第8章 稳恒电流的磁场作业
- 格式:ppt
- 大小:789.50 KB
- 文档页数:19
恒定电流的磁场一.选择题⒈ A ; ⒉ B ; ⒊ D ; ⒋ B ; ⒌ B ; ⒍ B ; ⒎ A ; ⒏ C ; ⒐ D ;10. C 二.填空题⒈ N =4×1010; 2. 21I I - ; I 2- 。
3. B 2=R I πμ4/0 ;✞。
4. 204re B υπμ=; 2ev I rπ=; 012m P evr =5. R q B πωμ20= 。
6. F ab =IBR 、F ac =IBR ;F bc =0、∑F =0;I R p m 241π=,✞;IB R Mm241π=,↓。
7. 0.02J ;8.200/υμε=e m f f ; 10104/-⨯=e m f f 。
9. 磁化;磁滞回线; 矫顽力; 顺磁质、抗磁质、铁磁质 。
10. I ≈8A 。
11. IrNB r πμμ20=; Ra Rb NIΦr m +=ln20πμμ 。
三、问答题 1. 简答:等离子中正负离子在洛伦兹力作用下分别偏向不同极板。
四、计算证明1. 解:①将半圆柱分割成平行于轴线的无限长直导线 每个直导线的电流:d I =j d t其中 j =I /πR, d l =R d θ, 该直导线在圆心O 点处 产生的磁场: θπμπμd 22d 200RIRId B ==由对称性分析有: 磁场的x 分量会相互抵消,结果只有y 分量,故 RI RIB B 2020d s i n 2s i n d πμθθπμθ===⎰⎰②反向电流之间存在排斥力,该力为安培力: i RI dlB l Id dldF220πμ=⨯=2. 解:① ab 段:)(232102l d I lI ab B I F ab +==πμdI 1 F abFbc 段: r rI I l B I F d 2d d 2102πμ==dl d I I rr I I F ld dbc +==⎰+ln2d 2210210πμπμca 段:rlI I F d 2d 210πμ=, d l =2d rdl d I I r dr I I F ld dca +==⎰+ln210210πμπμ②取如图窄条作为面积元: drr d I dr d r r I dr d r B S d B d om)/1(23)(2360tan )(1010-=-=-=⋅=Φπμπμ)ln(23)(231010dl d d l I rdr d dr rI ld dld dm +-=-=Φ⎰⎰++πμπμ3. 解:采用补偿法,)(2221R R Ij -=π,①大圆柱中心:大圆柱本身引起的B 10=0 利用环路定理,可以得出小圆柱在该处 所激发的磁场B 20: j R a H 22202ππ=⋅, )(22222122022020R R a IR ajR B B -===μμ② 同理,在小圆柱中心,小圆柱本身激发的磁场B 20=0ja a H 2102'ππ=⋅, )(22''22210010R R aIajB B -===πμμ五. 附加题1. 解:①在圆盘上取如图一个宽度dr 的小环,盘转动时的等效电流:πω2/d /d d q T q I ==, 其中rr Rq q d 2πd 2π=4d d 232qR r r Rq I S P Rm ωω===⎰⎰, 方向垂直纸面向里。
一. 选择题: [ D ]1. 载流的圆形线圈(半径a 1 )与正方形线圈(边长a 2 )通有相同电流I .若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B)π2∶1 (C)π2∶4 (D)π2∶8[B ]2.有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点(如图)的磁感强度B的大小为(A) )(20b a I+πμ. (B) b b a a I +πln 20μ.(C) b b a b I +πln 20μ. (D) )2(0b a I +πμ.[ D ]3. 如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll Bd 等于(A) I 0μ. (B) I 031μ.(C) 4/0I μ. (D) 3/20I μ.提示[ B ] 4. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?(A) Ⅰ区域. (B) Ⅱ区域.(C) Ⅲ区域.(D) Ⅳ区域.(E) 最大不止一个.提示:加原理判断磁场和磁感应强度的叠根据无限长直导线产生[ C ]5. 在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a ,如图.今在此导体上通以电流I ,电流在截面上均匀分布,则空心部分轴线上O ′点的磁感强度的大小为(A) 2202R a a I ⋅πμ (B) 22202R r a a I -⋅πμ (C) 22202r R a a I -⋅πμ (D) )(222220ar R a a I -πμ 二. 填空题1.在匀强磁场B 中,取一半径为R 的圆,圆面的法线n与B成60°角,如图所示,则通过以该圆周为边线的如图所示的任意曲面S 的磁通量==⎰⎰⋅Sm S B d Φ221R B π-提示:2. 一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l I d ,则该电流元在(a ,0,0)点处的磁感强度的大小为 204aI d lπμ 方向为Z轴负方向提示:ⅠⅡⅢⅣ aRr O O ′I任意曲面3. 一个密绕的细长螺线管,每厘米长度上绕有10匝细导线,螺线管的横截面积为10cm 2.当在螺线管中通入10 A 的电流时,它的横截面上的磁通量为)(1046W b -⨯π. (真空磁导率μ0 =4π×10-7 T ·m/A)提示:为S 1L21提示:根据安培环路定理5. 一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__6.67×10-7(T ),该带电质点轨道运动的磁矩p m =_7.2×10-7(Am 2)___.(μ0 =4π×10-7 H ·m -1)提示:6. 如图所示,在宽度为d 的导体薄片上有电流I 沿此导体长度方向流过,电流在导体宽度方向均匀分布.导体外在导体中线附近处P 点的磁感强度B的大小为dI20μ提示7. 在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量Φ = 2ln 20a Iπμ提示:俯视图三.计算题1.将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.解:其中3/4圆环在D 处的场 )8/(301a I B μ=AB 段在D 处的磁感应强度 )221()]4/([02⋅=b I B πμ BC 段在D 处的磁感应强度 )221()]4/([03⋅=b I B πμ1B 2B 3B方向相同,故D 点处总的磁感应强度为)223(40321ba I B B B B +=++=ππμ 2..已知半径为R 的载流圆线圈与边长为a 的载流正方形线圈的磁矩之比为2∶1,且载流圆线圈在中心O 处产生的磁感应强度为B 0,求在正方形线圈中心O '处的磁感强度的大小.解:设圆线圈磁矩为1m P 方线圈磁矩为2m P 则211R I P m π= 222a I P m = 由已知条件得: )2/(2122a I R I π=正方形一边在其中心产生的磁感应强度为 )2/(201a I B πμ=正方形各边在其中心产生的磁感应强度大小相等,方向相同,因此中心/O 处的总的磁感应强度的大小为3120200/222aI R a I Bμπμ== 由 RI B 2100μ=得 012μRB I =所以 03/0)/2(B a R B =3. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.解: 圆线圈的总电荷 λπR q 2= ,转动时等效的电流为λωωπλπR R T q I ===/22, 代入环形电流在轴线上产生磁场的公式得2/32230)(2y R R B B y +==ωλμ 方向沿y 轴正向。
专业班级_____ 姓名________学号________第八章稳恒电流的磁场一、选择题:1、在磁感应强度为B的均匀磁场中作一半径为r的半球面S,S边线所在平面的法线方向单位矢量n与B的夹角为α,则通过半球面S的磁通量为:[ D ](A)Br2π(B)Br22π(C)απsin2Br-(D)απcos2Br-。
2、无限长直导线在P处弯成半径为R的圆,当通以电流I时,则在圆心O点的磁感应强度大小等于:[ D ](A)RIπμ20(B)RI4μ(C)0(D))11(2πμ-RI(E))11(4πμ+RI3、电流由长直导线1沿切向经a点流入一个电阻均匀分布的圆环,再由点沿切向从圆环流出,经长直导线2返回电源(如图)。
已知直导线上的电流强度为I,圆环的半径为R,且a、b和圆心O在同一直线上。
设长直载流导线1、2和分别在O点产生的磁感应强度为1B、2B、3B,则圆心处磁感应强度的大小[ C ](A)0=B,因为0321===BBB。
(B)0=B, 因为虽然01≠B,02≠B,但021=+BB,03=B。
(C)0≠B,因为01≠B,02≠B,03≠B。
(D)0≠B,因为虽然03=B,但021≠+BB。
4、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R,x坐标轴垂直圆筒轴线,原点在中心轴线上,图(A )——(E )哪一条表示x B -的关系?[ D ] 5、无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(R r <)的磁感应强度为i B ,圆柱体外(r> R )的磁感应强度为e B 。
则有:[ B ] (A)i B 、e B 均与r 成正比。
(B) i B 、e B 均与r 成反比。
(C)i B 与r 成反比,e B 与r 成正比。
(D) i B 与r 成正比,e B 与r 成反比。
6、如右图所示,在磁感应强度为B的均匀磁场中,有一圆形载流导线,a 、b 、c 是其上三个长度相等的电流元,则它们所受安培力大小的关系为[ B ](A )c b a F F F >>。
第8章 稳恒磁场 习题及答案6. 如图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R 。
若通以电流I ,求O 点的磁感应强度。
解:O 点磁场由AB 、C B、CD 三部分电流产生,应用磁场叠加原理。
AB 在O 点产生的磁感应强度为01=BC B在O 点产生的磁感应强度大小为θπμR I B 402=RIR I 123400μππμ=⨯=,方向垂直纸面向里CD 在O 点产生的磁感应强度大小为)cos (cos 421003θθπμ-=r IB )180cos 150(cos 60cos 400︒︒-=R I πμ )231(20-=R I πμ,方向垂直纸面向里 故 )6231(203210ππμ+-=++=R I B B B B ,方向垂直纸面向里7. 如图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连。
已知圆环的粗细均匀,求环中心O 的磁感应强度。
解:圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
且θπθ-==21221R R I I 电阻电阻 1I 产生的磁感应强度大小为)(θππμ-=24101RI B ,方向垂直纸面向外2I 产生的磁感应强度大小为θπμRIB 4202=,方向垂直纸面向里 所以, 1)2(2121=-=θθπI I B B环中心O 的磁感应强度为0210=+=B B B8. 如图所示,一无限长载流平板宽度为a ,沿长度方向通过均匀电流I ,求与平板共面且距平板一边为b 的任意点P 的磁感应强度。
解:将载流平板看成许多无限长的载流直导线,应用叠加原理求解。
以P 点为坐标原点,垂直载流平板向左为x 轴正方向建立坐标系。
在载流平板上取dx aIdI =,dI 在P 点产生的磁感应强度大小为x dI dB πμ20=dx axIπμ20=,方向垂直纸面向里 P 点的磁感应强度大小为⎰⎰+==a b b x dx a I dB B πμ20bab a I +=ln 20πμ 方向垂直纸面向里。
9-6 已知磁感应强度0.2=B Wb·m -2 的均匀磁场,方向沿x 轴正方向,如题9-6图所示.试求: (1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量. 解: 如题9-6图所示(1) 通过abcd 面积1S 的磁通是: 24.0)4.03.0(0.211=⨯⋅=⋅=Φi i S B(Wb )(2) 通过befc 面积2S 的磁通量: 0)3.03.0(0.222=⨯⋅=⋅=Φk i S B(3) 设aefd 面积3S 的法线正方向如图,则通过aefd 面积3S 的磁通量:24.05415.02cos )5.03.0(233=⨯⨯=⨯⨯⨯=⋅=ΦθS B (Wb )9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度. 解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 段产生: 01=BC B 段产生: R IR I B 12360602002μμ=⋅=,方向⊗(即垂直纸面向里) CD 段产生:)231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊗ 【或:)231(2)180cos 120(cos 24003-=-=︒︒R I R IB πμπμ,方向⊗】 ∴ )6231(203210ππμ+-=++=R I B B B B , 方向⊗.9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.解:如题9-8图所示,A B方向垂直纸面向里,大小为:42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A TB B方向垂直纸面向外,大小为:520101033.105.02)05.01.0(2-⨯≈⨯++-=πμπμI I B B T设0=B在2L 外侧距离2L 为r 处,则02)1.0(220=-+rI r Iπμπμ, 解得:1.0=r m题9-6图题9-7图题9-8图9-12 两平行长直导线相距d =40cm ,每根导线载有电流1I =2I =20A ,如题9-12图所示.求: (1) 两导线所在平面内与该两导线等距的一点A 处的磁感应强度; (2) 通过图中斜线所示面积的磁通量.(1r =3r =10cm, l =25cm). 解:(1) 52010104)2(2)2(2-⨯=+=d I dI B A πμπμ(T) 方向⊥纸面向外(2) 取面元 r l S d d =,则:Bldr S d B d =⋅=Φ6120102010102.23ln 31ln 23ln 2])(22[211-+⨯==-=-+=Φ=Φ⎰⎰πμπμπμπμπμlI l I l I ldr r d I r I d r r r S(Wb )9-13 一根很长的铜导线载有电流10A ,设电流均匀分布。
习题8-6图IOR 第八章 恒定磁场8-1 均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为[ ]。
(A) B r 22π (B) B r 2π (C) 0 (D) 无法确定 分析与解 根据高斯定理,磁感线是闭合曲线,穿过圆平面的磁通量与穿过半球面的磁通量相等。
正确答案为(B )。
8-2 下列说法正确的是[ ]。
(A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D) 磁感强度沿闭合回路的积分不为零时,回路上任意点的磁感强度必定为零分析与解 由磁场中的安培环路定理,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和一定为零。
正确答案为(B )。
8-3 磁场中的安培环路定理∑⎰=μ=⋅nLI1i i0d l B 说明稳恒电流的磁场是[ ]。
(A) 无源场 (B) 有旋场 (C) 无旋场 (D) 有源场分析与解 磁场的高斯定理与安培环路定理是磁场性质的重要表述,在恒定磁场中B 的环流一般不为零,所以磁场是涡旋场;而在恒定磁场中,通过任意闭合曲面的磁通量必为零,所以磁场是无源场;静电场中E 的环流等于零,故静电场为保守场;而静电场中,通过任意闭合面的电通量可以不为零,故静电场为有源场。
正确答案为(B )。
8-4 一半圆形闭合平面线圈,半径为R ,通有电流I ,放在磁感强度为B 的均匀磁场中,磁场方向与线圈平面平行,则线圈所受磁力矩大小为[ ]。
(A) B R I 2π (B)B R I 221π (C) B R I 241π (D) 0 分析与解 对一匝通电平面线圈,在磁场中所受的磁力矩可表示为B e M ⨯=n IS ,而且对任意形状的平面线圈都是适用的。
练习八磁感应强度毕奥—萨伐尔定律(黄色阴影表示答案) 一、选择题如图所示,边长为l的正方形线圈中通有电流I,则此线圈在: AlIπμ220.(C)lIπμ2(D) 以上均不对.电流I由长直导线1沿对角线AC方向经A点流入一电阻均匀分布的正方形导线框,再由D点沿对角线BD方向流出,经长直导线2返回电源, 如图所示. 若载流直导线1、2和正方形框在导线框中心O点产生的磁感强度分别用B1、B2和B3表示,则O点磁感强度的大小为:A(A) B = 0. 因为B1 = B2 = B3 = 0 .(B) B = 0. 因为虽然B1 0, B2 0, B1+B2 = 0, B3=0(C) B 0. 因为虽然B3 = 0, 但B1+B2 0(D) B0. 因为虽然B1+B2 = 0, 但B3 03. 如图所示,三条平行的无限长直导线,垂直通过边长为a 的正三角形顶点,每条导线中的电流都是I,这三条导线在正三角形中心O点产生的磁感强度为:B(D) B=30I/(3a) . .如图所示,无限长直导线在P处弯成半径为R的圆,当通以电流I时,则在圆心O 点的磁感强度大小等于:C(A)RIπμ20.(B)Iμ.(D) )11(4πμ+RI.二、填空题如图所示,在真空中,电流由长直导线1沿切向经a点流入一电阻均匀分布的圆环,再由b点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I,圆环半径为R,aob=180.则圆心O点处的磁感强度的大小B = .0图图图图图I练习九毕奥—萨伐尔定律(续)一、选择题1. 在磁感强度为B的均匀磁场中作一半径为r的半球面S,S边线所在平面的法线方向单位矢量n与B的夹角为,如图所示. 则通过半球面S的磁通量为:(A) r2B.(B) 2r2B.(C) r2B sin.(D) r2B cos.如图,载流圆线圈(半径为R)与正方形线圈(边长为a)通有相同电流I ,若两线圈中心O1与O2处的磁感应强度大小相同,R: a为(A) 1:1.(B) π2:1.三、计算题1.在无限长直载流导线的右侧有面积为S1和S2的两个矩形回路,回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S1回路的磁通量与通过S2回路的磁通量之比.(此题作为悬赏题)练习十安培环路定理一、选择题2. 无限长直圆柱体,半径为R,沿轴向均匀流有电流. 设圆柱体内(r< R)的磁感强度为B1,圆柱体外(r >R)的磁感强度为B2,则有:(A) B1、B2均与r成正比.(B) B1、B2均与r成反比.(C) B1与r成正比, B2与r成反比.(D) B1与r成反比, B2与r成正比.在图(a)和(b)中各有一半径相同的圆形回路L1和L2,圆周内有电流I2和I2,其分布相同,且均在真空中,但在图(b)中,L2回路外有电流I3,P1、P2为两圆形回路上的对应点,则:(A) ⎰⋅1dLlB=⎰⋅2dLlB,21PPBB=.(B) ⎰⋅dLlB⎰⋅dLlB,21PPBB=.图图图图P1L(a)3P2(b)图(D)⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B≠.如图所示,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,恒定电流I 从a 端流入而从d 端流 出,则磁感强度B 沿图中闭合路径的积分⎰⋅Ll B d 等于:(A) 0I . (B) 0I /3. (C) 0I /4. (D) 20I /3 . 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理(B) 0 d =⋅⎰L l B ,且环路上任意点B =0. (C) 0 d ≠⋅⎰Ll B ,且环路上任意点B 0. (D) 0 d ≠⋅⎰Ll B,且环路上任意点B =0.二、填空题两根长直导线通有电流I ,图所示有三种环路,对于环路a ,=⋅⎰a L l B d ;对于环路b , =⋅⎰bL l B d ;对于环路c ,=⋅⎰cL l B d . 0I , 0, 20I .练习十一安培力 洛仑兹力一、选择题如图所示. 匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是:B(A) ab 边转入纸内,cd 边转出纸外. (B) ab 边转出纸外,cd 边转入纸内. (C) ad 边转入纸内,bc 边转出纸外. (D) ad 边转出纸外,cd 边转入纸内.5. 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动的轨道所围的面积内的磁通量是(A) 正比于B ,反比于v 2. (B) 反比于B,正比于v 2.图图图(C) 正比于B ,反比于v. (D) 反比于B ,反比于v练习十三 静磁场习题课一、选择题1. 一质量为m 、电量为q 的粒子,以与均匀磁场B 垂直的速度v 射入磁场中,则粒子运动轨道所包围范围内的磁通量m 与磁场磁感强度B 的大小的关系曲线是图中的哪一条 D边长为l 的正方形线圈,分别用图所示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为:(A) B 1 = 0 . B 2 = 0.(B) B 1 = 0 . lIB πμ0222=lπ01l Iπμ0222.如图, 质量均匀分布的导线框abcd 置于均匀磁场中(B 的方向竖直向上),线框可绕AA 轴转动,导线通电转过 角后达到稳定平衡.如果导线改用密度为原来1/2的材料做,欲保持原来的稳定平衡位置(即 角不变),可以采用哪一种办法(A) 将磁场B 减为原来的1/2或线框中电流减为原来的1/2. (B) 将导线的bc 部分长度减小为原来的1/2. (C) 将导线ab 和cd 部分长度减小为原来的1/2. (D)将磁场B 减少1/4,线框中电流强度减少1/4.图图l (1)d图(A)(D) (C)(B) (E)。