当前位置:文档之家› 基本初等函数讲义全之欧阳家百创编

基本初等函数讲义全之欧阳家百创编

基本初等函数讲义全之欧阳家百创编
基本初等函数讲义全之欧阳家百创编

一、一次函数

二、二次函数

(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②极点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的办法

①已知三个点坐标时,宜用一般式.

②已知抛物线的极点坐标或与对称轴有关或与最年夜(小)值有关时,常使用极点式.

③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更便利. (3)二次函数图象的性质

①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程

为,2b

x a

=-极点坐标是24(,

)24b ac b a a --

②那时0a >,抛物线开口向上,函数在(,]2b a -∞-

上递加,在[,)2b

a

-+∞上递增,那时2b

x a

=-,2min 4()4ac b f x a -=

;那时0a <,抛物线开口向下,

函数在(,]2b a -∞-

上递增,在[,)2b a

-+∞上递加,那时2b

x a =-

,2

max 4()4ac b f x a

-=

三、幂函数 (1)幂函数的界说

一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象

过定点:所有的幂函数在(0,)+∞都有界说,并且图象都通过点

(1,1).

四、指数函数 (1)根式的概念

如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.

(2)分数指数幂的概念

①正数的正分数指数幂的意义是:0,,,m n

a a m n N +=>∈且

1)n >.0的正分数指数幂即是

0.

②正数的负分数指数幂的意义是:

1()0,,,m m n

n a

a m n N a -+==>∈且1)n >.0的负分数指数幂没有意

义. (3)运算性质

①(0,,)r s r s a a a a r s R +?=>∈②()(0,,)r s rs a a a r s R =>∈

③()(0,0,)r r r ab a b a b r R =>>∈ (4)指数函数

五、对数函数 (1)对数的界说

①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作

log a x N =,其中a 叫做

底数,N 叫做真数.

②正数和零没有对数.

③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =?=>≠>. (2)几个重要的对数恒等式

log 10a =,log 1a a =,log b a a b =.

(3)经常使用对数与自然对数

经常使用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其

x a

中 2.71828e =…).

(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么

①加法:log log log ()a a a M N MN +=②减法:log log log a a a M

M N N

-= ③数乘:log log ()n a a n M M n R =∈④log a N a N =

log log (0,)b n a a n

M M b n R b

=

≠∈⑥换底公式:

log log (0,1)log b a b N

N b b a

=

>≠且 (5)对数函数

(6)反函数的概念

设函数()y f x =的界说域为A ,值域为C ,从式子()y f x =中解出

x

,得式子()x y ?=.如果对y 在C 中的任何一个值,通过式子

()x y ?=,x 在A 中都有唯一确定的值和它对应,

那么式子()x y ?=暗=a

示x 是y 的函数,函数()x y ?=叫做函数()y f x =的反函数,记作

1()x f y -=,习惯上改写成1()y f x -=.

(7)反函数的求法

①确定反函数的界说域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;

③将1()x f y -=改写成1()y f x -=,并注明反函数的界说域. (8)反函数的性质

①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.

②函数()y f x =的界说域、值域辨别是其反函数1()y f x -=的值域、界说域.

③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.

④一般地,函数()y f x =要有反函数则它必须为单调函数. 例题

一、求二次函数的解析式 例1. 抛物线2

44y x

x =--的极点坐标是( )

A .(2,0)

B .(2,2)

C .(2,8)

D .(2,8) 例2.已知抛物线的极点为(-1,-2),且通过(1,10),则这条抛物线的表达式为( )

A .()2

312y x =-- B .()2

312y x =-+

C.

()2

312y x =+- D.()2

312y x =-+-

例3.抛物线y=2

22x mx m -++的极点在第三象限,试确定m 的取值规

模是( )

A .m <-1或m >2

B .m <0或m >-1

C .-1<m <0

D .m <-1

例4.已知二次函数()f x 同时满足条件: (1)()()11f x f x +=-;

(2)()f x 的最年夜值为15; (3)()0f x =的两根立方和即是17 求()f x 的解析式

二、二次函数在特定区间上的最值问题

例5. 那时22x -≤≤,求函数223y x x =--的最年夜值和最小值. 例6.那时0x ≥,求函数(2)y x x =--的取值规模.

例7.那时1t x t ≤≤+,求函数21522

y x x =--的最小值(其中t 为常数). 三、幂函数

例8.下列函数在(),0-∞上为减函数的是( )

A.13

y x = B.2y x = C.3y x = D.2y x -= 例9.下列幂函数中界说域为{}0x x >的是( )

A.23y x = B.32

y x = C.23

y x -

= D.32

y x -

= 例10. 讨论函数y =5

2x 的界说域、值域、奇偶性、单调性,并画出图象的示意图.

例10.已知函数y =42

215x x --.

(1)求函数的界说域、值域;

(2)判断函数的奇偶性; (3)求函数的单调区间. 四、指数函数的运算 例11. 计算1

2

2

(2)-??-??

的结果是()

A

1

2C 、

D 、—12

12.

4

4

即是( ) A 、16a B 、8a C 、4a D 、2

a 例13. 若53,83==

b a ,则b a

23

3-=___________

五、指数函数的性质 例

14.

{|2},{|x M y y P y y ====,则M∩P ( )

A.{|1}y y >

B. {|1}y y ≥

C. {|0}y y >

D. {|0}y y ≥ 例15.求下列函数的界说域与值域:

(1)44

2

x y -= (2)||2()3

x y =

例16.函数()2301x y a a a -=+>≠且的图像必经过点 () A .(0,1) B .(1,1) C .(2,3) D .(2,4) 例17求函数y=21

21

x x -+的界说域和值域,并讨论函数的单调性、奇偶性.

五、对数函数的运算

例18.已知32a

=,那么33log 82log 6-用a 暗示是( )

A 、2a -

B 、52a -

C 、2

3(1)a a -+ D 、 2

3a a -

例19.2log (2)log log a a a M N M N -=+,则

N

M 的值为( )

A 、4

1B 、4 C 、1 D 、4或1

例20.已知732log [log (log )]0x =,那么12

x -即是( ) A 、1

3

B C D 例21.2log 13

a <,则a 的取值规模是( )

A 、()20,1,3??+∞ ???

B 、2,3

??+∞ ???

C 、2,13?? ???

D 、220,,33

????

+∞ ? ??

???

五、对数函数的性质

例22.下列函数中,在()0,2上为增函数的是( ) A 、

12

log (1)y x =+B 、2log y =C 、21log y x

=D 、2

log (45)y x x =-+

例23.函数2lg 11y x ??

=-

?+??

的图像关于( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称

例23.函数)()lg f x x

=是(奇、偶)函数。

课下作业

1.已知二次函数y=ax2+bx+c,如果a>b>c,且a+b+c=0,则它的图象可能是图所示的( )

2.对抛物线y=22(2)x --3与y=-2

2(2)x -+4的说法不正确的是

( )

A .抛物线的形状相同

B .抛物线的极点相同

C .抛物线对称轴相同

D .抛物线的开口标的目的相反

3. 二次函数y=2

21x x --+图像的极点在( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限

4. 如图所示,满足a >0,b <0的函数y=2

ax bx +的图像是( )

5.如果抛物线y=26x x c ++的极点在x 轴上,那么c 的值为( )

A .0

B .6

C .3

D .9

6.一次函数y =ax +b 与二次函数y =ax2+bx +c 在同一坐标系中的

图象年夜致是( )

7.在下列图象中,二次函数y=ax2+bx +c 与函数y=(a b )x

的图象可

能是

( )

8.若函数f(x)=(a -1)x2+(a2-1)x +1是偶函数,则在区间[0,+∞)上f(x)是( )

A .减函数

B .增函数

C .常函数

D .可能是减函数,也可能是常函数

9.已知函数y =x2-2x +3在闭区间[0,m]上有最年夜值3,最小值2,则m 的取值规模是( )

A .[1,+∞)

B .[0,2]

C .[1,2]

D .(-∞,2]

10、使x2>x3成立的x 的取值规模是 ( )

A 、x <1且x≠0

B 、0<x <1

C 、x >1

D 、x <1

11、若四个幂函数y =a x ,y =b x ,y =c x ,y =d

x 在同一坐标系中的

图象如右图,则a 、b 、c 、d 的年夜小关系是 ( ) A 、d >c >b >a B 、a >b >c >d C 、d >c >a >b

D 、a >b >d >c 12.若幂函数

()1

m f x x -=在(0,+∞)上是减函数,则 ( ) A .m >1

B .m <1

C .m =l

D .不克不

及确定 13.若点

()

,A a b 在幂函数

()

n y x n Q =∈的图象上,那么下列结论中不

克不及成立的是

A .00a b >??>?

B .00a b >??

0a b ?

14.若函数f(x)=log 12

(x2-6x +5)在(a ,+∞)上是减函数,则a 的

取值规模是( )

A .(-∞,1]

B .(3,+∞)

C .(-∞,3)

D .[5,+∞)

15、设集合2

{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是

( )

A 、?

B 、T

C 、S

D 、有限集 16

22log (1)

y x x =+≥的值域为

( )

A 、()2,+∞

B 、(),2-∞

C 、[)2,+∞

D 、[)3,+∞ 17

1.5

0.90.4812314,8,2y y y -??

=== ?

??

,则

( )

A 、312y y y >>

B 、213y y y >>

C 、132y y y >>

D 、

123

y y y >>

18、在

(2)log (5)

a b a -=-中,实数a 的取值规模是

( )

A 、52a a ><或

B 、2335a a <<<<或

C 、25a <<

D 、

34a <<

19、计算

lg5

2lg2)lg5()lg2(22?++即是

( )

A 、0

B 、1

C 、2

D 、3

20、已知3log 2a =,那么33log 82log 6-用a 暗示是 ( )

A 、52a -

B 、2a -

C 、2

3(1)a a -+ D 、

231a a --

21、已知幂函数f(x)过点(2,),则f(4)的值为

( )

A 、12

B 、 1

C 、2

D 、8

二、填空题

1.抛物线y =8x2-(m -1)x +m -7的极点在x 轴上,则m =________.

2.函数2

3-=x y 的界说域为___________. 3.设

()()1

2m f x m x +=-,如果()f x 是正比例函数,则m=____ ,如果()f x 是

正比例函数,则m=______,如果f(x)是幂函数,则m=____. 4.若14

(1)x -

-有意义,则x ∈___________.

5.那时35x y <=___________.

6.若2

5525x x y

?=,则y 的最小值为___________.

7、若2log 2,log 3,m n a a m n a +===。

8、函数(-1)log (3-)x y x =的界说域是。 9、2lg 25lg 2lg 50(lg 2)++=。

10.不等式16

2

2

<-+x x

的解集是__________________________.

11.不等式28

2133x x --??

< ?

??

的解集是__________________________.

12.若103,104x y

==,则10x y -=__________________________.

13、已知函数3

x

log

x (x 0)

1

f (x),f[f ()]2(x 0)9

>?=?

≤?,则,

的值为

14、函数2)23x (lg )x (f +-=恒过定点 三、简答题

1. 求下列各式中的x 的值 2、已知幂函数f (x )=2

3221++-p p x

(p ∈Z )在(0,+∞)上是增函数,

且在其界说域内是偶函数,求p 的值,并写出相应的函数f (x )、 3.已知函数

2

2

2(3)lg 6

x f x x -=-,

(1)求()f x 的界说域; (2)判断()f x 的奇偶性。

4.设a R ∈,22

()()21

x

x

a a f x x R ?+-=∈+,试确定a 的值,使()f x 为奇函数。 5. 已知函数x 12

1f (x)log [()1]2

=-,

(1)求f(x)的界说域; (2)讨论函数f(x)的增减性。

最新基本初等函数讲义(全)

一、一次函数 二、二次函数 (1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

图像 定义域 (),-∞+∞ 对称轴 2b x a =- 顶点坐标 24,24b ac b a a ??-- ??? 值域 24,4ac b a ??-+∞ ??? 24,4ac b a ?? --∞ ?? ? 单调区间 ,2b a ??-∞- ??? 递减 ,2b a ?? -+∞ ??? 递增 ,2b a ? ?-∞- ??? 递增 ,2b a ?? -+∞ ??? 递减 ①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为 ,2b x a =-顶点坐标是24(, )24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减, 在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,] 2b a -∞-上递增,在[,)2 b a -+∞上递减,当2b x a =-时,2max 4()4ac b f x a -=. 三、幂函数 (1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象 2b x a =- 2b x a =-

(完整版)六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y =C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n 图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m (2)) 1,,,0(1 1*>∈>= =- n Z n m a a a a n m n m n m y x f x x x x g ? ? ?=1)(

基本初等函数知识点(一轮复习)

基本初等函数 中学阶段(初高中)我们只要求掌握基本初等函数及其复合函数即可。什么是基本初等函数?就是那些:幂函数(一次二次负一次)、指数、对数、三角等。力求在这些具体函数中,运用函数的性质(奇偶性、周期、单调等的性质),掌握某些函数的特殊技巧。 一、一次函数 初中的一个函数,Primary基本、简单而又很重要。解析式:y=kx+b或y=ax+b,通常我们会这样设。那么高中我们在什么地方会用到它呢?解析几何中我们会设直线;线性规划会有好多跟直线;也容易在函数里面作为条件表达一下…… 画出以下解析式的图像:要求快 (1)y=x+1; (2)y=x-1 (3)y=-x+1 (4)y=-x-1 (5)x=1(6)y=1 (7)y=2x 根据以下条件,设出一次函数的解析式: (1)直线经过(1,2)点 (2)直线的斜率是2 总结:两个参数主宰斜率和与y轴的交点位置。因为两个参数,所以要有两个条件才能解得解析式。 二、二次函数 二次函数的大部分内容在另外一个讲义里面已经讲述了,这里补遗强调一下。十分重要的内容,属于幂函数中最重要的一类。二次函数图象的应用与其最值问题是高考的热点,题型多以小题或大题中关键的一步的形式出现,主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用,幂函数的内容要求较低,只要求会简单幂函数的图象与性质. 1、二次函数的三种表示形式 (1)一般式:y=ax2+bx+c,(a≠0); (2)顶点式:y=a(x-h)2+k(顶点坐标为(h,k)); (3)双根式:y=a(x-x1)(x-x2)(图象与x轴的交点为(x1,0),(x2,0)) 求一元二次解析式:将题目有的条件表示一下,没有难度,过场的题目而已 Eg:已知二次函数f(x)同时满足条件:(1)f(1+x)=f(1-x);(2)f(x)的最大值为15;(3)f(x)=0的两根平方和等于7.求f(x)的解析式. Ans:f(1+x)=f(1-x)知二次函数对称轴为x=1. ∴已知最大值和对称轴,用顶点式,设f(x)=a(x-1)2+15=ax2-2ax+15+a. ∵x21+x22=7 即(x1+x2)2-2x1x2=7

6类基本初等函数的图形及性质(考研数学基础)_完美版

基本初等函数及图形 (1) 常值函数(也称常数函数) y =c (其中c 为常数) (2) 幂函数 μ x y =,μ是常数; (3) 指数函数 x a y = (a 是常数且01a a >≠,),),(+∞-∞∈x ; (4) 对数函数 x y a log =(a 是常数且01a a >≠,),(0,)x ∈+∞; 1. 当u 为正整数时,函数的定义域为区间) ,(+∞-∞∈x ,他们的图形都经过原点,并当 u>1时在原点处与X 轴相切。且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称; 2. 当u 为负整数时。函数的定义域为除去x=0的所有实数。 3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点和(1 ,1). 如果m>n 图形于x 轴相切,如果m1时函数为单调增,当a<1时函数为单调减. 2. 不论x 为何值,y 总是正的,图形在x 轴上方. 3. 当x=0时,y=1,所以他的图形通过(0,1)点. 1. 他的图形为于y 轴的右方.并通过点(1,0) 2. 当a>1时在区间(0,1),y 的值为负.图形位于x 的下方, 在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数. a<1在实用中很少用到/

正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y , 余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y , 正切函数 x y tan =, 2π π+ ≠k x ,k Z ∈,),(+∞-∞∈y , 余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;

一次函数与几何综合(一)(讲义及答案).

一次函数与几何综合(一)(讲义) ? 课前预习 1. 若一次函数经过点 A (2,-1)和点 B (4,3),则该一次函数的表达式为 . 2. 若直线 l 平行于直线 y =-2x -1,且过点(1,4),则直线 l 的表 达式为 . 3. 如图,一次函数的图象经过点 A ,且与正比例函数 y =-x 的图象交于点 B ,则该一次函数的表达式为 . 第 3 题图 第 4 题图 4. 如图,点 A 在直线 l 1:y =3x 上,且点 A 在第一象限,过点 A 作 y 轴的平行线交直线 l 2:y =x 于点 B . (1) 设点 A 的横坐标为 t ,则点 A 的坐标为 ,点 B 的坐标为 ,线段 AB 的长为 ;(用含 t 的式子表示) (2) 若 AB =4,则点 A 的坐标是 . ? 知识点睛 1. 一次函数与几何综合的处理思路: 从已知的表达式、坐标或几何图形入手,分析特征,通过坐标与横平竖直线段长、函数表达式相互转化解决问题. 2. 函数与几何综合问题中常见转化方式: (1) 借助表达式设出点坐标,将点坐标转化为横平竖直线段 长,结合几何特征利用线段长列方程; (2) 研究几何特征,考虑线段间关系,通过设线段长进而表 达点坐标,将点坐标代入函数表达式列方程. 表达线段长: 横平线段长,横坐标相减,右减左; 竖直线段长,纵坐标相减,上减下.

1

? 精讲精练 1. 如图,直线 y = - 3 x + 3 与 x 轴、y 轴交于 A ,B 两点,点 C 4 是 y 轴负半轴上一点,若 BA =BC ,则直线 AC 的表达式为 . 第 1 题图 第 2 题图 2. 如图,在平面直角坐标系中,一次函数 y =kx +b 的图象经过点A (-2,6),且与 x 轴相交于点 B ,与正比例函数 y =3x 的图象交于点 C ,点 C 的横坐标为 1,则△OBC 的面积为 . 3. 如图,直线l :y = 3 x + 6 与 y 轴相交于点 N ,直线l :y = kx -3 1 4 2 与直线l 1 相交于点 P ,与 y 轴相交于点 M ,若△PMN 的面积为 18,则直线l 2的表达式为 . 4. 如图,一次函数 y = 1 x + 2 的图象与 y 轴交于点 A ,与正比例 3 函数 y =kx 的图象交于第二象限内的点 B ,若 AB =OB ,则 k 的值为 .

五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形 1.幂函数 函数称为幂函数。如,, ,都是幂函数。没有统一的定义域,定义域由值确定。如 ,。但在内 总是有定义的,且都经过(1,1)点。当 时,函数在上是单调增加的,当时,函数在内是单调减少的。下面给出几个常用的幂函数: 的图形,如图1-1-2、图1-1-3。 图1-1-2

图1-1-3 2.指数函数 函数称为指数函数,定义域 ,值域;当时函数为单调增加 的;当时为单调减少的,曲线过点。高等 数学中常用的指数函数是时,即。以与 为例绘出图形,如图1-1-4。 图1-1-4 3.对数函数

函数称为对数函数,其定义域 ,值域。当时单调增加,当 时单调减少,曲线过(1,0)点,都在右半平面 内。与互为反函数。当时的对数 函数称为自然对数,当时,称为常用对数。以为例绘出图形,如图1-1-5。 图1-1-5 4.三角函数有 ,它们都是周期函 数。对三角函数作简要的叙述: (1)正弦函数与余弦函数:与定义域都是,值域都是。它们都是有界函数,周期都是,为奇函数,为偶函数。图形为图1-1-6、图1-1-7。

图1-1-6正弦函数图形 图1-1-7余弦函数图形 (2)正切函数,定义域,值 域为。周期,在其定义域内单调增加的奇函数,图形为图1-1-8 图1-1-8 (3)余切函数,定义域,值域为 ,周期。在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9 (4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。 图1-1-10 (5)余割函数,定义域,值域为 ,为无界函数,周期在定义域为奇函 数,图形如图1-1-11。

基本初等函数讲义(超级全)

一、一次函数 一次 函数 k kx b k0 k0k0 k, b 符号b0b0b0b0b0b0 y y y y y y 图象 O x O O x x O x O x O x 性质y随x的增大而增大y随x的增大而减小 二、二次函数 (1)二次函数解析式的三种形式 ①一般式:2 f(x)ax bx c(a0) ②顶点式:2 f(x)a(x h)k(a0) ③两根式:f(x)a(x x1)(x x2)(a0) (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便. (3)二次函数图象的性质 20 f x ax bx c a a0a0 图像 x b 2a x b 2a 定义域, 对称轴x b 2a 顶点坐标 2 b4ac b , 2a4a 文档

值域 2 4ac b 4a ,, 2 4ac b 4a , b 2a 递减, b 2a 递增 单调区间 b 2a , 递增 b 2a ,递减 ①.二次函数 b 2 f(x)ax bx c(a0)的图象是一条抛物线,对称轴方程为x, 2a 顶 点坐标是 2 b4ac b (,) 2a4a b ②当a0时,抛物线开口向上,函数在(,] 2a b 上递减,在[,) 2a 上递增,当 x b 2a 时,f(x) min 2 4ac b 4a b ;当a0时,抛物线开口向下,函数在(,] 2a 上递b 增,在[,) 2a 上递减,当x b 2a 时,f(x) max 2 4ac b 4a . 三、幂函数 (1)幂函数的定义 一般地,函数y x叫做幂函数,其中x为自变量,是常数. (2)幂函数的图象 过定点:所有的幂函数在(0,)都有定义,并且图象都通过点(1,1).文档

基本初等函数(整理)

1.1 初等函数图象及性质 1.1.1 幂函数 1函数(μ是常数)叫做幂函数。 2幂函数的定义域,要看μ是什么数而定。 但不论μ取什么值,幂函数在(0,+ ∞ )内总有定义。 3最常见的幂函数图象如下图所示:[如图] 4 2 -551015 -2 -4 -6 4①α>0时,图像都过(0,0)、(1,1 注意α>1与0<α<1的图像与性质的区别. ②α<0时,图像都过(1,1)点,在区间(0 上无限接近y轴,向右无限接近x轴. ③当x>1时,指数大的图像在上方. 1.1.2 指数函数与对数函数

1.指数函数 1函数 (a 是常数且a>0,a ≠ 1)叫做指数函数,它的定义域是区间(-∞ ,+∞ )。 2因为对于任何实数值x ,总有,又,所以指数函数的图形,总在x 轴的上方, 且通过点(0,1)。 若a>1,指数函数是单调增加的。若0

2.对数函数 由此可知,今后常用关系式,如: 指数函数的反函数,记作(a是常数且a>0,≠ a1),叫做对数函数。它的定义域是区间(0,+∞ )。 对数函数的图形与指数函数的图形关于直线y = x对称(图1-22)。 的图形总在y轴上方,且通过点(1,0)。 若a>1,对数函数是单调增加的,在开区间(0,1)内函数值为负,而在区间(1,+∞ )内函数值为正。 若01 0

函数性质综合运用(讲义)

函数性质综合运用(讲义) ?课前预习 1.填空: ①如果我们将方程组中的两个方程看作是两个函数,则方程组的解恰好对应 两个函数图象的__________________;方程x2+3x-1=2x+1的根对应两个函数图象交点的__________. 特别地,一元二次方程ax2+bx+c=0(a≠0)的根是二次函数______________的图象与______交点的横坐标.当?>0时,二次函数图象与x轴有_____个交点;当?=0时,与x轴有_____个交点;当?<0时,与x轴______交点. ②y=2x+1与y=x2+3x+1的交点个数为__________. 2.借助二次函数图象,数形结合回答下列问题: ①当a>0时,抛物线开口_____,图象以对称轴为界,当x_____时,y随x 的增大而增大;该二次函数有最____值,是_______; ②当a<0时,抛物线开口____,图象以对称轴为界,当x_____时,y随x的 增大而增大;该二次函数有最___值,是______. ③已知二次函数y=x2+2x-3.当-5<x<3时,y的取值范围为__________;当 1<x≤5时,y的取值范围为__________. 注:二次函数y=ax2+bx+c的顶点坐标为 2 4 () 24 b a c b a a --,. ?知识点睛

a b c k ???? ?? ????? ?????? ???????①坐标代入表达式,得方程或不等式表达式与坐标②借助表达式设坐标①判断,,,等字母符号函数图象与性质②借助图象比大小、找范围 ③图象平移:左加右减,上加下减 将方程、不等式转化为函数,函数与方程、不等式数形结合,借助图象分析 ?????????????????? ??????????????? ?? 第一步:设坐标 利用所在函数表达式或坐标间关系横平竖直第二步:坐标相减竖直线段:纵坐标相减,上减下水平线段:横坐标相减,右减左表达线段长①倾斜程度不变借助相似,利用竖直线段长表达斜放置②倾斜程度变化 ? 精讲精练 1. 抛物线y =ax 2+bx +c 上部分点的横坐标x 、纵坐标y 的对应值如表所示. y 轴的右侧;③抛物线一定经过点(3,0); ④在对称轴左侧,y 随x 增大而减小;⑤一元二次方程ax 2+bx +c =4的解为x =-1或x =2.由表可知,正确的说法有______个. 2. 已知二次函数y =(x -h )2+1(h 为常数),在自变量x 的值满足1≤x ≤3的情况 下,与其对应的函数值y 的最小值为5,则h 的值为( ) A .5或1 B .-1或5 C .1或-3 D .1或3 3. 已知二次函数y =ax 2-bx -2(a ≠0)的图象的顶点在第四象限,且过点(-1,0), 当a -b 为整数时,ab 的值为( ) A .34或1 B .14或1 C .34或12 D . 14或34 4. 二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(-1,0),对称 轴为直线x =2.给出下列结论:①4a +b =0;②9a +c >3b ;③8a +7b +2c >0;④

基本初等函数讲义

一、一次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 三、幂函数 (1)幂函数的定义 一般地,函数y x α =叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象

过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 四、指数函数 (1)根式的概念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根. (2)分数指数幂的概念 ①正数的正分数指数幂的意义是:0,,,m n a a m n N +=>∈且1)n >.0的正分数 指数幂等于0. ②正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. (3)运算性质 ①(0,,)r s r s a a a a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈

反比例函数综合复习讲义全

反比例函数 知识整理 1、反比例函数的概念 一般地,函数x k y = (k 是常数,k ≠0)叫做反比例函数。反比例函数的解析式也可以写成1 -=kx y 的形式。自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。 2、反比例函数的图像 反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。 3、反比例函数的性质 当k>0时,函数图像的两个分支分别在第一、三象限。在每个象限内,y 随x 的增大而减小。 当k<0时,函数图像的两个分支分别在第二、四象限。在每个象限内,随x 的增大而增大。 4、反比例函数解析式的确定 确定及诶是的方法仍是待定系数法。由于在反比例函数x k y = 中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。 5、反比例函数中反比例系数的几何意义 如下图,过反比例函数)0(≠= k x k y 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得的矩形PMON 的面积S=PM ?PN=xy x y =?。 k S k xy x k y ==∴= ,,Θ。 考点一、反比例函数的性质 【例1】已知反比例函数10 y x = ,当110 【举一反三】 1、已知y 是x 的反比例函数,当x >0时,y 随x 的增大而减小.请写出一个满足以上条件的函数表达式 2、已知一次函数y 1=kx +b (k y 2时,实数x 的取值范围是( ) A .x <-l 或O 3 D .O

一次函数综合应用(讲义及习题)

一次函数综合应用(讲义) 课前预习 1. 如图,直线l 1的表达式为y =-3x +3,且l 1与x 轴相交于 点D ,直线l 2经过A ,B 两点,直线l 1,l 2相交于点C . (1)点D 的坐标为_____________; (2)直线l 2的表达式为_____________; (3)点C 的坐标为_____________. 2. 如图,在平面直角坐标系中,点A (2,0),点B (0,4). (1)△AOB 的面积为_____________; (2)点P 是y 轴上一点,若1 2AOP AOB S S =△△,则点P 精讲精练 1. 已知直线l 1与l 2相交于点P ,直线l 1的表达式y =2 x +3,点P 的横坐标为-1,且l 2交y 轴于点 A (0,-1).则直线l 2的表达式为_________________. 2. 已知函数13y x b =-+的图象与x 轴、y 轴分别交与点A ,B ,与函数y =x 的图象交于点M ,点M 的横坐标为3,则点A 的坐标为___________. 3. 已知一次函数y =kx +b 的图象经过点(-2,5),且与y 轴相交于点P ,直线1 3 2y x =-+与y 轴相交 于点Q ,点Q 恰与点P 关于x 轴对称,则这个一次函数的表达式为 ___________. 4. 如图,已知直线l 1:y =2x +3,直线l 2:y =-x +5,直线l 1,l 2与x 轴分别交于点 B , C ,l 1,l 2相交于点A .则S △ABC =________. 5. 如图,直线y =2x +m (m >0)与x 轴交于点A (-2,0),直线y =-x +n (n >0) 与x 轴、y 轴分别交于点B ,C 两点,并与直线y =2x +m (m >0)相交于点D ,若AB =4.(1)求点D 的坐标;(2)求出四边形AOCD 的面积. 6. 已知直线3y mx =-中,y 随x 的增大而减小,且与直线x =1,x =3和x 轴围成的四边形的面积为 8,则m =________. 7. 已知直线6y kx =-经过第一、三、四象限,且与直线x =-1,x =-3和x 轴围成的四边形的面积为 16,则k =________.

指数函数讲义经典整理[附答案解析]

指数函数讲义经典整理(含答案) 一、同步知识梳理 知识点1:指数函数 函数 (01)x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R 知识点2:指数函数的图像和性质 知识点3:指数函数的底数与图像的关系 指数函数在同一直角坐标系中的图像的相对位置与底数大小的关系 如 图所示,则01c d a b <<<<<, 在y 轴右侧,图像从下到上相应的底数也由小变大, 在y 轴左侧,图像从上到下相应的底数也由小变大 即无论在y 轴左侧还是右侧,底数按逆时针方向变大 在第一象限内,“底大图高” 知识点4:指数式、指数函数的理解 ① 分数指数幂与根式或以互化,通常利用分数指数幂进行根式的运算

② 根式的运算、变形、求值、化简及等式证明在数学中占有重要的地位,是研究方程、不等式和函数的基础,应引起重视 ③ 在有关根式、分数指数幂的变形、求值过程中,要注意运用方程的观点处理问题,通过解方程或方程组来求值 ④ 在理解指数函数的概念时,应抓住定义的“形式”,像 1 2 2 23,,3,21x x x y y x y y -=?===- 等 函数均不符合形式 () 01x y a a a =>≠且,因此,它们都不是指数函数 ⑤ 画指数函数x y a =的图像,应抓住三个关键点: ()()11,,0,1,1, a a ?? - ?? ? 二、同步题型分析 题型1:指数函数的定义、解析式、定义域和值域 例1:已知函数 ,且 . (1)求m 的值; (2)判定f (x )的奇偶性; (3)判断f (x )在(0,+∞)上的单调性,并给予证明. 考点: 指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明. 专题: 计算题. 分析: (1)欲求m 的值,只须根据f (4)=的值,当x=4时代入f (x )解一个指数方程即可; (2)求出函数的定义域x|x≠0},利用奇偶性的定义判断f (x )与f (﹣x )的关系,即可得到答案; (3)利用单调性的定义证明即可.任取0<x1<x2,只要证明f (x1)>f (x2),即可. 解答: 解:(1)因为 ,所以 ,所以m=1. (2)因为f (x )的定义域为{x|x≠0},又, 所以f (x )是奇函数. (3)任 取 x1 > x2 > , 则 , 因为x1>x2>0,所以,所以f (x1)>f (x2),

高中数学竞赛讲义_几个初等函数的性质

几个初等函数的性质 一、基础知识 1.指数函数及其性质:形如y =a x (a >0, a ≠1)的函数叫做指数函数,其定义域为R ,值域为(0,+∞),当01时,y =a x 为增函数,它的图象恒过定点(0,1)。 2.分数指数幂:n m n m n n n m n m n n a a a a a a a a 1 ,1,,1 = ===--。 3.对数函数及其性质:形如y =log a x (a >0, a ≠1)的函数叫做对数函数,其定义域为(0,+∞), 值域为R ,图象过定点(1,0)。当01时,y =log a x 为增函数。 4.对数的性质(M>0, N >0); 1)a x =M ?x =log a M(a >0, a ≠1); 2)log a (M N )= log a M+ log a N ; 3)log a ( N M )= log a M- log a N ;4)log a M n =n log a M ;, 5)log a n M =n 1 log a M ;6)a loga M =M; 7) log a b =a b c c log log (a ,b ,c >0, a , c ≠1). 5. 函数y =x +x a (a >0)的单调递增区间是(]a -∞-,和[)+∞,a ,单调递减区间为[) ,a -和(] a ,0。(请读者自己用定义证明) 6.连续函数的性质:若a 0. 【证明】 设f (x )=(b +c )x +bc +1 (x ∈(-1, 1)),则f (x )是关于x 的一次函数。 所以要证原不等式成立,只需证f (-1)>0且f (1)>0(因为-10, f (1)=b +c +bc +a =(1+b )(1+c )>0, 所以f (a )>0,即ab +bc +ca +1>0. 例2 (柯西不等式)若a 1, a 2,…,a n 是不全为0的实数,b 1, b 2,…,b n ∈R ,则(∑=n i i a 1 2 )·( ∑=n i i b 1 2 ) ≥( ∑=n i i i b a 1)2,等号当且仅当存在∈μR ,使a i =i b μ, i =1, 2, …, n 时成立。 【证明】 令f (x )= (∑=n i i a 1 2)x 2 -2( ∑=n i i i b a 1 )x + ∑=n i i b 1 2=∑=-n i i i b x a 1 2)(, 因为 ∑=n i i a 1 2>0,且对任意x ∈R , f (x )≥0, 所以△=4(∑=n i i i b a 1)-4( ∑=n i i a 1 2)( ∑=n i i b 12)≤0. 展开得( ∑=n i i a 1 2)( ∑=n i i b 1 2)≥( ∑=n i i i b a 1 )2。 等号成立等价于f (x )=0有实根,即存在μ,使a i =i b μ, i =1, 2, …, n 。

反比例函数经典讲义,绝对经典!!

初三反比例函数讲义 第1节 反比例函数 本节内容: 反比例函数定义 反比例函数定义的应用(重点) 电流I 、电阻R 、电压U 之间满足关系式:U=IR 当U=220V 时,可以用含有R 的代数式表示I :__________________ 舞台灯光的亮暗就是通过改变电阻来控制电流的变化实现的。当电流I 较小时,灯光较暗;当电流I 较大时,灯光较亮。 一般地,如果两个变量x 、y 之间的关系可以表示成x k y =k (为常数,)0≠k 的形式,那么称y 是x 的反比例函数。 反比例函数的自变量x 不能为零。 小注: (1)x k y = 也可以写成1-=kx y 或k xy =的形式; (2)x k y =若是反比例函数,则x 、y 、k 均不为零; (3)k xy =)0(>k 通常表示以原点及点()y x ,为对角线顶点的矩形的面积。 下列函数中是反比例关系的有___________________(填序号)。 ①3x y - = ②131+=x y ③x y 2-= ④221 1x y -= ⑤x y 23-= ⑥21=xy ⑦28x y = ⑧1-=x y ⑨2=x y ⑩x k y =k (为常数, )0≠k 确定解析式的方法仍是____________,由于在反比例函数x k y = 中,只有一个待定系数,因此只需要一对对应值,即可求出k 的值,从而确定其解析式。 由欧姆定律可知,电压不变时,电流强度I 与电阻R 成反比例,已知电压不变,电阻R=12.5欧姆,电流强度I=0.2安培。 (1) 求I 与R 的函数关系式; (2) 当R=5欧姆时,求电流强度。

基本初等函数图像及性质大全

一、一次函数与二次函数 (一)一次函数 (二)二次函数 (1)二次函数解析式的三种形式 ①一般式:2 ()(0)f x ax bx c a =++≠ ②顶点式:2 ()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠ (2)求二次函数解析式的方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质

定义域 (),-∞+∞ 对称轴 2b x a =- 顶点坐标 24,24b ac b a a ??-- ??? 值域 24,4ac b a ??-+∞ ? ?? 24,4ac b a ??--∞ ? ?? 单调区间 ,2b a ? ?-∞- ? ? ?递减 ,2b a ??- +∞ ??? 递增 ,2b a ? ?-∞- ? ? ?递增 ,2b a ?? - +∞ ??? 递减 ①.二次函数2 ()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2x a =- 顶点坐标是2 4(,)24b ac b a a -- ②当0a >时,抛物线开口向上,函数在(,]2b a -∞- 上递减,在[,)2b a -+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递 增,在[,)2b a -+∞上递减,当2b x a =- 时,2max 4()4ac b f x a -=. 二、幂函数 (1)幂函数的定义 叫做幂函数,其中x 为自变量,α是常数. (2

6类基本初等函数以及三角函数考研数学基础

基本初等函数及图形 (1) 常值函数(也称常数函数) y =c(其中c 为常数) (2) 幂函数 μ x y =,μ就是常数; (3) 指数函数 x a y = (a 就是常数且01a a >≠,),),(+∞-∞∈x ; (4) 对数函数 x y a log =(a 就是常数且01a a >≠,),(0,)x ∈+∞; 1、 当u 为正整数时,函数的定义域为区间) ,(+∞-∞∈x ,她们的图形都经过原点,并当u>1 时在原点处与X 轴相切。且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称; 2、 当u 为负整数时。函数的定义域为除去x=0的所有实数。 3、 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。函数的图形均经过原点与(1 ,1)、 如果m>n 图形于x 轴相切,如果m1时函数为单调增,当a<1时函数为单调减、 2、 不论x 为何值,y 总就是正的,图形在x 轴上方、 3、 当x=0时,y=1,所以她的图形通过(0,1)点、

(5) 三角函数 正弦函数x y sin =,) , (+∞ -∞ ∈ x,]1,1 [- ∈ y, 余弦函数x y cos =,) , (+∞ -∞ ∈ x,]1,1 [- ∈ y, 正切函数x y tan =,2 π π+ ≠k x ,k Z ∈,) , (+∞ -∞ ∈ y, 余切函数x y cot =,πk x≠,k Z ∈,) , (+∞ -∞ ∈ y; 1.她的图形为于y轴的右方、并通过点(1,0) 2.当a>1时在区间(0,1),y的值为负、图形位于x的下 方,在区间(1, +∞),y值为正,图形位于x轴上方、在 定义域就是单调增函数、 a<1在实用中很少用到/

导数综合讲义(教师版).pdf

导数综合讲义 第1讲导数的计算与几何意义 (3) 第2讲函数图像 (4) 第3讲三次函数 (7) 第4讲导数与单调性 (8) 第5讲导数与极最值 (9) 第6讲导数与零点 (10) 第7讲导数中的恒成立与存在性问题 (11) 第8讲原函数导函数混合还原(构造函数解不等式) (13) 第9讲导数中的距离问题 (17) 第10讲导数解答题 (18) 10.1 导数基础练习题 (21) 10.2 分离参数类 (24) 10.3 构造新函数类 (26) 10.4 导数中的函数不等式放缩 (29) 10.5 导数中的卡根思想 (30) 10.6 洛必达法则应用 (32) 10.7 先构造,再赋值,证明和式或积式不等式 (33) 10.8 极值点偏移问题 (35) 10.9 多元变量消元思想 (37) 10.10 导数解决含有ln x与e x的证明题(凹凸反转) (39) 10.11 导数解决含三角函数式的证明 (40) 10.12 隐零点问题 (42) 10.13 端点效应 (44) 10.14 其它省市高考导数真题研究 (45)

导数 【高考命题规律】 2014 年理科高考考查了导数的几何意义,利用导数判断函数的单调性,利用导数求函数的最值,文科考查了求曲线的切线方程,导数在研究函数性质中的运用;2015 年文理试卷分别涉及到切线、零点、单调性、最值、不等式证明、恒成立问题;2016 文科考查了导数的几何意义,理科涉及到不等式的证明,含参数的函数性质的研究,极值点偏移;2017 年高考考查了导数判断函数的单调性,含参零点的分类讨论。近四年的高考试题基本形成了一个模式,第一问求解函数的解析式,以切线方程、极值点或者最值、单调区间等为背景得到方程从而确定解析式,或者给出解析式探索函数的最值、极值、单调区间等问题,较为简单;第二问均为不等式相联系,考查不等式恒成立、证明不等式等综合问题,难度较大。预测 2018 年高考导数大题以对数函数、指数函数、反比例函数以及一次函数、二次函数中的两个或三个为背景,组合成一个函数,考查利用导数研究函数的单调性与极值及切线,不等 式结合考查恒成立问题,另外 2016 年全国卷 1 理考查了极值点偏移问题,这一变化趋势应引起考生注意。 【基础知识整合】 1、导数的定义: f ' (x ) = lim f (x 0 + ?x ) - f (x 0 ) , f ' (x ) = lim f (x + ?x ) - f (x ) 0 ?x →0 ?x ?x →0 ?x 2、导数的几何意义:导数值 f ' (x ) 是曲线 y = f (x ) 上点 (x , f (x )) 处切线的斜率 3、常见函数的导数: C ' = 0 ; (x n )' = nx n -1 ; (sin x )' = cos x ; (cos x )' = -sin x ; (ln x )' = 1x ; (log a x )' = x ln 1 a ; (e x )' = e x ; (a x )' = a x ln a 4、导数的四则运算: (u ± v )' = u ' ± v ' ;; (u ?v )' = u ' v + v ' u ; (u )' = u 'v -2 v 'u v v 5、复合函数的单调性: f ' x (g (x )) = f ' (u )g ' (x ) 6、导函数与单调性:求增区间,解 f ' (x ) > 0 ;求减区间,解 f ' (x ) < 0 若函数在 f (x ) 在区间 (a , b ) 上是增函数 ? f ' (x ) ≥ 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上是减函数 ? f ' (x ) ≤ 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上存在增区间 ? f ' (x ) > 0 在 (a , b ) 上恒成立;若函数在 f (x ) 在区间 (a , b ) 上存在减区间 ? f ' (x ) < 0 在 (a , b ) 上恒成立; 7、导函数与极值、最值:确定定义域,求导,解单调区间,列表,下结论 8、导数压轴题:强化变形技巧、巧妙构造函数、一定要多练记题型,总结方法

相关主题
文本预览
相关文档 最新文档