当前位置:文档之家› 第一章:集合、函数的概念及基本性质复习(2课时)

第一章:集合、函数的概念及基本性质复习(2课时)

第一章:集合、函数的概念及基本性质复习(2课时)
第一章:集合、函数的概念及基本性质复习(2课时)

第一章:集合、函数的概念 及基本性质复习(2课时)

___________

1.集合元素具有确定性、无序性和互异性. 在求有关集

合问题时,尤其要注意元素的互异性。 例:(1)设P 、Q 为两个非空实数集合,定义集合

P+Q={|,}a b a P b Q +∈∈,若{0,2,5}

P =

}6,2,1{=Q

,则P+Q 中元素的有________个。

(2)非空集合}5,4,3,2,1{?S ,且满足“若S a ∈,

则S a ∈-6”,这样的S 共有_____个

2.遇到

A B =? 时,注意“极端”情况:A =?或

B =?;同样当A B ?时,注意?=A 的

情形?要注意到?是任何集合的子集,是任何非空集合的真子集。

实数p 的取值范围.

,则实

数a =______.

②已知集合

A={}{}

01m 2,02322

=-++=+-x x x B x x

x ,

B B A = ,求实数m 的取值范围。

③已知集合A={x ∣-2≤x ≤5},集合B={x ∣p+1≤x ≤2p-1},若A ∩B=B,求实数p 的取值范围.

3.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为 ,n 2,12-n ,12-n .22-n 例:满足{1,2}{1,2,3,4,5}M ??≠集合M 有______个。

4.集合的运算性质: (设全集为U ) ⑴A B A B A =?? ;⑵A B B B A =??

⑶A B ??B C A C u u ?

(4)B A U B A C U ??=?)(; (5)()U C A B U U C A C B = ;

(6)()U U U C A B C A C B = . 5. 研究集合问题,一定要理解集合的意义――抓住集合

的代表元素。

如:{}

2

1x y x =+指函数的定义域;{}21y y x =+指函数的值域;{}

2

(,)1x y y x =+指函数图象上的点集。 例:设集合

{|}

M x y =,集合N =

{}2

|,y y x x M =∈,则M N = ___

6. 数轴和韦恩图是进行交、并、补运算的有力工具,在具体计算时不要忘了集合本身和空集这两种特殊情况,补集思想常运用于解决否定型或正面较复杂的有关问题。 例:已知函数

12)2(24)(22+----=p p x p x x f 在区 间]1,1[-上至少存在一个实数c ,使0)(>c f , 求实数p 的取值范围。

例:①集合{|10}A x ax =-=,

{}2|320B x x x =-+=,且A B B = ,则实 数a =______.

二、函数的概念

1.函数

f : A →B 是指对集合A 中任意一个数在f 的作用下,集合B 中都有唯一的数与之对应。注意:定义

域A 和值域B 都是非空数集!据此可知函数图像与x 轴的垂线至多有一个公共点,但与y 轴垂线的公共点可能没

有,也可能有任意个。

如已知函数()f x ,x F ∈,那么集合{(,)|(),}{(,)|1}x y y f x x F x y x =∈= 中所含元素的个数

有 个

2.映射

f : A →B 的概念。在理解映射概念时要注意:只是把函数中的集合A 、B 改为非空集合;因此函数

只是一种特殊的映射。 例:设集合A={}32,1,,集合B={}b a ,,①从A 到B 可以建立______个映射②从B 到A 又可以建立______个映射

3. 同一函数的概念。构成函数的三要素是定义域,值域和对应法则。而值域可由定义域和对应法则唯一确定,

因此当两个函数的定义域和对应法则相同时,它们一定为同一函数。

4. 求函数定义域的常用方法(研究函数问题时要树立定义域优先的原则):

(1)① 分式:()()

f x y

g x =

,则()0g x ≠;② 偶次根式:*

)y n N =∈,则()0f x ≥; ③ 零次幂式:0

[()]y f x =,则()0f x ≠. 例:(06广东)函数

2)13(13)(02

++++-=x x x

x x f 的定义域是______________

(2)简单的复合函数的定义域:若已知

()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域由不等式

()a g x b ≤≤解出即可;

例:已知函数)(x f y =定义域是[]-23,,则y f x =-()21+)1(+x f 的定义域是____________

5.求函数值域(最值)的方法:

(1)配方法:二次函数(二次函数在给出区间上的最值有两类:一是求闭区间[,]m n 上的最值;二是求区间定(动),对称轴动(定)的最值问题。求二次函数的最值问题,勿忘数形结合,注意“两看”:一看开口方向;二看对称轴与所给区间的相对位置关系).

例:当

]2,0(∈x 时,函数3)1(4)(2-++=x a ax x f 在2=x 时取得最大值,则a 的取值范围是

________

(2)换元法:通过换元把一个较复杂的函数变为简单易求值域的函数,其函数特征是函数解析式含有根式或三角函数公式模型. 运用换元法时,要特别要注意新元t 的范围)

例:21y x =+_____

(4)单调性法:利用一次函数,反比例函数,指数函数,对数函数等函数的单调性. 例:求

1

(19)y x x x

=-<<的值域为____________

★★"对勾函数“:()0≠+

=a x

a

x y 当0

>时有增区间为

(

][)+∞-∞-,,,a a ,减区间[)(]

a a ,0,0,-

例:若函数

x

x x x f 32)(2++=在[]6,1∈x 上的值

域为__________

提醒:求函数的定义域、值域时,一定要按要求写成集合或区间形式

.

6.分段函数的概念。分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,

它是一类较特殊的函数。在求分段函数的值

0()f x 时,一定首先要判断0x 属于定义域的哪个子集,然后再代相

应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集。

例:设函数

2

(1).(1)()41)

x x f x x ?+

7.求函数解析式的常用方法:

(1)待定系数法:已知所求函数的类型(二次函数的表达式有三种:一般式:2()f x ax bx c =++;顶点

式:

2()()f x a x m n =-+;零点式:12()()()f x a x x x x =--,要根据已知条件的特点,灵活选用二次

函数的表达形式.

(2)代换(观测配凑)法:已知形如(())f g x 的表达式,求()f x 的表达式。

例:

已知2(21)f x x x +=-,则()f x = ; 若1,f x =+则()f x = .

这里需值得注意的是所求解析式的定义域的等价性,即()f x 的定义域应是()g x 的值域。

(3)方程的思想――已知条件是含有()f x 及另外一个函数的等式,可抓住等式的特征对等式的进行赋值,

从而得到关于

()f x 及另外一个函数的方程组。

例:已知

()2()32f x f x x +-=-,则()f x 的解析式为_________________

8.函数的奇偶性

⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件....

; ⑵

)(x f 是奇函数?

1)

()(0)()()()(-=-?

=+-?-=-x f x f x f x f x f x f (()f x 0≠)

; ⑶)(x f 是偶函数1)

()(0)()()()(=-?=--?=-?x f x f x f x f x f x f (()f x 0≠);

⑷若奇函数

)(x f 的定义域含有0,则0)0(=f ;偶函数)(x f 有)(x f =)(x f

⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;

(6)若所给函数的解析式较为复杂,应先化简,等价变形,再判断其奇偶性; (7)

)(b ax f +是奇函数)(b ax f +-?=)(b ax f +-)(x f ?有对称中心(b,0) (8) )(b ax f +是偶函数)(b ax f +-?=)(b ax f +)(x f ?有对称轴X=b

★★典型的奇偶函数: ①)0()

0(22{

)(>+<+-=x x x x x x x f 为_____函数 ②

2

21)(2

-+-=

x x x f 为_____函数

※※一般地,=)()(x f D x f 上是奇函数,则在区间若??

???<--=>)0(),()

0(,0)

0(),(g x x g x x x =)()(x f D x f 上是偶函数,则在区间若)

0(),()0(),({><-x x g x x g

2222)(-++=x x x f 为 _____函数 ;2222)(--+=x x x f 为_____函数

9.函数的单调性 ⑴单调性的定义:

)(x f 在区间M

上是增(减)函数,,21M x x ∈?任意当21x x <时

)0(0)()(21><-x f x f )0(0)]()()[(2121<>--?x f x f x x )0(0)()(2

121<>--?x x x f x f

⑵单调性的判定定义法:注意:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断

符号;

★★分段函数的单调性:??

?>≤=)(),()

(),()(a x x h a x x g x f 若在R 上是增函数,则满足??

???≤)

()(g )(h )(g a h a x x 是增函数

是增函数 ??

?>≤=)(),()

(),()(a x x h a x x g x f 若在R 上是减函数,则满足??

???≥)

()(g )(h )(g a h a x x 是减函数

是减函数 例:若函数

{

0,1)12(0

,)2(2)(>-+-≤-+-=

x b x b x x b x x f 在R 上为增函数,则实数b 的取值范围是_____________

10.函数图象

⑴图象作法 :①描点法(注意三角函数的五点作图)②图象变换法

① ★平移变换:ⅰ)()(a x f y x f y ±=→=,)0(>a ———左“+”右“-”; ⅱ)0(,)()(>±=→=k k x f y x f y ———上“+”下“-”;

② ★对称变换:ⅰ

)(x f y =??

→?)0,0()(x f y --=;ⅱ)(x f y =?→?=0

y )(x f y -=; ⅲ

)(x f y =?→?=0x )(x f y -=; ⅳ)(x f y =??→

?=x y )(y f x =; ③ ★翻转变换: ⅰ|)(|)(x f y x f y =→=———右不动,右向左翻()(x f 在y 左侧图象去掉); ⅱ|)(|)(x f y x f y =→=———上不动,下向上翻(|)(x f |在x 下面无图象);

★★集合:

1.集合{}220P x x =-=( )、{}220Q x x x =+=( )、{}2

2

M yy x x ==+( )

、()2

{,2

T x y y x x ==

+且0}y =( ).

.A =? .B {}2,0=- .

C ()(){}2,0,0,0-

.D 恰有一个元素 .E ()1,=-+∞ .F [)1,=-+∞

2.(06上海)已知集合{}1,3,21A m =--,集合{}

2

3,B m =,若B A ?,则实数m 的值为

3.满足{}{},,,,a b A a b c d ??的集合A 有___个;满足{}{}d c b a A b a 、、、、??)(的集合A 有__ 个.

4.{}

2

0,A x x px q x R =++=∈{}2=,则p q += .

5.若A 、B 是全集I 的真子集,

则下列四个式子:①A B A = ;②A B A = ;③()I

A C

B =? ;

④A B I = .与A B ?等价的有( )

.A 1个 .B 2个 .C 3个 .D 4个

6.集合8|,,3M y y x y Z x ??

==

∈??+??的元素个数是_________个 7.集合()2

{,x y y x =且}y x == .

8.如图,I 为全集,M 、P 、S 是I 的三个子集,则阴影部分所表示 集合是( )

.A ()M P S .B ()M P S

.C ()()I M P C S .D ()()I M P C S

9.已知集合{}16|,M x x m m Z ==+∈,{}1

23|,,

n N x x n Z ==-∈{

}

12

6|,p

P x x p Z ==+∈,

则M 、N 、P 满足的关系是 ( )

.A M N P =ü .B M N P =ü .C N M ? .D M P N ?? 10.设集合2

{|60}P x x x =--<,{|0}Q x x a =-≥.

(1)若P Q ?,求实数a 的取值范围;(2)若P Q =? ;求实数a 的范围.

11.设集合{},,P x y x y xy =-+,{}

2222

,,0Q x y x y =+-,若P Q =,求,x y 的值及集合P 、Q .

12.已知集合222{|(1)(1)0}A y y a a y a a =-++++>,215

{|,03}22

B y y x x x ==

-+≤≤,若A B =? ,求实数a 的范围.

★★函数:

1.下列各组函数中表示相同函数的是( ) A

.()2,()f x x g x =-= B.22)(,)(r r g x x f ππ==(r 为圆的半径) C

.

()f x =

()g x x = D.??

?<-≥-=-=1

,11

,1)(,1)(x x x x x g x x f

2.π=)(x f ,则)(2

x f 等于( )

A. 2

π B. π C. π D. -或ππ

3.函数)(x f 在区间]3,2[-是增函数,则)5(+=x f y 的递增区间是 ( )

A .]8,3[

B . ]2,7[--

C .]5,0[

D .]3,2[-

4.已知f (x )=3-2|x |,g (x )=x 2

-2x ,F (x )=???

??

g (x ),若f (x )≥g (x ),

f (x ),若f (x )<

g (x ).

则F (x )的最值是( )

A .最大值为3,最小值-1 B.最大值为7-27,无最小值

C .最大值为3,无最小值

D .既无最大值,又无最小值 5.已知函数f (x )、g (x )定义在同一区间D 上,f (x )是增函数,g (x )是减函数,且g (x )≠0,则在D 上 ( )

A 、f(x)+g(x)一定是减函数

B 、f(x)-g(x)一定是增函数

C 、f(x)·g(x)一定是增函数

D 、

)

()

(x g x f 一定是减函数 6.设

??

?<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为___________ 7.设函数.)().0(1),0(12

1

)(a a f x x

x x x f >??????

?<≥-=若则实数a 的取值范围是 . 8.

函数2y =_______________

9.已知2

2

11()11x x f x x --=

++,则()f x 的解析式为________________

10.若函数2()1

x a

f x x bx +=

++在[]1,1-上是奇函数,则()f x 的解析式为________.

11.已知函数)(x f y =的图象关于直线y 轴对称,且当),0(+∞∈x 时,有221

)(x x

x f +=

则当)0,(-∞∈x 时,)(x f 的解析式为_______

12.若22

1)1(x

x x x f +=-,则函数)1(-x f =_____________.

13.已知函数)(x f 满足)(,||1)1()(2x f x x f x f 则=-= .

14..若函数2

34y x x =--的定义域为[0,]m ,值域为25

[4]4

-

-,,则m 的取值范围是______; 若函数1)2(2+++=x m x y 在25[4]4

-

-,为单调函数,则m 的取值范围是______ 15.若错误!未找到引用源。在区间错误!未找到引用源。上是增函数,则错误!未找到引用源。的取值范围是 。

16.已知2

21)(x

x x f +=,那么)41

()4()31()3()21()2()1(f f f f f f f ++++++=____ 17.若函数362)(2

+-=x x x f ,(1)画f(x)的图像;(2)确定其单调区间(3)求其值域

18.已知f (x )=x 2+ax +b

x

,x ∈(0,+∞).

(1)若b ≥1,求证:函数f (x )在(0,1)上是减函数;

(2)是否存在实数a ,b ,使f (x )同时满足下列两个条件:

①在(0,1)上是减函数,(1,+∞)上是增函数;②f (x )的最小值是3.若存在,求出a ,b 的

值;若不存在,请说明理由.

19.若函数2

1()2

f x x x a =-+的定义域和值域均为[]1,b ()1b >,求a 、b 的值.

20.已知函数错误!未找到引用源。的最大值不大于错误!未找到引用源。,又当错误!未找到引用源。,求错误!未找到引用源。的值。

21.近年来,网上购物已经成为人们消费的一种趋势.为了获得更多的利润,某网店在国庆节前后

搞了一次长达50天的促销活动.在这50天内,网店的销售额(单位:万元)与促销时间(单位:

天)的关系满足

1

()(60),050

10

f t t t t

=--≤≤;网店的投资额()

g t与促销时间t的关系如下图所

示.(利润=销售额-投资额)

(Ⅰ)促销活动的第30天,网店获得的利润为多少万元?

(Ⅱ)请你写出网店的投资额()

g t与促销时间t之间的关系式;

(Ⅲ)在促销活动的前30天内,哪一天的销售利润最大?最大利润是多少万元?

函数概念及其基本性质

第二章函数概念与基本初等函数I 一. 课标要求: 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 10.通过实例,了解幂函数的概念,结合五种具体函数 1 312 ,,, y x y x y x y x - ====的 图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议 1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.

2019精品教育4.示范教案(2.1函数的概念第1课时)

1.2 函数及其表示 1.2.1 函数的概念 整体设计 教学分析 函数是中学数学中最重要的基本概念之一.在中学,函数的学习大致可分为三个阶段.第一阶段是在义务教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等最简单的函数,了解了它们的图象、性质等.本节学习的函数概念与后续将要学习的函数的基本性质、基本初等函数(Ⅰ)和基本初等函数(Ⅱ)是学习函数的第二阶段,这是对函数概念的再认识阶段.第三阶段是在选修系列的导数及其应用的学习,这是函数学习的进一步深化和提高. 在学生学习用集合与对应的语言刻画函数之前,学生已经把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围.因此,课本采用了从实际例子中抽象出用集合与对应的语言定义函数的方式介绍函数概念. 三维目标 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数的概念,培养学生观察问题、提出问题的探究能力,进一步培养学习数学的兴趣和抽象概括能力;启发学生运用函数模型表述思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识. 2.掌握构成函数的三要素,会求一些简单函数的定义域,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性的重要性,激发学生学习的积极性. 重点难点 教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数. 教学难点:符号“y=f(x)”的含义,不容易认识到函数概念的整体性,而将函数单一地理解成对应关系,甚至认为函数就是函数值. 课时安排 2课时 教学过程 第1课时函数的概念 导入新课 思路1.北京时间2005年10月12日9时整,万众瞩目的“神舟”六号飞船胜利发射升空,5天后圆满完成各项任务并顺利返回.在“神舟”六号飞行期间,我们时刻关注“神舟”六号离我们的距离y随时间t是如何变化的,本节课就对这种变量关系进行定量描述和研究.引出课题. 思路2.问题:已知函数y=1,x请用初中所学函数的定义来解释y与x的函数关系?先让学生回答后,教师指出:这样解释会显得十分勉强,本节将用新的观点来解释,引出课题. 推进新课 新知探究 提出问题 (1)给出下列三种对应:(幻灯片) ①一枚炮弹发射后,经过26 s落到地面击中目标.炮弹的射高为845 m,且炮弹距地面的高度为h(单位:m)随时间t(单位:s)变化的规律是h=130t-5t2. 时间t的变化范围是数集A={t|0≤t≤26},h的变化范围是数集B={h|0≤h≤845}.则有对应 f:t→h=130t-5t2,t∈A,h∈B. ②近几十年来,大气层的臭氧迅速减少,因而出现了臭氧洞问题.图1-2-1-1中的曲线显示了南极上空臭氧层空洞的面积S(单位:106 km2)随时间t(单位:年)从1991~2001年的变化情况.

函数的概念和性质

专题讲座 高中数学“函数的概念与性质”教学研究 李梁北京市西城区教育研修学院 函数就是中学数学中的重点内容,它就是描述变量之间依赖关系的重要数学模型、 本专题内容由四部分构成:关于函数内容的深层理解;函数概念与性质的教学建议;学 生学习中常见的错误分析与解决策略;学生学习目标检测分析、 研究函数问题通常有两条主线:一就是对函数性质作一般性的研究,二就是研究几种具体的基本初等函数——二次函数、指数函数、对数函数、幂函数、研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等、 一、关于函数内容的深层理解 (一)函数概念的发展史简述 数学史角度:早期函数概念(Descartes,1596—1650引入坐标系创立解析几 何,已经关注到一个变量对于另一个变量的依赖关系)[几何角度];Newton,1642—1727,用数流来定义流量(fluxion)的变化率,用以表示变量间的关系;Leibniz,1646—1716引入 常量、变量、参变量等概念;Euler引入函数符号,并称变量的函数就是一个解析表达式[代数角度];Dirichlet,1805—1859提出就是与之间的一种对应的观点[对应关系角度] ;Hausdorff在《集合论纲要》中用“序偶”来定义函数[集合论角度]、 Dirichlet:认为怎样去建立与之间的关系无关紧要,她拓广了函数概念,指出:“对于在某区间上的每一个确定的值,都有一个确定的值,那么叫做的函数、”这种函数的定义,避免了以往函数定义中所有的关于依赖关系的描述,简明精确(经典函数定义)、 Veblen,1880-1960用“集合”与“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量就是数”的限制,变量可以就是数,也可以就是其它对象、 (二)初高中函数概念的区别与联系 1.初中函数概念:

《变量与函数》第2课时 教学设计

《变量与函数》教学设计 第2课时 进一步研究运动变化过程中变量之间的对应关系,在观察具体问题中变量之间对应关系的基础上,抽象出函数的概念. 1.进一步体会运动变化过程中的数量变化; 2.从典型实例中抽象概括出函数的概念,了解函数的概念. 概括并理解函数概念中的对应关系. 多媒体:PPT课件、电子白板. 一、观察思考,分析变化 问题1 下面变化过程中,是否包含两个变量?同一问题中的变量之间有什么联系? (1)汽车以60 km/h 的速度匀速行驶,行驶的时间为t h,行驶的路程为s km; (2)每张电影票的售价为10 元,设某场电影售出 x张票,票房收入为y 元; (3)圆形水波慢慢地扩大,在这一过程中,圆的半径为 r ,面积为 S ; (4)用10 m 长的绳子围一个矩形,当矩形的一边长为 x,它的邻边长为 y. [活动说明与建议]说明:本问题主要是给出具体事例让学生认识并抽象得到函数的概◆教材分析 ◆教学目标 ◆教学重难点 ◆ ◆课前准备 ◆ ◆教学过程

念,函数概念的抽象应循序渐进,首先让学生知道这些事例是一个变换的过程,其次这些变换过程中都含有两个变量,这两个变量之间存在着某种联系,最后由教师引导通过具体的数据,发现当给定一个变量的值时,有唯一的另一个变量的值与之对应,这种对应关系每个问题都不同. 建议:在教师的引导下,充分的让学生通过实例感知函数,感知这种对应关系. 【归纳】上面每个问题中的两个变量相互联系,当其中一个变量取定一个值时,另一个变量就有唯一的值与之对应. 二、观察思考,再次概括 问题2:一些用图或表格表达的问题中,也能看到两个变量之间存在上面那样的关系. (1)下面是中国代表团在第23 届至30 届夏季奥运会上获得的金牌数统计表,届数和金牌数可以分别记作 x 和 y,对于表中每一个确定的届数 x,都对应着一个确定的金牌数y 吗? (2)如图是北京某天的气温变化图,你能根据图象说出某一时刻的气温吗? 问题3:综合以上这些现象,你能再次归纳出上面所有事例的变量之间关系的共同特点吗?函数的定义: 一般地,在一个变化过程中,如果有两个变量x 与y,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是 x 的函数.如果当 x =a 时,对应的 y =b,那么 b 叫做当自变量的值为 a 时的函数值. 三、初步应用,巩固知识:

函数的概念及性质

函数的概念及性质 概览:概念,表示方法,图象和性质 1. 概念 函数的定义:传统定义(初中的),近代定义。自变量,对应法则,定义域,值域〖两域都是集合,回答时要正确表示。〗 对应法则f 是函数的核心,是对自变量的“操作”,如)(x f 是对x 进行“操作”,而)(2x f 是对2x 进行“操作”,)2(f 是对2进行“操作” 函数的三要素,或两要素:定义域、对应法则 判定两个函数是否相同。〖定义域和值域分别相同的两个函数不一定是同一函数,例x y x y 2,==;又如])1,0[(,2∈==x x y x y 定义域都取〗 区间 定义,名称,符号,几何(数轴)表示 映射 定义,符号,与函数的异同 2. 函数的表示方法 列表法,图象法,解析法 分段函数 定义域、值域、最值 求函数解析式的常用方法:配凑,换元,待定系数,函数方程(消去法) 3. 函数的图象 作图的步骤:定义域,列表,描点,连线〖注意抓住特征点,如边界点,与两轴的交点等;边界点注意空心/实心〗 带有绝对值符号的函数 定义域,分段脱去绝对值,作图 4. 函数的性质 求定义域 分式,偶次根式,对数的真数和底数,复合函数,实际问题中的实际意义。 求值域 由定义域和对应法则决定,故应先考虑定义域。方法:观察分析,例 函数211)(x x f +=;配方;换元;判别式;单调性;数形结合(图象);基本不等式;反求法(反函数法)等。 单调性 对于定义域内的某个区间而言。 单调区间若不含端点,则必须写成开区间,若含端点,则写成闭区间,通常写成开区间也可。 一个函数可能有多个独立的单调区间,应用逗号相隔回答,不用并集,而函数的两域都是整体性的集合,若有必要则要用并集回答。 图象特征:从左到右升/降。 证明步骤:设值,作差,定号,作答。 判断函数单调性的有关规律。 如增加增得增,减加减得减;注意:增乘增未必增,减乘减未必减(还要看各自的函数值是否同正或同负) 奇偶性

121函数的概念(1)补充练习

变式训练 1.已知a 、b ∈N *,f (a +b )=f (a )f (b ),f (1)=2,则 )2006()2007()2()3()1()2(f f f f f f +++ =_________.分析:令a =x ,b =1(x ∈N *), 则有f (x +1)=f (x )f (1)=2f (x ), 即有) ()1(x f x f +=2(x ∈N *). 所以,原式= 2006222++=4012. 答案:4012 2.2007山东蓬莱一模,理13设函数f (n )=k (k ∈N *),k 是π的小数点后的第n 位数字,π= 3.1415926535…,则[]{} 100 )10(f f f 等于________. 分析:由题意得f (10)=5,f (5)=9,f (9)=3,f (3)=1,f (1)=1,…, 则有[]{} 100 )10(f f f =1. 答案:1 2.2007山东济宁二模,理10已知A={a ,b ,c },B={-1,0,1},函数f :A→B 满足f (a )+f (b )+f (c )=0,则这样的函数f (x )有( ) A.4个 B.6个 C.7个 D.8个 活动:学生思考函数的概念,什么是不同的函数.定义域和值域确定后,不同的对应法则就是不同的函数,因此对f (a ),f (b ),f (c )的值分类讨论,注意要满足f (a )+f (b )+f (c )=0. 解:当f (a )=-1时, 则f (b )=0,f (c )=1或f (b )=1,f (c )=0, 即此时满足条件的函数有2个; 当f (a )=0时, 则f (b )=-1,f (c )=1或f (b )=1,f (c )=-1或f (b )=0,f (c )=0, 即此时满足条件的函数有3个; 当f (a )=1时, 则f (b )=0,f (c )=-1或f (b )=-1,f (c )=0, 即此时满足条件的函数有2个. 综上所得,满足条件的函数共有2+3+2=7(个). 故选C. 点评:本题主要考查对函数概念的理解,用集合的观点来看待函数. 变式训练 若一系列函数的解析式相同,值域相同,但是定义域不同,则称这些函数为“同族函数”.那么解析式为y =x 2,值域是{1,4}的“同族函数”共有( ) A.9个 B.8个 C.5个 D.4个 分析:“同族函数”的个数由定义域的个数来确定,此题中每个“同族函数”的定义域中至少含有1个绝对值为1的实数和绝对值为2的实数. 令x 2=1,得x =±1;令x 2=4,得x =±2. 所有“同族函数”的定义域分别是{1,2},{1,-2},{-1,2},{-1,-2},{1,-1,2},{1,-1,-2},{1,-2,2},

函数概念与性质练习题目大全

函数概念与性质练习题大全 函数定义域 1、函数x x x y +-=)1(的定义域为 A . {}0≥x x B .{}1≥x x C .{}{}01 ≥x x D .{}10≤≤x x 2、函数x x y +-=1的定义域为 A . {}1≤x x B .{}0≥x x C .{}01≤≥x x x 或 D .{}10≤≤x x 3、若函数)(x f y =的定义域是[]2,0,则函数1 ) 2()(-= x x f x g 的定义域是 A . []1,0 B .[)1,0 C .[)(]4,11,0 D .()1,0 4、函数的定义域为)4323ln(1 )(22+--++-= x x x x x x f A . (][)+∞-∞-,24, B .()()1,00,4 - C .[)(]1,00,4 - D .[)()1,00,4 - 5、函数)20(3)(≤<=x x f x 的反函数的定义域为 A . ()+∞,0 B .(]9,1 C .()1,0 D .[)+∞,9 6、函数4 1lg )(--=x x x f 的定义域为 A . ()4,1 B .[)4,1 C .()()+∞∞-,41, D .(]()+∞∞-,41, 7、函数2 1lg )(x x f -=的定义域为 A . []1,0 B .()1,1- C .[]1,1- B .()()+∞-∞-,11, 8、已知函数 x x f -= 11)(的定义域为M ,)1ln() (x x g +=的定义域为N ,则=N M A . {}1->x x B .{}1

函数概念及其基本性质

第二章函数概念与基本初等函数 I 一. 课标要求:函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重 要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的 三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2.了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4.结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5.学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景. 理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用. 通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 1 10.通过实例,了解幂函数的概念,结合五种具体函数y = x,y= x3,y=x-1,y = x2的图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3.函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法. 4.教材将映射作为函数的一种推广,进行了逻辑顺序上的调整,体现了特殊到一般的思维

高中数学函数的概念与性质(T)

函数的概念与性质 【知识要点】 1.函数的概念及函数的三要素 2.怎么判断函数的单调性 3.怎么判断函数的奇偶性 【典型例题】 例1.求下列函数的解析式,并注明定义域. (1)若x x x f 2)1(+=-,求)(x f . (2)若31 )1(44-+=+x x x x f ,求)(x f . 例2.求下列函数的值域. (1))1(1 3 2≥++=x x x y (2)1)(--=x x x f (3)232--=x x y (4)246 (),[1,4]1 x x f x x x ++= ∈+

例3.已知函数f (x )=m (x +x 1)的图象与函数h (x )=41(x +x 1 )+2的图象关于点A (0,1)对称. (1)求m 的值; (2)若g (x )=f (x )+ x a 4在区间(0,2]上为减函数,求实数a 的取值范围. 例4.判断下列函数的奇偶性 (1)334)(2-+-=x x x f (2)x x x x f -+?-=11)1()( 例5.设定义在[-2,2]上的偶函数,)(x f 在区间[0,2]上单调递减,若)()1(m f m f <-,求实为数m 的取值范围。

例6.已知函数f (x )=x + x p +m (p ≠0)是奇函数. (1)求m 的值. (2)当x ∈[1,2]时,求f (x )的最大值和最小值. 例7.(2005年北京东城区模拟题)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1、x 2∈D , 有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值; (2)判断f (x )的奇偶性并证明; (3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.

最全函数概念及基本性质知识点总结及经典例题

函数及基本性质 一、函数的概念 (1)设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到 B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. (2)函数的三要素:定义域、值域和对应法则. 注意1:只有定义域相同,且对应法则也相同的两个函数才是同一函数 例1.判断下列各组中的两个函数是同一函数的为( ) ⑴3) 5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+= x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g =; ⑷()f x ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f 。 A .⑴、⑵ B .⑵、⑶ C .⑷ D .⑶、⑸ 2:求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.如:943)(2-+=x x x f ,R x ∈ ②()f x 是分式函数时,定义域是使分母不为零的一切实数.如:()6 35 -= x x f ,2≠x ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.如()1432+-=x x x f , 13 1 >=x x x f a ,当对数或指数函数的底数中含变量时,底数须大 于零且不等于1。如:( ) 2 12 ()log 25f x x x =-+ ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零.如:2)32()(-+=x x f

高中数学第三章函数的概念与性质3.1函数的概念及其表示3.1.2第2课时分段函数分层演练

第2课时分段函数 分层演练 综合提升 A 级 基础巩固 1.德国数学家狄利克雷在数学上有着重大贡献,函数D (x )={0,x ?Q ,1,x ∈Q 是以他的名字命名的函数,则D (D (π))= ( ) A.1 B.0 C.π D.-1 答案:A 2.若f (x )={2x ,x >0, f (x +1),x ≤0,则f (43)+f (-43)= ( ) A.-2 B.4 C.2 D.-4 答案:B 3.若函数f (x )={1-x 2,x ≤1,x 2+x -2,x >1,则f (1 f (2))的值为 ( ) A.1516 B.-2716 C.89 D.18 答案:A 4.函数f (x )={x 2-x +1,x <1, 1x ,x >1的值域是 ( ) A .34,+∞ B .(0,1) C .3 4,1 D .(0,+∞) 答案:D 5.已知函数f (x )={x +2,x <0, x 2,0≤x <2, 12x ,x ≥2. (1)求f (f (f (-1 2)))的值; (2)若f (x )=2,求x 的值. 解:(1)因为f (-12)=-12+2=3 2, 所以f (f (-12))=f (32)=(32)2=9 4, 所以f (f (f (-1 2)))=f (94)=12×94=9 8. (2)当f (x )=x +2=2时,解得x =0,不符合题意,舍去;

当f (x )=x 2 =2时,解得x =±√2,其中x =√2符合要求; 当f (x )=12x =2时,解得x =4,符合要求. 综上,x 的值是√2或4. B 级 能力提升 6.某市出租车起步价为5元(起步价内行驶里程为3 km),以后每增加1 km,加收1.8元(不足1 km 按1 km 计价),则乘坐出租车的费用y (单位:元)与行驶的里程x (单位:km)之间的函数图象大致为下图中的 ( ) A B C D 解析:由已知得y ={5,03 = {5,00时,1-a <1,1+a >1,所以2(1-a )+a =-1-a -2a ,解得a =-32(舍去). 当a <0时,1-a >1,1+a <1,所以-1+a -2a =2+2a +a ,解得a =-34. 8.如图,△OAB 是边长为2的等边三角形,记△OAB 位于直线x =t (t >0)左侧的图形的面积为f (t ),试求函数f (t )的解析式. 解:过点B 作BE 垂直x 轴于点E ,可得OE =12OA =1,BE =√3. 当0

1.1 函数的概念及其基本性质

第一章 函数 1.1 函数的概念及其基本性质(4课时) 教学要求:理解集合、区间、邻域及映射的概念,理解函数的概念,掌握函数的表示方法,了解函数的基本性质,理解复合函数及分段函数的概念,了解反函数及隐函数的概念,掌握基本初等函数的性质及图形,会建立简单应用问题中的函数关系式。 教学重点难点:重点是理解集合、映射及函数的概念;难点是理解反函数及隐函数的概念。 教学过程: 一、集合及其运算 1、集合概念 (1) 什么是集合? 所谓集合是指具有某种特定性质的事物的总体,组成这个集合的事物称为该集合的元素. (2) 集合的表示法 a 列举法:就是把集合的元素一一列举出来表示.由元素n a a a ,,21组成的集合A,可表示成 A={n a a a ,,21} b 描述法:若集合M 是由具有某种性质P 的元素x 的全体所组成,就可表示成 }|{P x x M 具有性质= (3) 集合元素的三大特性:确定性、互异性、无序性. (4) 元素与集合,集合与集合之间的关系:属于、包含、子集、真子集、空集. 2、集合的运算 (1) 并集 {| }A B x x A x B ?=∈∈或;(2) 交集 {| } A B x x A x B ?=∈∈且 (3) 差集 \{| }A B x x A x B =∈?但 (4) 全集与补集(或余集) 全集用I 表示,称A I \为A 的补集记作C A . 即 \{| }C A I A x x I x A ==∈?但 集合的并、交、补满足下列法则: (1) 交换律:A B B A ?=?,A B B A ?=? (2) 结合律:)()(C B A C B A ??=??,)()(C B A C B A ??=?? (3) 分配律:)()()(C B C A C B A ???=??, )()()(C B C A C B A ???=?? (4) 对偶律:C C C B A B A ?=?)(,C C C B A B A ?=?)( (5)幂等律:A A A ?=A A A ?=;(6)吸收律:A A ?Φ=A A ?Φ= 两个集合的直积或笛卡儿乘积 {(,)| }A B x y x A y B ?=∈∈ 且 二、区间与邻域 1、映射与领域 区间:开区间 ),(b a 、闭区间 ],[b a 、半开半闭区间],(b a ,),[b a 、有限,无限区间. 邻域:)(a U 或}|{),(δδδ+<<-=a x a x a U a :邻域的中心,δ:邻域的半径 去心邻域: }||0|{),(δδ<-<=a x x a U 左δ邻域),(a a δ-、右δ邻域),(δ-a a . 2、映射概念 定义 设,A B 是两个非空集合,如果存在一个法则f ,使得对A 中的每一个元素x .按法则f ,在B 中有唯一确定的元素y 与之对应,则称f 为从A 到B 的映射,记作 f B →:A 或,f y x A →∈:x| 其中,并y 称为元素x 的像,记作)(x f ,即 )(x f y =,而x 称为元素y 的一个原像。 映射f 的定义域:f D A =,映射f 的值域:(){()|}f R f A f x x A ==∈

第五讲 函数的基本概念与性质

第五讲 函数的基本概念与性质 函数是中学数学中的一条主线,也是数学中的一个重要概念.它使我们从研究常量发展到研究变量之间的关系,这是对事物认识的一大飞跃,而且对于函数及其图像的研究,使我们把数与形结合起来了.学习函数,不仅要掌握基本的概念,而且要把解析式、图像和性质有机地结合起来,在解题中自觉地运用数形结合的思想方法,从图像和性质对函数进行深入的研究. 1.求函数值和函数表达式 对于函数y=f(x),若任取x=a(a为一常数),则可求出所对应的y值f(a),此时y的值就称为当x=a时的函数值.我们经常会遇到求函数值与确定函数表达式的问题. 例1 已知f(x-1)=19x2+55x-44,求f(x). 解法1 令y=x-1,则x=y+1,代入原式有 f(y)=19(y+1)2+55(y+1)-44 =19y2+93y+30, 所以 f(x)=19x2+93x+30. 解法2 f(x-1)=19(x-1)2+93(x-1)+30,所以f(x)=19x2+93x+30. 可. 例3 已知函数f(x)=ax5-bx3+x+5,其中a,b为常数.若f(5)=7,求f(-5). 解 由题设 f(-x)=-ax5+bx3-x+5 =-(ax5-bx3+x+5)+10

=-f(x)+10, 所以 f(-5)=-f(5)+10=3. 例4 函数f(x)的定义域是全体实数,并且对任意实数x ,y ,有f(x+y)=f(xy).若f(19)=99,求f(1999). 解 设f(0)=k ,令y=0代入已知条件得 f(x)=f(x+0)=f(x ·0)=f(0)=k , 即对任意实数x ,恒有f(x)=k .所以 f(x)=f(19)=99, 所以f(1999)=99. 2.建立函数关系式 例5 直线l1过点A(0,2),B(2,0),直线l 2:y=mx +b 过点C(1,0),且把△AOB 分成两部分,其中靠近原点的那部分是一个三角形,如图3-1.设此三角形的面积为S ,求S 关于m 的函数解析式,并画出图像. 解 因为l 2过点C(1,0),所以m +b=0,即b=-m . 设l 2与y 轴交于点D ,则点D 的坐标为(0,-m),且0<-m ≤2(这是因为点D 在线段OA 上,且不能与O 点重合),即-2≤m <0. 故S 的函数解析式为 例6 已知矩形的长大于宽的2倍,周长为12.从它的一个顶点作一条射线,将矩形分成一个三角形和一个梯形,且这条射线与矩形一边

高一函数的概念与性质

函数概念与性质 一、选择题(每小题5分,共50分) 1、下列哪组中的两个函数是同一函数 (A )2y =与y x = (B )3y =与y x = (C )y =2y = (D )y =2 x y x = 2、下列集合A 到集合B 的对应f 是映射的是 (A ){}{}1,0,1,1,0,1,A B f =-=-:A 中的数平方; (B ){}{}f B A ,1,0,1,1,0-==:A 中的数开方; (C ),,A Z B Q f ==:A 中的数取倒数; (D ),,A R B R f +==:A 中的数取绝对值; 3、已知函数11)(22-+ -=x x x f 的定义域是( ) (A )[-1,1] (B ){-1,1} (C )(-1,1) (D )),1[]1,(+∞--∞ 4、若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上( ) (A )必是增函数 (B )必是减函数 (C )是增函数或是减函数 (D )无法确定增减性 5、)(x f 是定义在R 上的奇函数,下列结论中,不正确... 的是( ) (A )0)()(=+-x f x f (B ))(2)()(x f x f x f -=-- (C ))(x f ·)(x f -≤0 (D )1) ()(-=-x f x f 6、函数()f x 的定义域为),(b a ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x --<,则 ()f x 在),(b a 上是

(A )增函数 (B )减函数 (C )奇函数 (D )偶函数 7、若函数()(()0)f x f x ≠为奇函数,则必有 (A )()()0f x f x ?-> (B )()()0f x f x ?-< (C )()()f x f x <- (D )()()f x f x >- 8、设偶函数f(x)的定义域为R ,当x ],0[+∞∈时f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( ) (A )f(π)>f(-3)>f(-2) (B )f(π)>f(-2)>f(-3) (C )f(π)

(完整)五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形 1.幂函数 函数称为幂函数。如,, ,都是幂函数。没有统一的定义域,定义域由值确定。如 ,。但在内 总是有定义的,且都经过(1,1)点。当时,函数在上是单调增加的,当时,函数在内是单调减少的。下面给出几个常用的幂函数: 的图形,如图1-1-2、图1-1-3。 图1-1-2

图1-1-3 2.指数函数 函数称为指数函数,定义域 ,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。高等数学中常用的指数函数是时,即。以与 为例绘出图形,如图1-1-4。 图1-1-4 3.对数函数

函数称为对数函数,其定义域 ,值域。当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面内。与互为反函数。当时的对数函数称为自然对数,当时,称为常用对数。 以为例绘出图形,如图1-1-5。 图1-1-5 4.三角函数有 ,它们都是周期函数。对三角函数作简要的叙述: (1)正弦函数与余弦函数:与定义域都是,值域都是。它们都是有界函数,周期都是,为奇函数,为偶函数。图形为图1-1-6、图1-1-7。

图1-1-6正弦函数图形 图1-1-7余弦函数图形 (2)正切函数,定义域,值 域为。周期,在其定义域内单调增加的奇函数,图形为图1-1-8 图1-1-8 (3)余切函数,定义域,值域为 ,周期。在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9 (4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。 图1-1-10 (5)余割函数,定义域,值域为,为无界函数,周期在定义域为奇函数,图形如图1-1-11。

函数的概念与性质

第三章函数 第一单元函数的概念与性质 第一节函数的概念 一、选择题 1.下列对应中是映射的是() A.(1)、(2)、(3)B.(1)、(2)、(5) C.(1)、(3)、(5) D.(1)、(2)、(3)、(5) 2.下面哪一个图形可以作为函数的图象() 3.(2009年茂名模拟)已知f:A→B是从集合A到集合B的一个映射,?是空集,那么

下列结论可以成立的是( ) A .A = B =? B .A =B ≠? C .A 、B 之一为? D .A ≠B 且B 的元素都有原象 4.已知集合M ={}?x ,y ?|x +y =1,映射f :M →N ,在f 作用下点(x ,y )的元素是(2x,2y ),则集合N =( ) 5.现给出下列对应: (1)A ={x |0≤x ≤1},B =R - ,f :x →y =ln x ; (2)A ={x |x ≥0},B =R ,f :x →y =±x ; (3)A ={平面α内的三角形},B ={平面α内的圆},f :三角形→该三角形的内切圆; (4)A ={0,π},B ={0,1},f :x →y =sin x . 其中是从集A 到集B 的映射的个数( ) A .1 B .2 C .3 D .4 二、填空题 6.(2009年珠海一中模拟)已知函数f (x )=x 2-1x 2+1,则f ?2?f ??? ?12=________. 7.设f :A →B 是从集合A 到B 的映射,A =B ={(x ,y )|x ∈R ,y ∈R },f :(x ,y )→(kx ,y +b ),若B 中元素(6,2)在映射f 下的元素是(3,1),则k ,b 的值分别为________. 8.(2009年东莞模拟)集合A ={a ,b },B ={1,-1,0},那么可建立从A 到B 的映射个数是________.从B 到A 的映射个数是________. 三、解答题 9.已知f 满足f (ab )=f (a )+f (b ),且f (2)=p ,f (3)=q ,求f (72)的值. 10.集合M ={a ,b ,c },N ={-1,0,1},映射f :M →N 满足f (a )+f (b )+f (c )=0,那么映射f :M →N 的个数是多少?

函数的概念及基本性质练习题

函数的概念及基本性质练习题 1. 下列各图中,不能是函数f (x )图象的是( ) 2.若f (1x )=1 1+x ,则f (x )等于( ) A.1 1+x (x ≠-1) B.1+x x (x ≠0) C.x 1+x (x ≠0且x ≠-1) D .1+x (x ≠-1) 3.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( ) A .3x +2 B .3x -2 C .2x +3 D .2x -3 4.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 5.已知函数f (x )=??? 2x +1,x <1 x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a 等于( ) A.12 B.4 5 C .2 D .9 6.下列集合A 到集合B 的对应f 是函数的是( ) A .A ={-1,0,1}, B ={0,1},f :A 中的数平方 B .A ={0,1},B ={-1,0,1},f :A 中的数开方 C .A =Z ,B =Q ,f :A 中的数取倒数 D .A =R ,B ={正实数},f :A 中的数取绝对值 7.下列各组函数表示相等函数的是( ) A .y =x 2-3 x -3与y =x +3(x ≠3) B .y =x 2-1与y =x -1 C .y =x (x ≠0)与y =1(x ≠0) D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z 8.求下列函数的定义域: (1)y =-x 2x 2-3x -2;(2)y =34x +8 3x -2

相关主题
文本预览
相关文档 最新文档