3)对于非常规油气藏以及复杂的裂缝性油气藏的认识和开采,在很大程度上依赖于许多高新技术以及理论,包括界面化学、纳米技术、水利压裂、储层工作液技术等等。
石油与天然气数学地质(实习指导书)周江羽祝春荣丰勇王斌中国地质大学(武汉)石油系二OO四年十一月前言为了配合《石油与天然气数学地质》课程的教学,使学生更好的掌握课堂上所学的知识,同时,学习掌握几个基本的数据处理软件的使用。
这些软件不仅在地质学领域应用广泛,而且在经济、管理等其它领域也有广泛应用。
在这个基础上,我们编写了本实习教材。
本教材安排了大约10学时的训练内容,共分四个单元。
目的是让学生在巩固已学内容的基础上,学会使用一些数据处理软件如Surfer、Grapher、Statistics 以及SPSS等进行地质数据的处理。
第一单元的内容为如何使用Surfer和Grapher,目的是让学生学会使用这两个软件绘制一些基本的地质图形;在第二、三、四单元中,主要讲述了如何使用Statistics和SPSS两个数学统计软件对地质数据进行统计分析(聚类分析、回归分析和判别分析)。
教材中每单元都由“目的与要求”、“操作步骤与实例”和“练习”三部分内容组成。
其中,“操作步骤与实例”中详细讲解了各个软件的具体使用以及对一些基本数据的处理方法,可供学生自学,也可作为指导老师的授课内容,可根据情况而定。
“练习”中安排了各部分的典型练习题目,由学生自己上机完成。
我们衷心的希望,通过本次的上机实习指导训练,能够使学生更加深刻的掌握所学的知识,对以上几个软件能够熟练操作使用,解决实际问题。
也希望大家在使用本实习教材的过程中提出宝贵意见,以便更加完善《石油与天然气数学地质》课程的教学和实习,提高大家应用计算机解决实际问题的能力。
编者二零零四年十月目录第一单元Grapher和Surfer (1)第二单元回归分析 (31)第三单元聚类分析 (19)第四单元判别分析 (38)第一单元Grapher和Surfer一、目的要求熟悉地质绘图及数据处理软件Grapher和Surfer,学习使用它们进行最基本的数据处理以及基本图形的绘制。
《数学地质》复习内容第一章绪论1.数学地质的现代定义。
数学地质是利用数学的思维、数学的逻辑、数学模型和计算机科学的理论和方法,智能化、定量化研究地质过程中所产生的地质体和资源体的科学。
2.数学地质的主要研究内容。
①地质多元统计分析:是应用统计分析方法研究地质问题方法的统称。
多元元统计分析方法中的几种最常用方法:1)回归分析:研究相关变量的相关关系,确定它们之间近似函数关系的一种统计分析方法。
2)趋势面分析:是研究地质变量空间分布趋势及其局部异常的统计分析方法。
3)聚类分析:是一种定量分类的统计分析方法。
4)判别分析:是定量确定样本归属的一种多元统计分析方法。
5)相关分析(数据序列分析):研究数据序列间相互关系及自身性质的统计方法。
6)模糊识别分析。
7)模糊聚类分析。
8)地质因子分析。
9)对应分析:在同一空间内研究样品与变量的关系,对样品进行成因解释的一种统计分析方法。
②矿产资源预测:一直是数学地质的重要组成部分和研究内容。
油气资源定量评价的重要方法:蒙特卡罗模拟、盆地数值模拟、油田规模序列法、回归分析法、Weng旋回模型法、历史趋势外推法。
③地质数据库:它是存储在某种存储介质上的地质信息(数值型、符号型、文字及图形等)和信息处理软件的集合。
④地质过程的数学模拟:用数学模型描述地质过程的发生和演化过程,并在计算机上现地质过程的一种试验。
⑤计算机地质绘图第二章地质变量与地质数据1.地质变量、地质数据的概念和类型及特点。
①地质变量概念:是反映某地质现象在时间或空间上变化规律的量。
如生油岩的厚度、地层的埋藏深度、生油岩中有机质的丰度等。
地质变量类型:一般根据地质变量所取数据的方法及性质,可将其分为观测变量(定性和定量变量)和综合变量。
1)观测变量:是可以直接进行观测、分析或度量的地质变量。
如地层的厚度、原油的密度或粘度等。
2)综合变量:是把两个或两个以上的观测变量按一定的方式进行组合而得到的具有综合意义的地质变量。
石油与天然气地质学石油与天然气地质学:是研究地壳中油气藏及其形成条件和分布规律的地质科学。
它属于矿产地质科学的一个分支学科,是石油、天然气勘探与开发相关专业的专业理论课。
第一章油气藏中的流体——石油、天然气、油田水石油:又称原油,是存在于地下岩石孔隙中以液态烃为主体的可燃有机矿产,无论从成分还是相态上都是十分复杂的混合物。
组分组成:利用有机溶剂和吸附剂对组成石油的化合物具有选择性溶解和吸附的性能,选用不同有机溶剂和吸附剂,将原油分成若干部分,每一部分就是一个组分。
石油的相对密度:在105Pa下,20℃石油与4℃纯水的密度比值。
石油的荧光性:石油在紫外光照射下可产生发荧光的特性称为荧光性。
天然气:从广义上讲,天然生成于自然界的一切气体都可称为天然气。
在石油和天然气地质学中研究更多的是沉积圈中以烃类为主的天然气。
气藏气:气藏气是指在圈闭中具有一定工业价值的单独天然气聚集。
气顶气:气顶气是指与油共存于油气藏中,呈游离态,位居油气藏顶部的天然气。
凝析气:当地下温度、压力超过临界条件后,由液态烃逆蒸发而形成的气体。
油溶气:溶解于石油中的天然气。
水溶气:溶解于水中的天然气。
固态气体水合物:是在特定的低温和高压条件下,甲烷气体可以容纳水分子形成一种具笼形结构、似冰状的水合物。
天然气的相对密度:在相同温度、压力条件下天然气密度与空气密度的比值。
天然气的比重:指在标准状态(1atm, 20℃)下,单位体积天然气与空气的重量之比。
临界温度:是指气相纯物质能维持液相的最高温度。
临界压力:在临界温度时,气态物质液化所需的最低压力称临界压力。
饱和蒸汽压:某一温度下,将气体液化时所需施加的最低压力,称为该气体的饱和蒸汽压。
热值:单位体积天然气燃烧时所发出的热量称为热值。
油田水:从广义上理解,油田水是指油田区域(含油构造)内的地下水,包括油层水和非油层水。
狭义的油田水是指油田范围内直接与油层连通的地下水,即油层水。
油田水矿化度:单位体积地下水中各种离子、分子和化合物的总含量。
数学地质在石油气田中的应用数学地质在石油气田中的应用石油和天然气是世界上最重要的能源之一,它们的开采和开发对经济发展至关重要。
石油和天然气的开采和开发需要大量的科学技术,其中数学地质学是一门重要的学科,它在石油气田中有着重要的应用。
数学地质学是一门综合性的学科,它结合了数学、物理、化学、地质学等多学科的知识,用于研究地质环境中的物理、化学和地质结构。
数学地质学在石油气田中的应用主要有以下几个方面:首先,数学地质学可以用来研究石油气田的地质结构,包括油气层的厚度、倾角、孔隙度等。
通过对石油气田的地质结构的研究,可以更好地掌握油气藏的分布特征,从而更好地开发石油气田。
其次,数学地质学可以用来研究石油气田的油气运移规律。
通过对油气运移规律的研究,可以更好地掌握油气的运移路径,从而更好地开发石油气田。
此外,数学地质学还可以用来研究石油气田的油气聚集规律。
通过对油气聚集规律的研究,可以更好地掌握油气藏的聚集特征,从而更好地开发石油气田。
最后,数学地质学还可以用来研究石油气田的油气开采技术。
通过对油气开采技术的研究,可以更好地掌握油气开采的技术要点,从而更好地开发石油气田。
总之,数学地质学在石油气田中有着重要的应用,它可以帮助我们更好地掌握石油气田的地质结构、油气运移规律、油气聚集规律和油气开采技术,从而更好地开发石油气田。
石油气田的开发是一项复杂的工程,需要综合运用多学科的知识,其中数学地质学是一门重要的学科,它在石油气田中有着重要的应用。
数学地质学可以帮助我们更好地掌握石油气田的地质结构、油气运移规律、油气聚集规律和油气开采技术,从而更好地开发石油气田。
石油地质学的主要研究内容石油地质学是研究石油地质及其勘探开发的学科,主要涉及的研究内容包括油气地质学、油藏地质学和油气地球化学等。
本文将从这三个方面介绍石油地质学的主要研究内容。
一、油气地质学油气地质学是石油地质学的核心内容,主要研究石油和天然气的形成、分布规律以及地质因素对油气富集的影响。
油气地质学主要包括盆地构造演化与油气富集规律、油气成藏条件与模式、油气勘探目标与方法等方面的研究。
1. 盆地构造演化与油气富集规律盆地构造演化是油气地质学的基础研究内容,主要研究盆地的形成、发展和演化过程,以及构造运动对油气富集的影响。
通过对盆地构造演化的研究,可以揭示油气成藏的时空分布规律,为油气勘探提供有力的科学依据。
2. 油气成藏条件与模式油气成藏条件与模式研究了油气形成和富集的地质条件,主要包括沉积环境、岩性特征、构造特征等因素对油气富集的影响。
通过分析油气成藏条件与模式,可以确定油气勘探的目标区域,并为勘探工作提供指导。
3. 油气勘探目标与方法油气勘探目标与方法是油气地质学的应用研究内容,主要研究如何确定勘探目标,并选择合适的勘探方法。
通过地质勘探技术手段,如地震勘探、测井、岩心分析等,可以获取地下油气信息,为油气勘探提供数据支持。
二、油藏地质学油藏地质学是石油地质学的重要组成部分,主要研究油气藏的地质特征、储集性能以及油气开发中的地质问题。
油藏地质学主要包括油气储集层特征与评价、油气流体性质与流动规律、油气开发与增产技术等方面的研究。
1. 油气储集层特征与评价油气储集层特征与评价研究了油气藏的地质特征,如岩性、孔隙度、渗透率等,以及储集层的发育规律和评价方法。
通过对储集层特征与评价的研究,可以确定储集层的储量和储集能力,为油气开发提供依据。
2. 油气流体性质与流动规律油气流体性质与流动规律研究了油气在地下的流动行为,包括流体性质、渗流规律、油水分离等方面的内容。
通过对油气流体性质与流动规律的研究,可以了解油气在油藏中的分布情况,为油气开发提供技术支持。
油气地质学综合研究与勘探技术随着全球能源需求的不断增长,油气资源的开发成为当今世界各国争相追求的目标。
而油气地质学综合研究与勘探技术的发展,是实现这个目标的关键。
油气地质学综合研究,是油气勘探活动的前奏。
在这方面,地球物理学起着重要的作用。
地球物理学通过研究地球内部的物理性质,包括地壳、地幔和地核等,来了解油气资源的分布情况。
地震勘探技术是地球物理学中的重要手段之一,通过人工激发地震波并利用地球各层的介质特性,来探测油气资源的可能存在性。
此外,地电、地磁和重力测量等技术也为油气地质的综合研究提供了有价值的信息。
除了地球物理学,油气地质学的综合研究还包括地质学和地球化学的学科内容。
地质学帮助我们了解地质剖面的结构和演化过程,从而判断油气资源的地质背景。
地球化学则通过研究沉积物、岩石和矿床中的元素组成和分布情况,探寻油气资源的地球化学特征。
这些综合研究手段可以相互印证,增加勘探成果的可靠性。
在油气资源的勘探阶段,开展地质学综合研究的成果,需要结合勘探技术进行进一步验证。
地震勘探技术在勘探领域中扮演了重要的角色。
它通过测量地球内部的弹性波传播特性,提供了勘探目标地下结构的精确信息。
常用的地震勘探技术包括反射地震、层析地震和地震全波形反演等。
通过分析地震数据中的反射波和透射波,结合地球物理学的研究成果,可以帮助勘探人员确定油气资源的位置和规模。
尽管地震勘探是最常用的技术手段之一,但也存在一些局限性。
由于地震波的传播路径和速度与地下介质的性质有关,所以地震勘探只能提供间接的勘探信息。
此外,地震勘探过程中需要进行大规模的震源爆炸或冲击,对环境造成一定的影响。
因此,在油气资源勘探中,需要综合运用其他技术手段进行验证和补充。
除了地震勘探技术之外,电磁、重力和磁力测量等技术也被广泛应用于油气勘探领域。
电磁勘探通过测量地下岩石和介质的电导率和磁导率而探测油气资源的存在性。
重力和磁力勘探则利用地下岩石和介质的密度和磁性差异,来判断油气资源的分布情况。