整式的加减—化简求值(一)
- 格式:doc
- 大小:140.00 KB
- 文档页数:4
(苏科版)七年级上册数学《第三章代数式》专题整式的化简求值(50题)1.先化简再求值:2x 2y−[x y 2+3(x 2y−13x y 2)],其中x =12,y =2.2.先化简,再求值:4x 2﹣2xy +y 2﹣(x 2﹣xy +y 2),其中x =﹣1,y =−12.3.(2022秋•秦淮区期末)先化简,再求值:7a 2b +(﹣4a 2b +5ab 2)﹣(2a 2b ﹣3ab 2),其中a =﹣1,b =2.4.(2022秋•邹城市校级期末)先化简,再求值:(2x 2﹣2y 2)﹣4(x 2y +xy 2)+4(x 2y 2+y 2),其中x =﹣1,y =2.5.(2023•青秀区校级开学)先化简,再求值:4x+2(3y2﹣2x)﹣3(2x﹣y2),其中x=2,y=﹣2.6.(2022秋•龙沙区期中)先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2022.7.(2022秋•南海区校级期末)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.8.(2022秋•梁子湖区期末)先化简,再求值:5x2−[2xy−3(13xy+2)+4x2],其中x=−2,y=12.9.先化简,再求值:2(ab −32a 2+a ﹣b 2)﹣3(a ﹣a 2+23ab ),其中a =5,b =﹣2.10.先化简,再求值:2(mn ﹣4m 2﹣1)﹣(3m 2﹣2mn ),其中m =1,n =﹣2.11.先化简再求值:5xy ﹣(4x 2+2y )﹣2(52xy +x 2),其中x =3,y =﹣2.12.(2022秋•绿园区期末)先化简,再求值:12m−(2m−23n 2)+(−32m +13n 2),其中m =−14,n =−12.13.(2022秋•万秀区月考)先化简,再求值2(a2b+ab)﹣4(a2b﹣ab)﹣4a2b,其中a=3,b=﹣2.14.(2022秋•陕州区期中)先化简,再求值3x2y−2(x2y+14x y2)−2(x y2−xy),其中x=12,y=﹣2.15.(2022秋•沈北新区期中)化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.16.先化简,再求值.若m2+3mn=﹣5,则代数式5m2﹣[5m2﹣(2m2﹣mn)﹣7mn+7]的值.17.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.18.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.19.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.20.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.21.(2022秋•荔湾区期末)已知a2+b2=3,ab=﹣2,求代数式(7a2+3ab+3b2)﹣2(4a2+3ab+2b2)的值.22.(2022秋•平昌县期末)先化简,再求值.已知代数式2(3x2﹣x+2y﹣xy)﹣3(2x2﹣3x﹣y+xy),其中x+y=67,xy=﹣2.23.有这样一道题“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”爱动脑筋的吴爱国同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,把式子5a+3b =﹣4两边乘以2得10a+6b=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照上面的解题方法,完成下面问题:【简单应用】(1)已知a2﹣2a=1,则2a2﹣4a+1= .(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值.【拓展提高】(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求代数式3a2+4ab+4b2的值.24.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.25.阅读理解:已知4a−52b=1,求代数式2(a﹣b)+3(2a﹣b)的值.解:因为4a−52b=1,所以原式=2a−2b+6a−3b=8a−5b=2(4a−52b)=2×1=2.仿照以上解题方法,完成下面的问题:(1)已知a﹣b=﹣3,求3(a﹣b)﹣a+b+1的值;(2)已知a2+2ab=2,ab﹣b2=1,求2a2+5ab﹣b2的值.26.(2022秋•祁阳县期末)图是湘教版七年级上册数学教材65页的部分内容.明明同学在做作业时采用的方法如下:由题意得3(a2+2a)+2=3×1+2=5,所以代数式3(a2+2a)+2的值为5.【方法运用】:(1)若代数x2﹣2x+3的值为5,求代数式3x2﹣6x﹣1的值;(2)当x=1时,代数式ax3+bx+5的值为8.当x=﹣1,求代数式ax3+bx﹣6的值;(3)若x2﹣2xy+y2=20,xy﹣y2=6,求代数式x2﹣3xy+2y2的值.27.(2022秋•惠东县期中)有这样一道题“如果式子5a+3b的值为﹣4,那么式子2(a+b)+4(2a+b)的值是多少?”爱动脑筋的佳佳同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,则原式=2(5a+3b)=2×(﹣4)=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照佳佳的解题方法,完成下面问题:(1)已知a2﹣2a=1,则2a2﹣4a+1= ;(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值;(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求3a2+4ab+4b2的值.28.(2022秋•西安期中)化简求值:−12(5xy−2x2+3y2)+3(−12xy+23x2+y26),其中x、y满足(x+1)2+|y﹣2|=0.29.(2022秋•公安县期中)先化简,再求值:4a2b﹣[﹣2ab2﹣2(ab﹣ab2)+a2b]﹣3ab,其中a=12,b=﹣4.30.(2022秋•海林市期末)先化简再求值:12a+2(a+3ab−13b2)−3(32a+2ab−13b2),其中a、b满足|a﹣2|+(b+3)2=0.31.(2022秋•万州区期末)化简求32a2b﹣2(ab2+1)−12(3a2b﹣ab2+4)的值,其中2(a﹣3)2022+|b+23|=0.32.(2022秋•偃师市期末)已知:(x−2)2+|y +12|=0,求2(xy 2+x 2y )﹣[2xy 2﹣3(1﹣x 2y )]+2的值.33.(2022秋•沙坪坝区校级期中)先化简,再求值:2(x 2y−2x y 2)−[(−x 2y 2+4x 2y)−13(6x y 2−3x 2y 2)],其中x 是最大的负整数,y 是绝对值最小的正整数.34.(2022秋•越秀区期末)已知代数式M =(2a 2+ab ﹣4)﹣2(2ab +a 2+1).(1)化简M ;(2)若a ,b 满足等式(a ﹣2)2+|b +3|=0,求M 的值.35.(2022秋•和平区校级期中)先化简再求值:若(a +3)2+|b ﹣2|=0,求3ab 2﹣{2a 2b ﹣[5ab 2﹣(6ab 2﹣2a 2b )]}的值.36.(2022秋•江都区期末)已知代数式A =x 2+xy ﹣12,B =2x 2﹣2xy ﹣1.当x =﹣1,y =﹣2时,求2A ﹣B 的值.37.已知:A =x −12y +2,B =x ﹣y ﹣1.(1)化简A ﹣2B ;(2)若3y ﹣2x 的值为2,求A ﹣2B 的值.38.(2022秋•邹平市校级期末)先化简,再求值:A =5xy 2﹣xy ,B =x y 2−2(32x y 2−0.5xy).求A ﹣B ,其中x ,y 满足(x +1)2+|3﹣y |=0.39.(2022秋•大丰区期末)已知A =2a 2b ﹣5ab 2,B =a 2b ﹣2ab 2﹣a .(1)求A ﹣3B .(2)求当a =2,b =﹣1时,A ﹣3B 的值.40.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B﹣2A的值.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.43.(2023春•莱芜区月考)已知A =6a 2+2ab +7,B =2a 2﹣3ab ﹣1.(1)计算:2A ﹣(A +3B );(2)当a ,b 互为倒数时,求2A ﹣(A +3B )的值.44.(2021秋•沂源县期末)已知多项式x 2+ax ﹣y +b 与bx 2﹣3x +6y ﹣3差的值与字母x 的取值无关,求代数式3(a 2﹣2ab ﹣b 2)﹣4(a 2+ab +b 2)的值.45.(2022秋•大竹县校级期末)已知代数式x 2+ax ﹣(2bx 2﹣3x +5y +1)﹣y +6的值与字母x 的取值无关,求13a 3−2b 2−14a 3+3b 2的值.46.(2022秋•利川市校级期末)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式5ab2﹣[a2b+2(a2b﹣3ab2)]的值.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式3a2b−[2a b2−4(ab−34a2b)]+2a b2的值.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.。
(苏科版)七年级上册数学《第三章代数式》专题整式的化简求值(50题)1.先化简再求值:2x 2y−[x y 2+3(x 2y−13x y 2)],其中x =12,y =2.【分析】先化简整式,再代入求值.【解答】解:原式=2x 2y ﹣(xy 2+3x 2y ﹣xy 2)=2x 2y ﹣3x 2y=﹣x 2y .当x =12,y =2时,原式=﹣(12)2×2=−14×2=−12.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.2.先化简,再求值:4x 2﹣2xy +y 2﹣(x 2﹣xy +y 2),其中x =﹣1,y =−12.【分析】去括号,合并同类项后代入求值.【解答】解:原式=4x 2﹣2xy +y 2﹣x 2+xy ﹣y 2=3x 2﹣xy ,当x =﹣1,y =−12时,原式=3×(﹣1)2﹣(﹣1)×(−12)=3−12=52.【点评】本题考查了整式的加减—化简求值,掌握去括号法则与合并同类项是解题的关键.3.(2022秋•秦淮区期末)先化简,再求值:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),其中a=﹣1,b=2.【分析】先进行整式的化简,再代入求值即可.【解答】解:7a2b+(﹣4a2b+5ab2)﹣(2a2b﹣3ab2),=7a2b﹣4a2b+5ab2﹣2a2b+3ab2=a2b+8ab2当a=﹣1,b=2时,原式=(﹣1)2×2+8×(﹣1)×22=2﹣32=﹣30.【点评】本题考查了整式的加减,解决本题的关键是先化简.4.(2022秋•邹城市校级期末)先化简,再求值:(2x2﹣2y2)﹣4(x2y+xy2)+4(x2y2+y2),其中x=﹣1,y=2.【分析】利用整式的加减混合运算化简整式,再代入求值.【解答】解:(2x2﹣2y2)﹣4(x2y+xy2)+4(x2y2+y2)=2x2﹣2y2﹣4x2y﹣4xy2+4x2y2+4y2=2x2+2y2﹣4x2y﹣4xy2+4x2y2,∵x=﹣1,y=2,∴原式=2×(﹣1)2+2×22﹣4×(﹣1)2×2﹣4×(﹣1)×22+4×(﹣1)2×22=2×1+2×4﹣4×2+4×4+4×4=2+8﹣8+16+16=34.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的加减混合运算.5.(2023•青秀区校级开学)先化简,再求值:4x+2(3y2﹣2x)﹣3(2x﹣y2),其中x=2,y=﹣2.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4x+6y2﹣4x﹣6x+3y2=﹣6x+9y2,当x=2,y=﹣2时,原式=﹣6×2+9×(﹣2)2=﹣12+36=24.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.6.(2022秋•龙沙区期中)先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2022.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)]=﹣3a2+4ab+(a2﹣4a﹣4ab)=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a.当a=﹣2,b=2022时,原式=﹣2×(﹣2)2﹣4×(﹣2)=﹣2×4+8=﹣8+8=0.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.7.(2022秋•南海区校级期末)先化简,再求值:(2x2﹣2y2)﹣3(x2y2+x2)+3(x2y2+y2),其中x=﹣1,y=2.【分析】将代数式去括号,合并同类项,从而将整式化为最简形式,然后把x、y的值代入即可.【解答】解:原式=2x2﹣2y2﹣3x2y2﹣3x2+3x2y2+3y2=﹣x2+y2;当x=﹣1,y=2时,原式=﹣(﹣1)2+22=﹣1+4=3.【点评】本题主要考查了整式的加减运算.整式的加减运算实际上就是去括号、合并同类项.8.(2022秋•梁子湖区期末)先化简,再求值:5x2−[2xy−3(13xy+2)+4x2],其中x=−2,y=12.【分析】先将原式去括号、合并同类项,再把x=﹣2,y=12代入化简后的式子,计算即可.【解答】解:5x2−[2xy−3(13xy+2)+4x2]=5x2﹣(2xy﹣xy﹣6+4x2)=5x2﹣2xy+xy+6﹣4x2=(5x2﹣4x2)+(﹣2xy+xy)+6=x2﹣xy+6,当x=−2,y=12时,原式=(−2)2−(−2)×12+6=4+1+6=11.【点评】本题考查了整式的化简求值.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.9.先化简,再求值:2(ab−32a2+a﹣b2)﹣3(a﹣a2+23ab),其中a=5,b=﹣2.【分析】先化简整式,再代入求值.【解答】解:2(ab−32a2+a﹣b2)﹣3(a﹣a2+23ab)=2ab﹣3a2+2a﹣2b2﹣3a+3a2﹣2ab=﹣a﹣2b2.当a=5,b=﹣2时,原式=﹣5﹣2×(﹣2)2=﹣5﹣2×4=﹣5﹣8=﹣13.【点评】本题主要考查了整式的化简求值,掌握去括号法则、合并同类项法则及有理数的混合运算是解决本题的关键.10.先化简,再求值:2(mn ﹣4m 2﹣1)﹣(3m 2﹣2mn ),其中m =1,n =﹣2.【分析】先化简,再代入求值即可.【解答】解:原式=2mn ﹣8m 2﹣2﹣3m 2+2mn=4mn ﹣11m 2﹣2,当m =1,n =﹣2时,原式=4×1×(﹣2)﹣11×12﹣2=﹣21.【点评】本题主要考查了整式的加减,解题的关键是正确的化简.11.先化简再求值:5xy ﹣(4x 2+2y )﹣2(52xy +x 2),其中x =3,y =﹣2.【分析】利用去括号法则先去括号再合并同类项,最后代入求值.【解答】解:原式=5xy ﹣4x 2﹣2y ﹣5xy ﹣2x 2=(5xy ﹣5xy )﹣(4x 2+2x 2)﹣2y=﹣6x 2﹣2y当x =3,y =﹣2时原式=﹣6×32﹣2×(﹣2)=﹣50.【点评】本题考查了整式的化简求值,掌握去括号法则和合并同类项法则是解决本题的关键.12.(2022秋•绿园区期末)先化简,再求值:12m−(2m−23n 2)+(−32m +13n 2),其中m =−14,n =−12.【分析】先去括号,然后合并同类项,再代入求值.【解答】解:原式=12m−2m +23n 2−32m +13n 2=n 2﹣3m ,当m =−14,n =−12时,原式=n 2﹣3m=(−12)2﹣3×(−14)=14+34=1.【点评】本题考查了整式的加减—化简求值,熟悉去括号和合并同类项法则是解题的关键.13.(2022秋•万秀区月考)先化简,再求值2(a2b+ab)﹣4(a2b﹣ab)﹣4a2b,其中a=3,b=﹣2.【分析】先去括号再合并同类项,最后代入求值.【解答】解:2(a2b+ab)﹣4(a2b﹣ab)﹣4a2b=2a2b+2ab﹣4a2b+4ab﹣4a2b=﹣6a2b+6ab.当a=3,b=﹣2,原式=﹣6×32×(﹣2)+6×3×(﹣2)=6×9×2﹣6×3×2=108﹣36=72.【点评】本题考查了整式的化简,掌握去括号法则、合并同类项法则是解决本题的关键.14.(2022秋•陕州区期中)先化简,再求值3x2y−2(x2y+14x y2)−2(x y2−xy),其中x=12,y=﹣2.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:3x2y−2(x2y+14x y2)−2(x y2−xy)=3x2y−2x2y−12x y2−2x y2−2xy=x y2−52x y2+2xy把x=12,y=﹣2代入原式=(12)2×(−2)−52×12×(−2)2+2×12×(−2)=−712.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.15.(2022秋•沈北新区期中)化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.【分析】(1)原式去括号合并得到最简结果,将x与y的值代入计算即可求出值;(2)原式去括号合并得到最简结果,将a的值代入计算即可求出值.【解答】解:(1)原式=4x﹣6y﹣3x﹣2y﹣1=x﹣8y﹣1,将x=2,y=﹣0.5代入,得原式=x﹣8y﹣1=2﹣8×(﹣0.5)﹣1=2+4﹣1=5;(2)原式=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a,当a=﹣2时,原式=﹣8+8=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.16.先化简,再求值.若m2+3mn=﹣5,则代数式5m2﹣[5m2﹣(2m2﹣mn)﹣7mn+7]的值.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=5m2﹣(5m2﹣2m2+mn﹣7mn+7)=5m2﹣5m2+2m2﹣mn+7mm﹣7=2m2+6mm﹣7,∵m2+3mn=﹣5,∴原式=2(m2+3mn)﹣7=2×(﹣5)﹣7=﹣10﹣7=﹣17.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号)是解题关键.17.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.【分析】先化简,再整体代入求值.【解答】解:(4x2+1)﹣2(x2+3x﹣1)=4x2+1﹣2x2﹣6x+2=2x2﹣6x+3=2(x2﹣3x)+3,当x2﹣3x=5时,原式=2×5+3=13.【点评】本题考查了整式的加减,整体代入法是解题的关键.18.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.【分析】先化简,再整体代入求值.【解答】解:(4x2+1)﹣2(x2+3x﹣1)=4x2+1﹣2x2﹣6x+2=2x2﹣6x+3=2(x2﹣3x)+3,当x2﹣3x=5时,原式=2×5+3=13.【点评】本题考查了整式的加减,整体代入法是解题的关键.19.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.【分析】先去括号,合并同类项,再将x+y=6,xy=﹣4,整体代入进行计算即可.【解答】解:原式=5x+2y﹣3xy﹣2x+y﹣2xy=3x+3y﹣5xy=3(x+y)﹣5xy,当x+y=6,xy=﹣4时,原式=3×6﹣5×(﹣4)=18+20=38.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.【分析】化简整理代数式,整体代入求值.【解答】解:∵m+4n=﹣1.∴(6mn+7n)+[8m﹣(6mn+7m+3n)]=6mn+7n+(8m﹣6mn﹣7m﹣3n)=6mn+7n+8m﹣6mn﹣7m﹣3n=4n+m=﹣1.【点评】本题考查了整式的化简求值,解题的关键是掌握整体代入求值.21.(2022秋•荔湾区期末)已知a2+b2=3,ab=﹣2,求代数式(7a2+3ab+3b2)﹣2(4a2+3ab+2b2)的值.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=7a2+3ab+3b2﹣8a2﹣6ab﹣4b2=﹣a2﹣3ab﹣b2;当a2+b2=3,ab=﹣2时,原式=﹣(a2+b2)﹣3ab=﹣3﹣3×(﹣2)=﹣3+6=3,∴原代数式的值为3.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号),利用整体思想解题是关键.22.(2022秋•平昌县期末)先化简,再求值.已知代数式2(3x2﹣x+2y﹣xy)﹣3(2x2﹣3x﹣y+xy),其中x+y=67,xy=﹣2.【分析】原式去括号,合并同类项进行化简,然后利用整体思想代入求值.【解答】解:原式=6x2﹣2x+4y﹣2xy﹣6x2+9x+3y﹣3xy=7x+7y﹣5xy,当x+y=67,xy=﹣2时,原式=7(x+y)﹣5xy=7×67−5×(﹣2)=6+10=16.【点评】本题考查整式的加减—化简求值,掌握合并同类项(系数相加,字母及其指数不变)和去括号的运算法则(括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“﹣”号,去掉“﹣”号和括号,括号里的各项都变号),利用整体思想代入求值是解题关键.23.有这样一道题“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”爱动脑筋的吴爱国同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,把式子5a+3b =﹣4两边乘以2得10a+6b=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照上面的解题方法,完成下面问题:【简单应用】(1)已知a2﹣2a=1,则2a2﹣4a+1= .(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值.【拓展提高】(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求代数式3a2+4ab+4b2的值.【分析】(1)根据a2﹣2a=1,把2a2﹣4a+1化为2(a2﹣2a)+1,整体代入计算;(2)根据m+n=2,mn=﹣4,把2(mn﹣3m)﹣3(2n﹣mn)化为5mn﹣6(m+n),整体代入计算;(3)根据a2+2ab=﹣5,ab﹣2b2=﹣3,①×3﹣②×2得结果.【解答】解:(1)当a2﹣2a=1时,2a2﹣4a+1=2(a2﹣2a)+1=3;故答案为:3;(2)当m+n=2,mn=﹣4时,2(mn﹣3m)﹣3(2n﹣mn)=2mn﹣6m﹣6n+3mn=5mn﹣6(m+n)=﹣32;(3)∵a2+2ab=﹣5①,ab﹣2b2=﹣3②,①×3﹣②×2得3a2+6ab﹣(2ab﹣4b2)=3a2+4ab+4b2=﹣5×3﹣(﹣3)×2=﹣9.【点评】本题考查了整式的加减—化简求值,掌握整体代入的思想,把每一个整式进行适当的变形是解题的关键.24.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2.(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【分析】(1)根据阅读材料,直接合并同类项即可;(2)根据等式性质可得3x2﹣6y=12,然后整体代入即可求值;(3)先根据已知3个等式可得a﹣c=8,2b﹣d=5,再整体代入即可求值.【解答】解:(1)3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=﹣(a﹣b)2;(2)∵x2﹣2y=4,∴3x2﹣6y=12,∴3x2﹣6y﹣21=12﹣21=﹣9;(3)∵a﹣2b=3①,2b﹣c=﹣5②,c﹣d=10③,∴①+②得,a﹣c=﹣2,②+③得,2b﹣d=5,∴(a﹣c)+(2b﹣d)﹣(2b﹣c)=﹣2+5﹣(﹣5)=8.【点评】本题考查了整式的加减﹣化简求值,解决本题的关键是掌握整式的加减.25.阅读理解:已知4a−52b=1,求代数式2(a﹣b)+3(2a﹣b)的值.解:因为4a−52b=1,所以原式=2a−2b+6a−3b=8a−5b=2(4a−52b)=2×1=2.仿照以上解题方法,完成下面的问题:(1)已知a﹣b=﹣3,求3(a﹣b)﹣a+b+1的值;(2)已知a2+2ab=2,ab﹣b2=1,求2a2+5ab﹣b2的值.【分析】(1)把(a﹣b)看成一个整体,先变形要求值代数式,再整体代入;(2)可变形已知,整体代入求值.【解答】解:(1)3(a﹣b)﹣a+b+1=3(a﹣b)﹣(a﹣b)+1=2(a﹣b)+1.当a﹣b=﹣3时,原式=2×(﹣3)+1=﹣6+1=﹣5.(2)法一、∵a2+2ab=2,ab﹣b2=1,∴2a2+4ab=4,∴2a2+4ab+ab﹣b2=5.即2a2+5ab﹣b2=5.法二、∵a2+2ab=2,ab﹣b2=1,∴a2=2﹣2ab,﹣b2=1﹣ab.∴2a2+5ab﹣b2=2(2﹣2ab)+5ab+1﹣ab=4﹣4ab+5ab+1﹣ab=5.【点评】本题主要考查了整式的化简求值,掌握整式的运算法则和整体的思想方法是解决本题的关键.26.(2022秋•祁阳县期末)图是湘教版七年级上册数学教材65页的部分内容.明明同学在做作业时采用的方法如下:由题意得3(a2+2a)+2=3×1+2=5,所以代数式3(a2+2a)+2的值为5.【方法运用】:(1)若代数x2﹣2x+3的值为5,求代数式3x2﹣6x﹣1的值;(2)当x=1时,代数式ax3+bx+5的值为8.当x=﹣1,求代数式ax3+bx﹣6的值;(3)若x2﹣2xy+y2=20,xy﹣y2=6,求代数式x2﹣3xy+2y2的值.【分析】(1)根据题意得出x2﹣2x+3=5,求出x2﹣2x=2,变形后代入,即可求出答案;(2)根据题意求出a+b+5=8,求出a+b=3,再把x=﹣1代入代数式,最后整体代入,即可求出答案;(3)代数式x2﹣2xy+y2=20减去代数式xy﹣y2=6,即可得出答案.【解答】解:(1)根据题意得:x2﹣2x+3=5,即x2﹣2x=2,所以3x2﹣6x﹣1=3(x2﹣2x)﹣1=3×2﹣1=6﹣1=5;(2)∵当x=1时,代数式ax3+bx+5的值为8,∴a+b+5=8,∴a+b=3,当x=﹣1时,ax3+bx﹣6=a×(﹣1)3+b×(﹣1)﹣6=﹣a﹣b﹣6=﹣(a+b)﹣6=﹣3﹣6=﹣9;(3)∵①x2﹣2xy+y2=20,②xy﹣y2=6,∴①﹣②,得x2﹣2xy+y2﹣(xy﹣y2)=20﹣6,整理得:x2﹣3xy+2y2=14.【点评】本题考查了求代数式的值,能够整体代入是解此题的关键.27.(2022秋•惠东县期中)有这样一道题“如果式子5a+3b的值为﹣4,那么式子2(a+b)+4(2a+b)的值是多少?”爱动脑筋的佳佳同学这样来解:原式=2a+2b+8a+4b=10a+6b.我们把5a+3b看成一个整体,则原式=2(5a+3b)=2×(﹣4)=﹣8.整体思想是中学数学解题中的一种重要思想方法,它在多项式的化简与求值中应用极为广泛,仿照佳佳的解题方法,完成下面问题:(1)已知a2﹣2a=1,则2a2﹣4a+1= ;(2)已知m+n=2,mn=﹣4,求2(mn﹣3m)﹣3(2n﹣mn)的值;(3)已知a2+2ab=﹣5,ab﹣2b2=﹣3,求3a2+4ab+4b2的值.【分析】(1)根据a2﹣2a=1,把2a2﹣4a+1化为2(a2﹣2a)+1,整体代入计算;(2)根据m+n=2,mn=﹣4,把2(mn﹣3m)﹣3(2n﹣mn)化为5mn﹣6(m+n),整体代入计算;(3)根据a2+2ab=﹣5,ab﹣2b2=﹣3,①×3﹣②×2得结果.【解答】解:(1)当a2﹣2a=1时,2a2﹣4a+1=2(a2﹣2a)+1=3;故答案为:3;(2)当m+n=2,mn=﹣4时,2(mn﹣3m)﹣3(2n﹣mn)=2mn﹣6m﹣6n+3mn=5mn﹣6(m+n)=﹣32;(3)∵a2+2ab=﹣5①,ab﹣2b2=﹣3②,①×3﹣②×2得3a2+6ab﹣(2ab﹣4b2)=3a2+4ab+4b2=﹣5×3﹣(﹣3)×2=﹣9.【点评】本题考查了整式的加减—化简求值,掌握整体代入的思想,把每一个整式进行适当的变形是解题的关键.28.(2022秋•西安期中)化简求值:−12(5xy−2x2+3y2)+3(−12xy+23x2+y26),其中x、y满足(x+1)2+|y﹣2|=0.【分析】由非负数的和为0得非负数为0,解出x,y的值,代入化简后的代数式求值即可.【解答】解:∵(x+1)2+|y﹣2|=0.∴x+1=0,y﹣2=0,∴x=﹣1,y=2.−12(5xy﹣2x2+3y2)+3(−12xy+23x2+y26)=−52xy+x2−32y2−32xy+2x2+y22=﹣4xy+3x2﹣y2.当x=﹣1,y=2时,原式=﹣4×(﹣1)×2+3×(﹣1)2﹣22=8+3﹣4=7.【点评】本题考查的是整式的化简和非负数的性质,解题的关键是利用非负数的性质求出x,y的值.29.(2022秋•公安县期中)先化简,再求值:4a2b﹣[﹣2ab2﹣2(ab﹣ab2)+a2b]﹣3ab,其中a=12,b=﹣4.【分析】首先去括号进而合并同类项,再把a,b的值代入计算求出答案即可.【解答】解:4a2b﹣[﹣2ab2﹣2(ab﹣ab2)+a2b]﹣3ab =4a2b﹣(﹣2ab2﹣2ab+2ab2+a2b)﹣3ab=4a2b+2ab﹣a2b﹣3ab=3a2b﹣ab;当a=12,b=﹣4时,原式=3×(12)2×(−4)−12×(−4)=−3+2=−1.【点评】此题主要考查了整式的加减﹣化简求值,正确合并同类项是解题关键.30.(2022秋•海林市期末)先化简再求值:12a+2(a+3ab−13b2)−3(32a+2ab−13b2),其中a、b满足|a﹣2|+(b+3)2=0.【分析】先去括号,然后合并同类项进行化简,根据非负数的性质求出a、b的值代入化简后的结果进行计算即可.【解答】解:原式=12a+2a+6ab−23b2−92a−6ab+b2=−2a+13b2,∵|a﹣2|+(b+3)2=0,∴a﹣2=0,b+3=0,∴a=2,b=﹣3,当a=2,b=﹣3时,原式=﹣2×2+13(﹣3)2=﹣4+3=﹣1.【点评】本题考查了整式的加减——化简求值,涉及了去括号法则,合并同类项法则,非负数的性质等,熟练掌握各运算的运算法则以及非负数的性质是解题的关键.31.(2022秋•万州区期末)化简求32a2b﹣2(ab2+1)−12(3a2b﹣ab2+4)的值,其中2(a﹣3)2022+|b+23|=0.【分析】利用去括号的法则和合并同类项的法则化简运算,利用非负数的性质求得a,b的值,将a,b 的值代入运算即可.【解答】解:原式=32a2b﹣2ab2﹣2−32a2b+12ab2﹣2=−32a b2−4.∵2(a−3)2022+|b+23|=0,(a﹣3)2022≥0,|b+23|≥0,∴a﹣3=0,b+23=0,∴a=3,b=−2 3.∴原式=−32×3×(−23)2−4=−92×49−4=﹣2﹣4=﹣6.【点评】本题主要考查了求代数式的值,整式的加减与化简求值,非负数的应用,正确利用去括号的法则和合并同类项的法则运算是解题的关键.32.(2022秋•偃师市期末)已知:(x−2)2+|y+12|=0,求2(xy2+x2y)﹣[2xy2﹣3(1﹣x2y)]+2的值.【分析】根据非负数的性质,可求出x、y的值,然后将代数式化简再代值计算.【解答】解:原式=2xy2+2x2y﹣(2xy2﹣3+3x2y)+2=2xy2+2x2y﹣2xy2+3﹣3x2y+2=(2﹣2)xy2+(2﹣3)x2y+(3+2)=﹣x2y+5;∵(x+2)2≥0,|y−12|≥0,又∵(x−2)2+|y+12|=0,∴x﹣2=0,y+12=0,∴x=2,y=−1 2,∴原式=﹣22×(−12)+5=2+5=7.【点评】本题考查整式的化简求值,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.33.(2022秋•沙坪坝区校级期中)先化简,再求值:2(x 2y−2x y 2)−[(−x 2y 2+4x 2y)−13(6x y 2−3x 2y 2)],其中x 是最大的负整数,y 是绝对值最小的正整数.【分析】去括号,合并同类项,代入数据求值.【解答】解:∵x 是最大的负整数,y 是绝对值最小的正整数,∴x =﹣1,y =1,∴2(x 2y−2x y 2)−[(−x 2y 2+4x 2y)−13(6x y 2−3x 2y 2)]=2x 2y ﹣4xy 2﹣(﹣x 2y 2+4x 2y ﹣2xy 2+x 2y 2)=2x 2y ﹣4xy 2+x 2y 2﹣4x 2y +2xy 2﹣x 2y 2=﹣2x 2y ﹣2xy 2=﹣2×(﹣1)2×1﹣2×(﹣1)×12=﹣2+2=0.∴化简后结果为:﹣2x 2y ﹣2xy 2,值为:0.【点评】本题考查了整式的化简求值,解题的关键是掌握整式的化简.34.(2022秋•越秀区期末)已知代数式M =(2a 2+ab ﹣4)﹣2(2ab +a 2+1).(1)化简M ;(2)若a ,b 满足等式(a ﹣2)2+|b +3|=0,求M 的值.【分析】(1)直接利用去括号,进而合并同类项即可得出答案;(2)结合非负数的性质得出a ,b 的值,代入a ,b 的值得出答案.【解答】解:(1)M =2a 2+ab ﹣4﹣4ab ﹣2a 2﹣2=﹣3ab ﹣6;(2)∵(a ﹣2)2+|b +3|=0,∴a﹣2=0,b+3=0,解得:a=2,b=﹣3,故M=﹣3×2×(﹣3)﹣6=18﹣6=12.【点评】此题主要考查了整式的加减—化简求值,正确合并同类项是解题关键.35.(2022秋•和平区校级期中)先化简再求值:若(a+3)2+|b﹣2|=0,求3ab2﹣{2a2b﹣[5ab2﹣(6ab2﹣2a2b)]}的值.【分析】先去括号、合并同类项,再根据非负数的性质求出a、b,最后代入化简后的整式求值.【解答】解:3ab2﹣{2a2b﹣[5ab2﹣(6ab2﹣2a2b)]}=3ab2﹣[2a2b﹣(5ab2﹣6ab2+2a2b)]=3ab2﹣(2a2b﹣5ab2+6ab2﹣2a2b)=3ab2﹣2a2b+5ab2﹣6ab2+2a2b=2ab2.∵(a+3)2+|b﹣2|=0,又∵(a+3)2≥0,|b﹣2|≥0,∴a+3=0,b﹣2=0.∴a=﹣3,b=2.当a=﹣3,b=2时,原式=2×(﹣3)×22=2×(﹣3)×4=﹣24.【点评】本题考查了整式的化简﹣求值,掌握去括号法则、合并同类项法则、非负数的性质及有理数的混合运算是解决本题的关键.36.(2022秋•江都区期末)已知代数式A=x2+xy﹣12,B=2x2﹣2xy﹣1.当x=﹣1,y=﹣2时,求2A﹣B 的值.【分析】将x=﹣1,y=﹣2代入求出A、B的值,再代入到2A﹣B即可.【解答】解:当x=﹣1,y=﹣2时,A=1+2﹣12=﹣9,B=2﹣4﹣1=﹣3,∴2A﹣B=﹣18+3=﹣15.【点评】本题考查整式的加减以及代数式求值,掌握去括号、合并同类项分组是正确解答的前提.37.已知:A=x−12y+2,B=x﹣y﹣1.(1)化简A﹣2B;(2)若3y﹣2x的值为2,求A﹣2B的值.【分析】(1)把A、B表示的代数式代入A﹣2B中,计算求值即可;(2)利用等式的性质,变形已知,整体代入(1)的结果中求值即可.【解答】解:∵A=x−12y+2,B=x﹣y﹣1,∴A﹣2B=x−12y+2﹣2(x﹣y﹣1)=x−12y+2﹣2x+2y+2=﹣x+32y+4;(2)当3y﹣2x=2时,即﹣x+32y=1.A﹣2B=﹣x+32y+4=1+4=5.【点评】本题考查了整式的加减、整体代入的思想方法,掌握去括号、合并同类项法则是解决本题的关键.38.(2022秋•邹平市校级期末)先化简,再求值:A =5xy 2﹣xy ,B =x y 2−2(32x y 2−0.5xy).求A ﹣B ,其中x ,y 满足(x +1)2+|3﹣y |=0.【分析】利用整式的混合运算化简整式,再根据非负数的性质判断x ,y 的值,代入求值即可.【解答】解:∵A =5xy 2﹣xy ,B =x y 2−2(32x y 2−0.5xy) =xy 2﹣3xy 2+xy=﹣2xy 2+xy ,∴A ﹣B=5xy 2﹣xy ﹣(﹣2xy 2+xy )=5xy 2﹣xy +2xy 2﹣xy=7xy 2﹣2xy ,∵(x +1)2+|3﹣y |=0,∴x +1=0,3﹣y =0,∴x =﹣1,y =3,∴原式=7xy 2﹣2xy=7×(﹣1)×32﹣2×(﹣1)×3=﹣7×9+6=﹣63+6=﹣57.【点评】本题考查了整式的混合运算化简求值,非负数的性质,解题的关键是掌握整式的混合运算,非负数的性质.39.(2022秋•大丰区期末)已知A =2a 2b ﹣5ab 2,B =a 2b ﹣2ab 2﹣a .(1)求A ﹣3B .(2)求当a =2,b =﹣1时,A ﹣3B 的值.【分析】(1)先把A 、B 表示的代数式代入,然后化简求值;(2)把a 、b 的值代入化简的代数式,计算得结果.【解答】解:(1)∵A =2a 2b ﹣5ab 2,B =a 2b ﹣2ab 2﹣a ,∴A﹣3B=2a2b﹣5ab2﹣3(a2b﹣2ab2﹣a)=2a2b﹣5ab2﹣3a2b+6ab2+3a=﹣a2b+ab2+3a.(2)当a=2,b=﹣1时,A﹣3B=﹣22×(﹣1)+2×(﹣1)2+3×2=4+2+6=12.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则是解决本题的关键.40.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B﹣2A的值.【分析】先把A、B表示的代数式代入并化简整式,再利用非负数的性质求出x、y的值,最后代入计算.【解答】解:B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣2x﹣4y=﹣5x﹣5y.∵|x﹣2|+(y−15)2=0,|x﹣2|≥0,(y−15)2≥0,∴|x﹣2|=0,(y−15)2=0.∴x=2,y=1 5.当x=2,y=15时,原式=﹣5×2﹣5×1 5=﹣10﹣1=﹣11.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则,非负数的性质是解决本题的关键.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.【分析】(1)先去括号,合并同类项,然后把A,B的值代入化简后的式子,进行计算即可解答;(2)把a,b的值代入(1)中的结论,进行计算即可解答.【解答】解:(1)∵A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab,∴A﹣2(A﹣B)=A﹣2A+2B=﹣A+2B=﹣(2a2b﹣ab﹣2a)+2(a2b﹣a+3ab)=﹣2a2b+ab+2a+2a2b﹣2a+6ab=7ab;(2)当a=−27,b=3时,A﹣2(A﹣B)=7×(−27)×3=﹣6.【点评】本题考查了整式的加减﹣化简求值,准确熟练地进行计算是解题的关键.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.【分析】(1)将A=3ab+a﹣2b,B=2ab﹣b代入2A﹣3B,再进行化简即可求解;(2)由(1)可得2A﹣3B+4,再把b=2a代入可求解.【解答】解:(1)∵A=3ab+a﹣2b,B=2ab﹣b,∴2A﹣3B=2(3ab+a﹣2b)﹣3(2ab﹣b)=6ab+2a﹣4b﹣6ab+3b=2a﹣b;(2)由(1)知,2A﹣3B=2a﹣b,∴2A﹣3B+4=2a﹣b+4,∴当b=2a时,原式=2a﹣2a+4=4.【点评】本题主要考查了整式的加减运算,掌握去括号法则和合并同类项法则是解题的关键.43.(2023春•莱芜区月考)已知A=6a2+2ab+7,B=2a2﹣3ab﹣1.(1)计算:2A﹣(A+3B);(2)当a,b互为倒数时,求2A﹣(A+3B)的值.【分析】(1)把A、B代入2A﹣(A+3B)计算即可;(2)当a,b互为倒数时,ab=1,根据(1)的计算结果,求出2A﹣(A+3B)的值即可.【解答】解:(1)∵A=6a2+2ab+7,B=2a2﹣3ab﹣1,∴2A﹣(A+3B)=2A﹣A﹣3B=A﹣3B=(6a2+2ab+7)﹣3(2a2﹣3ab﹣1)=6a2+2ab+7﹣6a2+9ab+3=11ab+10.(2)当a,b互为倒数时,ab=1,2A﹣(A+3B)=11ab+10=11×1+10=11+10=21.【点评】此题主要考查了整式的加减﹣化简求值问题,解答此题的关键是要明确:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.44.(2021秋•沂源县期末)已知多项式x 2+ax ﹣y +b 与bx 2﹣3x +6y ﹣3差的值与字母x 的取值无关,求代数式3(a 2﹣2ab ﹣b 2)﹣4(a 2+ab +b 2)的值.【分析】先根据代数式的差与字母x 无关,求出a 、b 的值,再化简代数式,代入计算.【解答】解:x 2+ax ﹣y +b ﹣(bx 2﹣3x +6y ﹣3)=x 2+ax ﹣y +b ﹣bx 2+3x ﹣6y +3=(1﹣b )x 2+(a +3)x ﹣7y +b +3.∵多项式x 2+ax ﹣y +b 与bx 2﹣3x +6y ﹣3差的值与字母x 的取值无关,∴1﹣b =0,a +3=0.∴b =1,a =﹣3.3(a 2﹣2ab ﹣b 2)﹣4(a 2+ab +b 2)=3a 2﹣6ab ﹣3b 2﹣4a 2﹣4ab ﹣4b 2=﹣a 2﹣10ab ﹣7b 2.当b =1,a =﹣3时.原式=﹣(﹣3)2﹣10×(﹣3)×1﹣7×12=﹣9+30﹣7=14.【点评】本题考查了整式的化简求值,掌握去括号法则、合并同类项法则及绝对值的意义是解决本题的关键.45.(2022秋•大竹县校级期末)已知代数式x 2+ax ﹣(2bx 2﹣3x +5y +1)﹣y +6的值与字母x 的取值无关,求13a 3−2b 2−14a 3+3b 2的值.【分析】首先对题中前一个代数式合并同类项,由代数式的值与字母x 无关求得a 、b 的值,再把a 、b 的值代入后一个代数式计算即可.注意第二个代数式先进行合并同类项,可简化运算.【解答】解:x 2+ax ﹣(2bx 2﹣3x +5y +1)﹣y +6=(1﹣2b )x 2+(a +3)x ﹣6y +5,因为此代数式的值与字母x 无关,所以1﹣2b =0,a +3=0;解得a =﹣3,b =12,13a 3−2b 2−14a 3+3b 2 =112a 3+b 2,当a=﹣3,b=12时,上式=112×(﹣3)3+(12)2=−2.【点评】此题考查的知识点是整式的加减﹣化简求值,关键是掌握用到的知识点为:所给代数式的值与某个字母无关,那么这个字母的相同次数的系数之和为0.46.(2022秋•利川市校级期末)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式5ab2﹣[a2b+2(a2b﹣3ab2)]的值.【分析】原式去括号合并后,根据结果与x取值无关求出a与b的值,所求式子去括号合并后代入计算即可求出值.【解答】解:原式=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,由结果与x取值无关,得到2﹣2b=0,a+3=0,解得:a=﹣3,b=1,则原式=5ab2﹣a2b﹣2a2b+6ab2=11ab2﹣3a2b=﹣33﹣27=﹣60.【点评】此题考查了整式的加减﹣化简求值,以及整式的加减,熟练掌握运算法则是解本题的关键.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式3a2b−[2a b2−4(ab−34a2b)]+2a b2的值.【分析】首先求出a,b的值,再化简求值即可.【解答】解:A﹣B=(x2+ax﹣y)﹣(bx2﹣x﹣2y)=(1﹣b)x2+(a+1)x+y,∵A与B的差与x的取值无关,∴a=﹣1,b=1,∴原式=3a2b﹣2ab2+4ab﹣3a2b+2ab2=4ab=﹣4.【点评】本题考查整式的加减,解题关键是理解题意,掌握整式是加减法则,属于中考常考题型.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.【分析】(1)直接将A=2x2+3xy﹣2x,B=x2﹣xy+y2代入计算即可;(2)先根据非负性求出x、y的值,再代入(1)中结果计算即可;(3)直接将10xy﹣4x﹣4y2转化为(10y﹣4)x﹣4y2计算y即可.【解答】解:(1)2A﹣4B=2(2x2+3xy﹣2x)﹣4(x2﹣xy+y2)=4x2+6xy﹣4x﹣4x2+4xy﹣4y2=10xy﹣4x﹣4y2.(2)由题意可知:x﹣1=0,y+2=0,所以x=1,y=﹣2,原式=10×1×(﹣2)﹣4×1﹣4×(﹣2)2=﹣20﹣4﹣16=﹣40.(3)因为2A﹣4B的值与x的取值无关,所以2A﹣4B=10xy﹣4x﹣4y2=2x(5y﹣2)﹣4y2,所以5y﹣2=0,所以y=2 5.【点评】本题考查了整式的混合运算,熟练掌握运算法则是解题的关键.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.【分析】(1)去括号,合并同类项将原式化为(3+6b)x2+(a+4)x﹣6y+7,再令x项的系数为0即可;(2)根据去括号、合并同类项将原式化简后,再代入求值即可.【解答】解:(1)原式=3x2+ax﹣y+6+6bx2+4x﹣5y+1=(3+6b)x2+(a+4)x﹣6y+7,∵该多项式的值与字母x的取值无关,∴3+6b=0,a+4=0,∴a=﹣4,b=−1 2;(2)原式=3ab2﹣(5a2b+2ab2﹣1+ab2)+6a2b =3ab2﹣5a2b﹣2ab2+1﹣ab2+6a2b=a2b+1,当a=﹣4,b=−12时,原式=(﹣4)2×(−12)+1=﹣8+1=﹣7.【点评】本题考查整式的加减,掌握去括号、合并同类项法则是正确计算的前提.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.【分析】(1)先去括号,再合并同类项,然后根据代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关得出关于a和b的方程,计算即可.(2)先将4A+[(2A﹣B)﹣3(A+B)]去括号,合并同类项,再将A=4a2﹣ab+4b2,B=3a2﹣ab+3b2代入化简,然后将a与b的值代入计算即可.【解答】解:(1)2x2−12bx2﹣y+6=(2−12b)x2﹣y+6,ax+17x﹣5y﹣1=(a+17)x﹣5y﹣1,∵关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关,∴2−12b=0,a+17=0,∴a=﹣17,b=4.(2)4A+[(2A﹣B)﹣3(A+B)]=4A+2A﹣B﹣3A﹣3B=3A﹣4B,∵A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,∴3A﹣4B=3(4a2﹣ab+4b2)﹣4(3a2﹣ab+3b2)=12a2﹣3ab+12b2﹣12a2+4ab﹣12b2=ab,由(1)知a=﹣17,b=4,∴原式=(﹣17)×4=﹣68.【点评】本题考查了整式的加减﹣化简求值,熟练掌握整式的加减的运算法则是解题的关键.。
整式的加减化简求值专项1.先化简再求值:2(3a2﹣ab)﹣3(2a2﹣ab),其中a=﹣2,b=3.2.先化简再求值:6a2b﹣(﹣3a2b+5ab2)﹣2(5a2b﹣3ab2),其中a=﹣2,b=.3.先化简,再求值:3x2y2﹣[5xy2﹣(4xy2﹣3)+2x2y2],其中x=﹣3,y=2.4.先化简,再求值:5ab2+3a2b﹣3(a2b﹣ab2),其中a=2,b=﹣1.5.先化简再求值:2x2﹣y2+(2y2﹣x2)﹣3(x2+2y2),其中x=3,y=﹣2.6.化简:﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)].7.先化简,再求值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.8.先化简,再求值:(6a2﹣6ab﹣12b2)﹣3(2a2﹣4b2),其中a=﹣,b=﹣8.10.化简求值:(﹣3x2﹣4y)﹣(2x2﹣5y+6)+(x2﹣5y﹣1),其中x、y满足|x﹣y+1|+(x﹣5)2=0.11.先化简,再求值:(1)5a2b﹣2ab2+3ab2﹣4a2b,其中a=﹣1,b=2;(2)(2x2﹣xyz)﹣2(x2﹣y2+xyz)﹣(xyz+2y2),其中x=1,y=2,z=﹣3.12.先化简,再求值:x2y﹣(2xy﹣x2y)+xy,其中x=﹣1,y=﹣2.13.已知:|x﹣2|+|y+1|=0,求5xy2﹣2x2y+[3xy2﹣(4xy2﹣2x2y)]的值.14.先化简,再求值:﹣9y+6x2+3(y﹣x2),其中x=﹣2,y=﹣.15.设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.16.已知M=﹣xy2+3x2y﹣1,N=4x2y+2xy2﹣x(1)化简:4M﹣3N;(2)当x=﹣2,y=1时,求4M﹣3N的值.17.求代数式的值:(1)(5x2﹣3x)﹣2(2x﹣3)+7x2,其中x=﹣2;(2)2a﹣[4a﹣7b﹣(2﹣6a﹣4b)],其中a=,b=.18.先化简,再求值:5(xy+3x2﹣2y)﹣3(xy+5x2﹣2y),其中x=,y=﹣1.19.化简:(1)(9y﹣3)+2(y﹣1)(2)求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.20.先化简,再求值:(5a+2a2﹣3+4a3)﹣(﹣a+4a3+2a2),其中a=1.21.当|a|=3,b=a﹣2时,化简代数式1﹣{a﹣b﹣[a﹣(b﹣a)+b]}后,再求这个代数式的值.22.先化简,再求值:a2﹣(2a2+2ab﹣b2)+(a2﹣ab﹣b2),其中a=3,b=﹣2.23.先化简再求值:3a2﹣(2ab+b2)+(﹣a2+ab+2b2),其中a=﹣1,b=2.24.化简求值:3a2b﹣〔2ab2﹣2(ab﹣a2b)+ab〕+3ab2,其中a=3,b=﹣.25.已知3x a﹣2y2z3和﹣4x3y b﹣1z3是同类项,求3a2b﹣[2ab2﹣2(a2b+2ab2)]的值.26.先化简,再求值:﹣8xy2+3xy﹣2(xy2﹣xy),其中x=,y=﹣2.27.已知,A=3x2+3y2﹣5xy,B=2xy﹣3y2+4x2,求:(1) 2A﹣B;(2)当时,2A﹣B的值.28.先化简,后计算:2(a2b+ab2)﹣[2ab2﹣(1﹣a2b)]﹣2,其中a=﹣2,b=.29.先化简,再求值:2(a2﹣2ab)﹣3(a2+2ab),其中a=﹣1,b=2.30.已知A=4(2﹣x2)﹣2x,B=2x2﹣x+3.(1)当x=时,求A﹣2B的值;(2)若A与2B互为相反数,求x的值.31.先化简再求值,已知a=﹣2,b=﹣1,c=3,求代数式5abc﹣2a2b﹣[(4ab2﹣a2b)﹣3abc]的值.32.化简(求值)2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y的值,其中x=﹣2,y=2.33.先化简,再求值:﹣2(ab﹣3a2)﹣[a2﹣5(ab﹣a2)+6ab],其中a=2,b=﹣3.34.先化简,再求值:3a3﹣[a3﹣3b+(6a2﹣7a)]﹣2(a3﹣3a2﹣4a+b)其中a=2,b=﹣1,35.先化简,再求值:(5a2b+4b3﹣2ab2+3a3)﹣(2a3﹣5ab2+3b3+2a2b),其中a=﹣2,b=3.36.先化简,再求值,其中a=1,b=﹣2.37.先化简再求值:(a2﹣3ab﹣2b2)﹣(a2﹣2b2),其中,b=﹣8.38.化简:,其中x=.39.化简求值:3(x3﹣2y2﹣xy)﹣2(x3﹣3y2+xy),其中x=3,y=1.40.先化简再求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=,y=﹣5.41.先化简,再求值:8mn﹣[4m2n﹣(6mn2+mn)]﹣29mn2,其中m=﹣1,n=.42.先化简,再求值:4ab﹣3b2﹣[(a2+b2)﹣(a2﹣b2)],其中a=1,b=﹣3.43.先化简,再求值:3x2+4x﹣2x2﹣2(x2+2x﹣1)﹣x+1,其中x=﹣2.44.化简求值:(2x2﹣x﹣1)﹣(x2﹣x﹣)+(3x2﹣3),其中x=.45.化简求值:3(x2﹣xy)﹣5(),其中x=﹣2,y=﹣3.46.先化简,再求值:9(xy﹣x2y)﹣2(xy﹣x2y﹣1)其中xy+1=0.47.先化简,再求值:4(3x2y﹣xy2)﹣2(xy2+3x2y),其中x=,y=﹣1.48.已知x=﹣3,y=﹣,求代数式的值.49.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.50.先化简,再求值:(8xy﹣3x2)﹣5xy﹣3(xy﹣2x2+3),其中.51.先化简,再求值:,其中.52.先化简,再求值:3a2﹣7a+[3a﹣2(a2﹣2a﹣1)],其中a=﹣2.53.先化简﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)],再求值,其中x=,y=.54.先化简,再求值:,其中x=﹣2,.55.先化简,再求值:3()﹣(5x2y﹣4xy2),其中x=2,y=﹣1.56.先化简,再求值,已知a=1,b=﹣,求多项式的值.57.先化简,再求值:3(x2﹣xy)﹣(4x2﹣3xy﹣1),其中.58.先化简,再求值:,其中.59.先化简,再求值:2(x2y﹣xy2﹣1)﹣(2x2y﹣xy2﹣y),其中x=2,y=﹣1.60.先化简,再求值:(2m2n+2mn2)﹣2(m2n﹣1)﹣3+mn,其中.61.先化简,再求值.3x﹣5(x﹣2xy2)+8(x﹣3xy2),其中.62.先化简,再求值:,其中x=﹣2.63.先化简,再求值:﹣5x2y﹣[3x2y﹣2(xy2﹣x2y)].其中x=2,y=﹣1.64.先化简,再求值:,其中,y=2008.65.先化简,再求值:5a2﹣3b2+[﹣(a2﹣2ab﹣b2)﹣(5a2+2ab+3b2)],其中a=1,b=﹣.66.先化简,再求值:2x2+3x+5+[4x2﹣(5x2﹣x+1)],其中x=3.67.先简化再求值:(其中x=﹣2,y=)68.先化简,再求值.2(a2b+2b3﹣ab2)+3a3﹣(2a2b﹣3ab2+3a3)﹣4b3,其中a=﹣3,b=2.69.先化简再求值:2(a2b+ab3)﹣3(a2b﹣3)﹣2ab3﹣1,其中a=2,b=﹣2.70.已知a,b满足等式,求代数式的值.71.先化简,再求值.4xy﹣[2(x2+xy﹣2y2)﹣3(x2﹣2xy+y2)],其中x=﹣,y=72.先化简,再求值:2x2+(﹣x2+3xy+2y2)﹣( x2﹣xy+2y2),其中 x=,y=3.73.先化简,再求值:(2x2﹣5xy)﹣3(x2﹣y2)+x2﹣3y2,其中x=﹣3,y=.74.先化简,再求值:5a2b+3b2﹣2(3a2b+ab2)+(4a2b﹣3b2),其中a=﹣2,b=1.75.先化简,再求值:5a﹣[a2+(5a2﹣3a)﹣6(a2﹣2a)],其中a=﹣.76.先化简再求值:3x2y﹣[2xy2﹣4(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣1.77.先化简,再求值:2(a2b+ab2)﹣3(a2b﹣3)﹣2ab2﹣1.其中a=﹣2,b=2.78.先化简,再求值:,其中x=3,y=.79.化简后再求值:x﹣2(3y2﹣2x)﹣4(2x﹣y2),其中|x﹣2|+(y+1)2=0.80.先化简,再求值,5x2﹣(3y2+5x2﹣2xy)+(﹣7xy+4y2),其中:x=﹣1,y=﹣.81.先化简,再求值:,其中x,y满足(x﹣2)2+|y+3|=0.82.先化简,再求值:2(x2﹣3xy﹣y2)﹣(2x2﹣7xy﹣2y2),其中x=4,y=﹣1时.83.求代数式的值:2(3xy+4x2)﹣3(xy+4x2),其中x=﹣3,.84.先化简,再求值:5(a2b﹣ab2)﹣(ab2+3a2b),其中85.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b)﹣4(3a2b﹣ab2),其中a=﹣2,b=.86.先化简,再求值:(a2b﹣2ab2﹣b3)÷b+(b﹣a)(b+a),其中a=﹣,b=2012.87.先化简,再求值:,其中.88.先化简,再求值:4m3﹣(3m2+5m﹣2)+2(3m+m2﹣2m3)﹣1,其中m=2011.89.先化简,再求值 2(3x2﹣x+4)﹣3(2x2﹣2x+3),其中.90.先化简,再求值.2(2xy2﹣y2)﹣(4xy2+y2﹣x2y)﹣y2,其中x=,y=﹣.整式化简求值90题参考答案:1.原式=6a2﹣2ab﹣6a2+3ab=ab,当a=﹣2,b=3时,原式=ab=﹣2×3=﹣6.2.原式=6a2b+3a2b﹣5ab2﹣10a2b+6ab2=﹣a2b+ab2把a=﹣2,b=代入上式得:原式=﹣(﹣2)2×+(﹣2)×2=﹣2﹣=﹣2.3.原式=3x2y2﹣5xy2+4xy2﹣3﹣2x2y2=x2y2﹣xy2﹣3∴当x=﹣3,y=2时,原式=454.原式=5ab2+3a2b﹣3a2b+2ab2(4分)=7ab2.(6分)当a=2,b=﹣1时,原式=7×2×(﹣1)2(7分)=14.5.原式=2x2﹣y2+2y2﹣x2﹣3x2﹣6y2=﹣2x2﹣5y2.当x=3,y=﹣2时,原式=﹣18﹣20=﹣38.6.﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)]=﹣x2﹣3x+5+[4x2﹣3x2+x+y]=﹣2x+6y,7.原式=5x2﹣(x2+5x2﹣2x﹣2x2+6x)=x2﹣4x当x=时,上式=8.原式=6a2﹣6ab﹣12b2﹣6a2+12b2=﹣6ab,当a=﹣,b=﹣8时,原式=﹣6×(﹣)×(﹣8)=﹣24.9.=﹣a2﹣9a+7当a=﹣2时,原式=﹣(﹣2)2﹣9×(﹣2)+7=﹣4+18+7=21.10.∵|x﹣y+1|+(x﹣5)2=0,则x﹣y+1=0,x﹣5=0,解得x=5,y=6.(﹣3x2﹣4y)﹣(2x2﹣5y+6)+(x2﹣5y﹣1)=﹣3x2﹣4y﹣2x2+5y﹣6+x2﹣5y﹣1=﹣4x2﹣4y﹣7=﹣100﹣24﹣7=﹣13111.(1)原式=a2b+ab2,当a=﹣1,b=2时,原式=(﹣1)2×2+(﹣1)×22,=﹣2;(2)原式=2x2﹣xyz﹣2x2+2y2﹣2xyz﹣xyz﹣2y2,=﹣4xyz,当x=1,y=2,z=﹣3时,原式=﹣4×1×2×(﹣3)=2412.原式=x2y﹣2xy+x2y+xy=2x2y﹣xy,当x=﹣1,y=﹣2时,原式=2×(﹣1)2×(﹣2)﹣(﹣1)×(﹣2)=﹣6.13.∵|x﹣2|+|y+1|=0,∴x﹣2=0,y+1=0,解得x=2,y=﹣1,原式=5xy2﹣2x2y+3xy2﹣4xy2+2x2y,=4xy2,=4×2×1,=814.原式=﹣9y+6x2+3y﹣3x2=3x2﹣6y,由x=﹣2,y=﹣得:原式=12+2=1415.∵|x﹣2a|+(y﹣3)2=0∴x=2a,y=3∵B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+2x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣4x﹣4y=﹣7x﹣5y又B﹣2A=a∴﹣7×2a﹣5×3=a∴a=﹣116.(1)4M﹣3N=4(﹣xy2+3x2y﹣1)﹣3(4x2y+2xy2﹣x)=﹣4xy2+12x2y﹣4﹣12x2y﹣6xy2+3x=﹣10xy2+3x﹣4;(2)当x=﹣2,y=1时,4M﹣3N=﹣10×(﹣2)×1+3×(﹣2)﹣4=20﹣6﹣4=10.17.(1)原式=(5x2﹣3x)﹣2(2x﹣3)+7x2=12x2﹣7x+6,当x=﹣2时,原式=12×(﹣2)2﹣7×(﹣2)+6=68;(2)原式=2a﹣[4a﹣7b﹣2+6a+4b],=2a﹣[10a﹣3b﹣2],=﹣8a+3b+2,当a=,b=时,原式=618.原式=5xy+15x2﹣10y﹣3xy﹣15x2+6y=2xy﹣4y,当x=,y=﹣1时,原式=2××(﹣1)﹣4×(﹣1)=3.19.(1)原式=3y﹣1+2y﹣2=5y﹣3;(2)原式=x﹣2x+y2﹣x+y2=﹣3x+y2当x=﹣2,y=时,原式=﹣3×(﹣2)+()2=6+=620.(5a+2a2﹣3+4a3)﹣(﹣a+4a3+2a2)=5a+2a2﹣3+4a3+a﹣4a3﹣2a2=(5a+a)+(2a2﹣2a2)﹣3+(4a3﹣4a3)=6a﹣3当a=1时原式=6×1﹣3=6﹣3=321.化简代数式得,原式=1+a+b;当a=3时,b=1,代数式的值为5;当a=﹣3时,b=﹣5,代数式的值为﹣7.22.a2﹣(2a2+2ab ﹣b2)+(a2﹣ab ﹣b2)=a2﹣2a2﹣2ab+b2+a2﹣ab ﹣b2=﹣a2﹣3ab.当a=3,b=﹣2时,原式=﹣×32﹣3×3×(﹣2)=﹣3+18=1523.原式=2a2﹣ab+b2其中a=﹣1,b=2.所以2a2﹣ab+b2=8 24.原式=3a2b﹣(2ab2﹣2ab+3a2b+ab)+3ab2=ab2+ab;将a=3,b=﹣代入得,原式=ab2+ab=﹣25. ∵3x a﹣2y2z3和﹣4x3y b﹣1z3是同类项∴a﹣2=3,b﹣1=2∴a=5,b=3.3a2b﹣[2ab2﹣2(a2b+2ab2)]=3a2b﹣[2ab2﹣2a2b﹣4ab2]=3a2b﹣2ab2+2a2b+4ab2=5a2b+2ab2当a=5,b=3时,原式=5×52×3+2×5×32=465.26.﹣8xy2+3xy﹣2(xy2﹣xy)=﹣8xy2+3xy﹣2xy2+2xy=﹣10xy2+5xy.当x=,y=﹣2时,原式=﹣10xy2+5xy=﹣10××(﹣2)2+5××(﹣2)=﹣8﹣2=﹣1027.(1)2A﹣B=2(3x2+3y2﹣5xy)﹣(2xy﹣3y2+4x2)=6x2+6y2﹣10xy﹣2xy+3y2﹣4x2=2x2+9y2﹣12xy;(2)当时,2A﹣B=2x2+9y2﹣12xy=3128. 原式=2a2b+2ab2﹣2ab2+1﹣a2b﹣2=a2b﹣1,当a=﹣2,b=时,∴原式=a2b﹣1=(﹣2)2×﹣1=2﹣1=1.29.2(a2﹣2ab)﹣3(a2+2ab)=2a2﹣4ab﹣3a2﹣6ab=﹣a2﹣10ab当a=﹣1,b=2时,原式=﹣(﹣1)2﹣10×(﹣1)×2=﹣1+20=19.30.(1)A=4(2﹣x2)﹣2x,B=2x2﹣x+3.A﹣2B=4(2﹣x2)﹣2x﹣2(2x2﹣x+3)=﹣8x2+2当x=时,A﹣2B=﹣8×()2+2=;(2)A=4(2﹣x2)﹣2x,B=2x2﹣x+3,即:2B=4x2﹣2x+6,由于A与2B互为相反数,即:A+2B=0,4(2﹣x2)﹣2x+4x2﹣2x+6=04x=14,解得:x=所以,x 的值为:.31.原式=5abc﹣2a2b﹣4ab2+a2b+3abc=8abc﹣a2b﹣4ab2;a=﹣2,b=﹣1,c=3时,原式=8×2×1×3﹣4×(﹣1)﹣4×(﹣2)×1=60.32.2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y=2x2y+2 xy2﹣2x2y+2x﹣2xy2﹣2y=2x﹣2y;把x=﹣2,y=2代入上式,原式=2×(﹣2)﹣2×2=﹣833.原式=﹣2ab+6a2﹣(a2﹣5ab+5a2+6ab)=﹣2ab+6a2﹣a2+5ab﹣5a2﹣6ab=﹣3ab;当a=2,b=﹣3时,原式=﹣3×2×(﹣3)=1834.原式=3a3﹣[a3﹣3b+6a2﹣7a]﹣2a3+6a2+8a﹣2b=3a3﹣a3+3b﹣6a2+7a﹣2a3+6a2+8a﹣2b=15a+b当a=2,b=﹣1时,则原式=15×2﹣1=29.35.原式=5a2b+4b3﹣2ab2+3a3﹣2a3+5ab2﹣3b3﹣2a2b=a3+3a2b+3ab2+b3,当a=﹣2,b=3时,原式=(﹣2)3+3×(﹣2)2×3+3×(﹣2)×32+33=﹣8+36﹣54+27=1.36.=a﹣2ab﹣2b 2a+2ab+b2=(+)a+(﹣2+2)ab+(﹣2+1)b2=2a+0﹣b2=2a﹣b2把a=1,b=﹣2代入上式,得上式=2×1﹣(﹣2)2=2﹣4=﹣2.37.原式=a2﹣3ab﹣2b2﹣a2+2b2(3分)=﹣3ab,当,b=﹣8时,原式=﹣3×()×(﹣8)(7分)=﹣12.38.原式=2x2﹣0.5+3x﹣4x+4x2﹣2+x+2.5=6x2;当x=时,原式=6×=.39.原式=3x3﹣6y2﹣3xy﹣3x3+6y2﹣2xy=﹣5xy,当x=3,y=1时,原式=﹣5×3×1=﹣15.40.原式=3x2y﹣[2xy2﹣(2xy﹣3x2y)+xy]+3xy2=3x2y﹣(2xy2﹣2xy+3x2y+xy)+3xy2=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy+xy2,当x=,y=﹣5时,原式=×(﹣5)+×25=.41.原式=8mn﹣[4m2n﹣6mn2﹣mn]﹣29mn2=8mn﹣4m2n+6mn2+mn﹣29mn2=9mn﹣4m2n﹣23mn2当m=﹣1,n=时原式=9×(﹣1)×﹣4×12×﹣23×(﹣1)×=﹣﹣2+=﹣.42.原式=4ab﹣3b2﹣2b2=4ab﹣5b2,当a=1,b=﹣3时,原式=4×1×(﹣3)﹣5×(﹣3)2=﹣57.43.原式=3x2+4x﹣2x2﹣2x2﹣4x+2﹣x+1=﹣x2﹣x+3,当x=﹣2时,原式=﹣(﹣2)2﹣(﹣2)+3=1 44.(2x2﹣x﹣1)﹣(x2﹣x ﹣)+(3x2﹣3)=2x2﹣x﹣1﹣x2+x++3x2﹣3=4x2﹣4,当x=,原式=1﹣4=﹣3.45.原式=3x2﹣3xy﹣3x2+5xy=2xy,当x=﹣2,y=﹣3时,原式=2×(﹣2)×(﹣3)=12.46.原式=3xy﹣x2y﹣2xy+x2y+2…(1分)=xy+2…(2分)∵xy+1=0,∴xy=﹣1…(3分)∴原式=﹣1+2=1…(447.原式=12x2y﹣4xy2﹣2xy2﹣6x2y=6x2y﹣6xy2当x=,y=﹣1时,原式=6x2y﹣6xy2=6xy(x﹣y)=6×(﹣)×(+1)==﹣4.48.原式=x2﹣y ﹣x2﹣y=﹣x2﹣y,当x=﹣3,y=﹣时原式=﹣×(﹣3)2﹣(﹣)=﹣3+=﹣.49.原式=4xy﹣2x2﹣5xy+y2+2x2+6xy)=5xy+y2.当x=﹣2,y=1时,原式=5×(﹣2)+1=﹣9.50.(8xy﹣3x2)﹣5xy﹣3(xy﹣2x2+3)=8xy﹣3x2﹣5xy﹣3xy+6x2﹣9=3x2﹣9,当时,原式=51.原式=x2﹣[7x﹣2x+﹣2x2]+=x2﹣7x+2x ﹣+2x2+=3x2﹣5x当x=﹣时,原式=3×(﹣)2+5×=+=.52.3a2﹣7a+[3a﹣2(a2﹣2a﹣1)]=3a2﹣7a+3a﹣2a2+4a+2=a2+2,当d=﹣2时,原式=4+4=8.53.﹣x2﹣(3x﹣5y)+[4x2﹣(3x2﹣x﹣y)]=﹣x2﹣3x+5y+[4x2﹣3x2+x+y]=﹣x2﹣3x+5y+4x2﹣3x2+x+y=﹣2x+6y.当x=,y=时,原式=﹣2×+6×=154.原式=x﹣x+y2﹣x+y2=﹣2x+y2,当x=2,y=时,原式=﹣2×2+()2=﹣4+=﹣.55.原式=x2y﹣3xy2﹣5x2y+4xy2=﹣x2y+xy2,当x=2,y=﹣1时,原式=﹣×22×(﹣1)+2×(﹣1)2=1656.=a3﹣2b3+2ab2﹣a2b﹣2ab2+2b3=a3﹣a2b,把a=1,b=﹣代入得:原式=13﹣12×=1+=.57.原式=3x2﹣3xy﹣4x2+3xy+1=﹣x2+1,当x=2,y=﹣3时,原式=﹣22+1=﹣3.58.原式=9x+6x2﹣3x+2x2﹣6x+6=8x2+6,当x=﹣时,原式=8×(﹣)2+6=2+6=8.59.原式=2x2y﹣2xy2﹣2﹣2x2y+xy2+y=﹣xy2+y﹣2,当x=2,y=﹣1时,原式=﹣2×(﹣1)2﹣1﹣2=﹣2﹣1﹣2=﹣5.60.原式=2m2n+2mn2﹣2m2n+2﹣3+mn=2mn2+mn﹣1,当m=﹣2,n=时,原式=2×(﹣2)×()2+(﹣2)×﹣1=﹣361.3x﹣5(x﹣2xy2)+8(x﹣3xy2)=3x﹣5x+10xy2+8x ﹣24xy2=6x﹣14xy2,当x=4,y=﹣时,原式=6×4﹣14×4×(﹣)2=24﹣126=﹣102.62.(2x2﹣x+1)﹣4(x﹣x2+)=2x2﹣x+1﹣4x+4x2﹣2=6x2﹣x﹣1,当x=﹣2时,原式=6×(﹣2)2﹣×(﹣2)﹣1=24+9﹣1=3263.原式=﹣5x2y﹣3x2y+2xy2﹣2x2y=2xy2,当x=2,y=﹣1时,原式=2×2×(﹣1)2=4.故答案为464.原式=﹣x2+x﹣2y+x+2y=﹣x2+x,当x=,y=2008时,原式=﹣()2+×=﹣+=.65.原式=5a2﹣3b2﹣a2+2ab+b2﹣5a2﹣2ab﹣3b2=﹣a2﹣5b2,当a=1,b=﹣时,原式=﹣1﹣5×=﹣66.原式=2x2+3x+5+[4x2﹣5x2+x﹣1]=2x2+3x+5+4x2﹣5x2+x﹣1=2x2+4x2﹣5x2+3x+x+5﹣1=x2+4x+4,∵x=3,∴x2+4x+4=9+12+4=25.67.原式=x2﹣xy+y2﹣x2+xy﹣y2=﹣x2﹣xy,当x=﹣2,y=时,原式=﹣2+=﹣1.68.原式=2a2b+4b3﹣2ab2+3a3﹣2a2b+3ab2﹣3a3﹣4b3=ab2,当a=﹣3,b=2时,原式=﹣3×22=﹣12.69.原式=2a2b,2ab3﹣3a2b+9﹣2ab3﹣1=2a2b﹣3a2b+2ab3﹣2ab3+9﹣1=﹣a2b+8∵a=2,b=﹣2,∴﹣a2b+8=8+8=1670.∵,∴a+=0,3b+2=0,∴a=﹣,b=﹣,=a ﹣b+a+b ﹣a+b+a+b ﹣a+ b=(+﹣+﹣)a+(﹣++++)b=a+ b=×(﹣)+×(﹣)=﹣.71.∵4xy﹣[2(x2+xy﹣2y2)﹣3(x2﹣2xy+y2)]=4xy﹣(2x2+2xy﹣4y2﹣3x2+6xy﹣3y2)=x2﹣4xy+7y2,∴当x=﹣,y=时,原式=x2﹣4xy+7y2=(﹣)2﹣4×(﹣)×+7×()2=+1+=372.原式=2x2﹣x2+3xy+2y2﹣x2+xy﹣2y2,=(2﹣1﹣1)x2+(3+1)xy+(2﹣2)y2,=4xy,当x=,y=3时,原式=4××3=673.原式=2x2﹣5xy﹣3x2+3y2+x2﹣3y2=(2﹣3+1)x2+(3﹣3)y2﹣5xy=﹣5xy,当x=﹣3,y=时,原式=(﹣5)×(﹣3)×=574.原式=5a2b+3b2﹣6a2b﹣2ab2+4a2b﹣3b2=3a2b﹣2ab2,当a=﹣2,b=1时,原式=12+4=16.75.原式=5a﹣a2﹣5a2+3a+6a2﹣12a=8a﹣12,当a=﹣时,原式=﹣2﹣12=﹣14.76.原式=3x2y﹣[2xy2﹣2xy+3x2y+xy]+3xy2=3x2y﹣2xy2+xy﹣3x2y+3xy2=xy2+xy,把x=3,y=﹣1代入得:原式=xy2+xy=077.2(a2b+ab2)﹣3(a2b﹣3)﹣2ab2﹣1,=2a2b+2ab2﹣3a2b+9﹣2ab2﹣1,=﹣a2b+8,当a=﹣2,b=2时,原式=﹣(﹣2)2×2+8=0.78.原式=﹣3x+5y2﹣+=﹣4x+y2,当x=3,y=时,原式=(﹣4)×3+×()2=0.79.∵|x﹣2|+(y+1)2=0,∴x=2,y=﹣1,x﹣2(3y2﹣2x)﹣4(2x﹣y2)=x﹣6y2+4x﹣8x+4y2=﹣3x﹣2y2,当x=2,y=﹣1时,原式=﹣6﹣2=﹣8.80.原式=5x2﹣3y2﹣5x2+2xy﹣7xy+4y2=﹣5xy+y2,当x=﹣1,y=﹣时,原式=﹣5×(﹣1)×(﹣)+(﹣)2=﹣+=﹣.81.原式==﹣3x+y2,由(x﹣2)2+|y+3|=0,知x﹣2=0,y+3=0,解得x=2,y=﹣3,代入化简结果得,原式=﹣3×2+(﹣3)2=382.原式=x2﹣6xy﹣2y2﹣2x2+7xy+2y2=﹣x2+xy,当x=4,y=﹣1时,原式=﹣42+4×(﹣1)=﹣2083.∵原式=5a2b﹣5ab2﹣ab2﹣3a2b=2a2b﹣6ab2,∴当时,原式==.84.∵原式=5a2b﹣5ab2﹣ab2﹣3a2b=2a2b﹣6ab2,∴当时,原式==.85.原式=15a2b﹣5ab2﹣ab2﹣3a2b﹣12a2b+4ab2=﹣2ab2,当a=﹣2,b=时,原式=﹣2×(﹣2)×=186.原式=a2﹣2ab﹣b2+b2﹣a2=﹣2ab,当a=﹣,b=2012时,原式=﹣2×(﹣)×2012=2012.87.原式=2x﹣y﹣6x+y=﹣4x,当x=﹣,y=2010时,原式=﹣4×(﹣)=1.88.原式=6x2﹣2x+8﹣6x2+6x﹣9=4x﹣1,当时,原式==﹣7.89.原式=6x2﹣2x+8﹣6x2+6x﹣9=4x﹣1,当时,原式==﹣7.90.原式=4xy2﹣y2﹣4xy2﹣y2+x2y ﹣y2=﹣3y2+x2y.当x=,y=﹣时,原式=﹣3×(﹣)2+()2×(﹣)==.。
整式的加减概念总汇1、整式加减的有关概念(1)同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
几个常数项也是同类项。
如: 6x 2y 2和-4x 2y 2就是同类项,-3和5也是同类项;但b a 24与23ab 就不是同类项,因为相同字母的指数不相同。
(2)合并同类项:把多项式中的同类项合并成一项,即把同类项的系数相加,字母和字母的指数不变。
如:6x 2y 2+(-4x 2y 2)=2x 2y 2说明:①只有同类项才可合并,不是同类项的不能合并;②合并同类项,只合并系数,字母与字母的指数不变;③合并同类项后若其系数是带分数,要把它化成假分数;④多项式中,如果两同类项的系数互为相反数,合并后这两项互相抵消,结果为0。
(3)去括号法则:括号前面是正号,把括号和括号前的正号去掉后,括号里的各项不改变符号;括号前是负号,把括号和括号前的负号去掉,括号里的各项都要改变符号。
如:A +(5A +3B )—(A —2B )=A +5A +3B -A +2B =5A +5B 。
说明:去括号法则相当于乘法分配律的应用,如:A +(5A +3B )—(A —2B )=A +1×(5A +3B )+(-1)×(A -2B )=A +5A +3B +(-1)A +(-1)×(-2B )=A +5A +3B -A +2B =5A +5B 。
如果括号前面有数字因数,就按乘法分配律去括号。
如: 21(3a 2-2ab +4b 2)-2(43a 2-ab -3b 2) =23a 2-ab +2b 2-23a 2+2ab +6b 2=ab +8b 2 (4)添括号法则:给括号前添正号,括在括号里的各项都不改变符号;给括号前添负号,括到括号里的各项都要改变符号。
说明:去括号与添括号是互逆的过程,它们的依据是乘法分配律的顺逆运用。
可把+(a -b )看作(+1)(a -b ),把-(a -b )看作(-1)(a -b )则有+(a -b )=a -b , -(a -b )= -a +b ,这样乘法分配律的一个应用便是去括号;添括号可理解为乘法分配律的逆用。
第07讲整式加减(5大考点)考点考向一、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.要点:(1)判断几个项是否是同类项有两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关.(3)一个项的同类项有无数个,其本身也是它的同类项.二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.要点:合并同类项的根据是乘法的分配律逆用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中照抄;(2)系数相加(减),字母部分不变,不能把字母的指数也相加(减).三、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点:(1)去括号法则实际上是根据乘法分配律得到的结论:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,不改变式子的值,它属于多项式的恒等变形.四、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的. (2)去括号和添括号的关系如下:如:()a b c a b c +−+−垐垐垎噲垐垐添括号去括号, ()a b c a b c −+−−垐垐垎噲垐垐添括号去括号五、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项. 要点:(1)整式加减的一般步骤是:①先去括号;②再合并同类项. (2)两个整式相减时,减数一定先要用括号括起来.(3)整式加减的最后结果的要求:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.一.同类项(共4小题)1.(2021秋•泗阳县期末)下列两个项是同类项的是( ) A .ab 2与a 2b B .4a 与﹣24 C .2a 2bc 与2ab 2cD .﹣4xy 与2yx【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:A .所含相同字母的指数不相同,故A 不符合题意; B .所含字母不相同,故B 不符合题意;C .所含相同字母的指数不尽相同,故C 不符合题意;D .所含字母相同且相同字母的指数也相同,故D 符合题意; 故选:D .【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.2.(2021秋•宿城区期末)若单项式2x 1﹣my 3与单项式﹣3x 2y 2﹣n是同类项,则m +n = ﹣2 .【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出m ,n 的值,再代入计算即可. 【解答】解:∵单项式2x 1﹣my 3与单项式﹣3x 2y 2﹣n是同类项,∴1﹣m =2,2﹣n =3, 解得m =﹣1,n =﹣1,考点精讲∴m+n=﹣2.故答案为:﹣2.【点评】本题考查同类项,关键是掌握同类项的定义.3.(2021秋•江阴市期末)已知3x2y m和x n y3是同类项,那么m+n的值是()A.3B.4C.5D.6【分析】根据同类项的定义,所含字母相同,相同字母的指数也相同,先求出m,n的值,然后进行计算即可.【解答】解:由题意得:n=2,m=3,∴m+n=3+2=5,故选:C.【点评】本题考查了同类项,熟练掌握同类项的定义是解题的关键.4.(2021秋•广陵区期末)若x1+2m y4与﹣2x3y n+1是同类项,则m﹣n=﹣2.【分析】根据同类项的定义,所含字母相同,相同字母的指数也相同,先求出m,n的值,然后进行计算即可.【解答】解:由题意得:2m+1=3,n+1=4,∴m=1,n=3,∴m﹣n=1﹣3=﹣2,故答案为:﹣2.【点评】本题考查了同类项,熟练掌握同类项的定义是解题的关键.二.合并同类项(共6小题)5.(2021秋•高邮市期末)若关于x、y的单项式x a+7y5与﹣2x3y3b﹣1的和仍是单项式,则a b 的值是16.【分析】根据题意可知3x a+7y5与﹣2x3y3b﹣1是同类项,从而得到a=﹣4,b=2,然后代入计算即可.【解答】解:∵关于x、y的单项式3x a+7y5与﹣2x3y3b﹣1的和仍是单项式,∴3x a+7y5与﹣2x3y3b﹣1是同类项.∴a+7=3,5=3b﹣1,∴a=﹣4,b=2,∴a b=(﹣4)2=16,故答案为:16.【点评】此题考查了合并同类项及单项式,掌握含有相同字母,相同字母的指数相同的单项式叫同类项是解决此题关键.6.(2021秋•射阳县校级期末)若3x m+5y2与23x8y n+4的差是一个单项式,则代数式n m的值为()A.﹣8B.6C.﹣6D.8【分析】根据同类项的定义,所含字母相同,相同字母的指数也相同,求出m,n的值,然后代入式子中进行计算即可解答.【解答】解:由题意得:m+5=8,n+4=2,∴m=3,n=﹣2,∴n m=(﹣2)3=﹣8,故选:A.【点评】本题考查了合并同类项,代数式求值,单项式,熟练掌握同类项的定义是解题的关键.7.(2021秋•建湖县期末)关于m、n的单项式﹣2m a n b与3m2a﹣1n2的和仍为单项式,则这两个单项式的和为mn2.【分析】根据单项式的定义、合并同类项法则解决此题.【解答】解:由题意得,2a﹣1=a,b=2.∴a=1.∴这两个单项式的和为﹣2mn2+3mn2=mn2.故答案为:mn2.【点评】本题主要考查单项式、合并同类项,熟练掌握单项式的定义、合并同类项的法则是解决本题的关键.8.(2021秋•大丰区期末)若代数式﹣2x a y4与5x²y2+b可以合并同类项,则a b=4.【分析】根据同类项的定义,所含字母相同,相同字母的指数也相同,进行计算即可解答.【解答】解:∵代数式﹣2x a y4与5x²y2+b可以合并同类项,∴a=2,2+b=4,∴a=2,b=2,∴a b=22=4,故答案为:4.【点评】本题考查了合并同类项,熟练掌握同类项的定义是解题的关键.9.(2021秋•东台市期末)若x m﹣1y3与﹣5x2y2n﹣1的和是单项式,则m+n=5.【分析】根据同类项的定义,所含字母相同,相同字母的指数也相同,进行计算即可解答.【解答】解:∵x m﹣1y3与﹣5x2y2n﹣1的和是单项式,∴m﹣1=2,2n﹣1=3,∴m=3,n=2,∴m+n=5,故答案为:5.【点评】本题考查了合并同类项,熟练掌握同类项的定义是解题的关键.10.(2021秋•滨湖区期末)定义:若x﹣y=m,则称x与y是关于m的相关数.(1)若5与a是关于2的相关数,则a=3.(2)若A与B是关于m的相关数,A=3mn﹣5m+n+6,B的值与m无关,求B的值.【分析】(1)根据相关数的定义得到5﹣a=2,从而得到a的值;(2)根据相关数的定义得到A﹣B=m,从而B=(3n﹣6)m+n+6,根据B的值与m无关得到3n﹣6=0,求出n的值,从而得到B的值.【解答】解:(1)∵5﹣a=2,∴a=3,故答案为:3;(2)∵A﹣B=m,∴3mn﹣5m+n+6﹣B=m,∴B=3mn﹣5m+n+6﹣m=3mn﹣6m+n+6=(3n﹣6)m+n+6,∵B的值与m无关,∴3n﹣6=0,∴n=2,∴B=2+6=8.答:B的值为8.【点评】本题考查了合并同类项,新定义问题,掌握与m无关就合并同类项后让m前面的系数等于0是解题的关键.三.去括号与添括号(共3小题)11.(2021秋•海门市期末)计算﹣(4a﹣5b),结果是()A.﹣4a﹣5b B.﹣4a+5b C.4a﹣5b D.4a+5b【分析】根据括号前是负号,去掉括号和负号,括号内各项变号即可得答案.【解答】解:﹣(4a﹣5b)=﹣4a+5b,故选:B.【点评】本题考查去括号,解题的关键是掌握去括号法则:括号前是负号,去掉括号和负号,括号内各项变号.12.(2021秋•仪征市期末)去括号:a﹣(﹣2b+c)=a+2b﹣c.【分析】直接利用如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进而得出答案.【解答】解:a﹣(﹣2b+c)=a+2b﹣c.故答案为:a+2b﹣c.【点评】此题主要考查了去括号法则,正确掌握去括号法则是解题关键.13.(2021秋•大丰区期末)下列各式中正确的是()A.﹣(a﹣b)=﹣a﹣b B.2(a﹣b)=2a﹣bC.﹣(a﹣b﹣c)=b+c﹣a D.﹣(a+b﹣c)=a﹣b+c【分析】利用去括号法则解答即可.【解答】解:A、﹣(a﹣b)=﹣a+b,原变形错误,故此选项不符合题意;B、2(a﹣b)=2a﹣2b,原变形错误,故此选项不符合题意;C、﹣(a﹣b﹣c)=b+c﹣a,原变形正确,故此选项符合题意;D、﹣(a+b﹣c)=﹣a﹣b+c,原变形错误,故此选项不符合题意.故选:C.【点评】此题考查了去括号法则,解题的关键是熟练掌握去括号法则.要注意:括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.四.整式的加减(共2小题)14.(2022春•靖江市期末)小林和小明在信息技术课上设计了一个小游戏程序:开始时两人的屏幕上显示的数分别是9和5,如图,每按一次屏幕,小林的屏幕上的数就会加上a2,同时小明的屏幕上的数就会减去2a,且均显示化简后的结果.如表就是按一次后屏幕显示的结果.根据以上的信息回答问题:从开始起按四次后.开始数按一次后按二次后按三次后按四次后小林99+a2小明55﹣2a9+a2;小明5﹣8a;(2)判断这两个结果的大小,并说明理由.【分析】(1)根据题目要求及规律即可得出答案,(2)利用作差法,根据完全平方公式和平方的非负性即可得出答案.【解答】解:(1)根据题意知:小林屏幕上第一次显示的结果是9+a2,第二次显示的是9+2a2,第三次显示的是9+3a2,第四次显示的是9+4a2,小明屏幕上第一次显示的结果是5﹣2a,第二次显示的是5﹣4a,第三次显示的是5﹣6a,第四次显示的是5﹣8a,故答案为:9+4a2,5﹣8a.(2)9+4a2﹣(5﹣8a);=9+4a2﹣5+8a=4a2+8a+4=4(a2+2a+1)=4(a+1)2;∵(a+1)2≥0;∴9+4a2﹣(5﹣8a)≥0;∴9+4a2≥5﹣8a;【点评】本题主要考查列代数式,作差法比较大小,正确理解题意和掌握作差法比较大小是解题的关键.15.(2022春•建邺区校级期中)钟山植物园中现有A、B两个园区,已知A园区为长方形,长为(x+y)米,宽为(x﹣y)米;B园区为正方形,边长为(x+3y)米,现根据实际需要对A园区进行整改,长增加(11x﹣y)米,宽减少(x﹣2y)米.(1)整改后A园区的长为12x米,宽为y米;(用代数式表示)(2)若整改后A园区的长比宽多350米,且整改后两园区的周长之和为980米,求x、y 的值.【分析】(1)根据题意列出式子进行运算即可;(2)根据等量关系:整改后A区的长比宽多350米;整改后两园区的周长之和为980米;列出方程组求出x,y的值.【解答】解:(1)整改后A园区的长为:x+y+11x﹣y=12x(米),宽为:x﹣y﹣(x﹣2y)=y(米),故答案为:12x米,y米;(2)依题意有:,解得.【点评】此题考查列代数式,整式的加减,找出问题中的已知条件和未知量及它们之间的关系是解决问题的关键.五.整式的加减—化简求值(共3小题)16.(2022春•泰州期末)已知:A=3x2+2xy+3y﹣1,B=x2﹣xy.(1)计算:A﹣3B;(2)若A﹣3B的值与y的取值无关,求x的值.【分析】(1)利用去括号的法则去掉括号再合并同类项即可;(2)令y的系数的和为0,即可求得结论.【解答】解:(1)A﹣3B=(3x2+2xy+3y﹣1)﹣3(x2﹣xy)=3x2+2xy+3y﹣1﹣3x2+3xy=5xy+3y﹣1;(2)∵A﹣3B=5xy+3y﹣1=(5x+3)y﹣1,又∵A﹣3B的值与y的取值无关,∴5x+3=0,∴x=﹣.【点评】本题主要考查了整式的加减,正确利用去括号的法则进行运算是解题的关键.17.(2022•通州区校级开学)化简(求值):(1)(m+2n)﹣(m﹣2n);(2)3a2+(4a2﹣2a﹣1)﹣2(3a2﹣a+1),其中a=2.【分析】(1)去括号,合并同类项即可得出答案;(2)去括号,合并同类项化简后,代入计算,即可得出答案.【解答】解:(1)(m+2n)﹣(m﹣2n)=m+2n﹣m+2n=4n;(2)3a2+(4a2﹣2a﹣1)﹣2(3a2﹣a+1)=3a2+4a2﹣2a﹣1﹣6a2+2a﹣2=a 2﹣3,当a =2时,原式=22﹣3=1.【点评】本题考查了整式的加减—化简求值,掌握去括号法则,合并同类项法则是解决问题的关键.18.(2022春•江阴市期中)化简求值 已知A =2x 2+3xy ﹣2x ﹣1,B =﹣x 2+xy +x , (1)化简3A +6B ;(2)当x =﹣2,y =1时,求代数式3A +6B 的值.【分析】(1)把A =2x 2+3xy ﹣2x ﹣1,B =﹣x 2+xy +x 代入3A +6B 后,去括号、合并同类项化简即可;(2)把x =﹣2,y =1代入计算,即可得出结果. 【解答】解:(1)∵A =2x 2+3xy ﹣2x ﹣1,B =﹣x 2+xy +x , ∴3A +6B=3(2x 2+3xy ﹣2x ﹣1)+6(﹣x 2+xy +x ) =6x 2+9xy ﹣6x ﹣3﹣6x 2+6xy +6x =15xy ﹣3;(2)当x =﹣2,y =1时,15xy ﹣3=15×(﹣2)×1﹣3=﹣30﹣3=﹣33.【点评】本题考查了整式的加减—化简求值,掌握去括号法则,合并同类项法则将整式正确化简是解决问题的关键.一、单选题1.下列计算正确的是( ) A .2325a a a += B .33a a −= C .325235a a a += D .2222a b a b a b −+=【答案】D【分析】根据合并同类项:系数相加字母部分不变,可得答案. 【详解】解:A 、325a a a +=,故A 错误; B 、32a a a −=,故B 错误; C 、3223a a +不能合并,故C 错误; D 、2222a b a b a b −+=,故D 正确; 故选:D .【点睛】本题考查了同类项,利用合并同类项法则:系数相加字母部分不变.巩固提升2.(2021·江苏七年级期末)下列各式中,正确的是( ) A .22a b ab += B .224235x x x += C .()3434x x −−=−− D .2222a b a b a b −+=【答案】D【分析】根据整式加减运算法则判断选项的正确性. 【详解】A 选项错误,22a b ab +≠; B 选项错误,222235x x x +=; C 选项错误,()34312x x −−=−+; D 选项正确. 故选:D .【点睛】本题考查整式的加减运算法则,解题的关键是掌握整式的加减运算法则. 3.(2021·江苏南京·七年级期末)若M =3x 2+5x+2,N =4x 2+5x+3,则M 与N 的大小关系是( ) A .M <N B .M >N C .M ≤N D .不能确定【答案】A【分析】直接利用整式的加减运算法则结合偶次方的性质得出答案. 【详解】解:∵M =3x 2+5x+2,N =4x 2+5x+3, ∴N ﹣M =(4x 2+5x+3)﹣(3x 2+5x+2) =4x 2+5x+3﹣3x 2﹣5x ﹣2 =x 2+1, ∵x 2≥0, ∴x 2+1>0, ∴N >M . 故选:A .【点睛】本题考查了整式的加减,正确合并同类项是解题的关键.4.(2021·常州市同济中学)已知P =a 3﹣2ab +b 3,Q =a 3﹣3ab +b 3,则当a =﹣5,b =25时,P 、Q 关系为( )A .P =QB .P >QC .P ≥QD .P <Q【答案】D【分析】利用作差法得出P -Q =ab ,进而得出答案. 【详解】解:P =a 3-2ab +b 3,Q =a 3-3ab +b 3, ∴P -Q =a 3-2ab +b 3-(a 3-3ab +b 3) =a 3-2ab +b 3-a 3+3ab -b 3=ab ,∵a =-5,b =25,∴原式=-5×25=-2.即P -Q <0, ∴P <Q . 故选:D .【点睛】本题主要考查了整式的加减,正确利用作差法分析是解题关键. 5.(2020·江苏)下列去括号正确的是( ) A .()a b c a b c +−=++ B .()a b c a b c −−=−− C .()a b c a b c −−=−+ D .()a b c a b c +−=−+【答案】C【分析】根据去括号法则逐项分析即可.【详解】解:A. ()a b c a b c +−=+−,故不正确; B. ()a b c a b c −−=−+,故不正确; C. ()a b c a b c −−=−+,正确; D. ()a b c a b c +−=+−,故不正确; 故选C .【点睛】本题考查了去括号法则, 熟练掌握去括号是关键.当括号前是“+”号时,去掉括号和前面的“+”号,括号内各项的符号都不变号;当括号前是“-”号时,去掉括号和前面的“-”号,括号内各项的符号都要变号. 6.(2021·江苏)下列去括号中,正确的是( ) A .(a ﹣b )+c =a ﹣b ﹣c B .a ﹣(b ﹣c )=a ﹣b ﹣c C .a ﹣(﹣b +c )=a ﹣b ﹣c D .﹣(a ﹣b )﹣c =﹣a +b ﹣c 【答案】D【分析】根据去括号的方法即可求解.【详解】A 、原式=a ﹣b +c ,故本选项不符合题意.B 、原式=a ﹣b +c ,故本选项不符合题意.C 、原式=a +b ﹣c ,故本选项不符合题意.D 、原式=﹣a +b ﹣c ,故本选项符合题意.故选:D .【点睛】此题主要考查整式的加减,解题的关键是熟知去括号的方法. 7.(2021·江苏)下列计算正确的是( ) A .a 2+2a 2=3a 4B .a 2﹣b 2=0C .5a 2﹣a 2=4a 2D .2a 2﹣a 2=2【分析】根据整式的加减运算法则逐一运算即可. 【详解】A. 22223a a a +=,故A 选项错误. B .22a b −不是同类项,不能相减,故B 选项错误. C .5a 2﹣a 2=4a 2,故C 选项正确. D. 2222a a a −=,故D 选项错误. 故答案选C .【点睛】本题考查整式加减运算法则,熟记运算法则,会判断同类项即可.二、填空题 8.(2019·江苏盐城市·东台市实验中学七年级期中)去括号:()a b c −−=________. 【答案】a -b+c【分析】直接利用如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进而得出答案.【详解】解:a-(b-c )=a-b+c . 故答案为:a-b+c .【点睛】此题主要考查了去括号法则,正确掌握去括号法则是解题关键.9.(2020·南通西藏民族中学七年级期中)化简:(8)−+=________,(8)−−=_______,[(8)]−−+=_______.【答案】-8 8 8【分析】根据多重符号化简的法则化简. 【详解】解:(8)−+=-8; (8)−−=8; [(8)]−−+=8.【点睛】本题考查了多重符号化简,一般地,式子中含有奇数个“-”时,结果为负,式子中含有偶数个“-”时,结果为正.10.(2020·南师附中树人学校七年级月考)已知2230x x −−=,那么代数式252x x −+的值为________. 【答案】2【分析】对原式进行添括号,再整体代入求值即可. 【详解】由题可得,223x x −=,则原式=()252532x x −−=−=,故答案为:2.【点睛】本题考查添括号及整体代入求值,熟练掌握添括号法则是解题关键. 11.(2021·常州市同济中学)若﹣8a m b 与3a 2b 是同类项,则m =___.【分析】所含字母相同且相同字母的指数也相同的项是同类项,根据同类项定义即可求解. 【详解】解:∵﹣8a mb 与3a 2b 是同类项, ∴m =2, 故答案为:2.【点睛】本题考查同类项概念,掌握同类项概念是解题关键.12.(2021·南京外国语学校)已知3a b −=,则()232b a b +−+的值为_______. 【答案】1−【分析】将()232b a b +−+进行化简得到2+(b-a),由3a b −=得到b-a=-3,代入即可求解. 【详解】解:()232b a b +−+ =2+3b-a-2b =b-a+2 ∵3a b −=, ∴b-a=-3, ∴原式=-3+2=-1. 故答案为-1.【点睛】本题考查了整式的加减,正确将代数式化简是解题的关键. 13.(2021·江苏七年级期末)化简:()()423a b a b −+−=______. 【答案】67a b −【分析】直接去括号,合并同类项即可. 【详解】()()423a b a b −+−4423a b a b =−+− 67a b =−.故答案为:67a b −.【点睛】本题考查了整式的加减,熟练掌握去括号和合并同类项的法则是解题的关键. 14.(2021·江苏宿迁市·七年级期末)已知a +b =3,c ﹣b =12,则a +2b ﹣c 的值为_____. 【答案】﹣9.【分析】将a +2b ﹣c 化为a +b ﹣(c ﹣b ),再将a +b =3,c ﹣b =12代入计算即可. 【详解】解:∵a +b =3,c ﹣b =12, ∴a +2b ﹣c =a +b ﹣(c ﹣b ) =3﹣12 =﹣9.故答案为:﹣9.【点睛】本题考查了整式的加减,正确将原式变形是解题的关键.15.(2021·江苏)如果多项式2a 2﹣6ab 与﹣a 2﹣2mab +b 2的差不含ab 项,则m 的值为___. 【答案】3【分析】根据题意列出算式,再将多项式去括号、合并同类项,然后令ab 项的系数为0即可求出答案.【详解】解:(2a 2﹣6ab )﹣(﹣a 2﹣2mab +b 2) =2a 2﹣6ab +a 2+2mab ﹣b 2 =3a 2+(2m ﹣6)ab ﹣b 2,∵多项式2a 2﹣6ab 与﹣a 2﹣2mab +b 2的差不含ab 项, ∴2m ﹣6=0, 解得:m =3, 故答案为:3【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.16.(2020·常州市北郊初级中学)若523y x −=,则代数式4104y x −+的值是______. 【答案】:-2.【分析】从已知中求出5y ,然后整体代入,去括号合并即可. 【详解】523y x −=,5=2+3y x ,则代数式()41044223444642y x x x x x −+=−++=−−+=−, 故答案为:-2.【点睛】本题考查代数式的值问题,关键是把已知等式恒等变形,会整体代入求值是解题关键.17.(2020·泰州市姜堰区励才实验学校七年级期中)化简()3a 2b 1−−+的结果为______. 【答案】363a b −+−【分析】直接利用去括号法则计算得出答案. 【详解】()3a 2b 1−−+3a 6b 3=−+−. 故答案为:3a 6b 3−+−.【点睛】本题主要考查了去括号法则,正确掌握去括号法则是解题关键. 18.(2020·江苏扬州市·)若2320x y −+=,则546x y −+=________________. 【答案】9【分析】先把2320x y −+=,化为232x y −=−,再整体代入,即可求解. 【详解】∵2320x y −+=, ∴232x y −=−,∴546x y −+=52(23)x y −−=52(2)9−⨯−=. 故答案是:9.【点睛】本题主要考查代数式求值,熟练掌握“添括号法则”和整体代入思想方法,是解题的关键.19.(2021·仪征市实验初中七年级月考)若21m a −与33a −的和仍是单项式,则m= _________. 【答案】2【分析】根据题意知单项式2a 2m -1与-3x 3是同类项,即可求出m 的值.【详解】解:∵单项式2a 2m -1与-3x 3的差仍是单项式,∴2a2m -1与-3x 3是同类项,∴2m -1=3, 解得m =2. 故答案为:2.【点睛】本题考查了同类项,解题的关键是正确理解同类项的概念:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.20.(2020·南通市新桥中学七年级期中)若312n x y +与225m x y −−是同类项,则m n +=_____. 【答案】6【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.【详解】由题意,得:m - 2 = 3,n + 1 = 2,解得m = 5, n = 1, ∴m + n = 5 + 1 = 6,故答案为:6.【点睛】本题考查同类项的定义,属于基础题,比较简单,熟练掌握同类项的定义是解题的关键.21.(2021·江苏七年级期末)若多项式23352x kxy −−与2123xy y −+的和中不含xy 项,则k的值是______. 【答案】8【分析】根据题意列出关系式,合并后根据结果不含xy 项,求出k 的值即可. 【详解】解:223(35)(123)2x kxy xy y −−+−+=223351232x kxy xy y −−+−+=2233(12)22x y k xy −+−−∵多项式23352x kxy −−与2123xy y −+的和中不含xy 项,∴31202k −=解得:k=8 故答案为:8【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键. 三、解答题 22.(2021·常州市同济中学)3x ﹣4y +5+2x ﹣3y ﹣7. 【答案】5x ﹣7y ﹣2【分析】利用同类项的系数相加,所得的结果作为系数,字母以及字母指数不变这一概念进行求解即可.【详解】解:3x ﹣4y +5+2x ﹣3y ﹣7 =(3x +2x )+(﹣4y ﹣3y )+(5﹣7) =5x ﹣7y ﹣2.【点睛】本题主要考查同类项的概念和合并同类项,解题的关键是掌握同类项的基本概念. 23.(2021·江苏七年级月考)定义一种新运算:观察下列各式: 1*2=1×3+2=5, 4*(﹣2)=4×3﹣2=10, 3*4=3×3+4=13, 6*(﹣1)=6×3﹣1=17. (1)请你想想:a *b = ;(2)若a ≠b ,那么a *b b *a (填“=”或“≠”); (3)先化简,再求值:(a ﹣b )*(a +2b ),其中a =3,b =﹣2 【答案】(1)3a +b ;(2)≠;(3)4a ﹣b ,14 【分析】(1)根据所给算式归纳即可; (2)根据(1)中总结的规律计算;(3)先根据(1)中总结的规律化简,再把a =1代入计算. 【详解】解:(1)根据题意得:a *b =3a +b . 故答案为:3a +b(2)∵a *b =3a +b ,b *a =3b +a . ∴a *b ≠b *a . 故答案为:≠.(3)(a ﹣b )*(a +2b )=3(a ﹣b )+a +2b =4a ﹣b .当a =3,b =﹣2时, 原式=12+2=14.【点睛】本题考查了新定义,数字类规律探究,以及整式的加减,根据题干中的算式得出规律是解答本题的关键.24.(2021·常州市同济中学)(1)已知代数式A 与x 2﹣3xy ﹣12y 3的差为﹣x 2+xy ,求代数式A ;(2)当x =1时,代数式B 的值为1;当x ≠1时,代数式B 的值小于1.写出一个符合条件的代数式B .【答案】(1)﹣2xy ﹣12y 3;(2)-(x ﹣1)2+1【分析】(1)根据题意得到:A -(x 2-3xy -12y 3)=-x 2+xy ,理由整式的加减运算法则解答即可;(2)根据要满足的2个条件写一个代数式即可.【详解】解:(1)根据题意,得A -(x 2-3xy -12y 3)=-x 2+xy ,所以A =(x 2-3xy -12y 3)-x 2+xy =-2xy -12y 3,即代数式A 为:-2xy -12y 3;(2)根据题意知,当x =1时,代数式B 的值为1,代数式(x -1)2+1符合题意. 当x ≠1时,代数式B 的值小于1,则代数式B =-(x -1)2+1符合题意.【点睛】本题考查了整式的加减和列代数式,第2小题关键在利用一个数的平方的非负性来设计符合题意的代数式.25.(2020·江苏省江阴市第一中学七年级月考)先化简,再求值:4(3a 2b ﹣ab 2)﹣5(﹣ab 2+3a 2b ),其中a =2,b =﹣3.【答案】﹣3a 2b +ab 2,54.【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值. 【详解】解:原式=12a 2b ﹣4ab 2+5ab 2﹣15a 2b =﹣3a 2b +ab 2, 当a =2,b =﹣3时,原式=36+18=54.【点睛】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 26.(2021·苏州高新区实验初级中学七年级期末)先化简,再求值:()()2222531431x y xy xy x y −+−−++,其中3x =,13y =−.【答案】3x 2y -xy 2+1,325−. 【分析】先利用整式的混合计算法则进行化简,然后代值计算即可得到答案.【详解】解:()()2222531431x y xy xy x y −+−−++222215554124x y xy xy x y =−++−− 2231x y xy =−+,当3x =,13y =−时原式2211253331333⎛⎫⎛⎫=⨯⨯−−⨯−+=− ⎪ ⎪⎝⎭⎝⎭.【点睛】本题主要考查了整式的化简求值,解题的关键在于能够熟练掌握相关知识进行求解. 27.(2019·江苏徐州市·七年级期末)合并下列各式中的同类项:(1)2231253x x x x −−−+−(2)()()22241325a a a a −+−−+−【答案】(1)226x x +− ;(2)2566a a −+. 【分析】(1)根据合并同类项法则化简即可; (2)根据去括号法则和合并同类项法则化简即可. 【详解】解:(1)2231253x x x x −−−+−=()()()2313215x x −+−−+=226x x +−(2)()()22241325a a a a −+−−+−=22241325a a a a −++−+=()()()2234215a a +−+++=2566a a −+【点睛】此题考查的是整式的加减,掌握去括号法则和合并同类项法则是解决此题的关键. 28.(2020·南通市启秀中学)化简:(1)2222(45)(34)x y xy x y xy −−−;(2)2213[5(3)2]2x x x x −−−+【答案】(1)22x y xy −;(2)293.2x x −− 【分析】(1)先去括号,再合并同类项,即可得到答案;(2)先去小括号,合并同类项,再去中括号,合并同类项即可得到答案. 【详解】解:(1)2222(45)(34)x y xy x y xy −−− 22224534x y xy x y xy =−−+ 22x y xy =−(2)2213[5(3)2]2x x x x −−−+22135322x x x x ⎛⎫=−−++ ⎪⎝⎭2293322x x x ⎛⎫=−++ ⎪⎝⎭2293322x x x =−−−2932x x =−−【点睛】本题考查的是去括号,合并同类项,掌握以上知识是解题的关键.29.(2020·江苏南京·南师附中宿迁分校)计算:(1)(-2)3×(3-4)+30÷(-5) -│-3│(2)2(2a-3b)+3(2b-3a) 【答案】(1)-3;(2)-5a .【分析】(1)先计算乘方和绝对值,再计算乘除,最后算加减即可; (2)先去括号,再合并同类项即可. 【详解】解:(1)(-2)3×(3-4)+30÷(-5) -│-3│=()3-8-30534⎛⎫⨯+÷−− ⎪⎝⎭=()663+−− =-3(2)2(2a-3b)+3(2b-3a) =4a-6b+6b-9a =-5a .【点睛】本题考查的是有理数的计算和整式的加减,要注意乘方、绝对值以及去括号的计算,即可正确解答本题.30.(2020·江苏省锡山高级中学实验学校七年级期中)化简下列各式(1)433352a a a −+ (2)()()223232xy x xy x −−−−【答案】(1)4333a a −;(2)27xy x +【分析】(1)首先合并同类项,然后即可得出结果; (2)首先去括号,然后合并同类项,即可得出结果. 【详解】(1)原式=4333a a −(2)原式=22364xy x xy x −++=27xy x +【点睛】本题考查了合并同类项,整式的加减,关键是去括号时要注意符号的变号问题. 31.(2021·江苏七年级期末)对于任意实数a ,b ,定义一种新的运算公式:3a b a b ⊕=−,如()()616319⊕−=−⨯−=.(1)计算:()124⎛⎫−⊕− ⎪⎝⎭;(2)已知()15103a b b a ⎛⎫+⊕−=− ⎪⎝⎭,求+a b 的值.【答案】(1)234;(2)-5 【分析】(1)结合题意,根据有理数混合运算的性质计算,即可得到答案; (2)结合题意,通过合并同类项计算,即可得到答案. 【详解】(1)()124⎛⎫−⊕− ⎪⎝⎭()1324=−−⨯−164=−+=234; (2)∵()15103a b b a ⎛⎫+⊕−=− ⎪⎝⎭∴153103a b b a ⎛⎫+−−=− ⎪⎝⎭∴2210a b +=− ∴5a b +=−.【点睛】本题考查了有理数运算、合并同类项的知识;解题的关键是熟练掌握有理数混合运算、合并同类项的性质,从而完成求解.32.(2020·江苏泰州中学附属初中七年级月考)设A =33−ax bx ,B =328−−+ax bx , (1)求A+B ;(2)当x =-1时,A+B=10,求代数式962b a −+的值 【答案】(1)32ax 3bx 8−+;(2)8【分析】(1)根据合并同类项的性质计算,即可得到答案;(2)根据含乘方的有理数混合运算、代数式的性质计算,即可得到答案. 【详解】(1)∵A =33−ax bx ,B =328−−+ax bx ∴333328238ax bx ax bx ax A B bx +−−−+=−+=; (2)∵x =-1时,A+B=10∴()()32131823810a b a b −−−+=−++= ∴322b a −=∴()96233223228b a b a −+=−+=⨯+=.【点睛】本题考查了合并同类项、含乘方的有理数混合运算、代数式的知识;解题的关键是熟练掌握合并同类项、含乘方的有理数混合运算、代数式的性质,从而完成求解.。
2.3整式的加减拓展50题一.整式的加减(共20小题)1.化简下列各式:(1)2223144−−+a b ab a b ab(2)2(23)3(23)−−−a b b a2.计算:(1)225431+−−−x y x y(2)4(1)(32)+−+xy xy(3)73(3)2()+−−−a a b b a(4)223[7(43)2]−−−−x x x x3.整式的加减运算(1)34(2)−−−xy xy xy(2)32426−+−−+a b c a c b .4.整式的加减运算(1)2(2)3(23)−+−a b b a(2)2222223(2)2(23)−−−−+−x x y x y x x y .5.一般情况下2323+=+不成立,但有些数可以使得它成立,例如:0==a b .我们称使得2323++=+a b a b 成立的一对数a ,b 为“相伴数对”,记为(,)a b . (1)若(1,)b 是“相伴数对”,求b 的值;(2)写出一个“相伴数对” (,)a b ,其中0≠a 且1≠a ;(3)若(,)m n 是“相伴数对”,求代数式2642(42)5+−−+m n m n 的值.6.已知多项式A ,B ,其中2534=+−B x x ,马小虎同学在计算“3+A B ”时,误将“3+A B ”看成了“3+A B ”,求得的结果为21267−+x x .(1)求多项式A ;(2)求出3+A B 的正确结果;(3)当13=−x 时,求3+A B 的值.7.如果一个多项式与222−m n 的和是22531−+m n ,求这个多项式.8.已知整式251=+−−M x ax x ,整式M 与整式N 之差是234+−x ax x(1)求出整式N ;(2)若a 是常数,且2+M N 的值与x 无关,求a 的值.9.已知:一个多项式M 与2392+−a a 的和等于41+−a a ,求这个多项式M .10.已知多项式238+−x my 与多项式227−++nx y 的差中,不含有x 、y ,求+m n mn 的值.11.已知22325=−+A b a ab ,2242=−−B ab b a .(1)化简:34−A B ;(2)当1=a ,1=−b 时,求34−A B 的值.12.已知22911=−−A x x ,2364=−+B x x .求(1)−A B ;(2)122+A B .13.已知222=−+A a ab b ,223=−−−B a ab b ,求:23−A B .14.化简:(1)224332−−+xy x xy x ;(2)223(2)(6)−−−+−x xy x xy .15.如果关于x 的多项式21225(2)3(1)+−−−+n x y mx x 的值与x 的取值无关,且该多项式的次数是三次.求m ,n 的值.16.小红做一道数学题:两个多项式A ,2456=−−B x x ,试求+A B 的值.小红误将+A B 看成−A B ,结果答案为271012−++x x (计算过程正确).试求+A B 的正确结果.17.有一道题目,是一个多项式减去2146+−x x ,小强误当成了加法计算,结果得到223−+x x ,正确的结果应该是多少?18.化简下列各式:(1)2222123323−−+x y xy xy x y(2)4(21)3(45)−+−−+−a b a b19.计算:(1)2(23)3(24)−+−y x y(2)22(53)3(2)−−−a b a b20.化简:(1)223(2)(1)−−++−x xy x xy(2)已知:22325=−+A b a ab ,2242=−−B ab b a ,求−A B .二.整式的加减—化简求值(共30小题)21.先化简,再求值:2215[23(2)4]3−−++x xy xy x .其中2=−x ,12=y .22.先化简,再求值.222233[22()]32−−−+x y xy xy x y xy ,其中3=x ,13=−y .23.已知代数式2122=++−A x xy y ,2221=−+−B x xy x (1)求2−A B ;(2)当1=−x ,2=−y 时,求2−A B 的值;(3)若2−A B 的值与x 的取值无关,求y 的值.24.(1)先化简,再求值:2232(1)4−−++a a a ,其中2=−a .(2)已知2=x ,4=−y 时,代数式3572++=ax by ,求当4=−x ,12=−y 时,代数式33242017−+ax by 的值.25.有一道题“先化简,再求值:222217(85)(43)(561)3−+−+−+−+−−x x x x x x x ,其中2010=x .”小明做题时把“2010=x ”错抄成了“2001=x ”.但他计算的结果却是正确的,请你说明这是什么原因?26.先化简,再求值22224(2)5(2)−−+x y xy xy x y ,其中12=−x ,13=y .27.已知2443=+−A x x ,232=−−B x x ,求当12=−x 时,代数式2−A B 的值.(1)224[63(42)]1−−−−+x y xy xy x y ,其中2=x ,12=−y(2)222243[5(2)]4++−−−−x x x x x x x ,其中1=−x .29.有三个多项式A 、B 、C 分别为:2112=+−A x x ,21312=++B x x ,212=−C x x ,请你对2−−A B C 进行化简,并计算当2=−x 时代数式2−−A B C 的值.30.已知:110,2+=−=−a b ab ,求代数式5()()2()−++−++a b a b ab b 的值.31.已知多项式22(231)(323)+−−−−ax x x x 的值与x 无关,试求322[2(1)]2−−++−a a a a 的值.(1)23(21)4(32)2(1)−−−−+−x x x x ;其中3=−x(2)22112[(4)8]22−−+−a ab a ab ab ;其中1=a ,13=b .33.先化简,再求值:22225(3)4(3)−−−+a b ab ab a b ,其中1=−a ,2=−b .34.先化简,再求值:222963()13+−−−ab b ab b ,其中12=a ,1=−b .35.先化简,再求值:224[63(42)]1−−−−+x y xy xy x y ,其中2=x ,12=−y .36.先化简,再求值:222227(45)(23)+−+−−a b a b ab a b ab ,其中2=a 、12=−b .37.化简求值:(1)(87)3(45)−−−x y x y 其中:2=−x ,1=−y .(2)已知多项式2(23)−+x 的2倍与A 的差是2227+−x x ,当1=−x 时,求A 的值.38.先化简,再求值:22254(35)(265)+−+−−+x x x x x .其中3=−x .39.先化简,再求值22224(2)5(2)−−+x y xy xy x y ,其中11,23=−=x y .40.先化简,再求值22232235[2()5]32−−−++x y xy xy x y x y x y ,其中3=x ,13=−y .41.化简与求值:(1)若3=−m ,则代数式2113+m 的值为 (2)若3+=−m n ,则代数式2()13++m n 的值为 (3)若534−=−m n ,请你仿照以上求代数值的方法求出2()4(2)2−−−+m n n m 的值.42.先化简,再求值:(1)22223()(33)6−−+−+a ab a ab ab ab ,其中1=−a ,2=b .(2)22243(22)(6)−+−++−+−x x xy y x xy y ,其中2013=x ,1=−y .(1)22225(3)4(3)−−−+a b ab ab a b ,其中2=−a ,3=b .(2)1341()()()()510510−−−+−+−x y x y x y x y ,其中2=x ,13=y .44.先化简再求值:(1)2222112(2)3()23−−+xy x y x y xy 其中2=x ,2=−y(2)已知:32−=−x y ,求252()++−+x y x y 的值.(3)解决问题:一本小说共m 页,一位同学第一天看了全书的13少6页,第二天看了剩下的13多6页,请用含m 的式子表示第二天看了多少页?并求出当900=m 时第二天看了多少页?(1)24(42)2(310)−+−+xy x xy xy ,其中1=x ,2=−y ;(2)3232(2)(2)(32)−−−−−+x y x y x y x ,其中3=−x ,2=−y .46.(1)若代数式64−x y 与2n x y 是同类项,求2015(413)−n 的值.(2)若232015+=x y ,求2(32)()(9)−−−+−+x y x y x y 的值.(3)已知32233561=+−+−A x x y xy y ,32236522=−++−+B y xy x y x ,3243=−+C x x y ,试说明++A B C 的值与x ,y 无关.(1)222635−−+y y y y ,其中1=−y .(2)2222282(23)3(4)+−−−a b a b ab a b ab ,其中2=a ,3=b .48.先化简,再求值:(1)3223124(32)3+−−−+x x x x x x ,其中34=−x .(2)22112[(4)8]22−−+−a ab a ab ab ,其中1=a ,13=b .49.(1)计算:4222112()3()(0.5)323−÷+⨯−−−;(2)化简求值22223[22()]32−−−++x y xy xy x y xy xy ,其中3=x ,13=−y .50.一般情况下3636++=+a b a b 不成立,但有些数可以使得它成立,例如:0==a b .我们称使得3636++=+a b a b 成立的一对数a ,b 为“相伴数对”,记为(,)a b . (1)若(1,)b 是“相伴数对”,求b 的值;(2)写出一个“相伴数对” (,)a b ,其中0≠a ,且1≠a ;(3)若(,)m n 是“相伴数对”,求代数式27[42(35)]4−−−−m n m n 的值.2.3整式的加减拓展50题参考答案与试题解析一.整式的加减(共20小题)1.化简下列各式:(1)2223144−−+a b ab a b ab ;(2)2(23)3(23)−−−a b b a【解答】解:(1)2223144−−+a b ab a b ab 212=−+a b ab ;(2)2(23)3(23)−−−a b b a 4669=−−+a b b a 1312=−a b .2.计算:(1)225431+−−−x y x y ;(2)4(1)(32)+−+xy xy(3)73(3)2()+−−−a a b b a ;(4)223[7(43)2]−−−−x x x x【解答】解:(1)原式2321=−+−x y ;(2)原式4432=+−−xy xy 2=+xy ;(3)原式73922=+−−+a a b b a 1211=−a b ;(4)原式2237432=−+−+x x x x 2533=−−x x .3.整式的加减运算(1)34(2)−−−xy xy xy ;(2)32426−+−−+a b c a c b .【解答】解:(1)原式342=−+=xy xy xy xy ;(2)原式322462=−−++−=−−a a b b c c a b c .4.整式的加减运算(1)2(2)3(23)−+−a b b a ;(2)2222223(2)2(23)−−−−+−x x y x y x x y .【解答】解:(1)原式2469=−+−a b b a 72=−+a b(2)原式222222336246=−−+−+x x y x y x x y 22225766=−−+x x y x y5.一般情况下2323++=+a b a b 不成立,但有些数可以使得它成立,例如:0==a b .我们称使得2323++=+a b a b 成立的一对数a ,b 为“相伴数对”,记为(,)a b . (1)若(1,)b 是“相伴数对”,求b 的值;(2)写出一个“相伴数对” (,)a b ,其中0≠a 且1≠a ;(3)若(,)m n 是“相伴数对”,求代数式2642(42)5+−−+m n m n 的值.【解答】解:(1)将1=a ,代入2323++=+a b a b 有,11235++=b b ,化简求得:94=−b ; (2)答案不唯一,例如9(2,)2−; (3)将=a m ,=b n ,代入2323++=+a b a b 有,940+=m n , 原式18855=++=m n .6.已知多项式A ,B ,其中2534=+−B x x ,马小虎同学在计算“3+A B ”时,误将“3+A B ”看成了“3+A B ”,求得的结果为21267−+x x .(1)求多项式A ;(2)求出3+A B 的正确结果;(3)当13=−x 时,求3+A B 的值. 【分析】(1)因为231267+=−+A B x x ,所以212673=−+−A x x B ,将2534=+−B x x 代入即可求出A ;(2)将(1)中求出的A 与2534=+−B x x 代入3+A B ,去括号合并同类项即可求解;(3)根据(2)的结论,把13=−x 代入求值即可. 【解答】解:(1)231267+=−+A B x x ,2534=+−B x x ,212673∴=−+−A x x B 2212673(534)=−+−+−x x x x22126715912=−+−−+x x x x 231519=−−+x x ;(2)231519=−−+A x x ,2534=+−B x x ,2233(31519)534∴+=−−+++−A B x x x x 2294557534=−−+++−x x x x 244253=−−+x x ;(3)当13=−x 时,21134()42()5333+=−⨯−−⨯−+A B 414539=−++5669=. 7.如果一个多项式与222−m n 的和是22531−+m n ,求这个多项式.【分析】根据一多项式与22+−m m 的和是22−m m ,利用两多项式的和减去已知多项式求出未知多项式即可.【解答】解:一个多项式与222−m n 的和是22531−+m n ,∴这个多项式是:2222(531)(2)−+−−m n m n 22225312=−+−+m n m n 2241=−+m n .8.已知整式251=+−−M x ax x ,整式M 与整式N 之差是234+−x ax x(1)求出整式N ;(2)若a 是常数,且2+M N 的值与x 无关,求a 的值.【分析】(1)根据题意,可得22(51)(34)=+−−−+−N x ax x x ax x ,去括号合并即可;(2)把M 与N 代入2+M N ,去括号合并得最简结果,结果与x 值无关,求出a 的值即可.【解答】解:(1)原式225134=+−−−−+x ax x x ax x 221=−+−x ax ;(2)251=+−−M x ax x ,221=−+−N x ax ,∴原式222102221=+−−−+−x ax x x ax (112)3=−−a x ,由结果与x 值无关,得到1120−=a ,解得:211=a .9.已知:一个多项式M 与2392+−a a 的和等于41+−a a ,求这个多项式M .【分析】被减数为41+−a a ,减数为2392+−a a ,根据差=被减数−减数即可得出答案.【解答】解:由题意得:这个多项式M 241(392)=+−−+−a a a a 241392=+−−−+a a a a 2341=−−+a a .10.已知多项式238+−x my 与多项式227−++nx y 的差中,不含有x 、y ,求+m n mn 的值.【分析】先求出两个多项式的差,再根据题意,不含有x 、y ,即含x 、y 项的系数为0,求得m ,n 的值,再代入+m n mn 求值即可.【解答】解:22(38)(27)+−−−++x my nx y 223827=+−+−−x my nx y 2(3)(2)15=++−−n x m y , 因为不含有x 、y ,所以30+=n ,20−=m ,解得3=−n ,2=m ,把3=−n ,2=m 代入2(3)2(3)963+=−+⨯−=−=m n mn .答:+m n mn 的值是3.11.已知22325=−+A b a ab ,2242=−−B ab b a .(1)化简:34−A B .(2)当1=a ,1=−b 时,求34−A B 的值.【解答】解:(1)22325=−+A b a ab ,2242=−−B ab b a ,2222343(325)4(42)∴−=−+−−−A B b a ab ab b a22222296151684217=−+−++=−+−b a ab ab b a a b ab(2)当1=a ,1=−b 时,原式217116=−++=.12.已知22911=−−A x x ,2364=−+B x x .求(1)−A B ;(2)122+A B . 【解答】解:(1)22911=−−A x x ,2364=−+B x x ,∴−A B 222911364=−−−+−x x x x 2315=−−−x x ;(2)22911=−−A x x ,2364=−+B x x , ∴122+A B 221(2911)2(364)2=−−+−+x x x x 224.5 5.56128=−−+−+x x x x 2716.5 2.5=−+x x .13.已知222=−+A a ab b ,223=−−−B a ab b ,求:23−A B .【分析】先代入,再去括号,最后合并同类项即可.【解答】解:222=−+A a ab b ,223=−−−B a ab b ,23∴−A B 22222(2)3(3)=−+−−−−a ab b a ab b2222242393=−++++a ab b a ab b 22555=++a ab b .14.化简:(1)224332−−+xy x xy x ;(2)223(2)(6)−−−+−x xy x xy .【解答】解:(1)224332−−+xy x xy x 2=−xy x(2)223(2)(6)−−−+−x xy x xy 22636=−+−−+x xy x xy 2726=−++x xy15.如果关于x 的多项式21225(2)3(1)+−−−+n x y mx x 的值与x 的取值无关,且该多项式的次数是三次.求m ,n 的值.【解答】解:21225(2)3(1)+−−−+n x y mx x 21225233+=−+−−n x y mx x21(53)23+=+−−−n m x y 21(2)23+=+−−n m x y由题意得,20+=m ,13+=n ,解得,2=−m ,2=n .16.小红做一道数学题:两个多项式A ,2456=−−B x x ,试求+A B 的值.小红误将+A B 看成−A B ,结果答案为271012−++x x (计算过程正确).试求+A B 的正确结果.【解答】解:22271012456356=−+++−−=−++A x x x x x x ,则222356456+=−+++−−=A B x x x x x .17.有一道题目,是一个多项式减去2146+−x x ,小强误当成了加法计算,结果得到223−+x x ,正确的结果应该是多少?【分析】先错误的说法,求出原多项式,原多项式是:222(23)(146)159−+−+−=−+x x x x x x ;再用原多项式减去2146+−x x ,运用去括号,合并同类项即可得到正确的结果.【解答】解:这个多项式为:222(23)(146)159−+−+−=−+x x x x x x所以22(159)(146)2915−+−+−=−+x x x x x正确的结果为:2915−+x .18.化简下列各式:(1)22223323−−+x y xy xy x y ;(2)4(21)3(45)−+−−+−a b a b 【解答】解:(1)原式2221(3)(3)32=++−−x y xy 2211732=−x y xy ; (2)原式48412315=−++−+a b a b 161119=−+a b .19.计算:(1)2(23)3(24)−+−y x y ;(2)22(53)3(2)−−−a b a b【解答】解:(1)2(23)3(24)−+−y x y 46612=−+−y x y 6184=−+x y ;(2)22(53)3(2)−−−a b a b 225336=−−+a b a b 223=+a b .20.化简:(1)223(2)(1)−−++−x xy x xy(2)已知:22325=−+A b a ab ,2242=−−B ab b a ,求−A B .【解答】解:(1)原式22631=−+++−x xy x xy 2541=−+−x xy ;(2)22325=−+A b a ab ,2242=−−B ab b a ,2222(325)(42)∴−=−+−−−A B b a ab ab b a222232542=−+−++b a ab ab b a 225=−++a b ab .二.整式的加减—化简求值(共30小题)21.先化简,再求值:2215[23(2)4]3−−++x xy xy x .其中2=−x ,12=y . 【解答】解:原式22252646=−++−=−+x xy xy x x xy ,当2=−x ,12=y 时,原式41611=++=. 22.先化简,再求值.222233[22()]32−−−+x y xy xy x y xy ,其中3=x ,13=−y . 【解答】解:原式222233[22]32=−−++x y xy xy x y xy 2222332232=−+−+x y xy xy x y xy 22=+xy xy , 当3=x ,13=−y 时,原式53=−. 23.已知代数式2122=++−A x xy y ,2221=−+−B x xy x (1)求2−A B ;(2)当1=−x ,2=−y 时,求2−A B 的值;(3)若2−A B 的值与x 的取值无关,求y 的值.【解答】解:(1)22122(2)(221)442−=++−−−+−=+−A B x xy y x xy x xy y x ;(2)当1=−x ,2=−y 时,2444(1)(2)4(2)(1)1−=+−=⨯−⨯−+⨯−−−=A B xy y x ;(3)由(1)可知244(41)4−=+−=−+A B xy y x y x y若2−A B 的值与x 的取值无关,则410−=y ,解得:14=y . 24.(1)先化简,再求值:2232(1)4−−++a a a ,其中2=−a .(2)已知2=x ,4=−y 时,代数式31572++=ax by , 求当4=−x ,12=−y 时,代数式33242017−+ax by 的值. 【分析】(1)先去括号、合并同类项化简原式后,将2=−a 代入计算可得;(2)将2=x ,4=−y 代入31572++=ax by 得41−=a b ,再将4=−x 、12=−y 、41−=a b 代入3324201712320173(4)2017−+=−++=−−+ax by a b a b 可得答案.【解答】解:(1)原式2232224=−+−+a a a 222=++a a ,当2=−a 时,原式4422=−+=;(2)将2=x ,4=−y 代入31572++=ax by ,得:8257−+=a b ,即41−=a b , 当4=−x ,12=−y 时, 332420171232017−+=−++ax by a b 3(4)2017=−−+a b 32017=−+2014=.25.有一道题“先化简,再求值:222217(85)(43)(561)3−+−+−+−+−−x x x x x x x ,其中2010=x .”小明做题时把“2010=x ”错抄成了“2001=x ”.但他计算的结果却是正确的,请你说明这是什么原因?【解答】解:原式222217854356131=−−−−+−+−−=−x x x x x x x ,结果与x 取值无关,故明做题时把“2010=x ”错抄成了“2001=x ”.但他计算的结果却是正确的.26.先化简,再求值22224(2)5(2)−−+x y xy xy x y ,其中12=−x ,13=y . 【解答】原式222284510=−−−x y xy xy x y 2229=−−x y xy , 当12=−x ,13=y 时 原式2211111122()9()2323623=−⨯⨯−⨯⨯=−−=−.27.已知2443=+−A x x ,232=−−B x x ,求当2=−x 时,代数式2−A B 的值. 【解答】解:2443=+−A x x ,232=−−B x x ,22224432642101∴−=+−−++=++A B x x x x x x ,当12=−x 时,原式1151322=−+=−. 28.先化简再求值:(1)224[63(42)]1−−−−+x y xy xy x y ,其中2=x ,12=−y (2)222243[5(2)]4++−−−−x x x x x x x ,其中1=−x .【解答】解:(1)原式222461261565=−+−++=+−x y xy xy x y x y xy ,当2=x ,12=−y 时,原式106521=−−−=−; (2)原式222224352442=++−−+−=+x x x x x x x x x ,当1=−x 时,原式422=−=.29.有三个多项式A 、B 、C 分别为:2112=+−A x x ,21312=++B x x ,212=−C x x ,请你对2−−A B C 进行化简,并计算当2=−x 时代数式2−−A B C 的值.【解答】解:2112=+−A x x ,21312=++B x x ,212=−C x x , 22221121624322∴−−=+−−−−−+=−−−A B C x x x x x x x x , 当2=−x 时,原式4831=−+−=.30.已知:110,2+=−=−a b ab ,求代数式5()()2()−++−++a b a b ab b 的值. 【解答】解:10+=−a b ,12=−ab , ∴原式55224424()240139=−−+−++=−−+=−++=−=a b a b ab b a b ab a b ab .31.已知多项式22(231)(323)+−−−−ax x x x 的值与x 无关,试求322[2(1)]2−−++−a a a a 的值.【解答】解:22(231)(323)+−−−−ax x x x 22231323=+−−++ax x x x 2(22)2=++a x , 由结果与x 无关,得到220+=a ,即1=−a ,∴原式3232222222114=−++−−=−+=−−−=−a a a a a a a .(1)23(21)4(32)2(1)−−−−+−x x x x ;其中3=−x(2)22112[(4)8]22−−+−a ab a ab ab ;其中1=a ,13=b . 【解答】解:(1)原式236312822=−−−++−x x x x23(6122)(382)=−+−+−+−x x x x 23163=−+x x ,当3=−x 时,原式23(3)16(3)378=⨯−−⨯−+=;(2)原式22112(28)22=−−+−a ab a ab ab 221122822=−+−−a ab a ab ab 22(22)(=+−a a118)22++ab ab ab 249=−a ab 当1=a ,13=b 时,原式21419113=⨯−⨯⨯= 33.先化简,再求值:22225(3)4(3)−−−+a b ab ab a b ,其中1=−a ,2=−b .【解答】解:原式2222221554123=−+−=−a b ab ab a b a b ab ,当1=−a ,2=−b 时 原式642=−+=−.34.先化简,再求值:222963()13+−−−ab b ab b ,其中12=a ,1=−b . 【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【解答】解:原式22296321681=+−+−=+−ab b ab b ab b ,当12=a ,1=−b 时,原式3814=−+−=. 35.先化简,再求值:224[63(42)]1−−−−+x y xy xy x y ,其中2=x ,12=−y . 【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【解答】解:原式222461261565=−+−++=+−x y xy xy x y x y xy ,当2=x ,12=−y 时,原式106521=−−−=−. 36.先化简,再求值:222227(45)(23)+−+−−a b a b ab a b ab ,其中2=a 、12=−b . 【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【解答】解:原式2222222745238=−+−+=+a b a b ab a b ab a b ab ,当2=a ,12=−b 时,原式242=−+=.(1)(87)3(45)−−−x y x y 其中:2=−x ,1=−y .(2)已知多项式2(23)−+x 的2倍与A 的差是2227+−x x ,当1=−x 时,求A 的值.【解答】解:(1)(87)3(45)−−−x y x y 871215=−−+x y x y 48=−+x y ,当2=−x ,1=−y 时,原式4(2)8(1)0=−⨯−+⨯−=.(2)由题意得:222(23)227−+−=+−x A x x ,222462276213∴=−+−−+=−−+A x x x x x ,当1=−x 时,26(1)2(1)139=−⨯−−⨯−+=A .38.先化简,再求值:22254(35)(265)+−+−−+x x x x x .其中3=−x .【解答】解:原式2225435265=+−−−+−x x x x x 2(532)(56)45=−−+−++−x x 1=−x 当3=−x 时,原式31=−−4=−.39.先化简,再求值22224(2)5(2)−−+x y xy xy x y ,其中11,23=−=x y . 【解答】解:原式222284510=−−−x y xy xy x y 2229=−−x y xy , 当11,23=−=x y 时,原式2211112()9()()2323=−⨯−⨯−⨯−⨯1162=−+13=. 40.先化简,再求值22232235[2()5]32−−−++x y xy xy x y x y x y ,其中3=x ,13=−y . 【解答】解:原式22232252353=−+−−+x y xy xy x y x y x y 223255=+−x y xy x y .当3=x ,13=−y 时,原式511511=−−=−. 41.化简与求值:(1)若3=−m ,则代数式2113+m 的值为 4 (2)若3+=−m n ,则代数式2()13++m n 的值为 (3)若534−=−m n ,请你仿照以上求代数值的方法求出2()4(2)2−−−+m n n m 的值.【解答】解:(1)3=−m ,211191433+=⨯+=m (2)3+=−m n ,2()13143++=+=m n (3)2()4(2)22248210622(53)2−−−+=−−++=−+=−+m n n m m n n m m n m n 534−=−m n ,∴原式826=−+=−42.先化简,再求值:(1)22223()(33)6−−+−+a ab a ab ab ab ,其中1=−a ,2=b .(2)22243(22)(6)−+−++−+−x x xy y x xy y ,其中2013=x ,1=−y .【解答】解:(1)原式2222223333623=−−−++=+a ab a ab ab ab a ab ,当1=−a ,2=b 时,原式21210=−=−;(2)原式22243636626=−−+−−+−=−x x xy y x xy y y ,当1=−y 时,原式268=−−=−.43.先化简,再求值:(1)22225(3)4(3)−−−+a b ab ab a b ,其中2=−a ,3=b .(2)1341()()()()510510−−−+−+−x y x y x y x y ,其中2=x ,13=y . 【解答】解:(1)原式2222221554123=−+−=−a b ab ab a b a b ab ,当2=−a ,3=b 时,原式54=;(2)原式4()5=−x y ,当2=x ,13=y 时,原式43=. 44.先化简再求值:(1)2222112(2)3()23−−+xy x y x y xy 其中2=x ,2=−y (2)已知:32−=−x y ,求252()++−+x y x y 的值.(3)解决问题:一本小说共m 页,一位同学第一天看了全书的13少6页,第二天看了剩下的13多6页,请用含m 的式子表示第二天看了多少页?并求出当900=m 时第二天看了多少页?【解答】解:(1)2222112(2)3()23−−+xy x y x y xy 222243=−−−xy x y x y xy 222=−xy x y , 把2=x ,2=−y 代入得:原式222(2)22(2)24=⨯−−⨯⨯−=;(2)252()++−+x y x y 2522=++−−x y x y 32=−++x y (3)2=−−+x y32−=−x y ,∴原式224=+=;(3)一本小说共m 页,一位同学第一天看了全书的13少6页, ∴第一天看了163−m ,剩下12(6)633−−=+m m m , 第二天看了剩下的13多6页,∴第二天看了212(6)68339+⨯+=+m m , 剩下:2222224(6)(8)68()6823939399+−+=+−−=−+−=−m m m m m m m , 当900=m 时,442900239899−=⨯−=(页).(1)24(42)2(310)−+−+xy x xy xy ,其中1=x ,2=−y ;(2)3232(2)(2)(32)−−−−−+x y x y x y x ,其中3=−x ,2=−y .【解答】解:(1)24(42)2(310)−+−+xy x xy xy 2442620=−−−−xy x xy xy 24420=−−−x xy 当1=x ,2=−y 时,原式482016=−+−=−;(2)3232(2)(2)(32)−−−−−+x y x y x y x 32324232=−−+−+−x y x y x y x 2425=−−+y x y 当3=−x ,2=−y 时,原式24(2)2(3)5(2)20=−⨯−−⨯−+⨯−=−.46.(1)若代数式64−x y 与2n x y 是同类项,求2015(413)−n 的值.(2)若232015+=x y ,求2(32)()(9)−−−+−+x y x y x y 的值.(3)已知32233561=+−+−A x x y xy y ,32236522=−++−+B y xy x y x ,3243=−+C x x y , 试说明++A B C 的值与x ,y 无关.【解答】解:(1)代数式64−x y 与2n x y 是同类项,26∴=n ,即3=n ,则原式1=−;(2)原式649462(23)=−−+−+=+=+x y x y x y x y x y ,当232015+=x y 时,原式4030=;(3)32233561=+−+−A x x y xy y ,32236522=−++−+B y xy x y x ,3243=−+C x x y , 322332233235616522434∴++=+−+−−++−++−+=A B C x x y xy y y xy x y x x x y , 结果与x ,y 无关.47.先化简,再求值:(1)222635−−+y y y y ,其中1=−y .(2)2222282(23)3(4)+−−−a b a b ab a b ab ,其中2=a ,3=b .【解答】解:(1)原式2=−−y y ,当1=−y 时,原式110=−+=;(2)原式2222228461233=+−−+=−a b a b ab a b ab ab ,当2=a ,3=b 时,原式54=−.(1)3223124(32)3+−−−+x x x x x x ,其中34=−x . (2)22112[(4)8]22−−+−a ab a ab ab ,其中1=a ,13=b . 【解答】解:(1)3223124(32)3+−−−+x x x x x x 3223124323=+−−+−x x x x x x 2833=+x x , 当34=−x 时,原式393242=−=−. (2)原式22112[28]22=−−+−a ab a ab ab 221122822=−+−−a ab a ab ab 249=−a ab , 当1=a ,13=b 时,原式431=−=. 49.(1)计算:4222112()3()(0.5)323−÷+⨯−−−; (2)化简求值222233[22()]32−−−++x y xy xy x y xy xy ,其中3=x ,13=−y . 【解答】解:(1)原式971171516363742346412=−⨯−⨯−=−−−=−; (2)原式2222232233=−+−−+=+x y xy xy x y xy xy xy xy ,当3=x ,13=−y 时,原式12133=−=−. 50.一般情况下3636++=+a b a b 不成立,但有些数可以使得它成立,例如:0==a b .我们称使得3636++=+a b a b 成立的一对数a ,b 为“相伴数对”,记为(,)a b . (1)若(1,)b 是“相伴数对”,求b 的值;(2)写出一个“相伴数对” (,)a b ,其中0≠a ,且1≠a ;(3)若(,)m n 是“相伴数对”,求代数式27[42(35)]4−−−−m n m n 的值. 【解答】解:(1)根据题中新定义得:11369++=b b , 解得:4=−b ;(2)答案不唯一,如(2.8)−,满足28283636−−=+; (3)3636++=+m n m n ,4∴=−n m , 原式2746104=−−+−m n m n , 4=−n m ,∴原式274241010=+−−−=−m m m m .。
七年级整式的加减计算及化简求值练习100道(含答案)一.合并同类项1.化简:(1)﹣5a+(3a﹣2)﹣(3a﹣7);(2)(5a2+a﹣6)﹣4(3﹣8a+2a2)2.化简:(1)x2﹣7x﹣2﹣2x2+4x﹣1(2)(8xy﹣3y2)﹣2(3xy﹣2x2)(3)﹣7a2+(6a2﹣4ab)﹣(3b2+ab﹣a2)3.计算:(1)3x+2(x﹣)﹣(x+1)(2)5(2a2b﹣ab2)﹣(6a2b﹣3ab2)4.化简(1)3a3+a2﹣2a3﹣4a2 (2)(2x2﹣1+3x)﹣4(x﹣x2+)5.计算:(1)3(x2﹣5xy)﹣4(x2+2xy﹣y2)﹣5(y2﹣3xy)(2)(x﹣x2+1)﹣2(x2﹣1+3x)6.化简:(1)a2+3b2+3ab﹣4a2﹣4b2;(2)8x2﹣[5x﹣(x﹣7)+2x2]﹣47.合并同类项:(1)(2xy﹣y)﹣(﹣y+xy)(2)(3a2﹣ab+7)﹣(﹣4a2+2ab+7)8.整式的化简:(1)a﹣(2a﹣3b)+2(3b﹣2a)(2)3a2b﹣[4ab2﹣3(ab2+a2b)﹣ab2]﹣6a2b 9.计算:(1)3a2+3b2+2ab﹣4a2﹣3b2;(2)a2+(5a2﹣2a)﹣2(a2﹣3a).10.化简:(1)2(x﹣3x2+l)﹣3(2x2﹣x﹣2)(2)5mn2+3m2n﹣mn2﹣2m2n﹣111.化简(1)a2﹣2(a2+b)﹣2b(2)﹣3(2x2﹣xy)+4(x2+xy﹣1)12.化简:3x2y﹣[2xy﹣2(xy﹣x2y)+xy]二.化简求值13.已知两个多项式A、B,A﹣B=2x2+6,A=3x2+x+5,(1)用含x的式子表示B;(2)当x=2时,求2A﹣3B的值.14.先化简,再求值:(3a2﹣ab+7)﹣(﹣4a2+2ab+7),其中a=﹣1,b=215.求x﹣2(2x﹣)+3(﹣)值,其中x=|1﹣32|,y=2.16.先化简,再求值,a2b﹣[a2b﹣(3abc﹣a2c)+4a2c],其中a,b,c满足关于x、y的单项式cx2a+2y2与﹣4xy b+4的和为0.17.先化简下式,再求值:x﹣2(x﹣y2)+(﹣x+y2).其中x=3,y=2.18.已知A=(2x﹣y)2,B=4x(x﹣y)(1)求2A﹣B的值,其中x=﹣1,y=1;(2)试比较代数式A、B的大小.19.先化简,再求值:4x2y﹣[6xy﹣3(4xy﹣2)﹣x2y﹣1],其中x=2,y=﹣.20.先化简,再求值:(4a2﹣2ab+b2)﹣3(a2﹣ab+b2),其中a=﹣1,b=﹣.21.先化简,再求值:5m2﹣[3m﹣(3m+3)+4m2],其中m=﹣3.22.(1)﹣(+9)﹣12﹣()(2)4﹣2×(﹣3)2+6÷(﹣)(3)化简:5(a2+5a)﹣(a2+7a)(4)先化简,再求值:2(a2b+ab2)﹣3(a2b﹣1)﹣2ab2﹣4,其中a=2018,b=.23.已知A=3x2+3y2﹣2xy,B=xy﹣2y2﹣2x2,(1)求2A﹣3B;(2)若|2x﹣3|=1,y2=9,且|x﹣y|=y﹣x,求2A﹣3B的值.24.(1)计算:﹣12019﹣(﹣)×[4﹣(﹣)2](2)先化简,再求值:(2x3﹣3x2y﹣xy2)﹣(x3﹣2xy2﹣y3)+(﹣x3+3x2y﹣y3),其中x=,y=2.25.先化简,再求值(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y2)+(﹣x3+3x2y﹣y2),其中x=2019,y=﹣126.先化简,后求值:(3m2﹣4mn)﹣2(m2+2mn),其中m,n满足单项式﹣x m+1y3与y n x2的和仍是单项式.27.先化简,再求值:(6a2﹣16a)﹣5(a2﹣3a+2),其中a2﹣a﹣7=028.先化简,再求值:2(ab+3a2)﹣[5a2﹣(3ab﹣b2)],其中a=,b=1.29.先化简,再求值:6ab2﹣(ab2+3a2b)+5(3a2b﹣ab2),其中a=,b=﹣1.21.先化简,再求值:已知A=3a2+b2﹣5ab,B=2ab﹣3b2+4a2,求当a=﹣,b=2时,﹣B+2A的值.24.(1)化简:5(2x3y+3xy2)﹣(6xy2﹣3x3y)(2)化简求值:已知a+b=9,ab=20,求(﹣15a+3ab)+(2ab﹣10a)﹣4(ab+3b)的值.25.先化简,再求值:(4x2y﹣5xy2+2xy)﹣3(x2y﹣xy2+yx),其中x=2,y=﹣.26.先化简,再求值:5(3a2b﹣ab2)﹣2(﹣ab2+4a2b),其中a=2,b=﹣3.27.(1)﹣45×(﹣0.4)(2)﹣22+(﹣2)+(﹣)﹣|﹣1.5|(3)先化简,再求值:x2+(x2﹣4y)﹣2(x2﹣2y+1),其中x=﹣1,y=28.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+(1)当a=﹣1,b=﹣2时,求4A﹣(3A﹣2B)的值;(2)若(1)中式子的值与a的取值无关,求b的值.29.先化简,再求值:x﹣(4x+5xy﹣y2)+2(x﹣xy﹣y2),其中x=2,y=.30.先化简,再求值:5(3x2y﹣xy2)﹣(xy2+3x2y),其中x=1,y=﹣1.31.已知含字母x,y的多项式是:3[x2+2(y2+xy﹣2)]﹣3(x2+2y2)﹣4(xy﹣x﹣1).(1)化简此多项式;(2)若x,y互为倒数,且恰好计算得多项式的值等于0,求x的值.32.(1)化简:﹣(2k3+4k2﹣28)+(k3﹣2k2+4k).(2)已知A﹣B=7a2﹣7ab,且B=﹣4a2+6ab+7.①求A+B;②若a=﹣1,b=2,求A+B的值.33.已知A=2a2﹣3b2,B=﹣a2+2b2,C=5a2﹣b2.(1)用含有a、b的代数式表示A+B﹣C;(2)若a=﹣,b=,求(1)中代数式的值.34.先化简,再求值:3(x2﹣2xy)﹣2[xy+(﹣xy+x2)﹣1],其中x=﹣4,y=.38.已知m是系数,关于x,y的两个多项式2mx2﹣2x+y与﹣6x2+x﹣3y的差中不含二次项,求代数式m2+3m﹣的值.39.(1)先化简,再求值:,其中m=,n=﹣3.(2)已知2a﹣b+5=0,求整式6a+b与﹣2a﹣3b+27的和的值.40.已知:A=x2﹣2xy+y2,B=x2+2xy+y2.(1)求﹣A+B;(2)如果2A﹣3B+C=0,那么C的表达式是什么?41.(1)化简:(3x2+1)+2(x2﹣2x+3)﹣(3x2+4x);(2)先化简,再求值:m﹣(n2﹣m)+2(m﹣n2)+5,其中m=2,n=﹣3.42.先化简,再求值:,其中m=2,n=3.43.化简与求值(1)化简:2m2﹣2m﹣m2﹣3;(2)先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣3(ab2+1),其中a=﹣2,b=244.先化简,再求值:(1)(5x+y)﹣2(3x﹣4y),其中x=1,y=3(2)(a2﹣ab﹣7)﹣(﹣4a2+2ab+7),其中a=2,b=46.先化简,再求值.(1)5x2﹣(3y2+5x2)+(4y2+7xy),其中x=﹣1,y=1.(2),其中x=,y=2.48.计算题(1)已知A=3x2+4xy,B=x2+3xy﹣﹣y2,求:﹣A+2B.(2)先化简,再求值:2(5a2﹣7ab+9b2)﹣3(14a2﹣2ab+3b2),其中a=,b=﹣.七年级整式的加减计算及化简求值练习100道(含答案)一.合并同类项1.【解】(1)原式=﹣5a+3a﹣2﹣3a+7=﹣5a+5;(2)原式=5a2+a﹣6﹣12+32a﹣8a2=﹣3a2+33a﹣18;2.【解】(1)x2﹣7x﹣2﹣2x2+4x﹣1=﹣x2﹣3x﹣3;(2)(8xy﹣3y2)﹣2(3xy﹣2x2)=2xy﹣3y2+4x2;(3)﹣7a2+(6a2﹣4ab)﹣(3b2+ab﹣a2)=﹣3a2﹣3ab﹣3b2.3.【解】(1)3x+2(x﹣)﹣(x+1)=4x﹣2;(2)5(2a2b﹣ab2)﹣(6a2b﹣3ab2)=6a2b.4.【解】(1)原式=a3﹣3a2;(2)原式=2x2﹣1+3x﹣4x+4x2﹣2=6x2﹣x﹣3;5.【解】(1)3(x2﹣5xy)﹣4(x2+2xy﹣y2)﹣5(y2﹣3xy)=﹣x2﹣8xy﹣y2;(2)(x﹣x2+1)﹣2(x2﹣1+3x)=﹣3x2﹣5x+3.6.【解】(1)a2+3b2+3ab﹣4a2﹣4b2=﹣3a2﹣b2+3ab;(2)8x2﹣[5x﹣(x﹣7)+2x2]﹣4=6x2﹣x﹣11.7.【解】(1)原式=2xy﹣y+y﹣xy=xy;(2)原式=3a2﹣ab+7+4a2﹣2ab﹣7=7a2﹣3ab.8.【解】(1)a﹣(2a﹣3b)+2(3b﹣2a)=﹣5a+9b;(2)3a2b﹣[4ab2﹣3(ab2+a2b)﹣ab2]﹣6a2b=﹣2a2b.9.【解】(1)原式=(3a2﹣4a2)+(3b2﹣3b2)+2ab=﹣a2+2ab;(2)原式=a2+5a2﹣2a﹣2a2+6a=4a2+4a.10.【解】(1)原式=2x﹣6x2+2﹣6x2+3x+6=﹣12x2+5x+8;(2)原式=4mn2+m2n﹣1.11.【解】(1)原式=a2﹣2a2﹣b﹣2b=﹣a2﹣3b;(2)原式=﹣6x2+3xy+4x2+4xy﹣4=﹣2x2+7xy﹣4;12.【解】原式=x2y﹣xy二.化简求值13.【解】(1)∵A﹣B=2x2+6,A=3x2+x+5,∴B=A﹣(2x2+6)=3x2+x+5﹣2x2﹣6=x2+x﹣1;(2)2A﹣3B=2(3x2+x+5)﹣3(x2+x﹣1)=3x2﹣x﹣7,当x=2时,原式=12﹣2﹣7=﹣3;14.【解】原式=3a2﹣ab+7+4a2﹣2ab﹣7=7a2﹣3ab,当a=﹣1,b=2时,原式=7×1﹣3×(﹣1)×2=7+6=13.15.【解】原式=x﹣4x+y2﹣x+y2=﹣5x+y2,当x=|1﹣32|=|﹣8|=8,y=2÷(﹣)=2×(﹣3)=﹣6时,原式=﹣40+48=8.16.【解】根据题意得:cx2a+2y2+﹣4xy b+4=0,∴2a+2=1,b+4=2,c+﹣4)=0,∴a=﹣,b=﹣2,c=4;a2b﹣[a2b﹣(3abc﹣a2c)+4a2c]=﹣a2b+3abc﹣5a2c.把a=﹣,b=﹣2,c=4代入上式得,原式=.17.【解】原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=3,y=2时,原式=﹣9+4=﹣5.18.【解】(1)∵A=(2x﹣y)2,B=4x(x﹣y),∴2A﹣B=2(2x﹣y)2﹣4x(x﹣y)=8x2﹣8xy+2y2﹣4x2+4xy=4x2﹣4xy+2y2把x=﹣1,y=1代入上式得:原式=4×(﹣1)2﹣4×(﹣1)×1+2×12=10;(2)∵A=(2x﹣y)2,B=4x(x﹣y),∴A﹣B=(2x﹣y)2﹣4x(x﹣y)=4x2﹣4xy+y2﹣4x2+4xy=y2,∵y2≥0,∴A≥B.19.【解】原式=4x2y﹣(6xy﹣12xy+6﹣x2y﹣1)=5x2y+6xy﹣5当x=2,y=时,原式=5×4×()+6×2×()﹣5=﹣21;20.【解】原式=4a2﹣2ab+b2﹣3a2+3ab﹣3b2=a2+ab﹣2b2,当a=﹣1,b=时,原式=1+﹣=1.21.【解】原式=5m2﹣(3m﹣3m﹣3+4m2)=5m2+3﹣4m2=m2+3,当m=﹣3时,原式=9+3=12.22.【解】(1)原式=﹣﹣21=;(2)原式=4﹣2×9﹣12=﹣26;(3)原式=5a2+25a﹣a2﹣7a=4a2+18a;(4)原式=2a2b+2ab2﹣3a2b+3﹣2ab2﹣4=﹣a2b﹣1,当a=2018,b=时,原式=﹣2019;23.【解】(1)2A﹣3B=12x2+12y2﹣7xy;(2)由题意可知:2x﹣3=±1,y=±3,∴x=2或1,y=±3,由于|x﹣y|=y﹣x,∴y﹣x≥0,∴y≥x,当y=3,x=2时,原式=12(x2+y2)﹣7xy=114,当y=3,x=1时,原式=12×16﹣31×3=99.24.【解】(1)原式=﹣;(2)原式=2x3﹣3x2y﹣xy2﹣x3+2xy2+y3﹣x3+3x2y﹣y3=xy2,当x=,y=2时,原式=1.25.【解】原式=﹣2y2,当x=2019,y=﹣1时,原式=﹣2.26.【解】原式=3m2﹣4mn﹣2m2﹣4mn=m2﹣8mn,∵单项式﹣x m+1y3与y n x2的和仍是单项式,∴﹣x m+1y3与y n x2是同类项,∴m+1=2,即m=1,n=3,则原式=﹣23.27.【解】原式=6a2﹣16a﹣5a2+15a﹣10=a2﹣a﹣10,∵a2﹣a﹣7=0,∴a2﹣a=7,则原式=7﹣10=﹣3.28.【解】原式=2ab+6a2﹣5a2+3ab﹣b2=5ab+a2﹣b2,当a=,b=1时,原式==.29.【解】原式=6ab2﹣ab2﹣3a2b+15a2b﹣5ab2=12a2b,当a=,b=﹣1时,原式=12××(﹣1)=﹣3.21.【解】∴﹣B+2A=2a2+5b2﹣12ab,当a=﹣,b=2时,原式=32.24.【解】(1)原式=10x3y+15xy2﹣6xy2+3x3y=13x3y+9xy2;(2)原式=,把a+b=9,ab=20代入.25.【解】原式=4x2y﹣5xy2+2xy﹣3x2y+4xy2﹣3yx=x2y﹣xy2﹣xy,当x=2,y=﹣时,原式=22×(﹣)﹣2×(﹣)2﹣2×(﹣)=﹣1.26.【解】原式=15a2b﹣5ab2+2ab2﹣8a2b=7a2b﹣3ab2,当a=2,b=﹣3时,原式=﹣138.27.【解】(1)原式=﹣47;(2)原式==﹣8;(3)原=x2+3y﹣2,把x=﹣1,y=代入x2+3y﹣2=0.28.【解】(1)原式=4A﹣3A+2B=4ab﹣2a+,当a=﹣1,b=﹣2时,原式=10;(2)由(1)得:原式=(4b﹣2)a+,由结果与a的取值无关,得到4b﹣2=0,解得:b=.29.【解】原式=﹣2x﹣10xy﹣y2,当x=2,y=时,原式==﹣14.30.【解】原式=15x2y﹣5xy2﹣xy2﹣3x2y=12x2y﹣6xy2,当x=1,y=﹣1时,原式=﹣18.31.【解】(1)原式==2xy+4x﹣8;(2)∵x,y互为倒数,∴xy=1,则2xy+4x﹣8=2+4x﹣8=4x﹣6,由题意知4x﹣6=0,解得:x=.32.【解】(1)原式=﹣2k2+2k+7;(2)①A+B=A﹣B+2B=7a2﹣7ab+2(﹣4a2+6ab+7)=﹣a2+5ab+14,②当a=﹣1,b=2时,原式==3.33.【解】(1)A+B﹣C=﹣4a2;(2)将a=﹣代入,原式=﹣4×=﹣1.34.【解】原式=3x2﹣6xy﹣xy﹣3(﹣xy+x2)+2=﹣xy+2,当x=﹣4,y=时,原式==9.38.【解】∵m是系数,关于x,y的两个多项式2mx2﹣2x+y与﹣6x2+x﹣3y的差中不含二次项,∴2mx2﹣2x+y﹣(﹣6x2+x﹣3y)=(2m+6)x2﹣x+4y,∴2m+6=0,解得:m=﹣3,∴m2+3m﹣=9﹣9﹣=﹣.39【解】(1)原式=4mn﹣10当m=,n=﹣3时,原式=﹣16;(2)因为2a﹣b=﹣5,又因为6a+b+(﹣2a﹣3b+27)=6a+b﹣2a﹣3b+27=17答:整式6a+b与﹣2a﹣3b+27的和的值是17.40.【解】(1)﹣A+B=﹣(x2﹣2xy+y2)+(x2+2xy+y2)=4xy(2)因为2A﹣3B+C=0所以C=3B﹣2A=3(x2+2xy+y2)﹣2(x2﹣2xy+y2)=3x2+6xy+3y2﹣2x2+4xy﹣2y2=x2+10xy+y241.【解】(1)原式=2x2﹣8x+7;(2)原式=4m﹣n2+5,当m=2,n=﹣3时,原式=4;42.【解】原式=,把m=2,n=3代入,原式=343.【解】(1)2m2﹣2m﹣m2﹣3=m2﹣2m﹣3;(2)2(a2b+ab2)﹣2(a2b﹣1)﹣3(ab2+1)=﹣ab2﹣1把a=﹣2,b=2代入上式可得:原式=7.44.【解】(1)原式=5x+y﹣6x+8y=﹣x+9y,当x=1、y=3时,原式=﹣1+27=26;(2)原式=5a2﹣3ab﹣14,当a=2,b=时,原式=﹣3.46.【解】(1)原式=5x2﹣3y2﹣5x2+4y2+7xy=y2+7xy,当x=﹣1,y=1时,原式=12+7×(﹣1)×1=﹣6;(2)原式=x2﹣3x2﹣3xy+y2+x2+3xy+y2=y2,当y=2时,原式=22=4.48.【解】(1)∵A=3x2+4xy,B=x2+3xy﹣y2,∴﹣A+2B=﹣x2+2xy﹣2y2;(2)原式=﹣32a2﹣8ab+9b2,当a=,b=﹣时,原式=﹣10。
七年级上册数学《第二章整式的加减》专题整式的化简求值(50题)整式的加减—化简求值给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.1.先化简,再求值:11a2﹣[a2﹣3(2a﹣5a2)﹣4(a2﹣2a)],其中a=﹣4.2.(2022秋•香洲区期末)先化简,再求值:2(x2+xy−32y)﹣(x2+2xy﹣1),其中x=﹣4,y=5.3.(2022秋•亭湖区期末)先化简,再求值:a2﹣(3a2﹣2b2)+3(a2﹣b2),其中a=﹣2,b=3.4.(2022秋•南昌县期中)先化简,再求值:3(x2y﹣2xy)﹣2(x2y﹣3xy)﹣5x2y,其中x=﹣1,y=16.5.(2022秋•江岸区期末)先化简,再求值:5a2+4b﹣(5+3a2)+3b+4﹣a2,其中a=3,b=﹣2.6.(2022秋•辽阳期末)先化简,再求值:x2y﹣(3xy2﹣x2y)﹣2(xy2+x2y),其中x=1,y=﹣2.7.(2022秋•盘山县期末)先化简再求值:﹣(3a2﹣2ab)+[3a2﹣(ab+2)],其中a=−12,b=4.8.(2022秋•邻水县期末)先化简,再求值:(x2﹣y2﹣2xy)﹣(﹣3x2+4xy)+(x2+5xy),其中x=﹣1,y=2.9.(2022秋•秀屿区期末)先化简,再求值:4x2y﹣3xy2+3(xy﹣2x2y)﹣2(3xy﹣3xy2)其中x=34,y=﹣1.10.(2022秋•黔江区期末)先化简,再求值:3(2+122−B)−(2B+32−122),其中x=1,y=2.11.(2022秋•高新区期末)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=1,b=﹣2.12.(2022秋•嘉峪关校级期末)先化简,再求值.2(3a﹣4b)﹣3(3a+2b)+4(3a﹣2b),其中=−13,=12.13.(2022秋•皇姑区期末)先化简,再求值:3(a2b﹣2b3+2ab)﹣[2(3ab+a2b)﹣4b3],其中a=2,b=﹣1.14.(2022秋•寻乌县期末)先化简,再求值:﹣3(x2﹣2x)+2(32x2﹣2x−12),其中x=﹣4.15.(2022秋•市南区校级期末)先化简,再求值:12−2(−132)+(−12+132),其中=−2,=23.16.(2022秋•密云区期末)先化简,再求值:(4x2+1)﹣2(x2+3x﹣1),其中x2﹣3x=5.17.(2022秋•范县期中)已知m+4n=﹣1.求(6mn+7n)+[8m﹣(6mn+7m+3n)]的值.18.已知x+y=6,xy=﹣4,求:(5x+2y﹣3xy)﹣(2x﹣y+2xy)的值.19.(2022秋•芙蓉区校级月考)已知xy=2,x+y=3,求(3xy+10y)+[5x﹣(2xy+2y﹣3x)]的值.20.已知a2+b2=20,a2b﹣ab2=﹣3,求(b2﹣a2)+(a2b﹣3ab2)﹣2(b2﹣ab2)的值.21.(2023春•大荔县期末)已知3a﹣b=﹣2,求代数式3(2B2−163+p−2(3B2−2p+的值.22.已知b=2a+2,求整式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.23.(2021秋•浉河区期末)阅读材料:“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+7(a﹣b)2的结果是;(2)拓广探索:已知x2+2y=−13,求﹣6y﹣3x2+2021的值.24.(2022秋•黔西南州期中)“整体思想”是中学数学解题中的一种重要思想,它在多项式的化简与求值中应用极为广泛,例如把(a+b)看成一个整体:3(a+b)+2(a+b)=(3+2)(a+b)=5(a+b).请应用整体思想解答下列问题:(1)化简:3(x+y)2﹣5(x+y)2+7(x+y)2;(2)已知a2+2a+1=0,求2a2+4a﹣3的值.25.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b),“整体思想”是一种重要的数学思想方法,它在多项式的化简与求值中应用极为广泛.(1)尝试应用:把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣(a﹣b)2+7(a﹣b)2,其结果是;(2)已知x2﹣2y=1,求﹣3x2+6y+5的值.26.(2022秋•沁县期末)我们知道:4x+2x﹣x=(4+2﹣1)x=5x,类似地,若我们把(a+b)看成一个整体,则有4(a+b)+2(a+b)﹣(a+b)=(4+2﹣1)(a+b)=5(a+b).这种解决问题的方法渗透了数学中的“整体思想”.“整体思想”是中学数学解题中的一种重要的思想方法,其应用极为广泛.请运用“整体思想”解答下面的问题:(1)把(a﹣b)看成一个整体,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2;(2)已知:x2+2y=5,求代数式﹣3x2﹣6y+21的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.27.(2022秋•铜梁区期末)先化简,再求值:6a2﹣[2(a2+ab)﹣4ab]﹣ab,其中a,b满足|a+1|+(b﹣2)2=0.28.(2022秋•汝阳县期末)已知|a+1|+(b﹣2)2=0,求5ab2﹣[3ab﹣2(﹣2ab2+ab)]的值.29.(2022秋•沙坪坝区期末)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.30.(2022秋•利州区校级期末)先化简,再求值:3x2+(2xy﹣3y2)﹣2(x2+xy﹣y2),其中x、y满足(x﹣3)2+|+13|=0.31.(2022秋•招远市期末)先化简,再求值;4B−[(2−2)−3(2+3B−132)],其中x、y满足(−2)2+ |+12|=0.32.(2022秋•万州区期末)化简求322b﹣2(ab2+1)−12(3a2b﹣ab2+4)的值,其中2(a﹣3)2022+|b+23|=0.33.(2022秋•潼南区期末)先化简,再求值:已知x,y满足|x﹣1|+(y+5)2=0,求代数式3(2−B+162)−2(2B+2−142)的值.34.(2022秋•沙坪坝区校级期中)先化简,再求值:2(2−2B2)−[(−22+42p−13(6B2−322)],其中x是最大的负整数,y是绝对值最小的正整数.35.(2022秋•松滋市期末)已知关于x,y的单项式7x a y与﹣4x2y b是同类项.(1)求a、b的值;(2)化简求值:5(2a2b﹣ab2)﹣6(−32ab2+2a2b).36.已知2a3m b和﹣2a6b n+2是同类项,化简并求值:2(m2﹣mn)﹣3(2m2﹣3mn)﹣2[m2﹣(2m2﹣mn+m2)]﹣1.37.已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B的值.38.先化简,再求值:已知=−12+2,=34−−1.若3b﹣a的值为﹣8,求A﹣2B的值.39.(2022秋•和平区校级期中)已知A=3b2﹣2a4+5ab,B=4ab+2b2﹣a2.(1)化简:2A﹣3B;(2)当a=﹣1,b=2时,求2A﹣3B的值.41.已知A=2x2﹣3xy+y2+x+2y,B=4x2﹣6xy+2y2﹣3x﹣y.当实数x、y满足|x﹣2|+(y−15)2=0时,求B﹣2A的值.41.(2022秋•榆阳区校级期末)已知A=2a2b﹣ab﹣2a,B=a2b﹣a+3ab.(1)化简:A﹣2(A﹣B);(结果用含a、b的代数式表示)(2)当a=−27,b=3时,求A﹣2(A﹣B)的值.42.(2022秋•河池期末)已知,A=3ab+a﹣2b,B=2ab﹣b.(1)化简:2A﹣3B;(2)当b=2a时,求2A﹣3B+4的值.43.(2023春•莱芜区月考)已知A=6a2+2ab+7,B=2a2﹣3ab﹣1.(1)计算:2A﹣(A+3B);(2)当a,b互为倒数时,求2A﹣(A+3B)的值.44.(2022秋•兴城市期末)已知多项式A=3x2﹣bx+6,B=2ax2﹣4x﹣1;(1)若(a﹣3)2+|b﹣2|=0,求代数式2A﹣B的值;(2)若代数式2A+B的值与x无关,求5a+2b的值.45.(2022秋•韩城市期末)已知关于x的多项式A,B,其中A=mx2+2x﹣1,B=x2﹣nx+2(m,n为有理数).(1)化简2B﹣A;(2)若2B﹣A的结果不含x项和x2项,求m、n的值.46.(2022秋•北碚区校级期末)已知A=32B2−2x﹣1,B=3x2−13mx+4,(1)当4A−3B的值与x的取值无关,求m、n的值;(2)在(1)的条件下,求多项式(m2﹣3mn+3n2)﹣(2nm﹣mn﹣4n2)的值.47.(2022秋•沙坪坝区校级期末)已知A=x2+ax﹣y,B=bx2﹣x﹣2y,当A与B的差与x的取值无关时,求代数式32−[2B2−4(B−342p]+2B2的值.48.(2022秋•沧州期末)已知A=2x2+3xy﹣2x,B=x2﹣xy+y2.(1)求2A﹣4B;(2)如果x,y满足(x﹣1)2+|y+2|=0,求2A﹣4B的值;(3)若2A﹣4B的值与x的取值无关,求y的值.49.(2022秋•河北期末)已知一个多项式(3x2+ax﹣y+6)﹣(﹣6bx2﹣4x+5y﹣1).(1)若该多项式的值与字母x的取值无关,求a,b的值;(2)在(1)的条件下,先化简多项式3ab2﹣[5a2b+2(ab2−12)+ab2]+6a2b,再求它的值.50.(2022秋•邗江区校级期末)已知关于x的代数式2x2−12bx2﹣y+6和ax+17x﹣5y﹣1的值都与字母x的取值无关.(1)求a,b的值.(2)若A=4a2﹣ab+4b2,B=3a2﹣ab+3b2,求4A+[(2A﹣B)﹣3(A+B)]的值.。
专题01整式的化简与求值题型01先化简在直接代入求值【典例分析】【例1-1】(23-24七年级上·山西晋城·阶段练习)当1x =-时,多项式2245413x x x x x -+---的值为( )A .2-B .2C .1-D .0【答案】D【分析】本题考查了整式加减中的化简求值,先利用整式的加减运算法则进行化简,再将1x =-代入原式即可求解,熟练掌握其运算法则是解题的关键.【详解】解:2245413x x x x x -+---2551x x x =+--21x =-,将1x =-代入原式得:()221110x -=--=,故选D .【例1-2】(22-23七年级上·上海闵行·周测)若2x =-,则多项式()()2234532x x x x -+-+-+的值是 .【答案】2【分析】根据整式加减混合运算法则进行化简,然后代入数据进行计算即可.【详解】解:()()2234532x x x x -+-+-+2234532x x x x =-+-+-+2x x =+,把2x =-代入得:原式()()2222=-+-=.【点睛】本题主要考查了整式加减的化简求值,解题的关键是熟练掌握整式加减运算法则,准确计算.【例1-3】(22-23七年级上·宁夏中卫·期末)先化简,再代入求值.()()()42224x y x y x y x éù----++-ëû,其中0,3x y ==- ;【答案】15【分析】本题考查整式加减中的化简求值,去括号,合并同类项,化简后代值计算.【详解】解:原式()422224x y x y x y x=---+++-4234x y y x =---5y =-;当0,3x y ==-时,原式()5315=-´-=.【变式演练】【变式1-1】(22-23七年级上·天津南开·期中)若12x =,则代数式22225432x x x x x -++--的值为( )A .52B .12C .12-D .52-【点睛】本题考查了整式的加减-化简求值,熟练掌握整式的加减运算法则是解本题的关键.【变式1-2】(22-23七年级上·黑龙江佳木斯·期中)若2022a =-,12022b =,则多项式2223232a ab a ab a +---= .【点睛】本题考查了整式的化简求值;熟练掌握合并同类项的法则是解题的关键【变式1-3】(23-24七年级上·福建泉州·阶段练习)先化简再求值∶ ()2222261a a a a ---+,其中 12a =-.题型02利用整体思想化简求值【典例分析】【例2-1】(23-24七年级上·河南安阳·期末)“整体思想”是数学中的一种重要的思想方法,它广泛应用于数学运算中.例如:已知2a b +=,3ab =-,则()22238a b ab +-=-´-=,利用上述思想方法计算:已知22a b -=,1ab =-,则()()2=a b ab b --- .【答案】3【分析】本题考查了整式的化简求值,熟练掌握“整体代入法求代数式的值”是解题的关键.先将()()2a b ab b ---化简,然后将22a b -=,1ab =-,代入计算即可.【详解】解:()()2a b ab b ---22a b ab b=--+2a b ab =--;∵22a b -=,1ab =-,∴()221213a b ab --=--=+=.故答案为:3.【例2-2】(23-24七年级上·甘肃兰州·期末)阅读材料:我们知道,()232314x x x x x +-=+-=,类似的,我们把()a b +看成一个整体,则()()()()()()232314a b a b a b a b a b +++-++-+=+=.“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把()2x y -看成一个整体,求将()()()22224x y x y x y ---+-合并的结果.(2)已知2348m n -=-,求代数式23n m -的值.拓广探索:(3)已知22a b -=,2b c -=-,36c d +=,求()()()32a c b c b d ++++-的值.【答案】(1)()2x y --;(2)8;(3)6【分析】本题考查了整式的加减运算与化简求值,熟练掌握整体代入思想是解题的关键.(1)根据合并同类项法则合并即可.(2)将代数式变形,然后把已知条件的值代入计算即可.(3)把原式去括号整理后,变为()()()23-+-++a b b c c d ,然后整体代入求值可.【详解】(1)解:()()()22224x y x y x y ---+-()()2241x y -+-=()2x y =--(2)解:2348m n -=-Q ,【例2-3】(23-24七年级上·广西南宁·期中)探究与应用【阅读材料】“整体思想”是一种重要的数学思想,在多项式的化简求值中应用极为广泛.在()424213a a a a a -+=-+=中,字母a 是一个整体,类似的,可以把()x y +看成一个整体,则()()()()()()424213x y x y x y x y x y +-+++=-++=+.【尝试应用】(1)把2()x y +看成一个整体,化简2223()6()2()+-+++=x y x y x y ________;(2)已知222a b -=-,求23621a b --的值.【拓展探索】(3)已知3a b -=,5b c +=-,10c d +=,求()()()a c b d b c -----的值.【答案】(1)2()x y -+;(2)27-;(3)18【分析】本题主要考查代数式的值及合并同类项,熟练掌握利用整体思想进行求解是解题的关键.(1)把()2x y +看作一个整体,合并即可得到结果;(2)原式前两项提取3变形后,将已知等式代入计算即可求出值;(3)根据已知条件进行整理,然后将已知等式代入计算即可求出值.【详解】解:(1)2223()6()2()x y x y x y +-+++()2362()x y =-++2()x y =-+;(2)222a b -=-Q 23621a b \--()23221a b =--3(2)21=´--621=--27=-;(3)3a b -=Q ,5b c +=-,10c d +=()()()\-----a c b d b c =--+-+a c b d b c()()()=--+++a b b c c d 3(5)10=--+3510=++18=.【变式演练】【变式2-1】(22-23七年级上·河南南阳·期末)“整体思想”是数学中的一种重要的思想方法,它在数学运算、推理中有广泛的应用,如:已知2m n +=-,3=-mn ,则()()22234m n mn +-=--´-=.利用上述思想方法计算:已知343m n -=-,1mn =-.则()()62m n n mn ---=.【答案】8-【分析】将原式通过去括号、合并同类项化简后,再将343m n -=-,1mn =-整体代入即可.【详解】解:∵343m n -=-,1mn =-,∴()()62m n n mn ---6622m n n mn =--+682m n mn=-+()2342m n mn=-+()()2321=´-+´-8=-故答案为:8-.【点睛】本题考查整式的加减—化简求值,掌握去括号、合并同类项法则以及整体思想的体现是正确解答的前提.【变式2-2】(23-24七年级上·河南安阳·期末)阅读材料:“整体思想”是中学数学的重要思想方法,在解题中会经常用到.我们知道,合并同类项:()5325324x x x x x -+=-+=,类似地,我们把()m n +看成一个整体,则()()()()()()5325324m n m n m n m n m n +-+++=-++=+.尝试应用:()1把()2m n +看成一个整体,合并()()()222453m n m n m n +-+++的结果是______.()2已知229x y +=-,求24818x y ++的值.拓展探索:()3已知2a b -=,24b c -=,21c d -=-,求()()()22a c b c b d ---+-的值.【答案】()1()22m n +;()218-;()35.【分析】本题考查的知识点是合并同类项、整式的化简求值、根据已知式子的值求代数式的值,解题关键是结合已知条件将原式进行正确变形,采用整体代入的思想进行计算.()1将原式合并即可;()2将22x y +看成一个整体,对原式进行变形,再代入求值即可;()3将原式变形后代入已知整式值计算即可.【详解】()1解:原式()()2453m n =-++,()22m n =+.故答案为:()22m n +.()2解:229x y +=-Q ,24818x y \++,()24218x y =++,()4918=´-+,18=-.()3解:2a b -=Q ,24b c -=,21c d -=-,()()()22a c b c b d \---+-,22a c b c b d =--++-,()()()22a b b c c d =-+-+-,()241=++-,5=.【变式2-3】(23-24七年级上·内蒙古鄂尔多斯·期中)阅读材料:“整体思想”是中学数学中重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把()a b +看成一个整体,4()2()((421)()3())a b a b a b a b a b =+-+++-++=+.尝试应用:(1)把2()a b -看成一个整体,合并2227()9()3()a b a b a b ---+-的结果是__________.(2)已知222x y -=,则2482023x y --的值=__________.拓广探索:(3)若2m n -=,5mn =-,则3()(3)mn n mn m ---的值为__________.(4)已知23a b -=,6c d -=,求()(2)a c b d ---的值=_________.【答案】(1)2()a b -;(2)2015-;(3)4-;(4)3-【分析】本题考查了利用整体思想求代数式的值,将代数式进行适当变形是解题关键.(1)将各项系数加减即可求解;(2)2482023x y --()2422023x y --=,据此即可求解;(3)()3()(3)23mn n mn m mn m n ---=+-,然后整体代入求值;(4)()()2a c b d ---()()2a b c d =---,据此即可求解.【详解】解:(1)()222227)7()9()3(()(3)9a b a b a b a b a b =----+=+---故答案为:2()a b -;(2)因为222x y -=,所以2482023x y --()2422023x y --=422023=´-82023=-2015=-,故答案为:2015-;(3)3()(3)mn n mn m ---=333mn n mn m--+=()23mn m n +-,当2m n -=,5mn =-时,原式=()25321064´-+´=-+=-,故答案为:4-;(4)当23a b -=,6c d -=时,()()2a c b d ---2a c b d=--+()()2a b c d =---36=-3=-故答案为:3-题型03复合型代数式的化简求值问题【典例分析】【例3-1】(22-23七年级上·广东惠州·期中)已知多项式2222A x y z =+-,222432B x y z =-++且0A B C ++=,则C 为( )A .2225x y z --B .22235x y z --C .22233x y z --D .22235x y z +-【答案】B【分析】由题意得222222=()3)24(2C x y z z A y B x +--+-+=---,进行计算即可得.【详解】解:由于多项式2222A x y z =+-,222432B x y z =-++且0A B C ++=,则222222=()3)24(2C x y z z A y B x +--+-+=---=2222222432x y z x y z ++----=22235x y z --,故选:B .【点睛】本题考查了整式的加减,解题的关键是掌握整式加减的步骤【例3-2】(23-24七年级上·贵州遵义·期末)已知两个整式A 和B ,237A a ab =-+,2447B a ab =-++.(1)请化简A B -;(2)若1a =-,2b =,则A B -的值为多少?【答案】(1)275a ab-(2)17【分析】本题考查的是整式的加减运算中的化简求值;熟记去括号,合并同类项的法则是解本题的关键.(1)先去括号,再合并同类项,即可得到答案;(2)把1a =-,2b =代入化简后的代数式进行计算即可.【详解】(1)∵237A a ab =-+,2447B a ab =-++∴A B-()2244737a a b ab a -+-+-+=2244737a a a a b b =--+-+275a ab =-;(2)∵1a =-,2b =,∴()()22757151217A B a ab -=-=´--´-´=【例3-3】(22-23七年级上·云南文山·期末)已知22235A x y xy xy =+-,22234B xy xy x y =-+.(1)求2A B -;(2)当3x =,13y =-时,求2A B -的值.【答案】(1)2912xy xy -【变式演练】【变式3-1】(21-22七年级上·广东湛江·期中)已知22321A x xy x =++-,232B x xy x =++-.先化简2A B -,且当2x y ==时,求2A B -的值;【答案】243A B xy x -=-+,2A B -的值为1-;【分析】先求出243A B xy x -=-+,再将2x y ==代入求值即可;本题考查了整式的加减,熟练掌握整式的加减运算法则,并能准确计算是解题的关键.【详解】2A B-()()222321232x xy x x xy x ++=+--+-2222321264x xy x x xy x =-+--+-+43xy x =-+,当2x y ==时,原式4831=-+=-【变式3-2】(23-24七年级上·江苏苏州·阶段练习)已知,224532A x y B x y =-=--,,求2A B -的值, 其中21x y =-=,.【答案】36【分析】本题考查了整式的化简求值.熟练掌握整式的化简求值是解题的关键.先去括号,然后合并同类项可得化简结果,最后代值计算求解即可.【详解】解:由题意知,()()22224532A B x y x y -=----2281032=-++x y x y2118=-x y ,将21x y =-=,代入得,原式()21128144836=´--´=-=.【变式3-3】(21-22七年级上·河北保定·期中)化简与求值:(1)已知25A x xy =-,26B xy x =-+,求2A B -;(2)先化简,再求值:()()2222272234x y x y xy x y xy -----,其中2x =-,1y =.【答案】(1)24x xy -;(2)2277x y xy +,14.【分析】本题考查了整式的化简求值,解答本题的关键是熟练掌握整式的运算法则,将所给代数式化简.(1)去括号合并同类项即可;(2)先去括号合并同类项,再把2x =-,1y =代入计算.【详解】(1)()()222256A B x xy xy x -=---+222106x xy xy x =-+-24x xy =-.(2)()()2222272234x y x y xy x y xy -----222227464x y x y xy x y xy =-+++2277x y xy =+.当2x =-,1y =时,原式()227(2)1721281441=´-´+´--=´=题型04绝对值的化简求值【典例分析】【例4-1】(22-23七年级上·四川绵阳·期中)若23a <<时,化简32a a -+-( )A .1B .25a -C .1-D .52a-【例4-2】(21-22七年级上·广东湛江·期中)已知a a =-,||1b b=-,c c =,化简a b a c b c ++---= .【例4-3】(23-24七年级上·江苏苏州·阶段练习)有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c +______0,a b -______0,b a -______0;(2)化简:b c a b b a ++---.【答案】(1),,><>(2)b c+【变式演练】【变式4-1】(23-24七年级上·甘肃庆阳·期末)若0b <,0ab <,则1b a a b ---+的值为( )A .2-B .1-C .1D .2【变式4-2】(22-23七年级上·广西贺州·期中)有理数a b 、表示的点在数轴上如图所示.化简:()||||a b a b a b -+++--= .【答案】3a b--【分析】本题考查了数轴和绝对值,整式的加减,根据数轴得出,0b <,0a >,||||b a >,去掉绝对值符号,再合并即可.【变式4-3】(23-24七年级上·江苏·周测)如图,在一条不完整的数轴上,从左到右的点A、B、C把数轴分ab<.成①②③④四部分,点A、B、C对应的数分别是a、b、c,且0(1)原点在第部分(填序号);----;(2)化简式子:a b c a a=+-a b c题型05利用“不含与无关”求值【典例分析】【例5-1】(23-24七年级上·海南海口·期中)若多项式22266x kxy y xy -++-不含xy 的项,则k 的值是( )A .0B .3-C .6D .3【答案】D【分析】本题考查了多项式的不含有项的问题,熟练掌握合并同类项,令系数为零是解题的关键.先合并同类项,令xy 的系数为零,求解即可.【详解】解:多项式()2222266626x kxy y xy x k xy y -+=+-+-+-不含xy 的项,∴620k -=,∴3k =,故选:D【例5-2】(23-24七年级上·山东日照·期末)若多项式()22331x mx x nx ++-+-的值与x 的取值无关,则2m n -+的值为 .【答案】7-【分析】本题考查了整式的加减中的无关题型、求代数式的值,将原式括号去掉、合并同类项后得到()()2132n x m x ++-+,再由其值与x 的取值无关,可求出m n 、的值,最后代入计算即可得出答案,求出m n 、的值是解此题的关键.【详解】解:()()()22222331331132x mx x nx x mx x nx n x m x ++-+-=++--+=++-+,Q 多项式()22331x mx x nx ++-+-的值与x 的取值无关,10n \+=,30m -=,解得:3m =,1n =-,()22317m n \-+=-´+-=-,故答案为:7-【例5-3】(23-24七年级上·江苏苏州·阶段练习)已知22573A x xy y =--+,21B x xy =-+.(1)求4(2)A A B -+的值;(2)若2A B -的值与y 的取值无关,求x 的值.【答案】(1)239145x xy y --+73x \=-【变式演练】【变式5-1】(22-23七年级上·广东湛江·期中)若关于x 的多项式3222673x mx x x +--+不含二次项,则m 等于( )A .2B .2-C .3D .3-【答案】C【分析】本题主要考查了整式加减中的无关项问题.先合并同类项,然后根据多项式中不含二次项,可得260m -=,即可求解.【详解】解:()3223226732673x mx x x x m x x +--+=+--+,∵多项式中不含二次项,∴260m -=,解得:3m =.故选:C【变式5-2】(23-24七年级上·江苏扬州·期末)已知M ,N 为两个整式,其中23761M a ab a =-+--,2342N a ab =-+,若+M N 的值与a 的取值无关,则b = .【答案】2【分析】本题考查整式的加减混合运算,熟练掌握运算技巧与合并同类项的方法是解题的关键,同时需注意代数式的值与a 无关,说明含a 项的系数为0.先把已知条件中的M ,N 代入+M N 进行化简,然后根据+M N的值与a 的取值无关,列出关于b 的方程,解方程即可.【详解】解:∵23761M a ab a =-+--,2342N a ab =-+,∴M N+()()223761342a ab a a ab =-+--+-+223761342a ab a a ab =-+--+-+223374621a a ab ab a =-+--+-361ab a =-+()321a b =-+,∵+M N 的值与a 的取值无关,∴20b -=,\2b =,故答案为:2.【变式5-3】(23-24七年级上·安徽六安·期末)已知代数式22573A x xy y =+--,22B x xy -=+.(1)求()323A A B -+.(2)若2A B -的值与y 的取值无关,求x 的值.【答案】(1)2879x xy y -+--(2)x =1【分析】本题考查整式的运算,熟练掌握整式的运算法则是解答本题的关键.(1)根据整式的运算法则即可求出答案;(2)根据题意将2A B -化简,然后令含y 的项的系数为0即可求出x 的值.【详解】(1)解:()3233233A A B A A B A B -+=--=-22573A x xy y =+--Q ,22B x xy =-+3A B\-()()22257332x xy y x xy =+----+222573336x xy y x xy =+---+- 2879x xy y =-+--;(2)2A B-()()22257322x xy y x xy =+----+777xy y =-- 7(1)7y x =--2A B -Q 的值与y 的取值无关,∴10x -=,1x \=。
一、解答题1.已知多项式2x 2+25x 3+x ﹣5x 4﹣13. (1)请指出该多项式的次数,并写出它的二次项和常数项; (2)把这个多项式按x 的指数从大到小的顺序重新排列. 解析:(1)该多项式的次数是4,它的二次项是2x 2,常数项是﹣13;(2)﹣5x 4+25x 3+2x 2+x ﹣13. 【分析】(1)根据多项式的次数、项等定义解答即可; (2)按x 得降幂排列多项式即可. 【详解】解:(1)该多项式的次数是4,它的二次项是2x 2,常数项是﹣13; (2)这个多项式按x 的指数从大到小的顺序为:432215253x x x x -+++-. 【点睛】本题考查的是多项式的概念及应用.2.已知22332A x y xy =+-,2222B xy y x =--. (1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可. 【详解】 解:(1)()()2222232332322A B x y xy xy y x-=+----2222664366x y xy xy y x =+--++ 2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y , ∴2x =或1,3=±y ,由于||x y y x -=-, ∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=. 当1x =,3y =时,2399A B -=. 所以,23A B -的值为114或99. 【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.3.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积. 解析:(1)22111222a ab b ++;(2)492【分析】(1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案; (2)将3a =,5b =代入求值即可. 【详解】 (1)()21122a ab b ⨯++, 22111222a ab b =++; (2)当3a =,5b =时,原式221113355222=⨯+⨯⨯+⨯492=. 【点睛】此题考察列式计算,根据图形边长正确列式表示图形的面积即可.4.为鼓励居民节约用电,某市采用价格调控手段达到省电目的,该市电费收费标准如下表(按月结算): 每月用电量度 电价/(元/度) 不超过150度的部分0.50元/度 超过150度且不超过250度的部分0.65元/度超过250度的部分 0.80元/度问:(1)某居民12月份用电量为180度,请问该居民12月应缴交电费多少元? (2)设某月的用电量为x 度(0300x <≤),试写出不同电量区间应缴交的电费.解析:(1)该居民12月份应缴电费94.5元;(2)0.5,01500.6522.5,1502500.860,250300x x x x x x <≤⎧⎪-<≤⎨⎪-<≤⎩【分析】(1)根据用电量类型分别进行计算即可;(2)分三种情况进行讨论,当x 不超过150度时,x 超过150度,但不超过时250度时和x 超过250度时,再分别代入计算即可. 【详解】解:(1)由题意,得150×0.50+(180-150)×0.65=94.5(元) 答:该居民12月应缴交电费94.5元;(2)若某户的用电量为x 度,则当x≤150时,应付电费:0.50x 元; 当150<x≤250时,应付电费:0.65(x -150)+75=0.65x 22.5-(元); 当250<x <300,应付电费:0.80(x -250)+140=0.8x 60-(元).∴不同电量区间应缴交的电费为:0.5,01500.6522.5,1502500.860,250300x x x x x x <≤⎧⎪-<≤⎨⎪-<≤⎩.【点睛】本题考查了列代数式,读懂题目信息,理解阶梯电价的收费方法和电费的计算方法是解题的关键.5.窗户的形状如图所示(图中长度单位:cm ),其中上部是半圆形,下部是边长相同的四个小正方形. 已知下部小正方形的边长是acm. (1)计算窗户的面积(计算结果保留π). (2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm 时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).解析:(1)2214a +a 2π;(2)6a a π+;(3)245.【分析】(1)根据图示,窗户的面积等于4个小正方形的面积加上半径是a 的半圆的面积; (2)根据图示,窗户外框的总长就是用3条长度是2acm 的边的长度加上半径是acm 的半圆的长度;(3)根据窗户的总面积,代入求值即可. 【详解】解:(1)窗户的面积为:()()222214a a 422a a a cm ππ⎛⎫⨯+=+ ⎪⎝⎭(2)窗户的外框的总长为:()()132a 262a a a cm ππ⨯+⨯=+ (3)当a=50cm ,即:a=0.5m 时, 窗户的总面积为:()2220.540.5128m ππ⎛⎫⨯+=+ ⎪⎝⎭取π≈3.14,原式=1+0.3925≈1.4(m 2) 安装窗户的费用为:1.4×175=245(元). 【点睛】本题考查的知识点是求组合图形的面积与周长,将已知图形分解为所熟悉的简单图形是解此题的关键.6.有一道化简求值题:“当1a =-,3b =-时,求222(32)2(())44a b ab ab a ab a b ---+-的值.”小明做题时,把“1a =-”错抄成了“1a =”,但他的计算结果却是正确的,小明百思不得其解,请你帮他解释一下原因,并求出这个值.解析:2228a b a +,解释见解析,2. 【分析】将原式化简后即可对计算结果进行解释;将a 、b 的值代入化简后的式子计算即得结果. 【详解】解:原式22232284a b ab ab a ab a b =--++-2228a b a =+. 因为无论1a =-,还是1a =,2a 都等于1,所以代入的结果是一样的. 所以当1a =-,3b =-时,原式222(1)(3)8(1)=⨯-⨯-+⨯-682=-+=. 【点睛】本题考查了整式的加减运算及代数式求值,属于常考题型,熟练掌握整式加减运算法则是解题关键.7.有这样一道题,计算()()4322433222422x x y x yxx y y x y -----+的值,其中0.25x =,1y =-;甲同学把“0.25x =”,错抄成“0.25x =-”,但他的计算结果也是正确的,你说这是为什么? 解析:化简后为32y ,与x 无关.【分析】原式去括号合并得到最简结果中不含x ,可得出x 的取值对结果没有影响. 【详解】解:()()4322433222422x x y x yxx y y x y -----+=43224332224242x x y x y x x y y x y ---+++ =32y ,原式化简后为32y ,跟x 的取值没有关系.因此不会影响计算结果. 【点睛】本题考查了整式的加减——化简求值,正确的将原式去括号合并同类项是解决此题的关键.8.日历上的规律:下图是2020年元月的日历,图中的阴影区域是在日历中选取的一块九宫格.(1)九宫格中,四个角上的四个数之和与九宫格中央这个数有什么关系?(2)请你自选一块九宫格进行计算,观察四个角上的四个数之和与九宫格中央那个数是否还有这种关系. (3)试说明原理.解析:(1)四个角上的四个数之和等于九宫格中央这个数的4倍;(2)四个角上的四个数之和等于九宫格中央这个数的4倍,选取九宫格见解析;(3)见解析. 【分析】(1)求出四个角上的四个数之和与九宫格中央这个数,从而验证它们的关系. (2)选择如下图的九宫格,验证他们的关系即可. (3)设九宫格中央这个数为a ,列等式进行验证即可. 【详解】(1)四个角上的四个数之和等于九宫格中央这个数的4倍. 理由如下:6228202828414+++=+=⨯.(2)如图,9112325174+++=⨯,所以四个角上的四个数之和等于九宫格中央这个数的4倍.(选取的九宫格不唯一).(3)设九宫格中央这个数为a ,那么左上角的数为71a --,右上角的数为71a -+,左下角的数为71a +-,右下角的数为71a ++,四个数的和为(71)(71)(71)(71)4a a a a a --+-+++-+++=. 即四个角上的四个数之和等于九宫格中央这个数的4倍. 【点睛】本题考查了整式的加减应用,掌握整式的加减运算法则是解题的关键. 9.化简: (1)()()22224232a b ababa b ---;(2)2237(43)2x x x x ⎡⎤----⎣⎦.解析:(1)22105a b ab -;(2)2533x x -- 【分析】(1)先去括号,再合并同类项即可得到答案; (2)先去括号,再合并同类项即可得到答案. 【详解】 (1)()()22224232a b ababa b ---22224236a b ab ab a b =--+22105a b ab =-.(2)2237(43)2x x x x ⎡⎤----⎣⎦2237(43)2x x x x =-+-+2237432x x x x =-+-+ 2533x x =--.【点睛】本题主要考查了整式的加减,整式加减的实质就是去括号,合并同类项,一般步骤是:先去括号,然后再合并同类项.10.单项式233x y π-的系数是______,次数是______.佳佳认为此单项式的系数是3-,次数为6,请问佳佳的答案正确吗?如果不正确,请说明错误的理由,并且把正确的答案写出来.解析:23π-,4.佳佳的答案不正确,此题错将π当成是未知数,因而加上了“π的次数”.正确的答案为系数是23π-,次数是4. 【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数. 【详解】佳佳的答案不正确,此题错将π当成是未知数,因而加上了“π的次数”.故正确的答案为系数是23π-,次数是4. 【点睛】考查了单项式,解答此题关键是构造单项式的系数和次数,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.11.已知一个多项式加上223x y xy -得222x y xy -,求这个多项式. 佳佳的解题过程如下:解:222223x y xy x y xy ---①224x y xy =-②请问佳佳的解题过程是从哪一步开始出错的?并写出正确的解题过程. 解析:是从第①步开始出错的,见解析 【分析】根据多项式的加减运算法则进行运算即可求解. 【详解】解:佳佳是从第①步开始出错的,正确的解题过程如下: 根据题意,得:()()222223x y xyxy xy ---222223x y xy x y xy =--+222x y xy =+,∴这个多项式为222x y xy +. 故答案为222x y xy +. 【点睛】本题考查了多项式的加减混合运算,注意:只有同类项才能进行加减运算. 12.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.解析:(1)2a b c -+;(2)-9 【分析】(1)由数轴上的位置,先判断0,0,0+>-<-<a b c b b a ,再根据绝对值的意义进行化简,即可得到答案.(2)由绝对值的意义,倒数的定义,平方根的定义,先求出a 、b 、c 的值,再代入计算,即可得到答案. 【详解】解:(1)由数轴可得:0c b a <<<, ∴0,0,0+>-<-<a b c b b a ,∴原式2a b c b b a a b c =++--+=-+.(2)由题意,∵若a 的绝对值的相反数是2,b --的倒数是它本身,24c =, ∴2,1,2a b c ==-=-,∴2()2a b c a b c a b c a b c -++-+-=-++--+=224149a b c -++=---=-. 【点睛】本题考查了数轴的定义,绝对值的意义,倒数的定义,平方根的定义等知识,解题的关键是利用数轴正确判断0c b a <<<,从而进行解题. 13.观察由“※”组成的图案和算式,解答问题(1)请猜想1+3+5+7+9+…+19= ;(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)= ; (3)请用上述计算103+105+107+…+2015+2017的值. 解析:(1)102;(2)()22n + ;(3)1015480. 【分析】(1)由等式可知左边是连续奇数的和,右边是数的个数的平方,由此规律解答即可,此题中一共有10个连续奇数相加,所以结果应为102; (2)一共有(n+2)个连续奇数相加,所以结果应为n 2;(3)让从1加到2005这些连续奇数的和,减去从1加到101这些连续奇数的和即可. 【详解】 (1)由图片知:第1个图案所代表的算式为:1=21; 第2个图案所代表的算式为:1+3=4=22; 第3个图案所代表的算式为:1+3+5=9=23; …依次类推:第n 个图案所代表的算式为:1+3+5+…+(2n-1)=2n ;1+3+5+…+19的个数为:191102+=, ∴1+3+5+…+19=210; 故答案为:210;(2)1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)的个数为:23122n n ++=+, ∴1+3+5+7+9+…+(2n-1)+(2n+1)+(2n+3)=()22n +,故答案为:()22n +; (3)103+105+107+…+2015+2017 =(1+3+…+2015+2017)-(1+3+…+99+101) =21009-251 =1015480. 【点睛】本题考查了数字的变化规律的应用;判断出有几个奇数相加是解决本题的易错点;得到从1开始连续奇数的和的规律是解决本题的关键.14.给定一列分式:3x y ,52x y -,73x y ,94x y-,…(其中0x ≠).(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.解析:(1)任意一个分式除以前面一个分式,都得2x y -.(2)第7个分式为157x y ,第8个分式为178x y-.【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子. 【详解】解:(1)5352223x x x y x y y y x y, 757223235x x x y x y y y x y , 979324347x x x y x y y y x y, ……∴任意一个分式除以前面一个分式,都得2x y-.(2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x 15,第8个分子上是x 17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157x y,第8个分式为178x y -.【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键. 15.图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1) 图②有 个三角形;图③有 个三角形;(2) 按上面的方法继续下去,第n 个图形中有多少个三角形(用n 的代数式表示结论).解析:(1)5,9 ;(2)43n - 【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第n 个图形中有14(1)43n n +⨯-=-个三角形. 【详解】解:(1)根据图形可得:5,9; (2)发现每个图形都比起前一个图形多 4 个,∴第n 个图形中有14(1)43n n +⨯-=-个三角形. 【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型.16.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2,已知点A ,B 是数轴上的点,请参照下图并思考,完成下列各题.(1)如果点A 表示数-3,将A 点向右移动7个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离为 .(3)如果点A 表示数4-,将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是 ,A ,B 两点间的距离是 .(4)一般地,如果A 点表示数为m ,将A 点向右移动n 个单位长度,再向左移动P 个单位长度,那么,请你猜想终点B 表示什么数?A ,B 两点间的距离为多少?解析:(1)4,7;(2) 1,2;(3) -92,88;(4)m+n-p ,|n-p|【分析】(1)根据数轴上的点向右平移加,向左平移减,可得B 点表示的数为-3+7=4,根据数轴上两点间的距离是大数减小数,可得答案;(2)根据数轴上的点向右平移加,向左平移减,可得B 点表示的数3-7+5=1,根据数轴上两点间的距离是大数减小数,可得答案;(3)根据数轴上的点向右平移加,向左平移减,可得B 点表示的数-4+168-256=-92,根据数轴上两点间的距离是大数减小数,可得答案;(4)按照(1)(2)(3)中的方法讨论更加一般的情况即可求解.【详解】解:(1)∵点A 表示数-3,∴将A 点向右移动7个单位长度,那么终点B 表示的数是-3+7=4,A ,B 两点间的距离为4-(-3)=7,故答案为:4,7;(2)∵点A 表示数3,∴将A 点向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是3-7+5=1,A ,B 两点间的距离为3-1=2,故答案为:1,2;(3)∵点A 表示数-4,将A 点向右移动168个单位长度,再向左移动256个单位长度,那么终点B 表示的数是-4+168-256=-92,A ,B 两点间的距离是-4-(-92)=88,故答案为:-92,88;(4)∵A 点表示的数为m ,∴将A 点向右移动n 个单位长度,再向左移动p 个单位长度, 那么点B 表示的数为m+n-p ,A ,B 两点间的距离为|m-(m+n-p)|=|n-p|.故答案为:m+n-p ,|n-p|.【点睛】本题考查的是数轴上点的平移规律及数轴上两点之间的距离公式,点在数轴上平移遵循“左减右加”原则;注意数轴上两点之间的距离为大数减小数,当不确定谁大谁小时记得加绝对值符号;正确利用数形结合分析是解题关键.17.先化简,再求值:()()22222322a b ab a b ab a b -+---,其中1a =,2b =-. 解析:2ab -,4-.【分析】先去括号,再合并同类项,再将1a =,2b =-代入原式求值即可.【详解】原式22222423a b ab a b ab a b +=-+--22(112)(34)a b ab =--++-2ab =-,当1a =,2b =-时,原式21(2)4=-⨯-=-【点睛】本题考查了整式的化简求值问题,掌握整式化简的方法、合并同类项的方法是解题的关键.18.已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】 (1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy=3xy+3y .∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.19.数学老师给出这样一个题:2-⨯2 2x x =-+. (1)若“”与“”相等,求“ ”(用含x 的代数式表示); (2)若“”为2326x x -+,当1x =时,请你求出“”的值. 解析:(1)22x x --;(2)2223x x -+,3【分析】(1)用替换,得到-22x x =-+,进而得到答案; (2)把“”用2326x x -+替换,求出2223x x =-+,再把1x =代入求解即可得到答案;【详解】解:()1由题意得: 2-⨯22x x =-+∴-22x x =-+ ∴22x x =--()2把“”用2326x x -+替换,得到: 2326x x -+2-⨯2 2x x =-+ 即:2()223262x x x x =-+--+22362x x x x =-++-2446x x =-+ ∴222 3.x x =-+当1x =时,原式221213=⨯-⨯+223=-+3=.【点睛】 本题主要考查了新定义下的二元一次方程的应用,能把作相应的替换是解题的关键.20.观察下列单项式-2x ,4x 2,-8x 3,16x 4,-32x 5,64x 6,…(1)分别指出单项式的系数和指数是怎样变化的?(2)写出第10个单项式;(3)写出第n 个单项式.解析:(1)见解析;(2)(-2)10x 10=1024x 10;(3)(-2)n x n .【分析】(1)根据单项式的次数与系数定义得出即可;(2)根据单项式系数与次数的变化得出一般性规律得出第10个单项式;(3)根据单项式系数与次数的变化得出一般性规律,进而得出第n个单项式.【详解】(1)通过观察,系数为:-2,4=(-2)2,-8=(-2)3,16=(-2)4,-32=(-2)5指数分别是:1,2,3,4,5,6(2)第10个单项式为:(-2)10x10=1024x10;(3)第n个单项式为:(-2)n x n.【点睛】本题考查了单项式的系数、次数以及数字变化规律,根据已知得出数字变化规律是解题关键.21.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a元,小孩为a2元;乙旅行社报价大人、小孩均为a元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a)×90%-(a+a+12 a)=2.7a-2.5a=0.2a(元),则乙旅行社收费比甲旅行社贵0.2a元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.已知多项式-13x2y m+1+12xy2-3x3+6是六次四项式,单项式3x2n y2的次数与这个多项式的次数相同,求m2+n2的值.解析:13【解析】试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n的值,把m,n的值代入到m2+n2中,计算即可得到求解.试题根据题意得2+m+1=6,2n+2=6解得:m=3, n=2,所以m2+n2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.23.已知多项式﹣3x 2+mx+nx 2﹣x+3的值与x 无关,求(2m ﹣n )2017的值.解析:-1【分析】先把多项式进行合并同类项得(n-3)x 2+(m-1)x+3,由于关于字母x 的二次多项式-3x 2+mx+nx 2-x+3的值与x 无关,即不含x 的项,所以n-3=0,m-1=0,然后解出m 、n ,代入计算(2m-n )2017的值即可.【详解】合并同类项得(n ﹣3)x 2+(m ﹣1)x+3,根据题意得n ﹣3=0,m ﹣1=0,解得m=1,n=3,所以(2m ﹣n )2017=(﹣1)2017=﹣1.【点睛】考查了多项式及相关概念:几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数. 24.国庆期间,王老师计划组织朋友去晋西北游览两日.经了解,现有甲、乙两家旅行社针对组团两日游的游客报价均为每人500元,且提供的服务完全相同.甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按八折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x 人. (1)请列式表示甲、乙两家旅行社收取组团两日游的总费用;(2)若王老师组团参加两日游的人数共有30人,请你通过计算,在甲、乙两家旅行社中,帮助王老师选择收取总费用较少的一家.解析:(1)甲旅行社收取组团两日游的总费用为425x 元;若人数不超过20人时,乙旅行社收取组团两日游的总费用为450x 元;若人数超过20人时,乙旅行社收取组团两日游的总费用为(4001000x +)元;(2)王老师应选择甲旅行社.【分析】(1)根据总费用等于人数乘以打折后的单价,易得甲旅行社的费用=500 x×0.85,对于乙家旅行社的总费用,应分类讨论:当0≤x≤20时,乙旅行社的费用=500 x×0.9;当x >20时,乙旅行社的费用=500×20×0.9+500(x-20)×0.8;(2)把x=30分别代入(1)中对应关系计算甲旅行社的费用和乙旅行社的费用的值,然后比较大小即可.【详解】(1)甲旅行社收取组团两日游的总费用为:5000.85425x x ⨯=元若人数不超过20人时,乙旅行社收取组团两日游的总费用为:5000.9450x x ⨯=元 若人数超过20人时,乙旅行社收取组团两日游的总费用为:()500(20)0.8500200.94001000-⨯+⨯⨯=+x x 元(2)因为王老师组团参加两日游的人数共有30人,所以甲旅行社收取组团两日游的总费用为:4253012750⨯=元乙旅行社收取组团两日游的总费用为40030100013000⨯+=元1275013000<,王老师应选择甲旅行社.【点睛】本题考查了代数式,能根据具体情境列代数式并求代数式的值是关键.25.将正整数1,2,3,4,5,……排列成如图所示的数阵:(1)十字框中五个数的和与框正中心的数11有什么关系?(2)若将十字框上下、左右平移,可框住另外五个数,这五个数的和与框正中心的数还有这种规律吗?请说明理由;(3)十字框中五个数的和能等于180吗?若能,请写出这五个数;若不能,请说明理由; (4)十字框中五个数的和能等于2020吗?若能,请写出这五个数;若不能,请说明理由.解析:(1)十字框中五个数的和是正中心数的5倍;(2)十字框中五个数的和是正中心数的5倍,理由见解析;(3)不能,理由见解析;(4)这五个数是404,403,405,397,411.【分析】(1)把框住的数相加即可求解;(2)设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +,相加即可得到规律;(3)由(2)得五个数的和为5a ,令5a=180,根据解得情况即可求解;(4)由(2)得五个数的和为5a ,令5a=2020,根据解得情况即可求解;【详解】解:(1)十字框中五个数的和是正中心数的5倍.∵十字框中五个数的和41011121855511=++++==⨯,∴十字框中五个数的和是正中心数的5倍.(2)五个数的和与框正中心的数还有这种规律.设中心的数为a ,则其余4个数分别为1a -,1a +,7a -,7a +.11775a a a a a a +-+++-++=,∴十字框中五个数的和是正中心数的5倍.(3)十字框中五个数的和不能等于180.∵当5180a =时,解得36a =,36751÷=,36在数阵中位于第6排的第1个数,其前面无数字,∴十字框中五个数的和不能等于180.(4)十字框中五个数的和能等于2020.∵当52020a =时,解得404a =,4047575÷=,404在数阵中位于第58排的第5个数,∴十字框中五个数的和能等于2020,这五个数是404,403,405,397,411.【点睛】 此题主要考查一元一次方程的应用,解题的关键是设中心的数为a ,求出十字框中五个数的和为5a.26.已知A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+1223ab + (1)当a =﹣1,b =﹣2时,求4A ﹣(3A ﹣2B )的值;(2)若(1)中式子的值与a 的取值无关,求b 的值.解析:(1)4ab ﹣2a+13;(2)b=12 【分析】(1)将a=﹣1,b=﹣2代入A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23,求出A 、B 的值,再计算4A ﹣(3A ﹣2B )的值即可;(2)把(1)结果变形,根据结果与a 的值无关求出b 的值即可.【详解】(1)4A ﹣(3A ﹣2B )=4A ﹣3A+2B=A+2B ,∵A=2a 2+3ab ﹣2a ﹣1,B=﹣a 2+12ab+23, ∴A+2B=2a 2+3ab ﹣2a ﹣1+2(﹣a 2+12ab+23) =2a 2+3ab ﹣2a ﹣1﹣2a 2+ab+43 =4ab ﹣2a+13;(2)因为4ab ﹣2a+13 =(4b ﹣2)a+13, 又因为4ab ﹣2a+13的值与a 的取值无关, 所以4b ﹣2=0,所以b=12. 【点睛】本题考查了整式的加减、化简求值,熟练掌握运算法则是解答本题的关键.27.小马虎在计算一个多项式减去225a a +-的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减去后面两项没有变号,结果得到的差是231a a +-.()1求这个多项式;()2算出此题的正确的结果.解析:(1)2324a a ++;(2)2 9a a ++.【分析】(1)根据题意可以求得相应的多项式;(2)根据(1)中的结果可以求得正确的结果.【详解】解:(1)由题意可得:这个多项式是:a 2+3a ﹣1+2a 2﹣a +5=3a 2+2a +4,即这个多项式是3a 2+2a +4;(2)由(1)可得:3a 2+2a +4﹣(2a 2+a ﹣5)=3a 2+2a +4﹣2a 2﹣a +5=a 2+a +9即此题的正确的结果是a 2+a +9.【点睛】本题考查了整式的加减,解答本题的关键是明确整式的加减的计算方法,求出相应的多项式.28.学习了整式的加减运算后,张老师给同学们布置了一道课堂练习题“当2a =-,2018b =,求222221(324)2(23)2()12a b ab a a b a ab a b -+--++-的值”.小明做完后对同桌说:“老师给的条件2018b =是多余的,这道题不给b 的值,照样可以求出结果来”.同桌不相信他的话.亲爱的同学们,你相信小明的说法吗?解析:-21【分析】首先化简代数式,通过去括号、合并同类项,得出结论即含有b 的代数式相加为0,即可说明.【详解】解()()222221324223212a b ab a a b a ab a b ⎛⎫-+--++- ⎪⎝⎭=222223244621a b ab a a b a ab a b -+-+++-=101a -当2a =-时原式=()1021⨯--=-21.【点睛】考查整式的化简求值,熟练掌握去括号法则以及合并同类项法则是解题的关键. 29.已知多项式22622452x mxyy xy x 中不含xy 项,求代数式32322125m m m m m m 的值.解析:-14【分析】先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值,再把所求式子合并同类项后代入m 的值计算即可.【详解】解:2222622452=6+42252x mxy y xy x x m xy y x , 由题意,得4-2m =0,所以m =2; 所以32322125m m m m m m =3226m m .当m =2时,原式= 322226 =14-. 【点睛】本题考查了整式的加减,属于基本题型,正确理解题意、熟练掌握合并同类项的法则是解题的关键.30.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕.(1)第3次对折后共有多少条折痕?第4次对折后呢?(2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n 次后,折痕有多少条?解析:(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n 次后,折痕有21n -条.【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合67264,2128==即可得出答案;(3)由题(2)已求得.【详解】(1)动手操作可知,第3次对折后的折痕条数为7条,第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为1121=-条,第2次对折后的折痕条数为2321=-条,第3次对折后的折痕条数为3721=-条,第4次对折后的折痕条数为41521=-条,归纳类推得:第n 次对折后的折痕条数为21n -条,因为67264,2128==,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n 次后的折痕条数为21n -条.【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.。