七年级数学上册压轴题
- 格式:docx
- 大小:52.09 KB
- 文档页数:4
七年级上册数学压轴题50道一、有理数运算相关压轴题1. 已知|a| = 3,b = 8,ab>0,求a b的值。
解析:因为|a| = 3,所以a=±3。
又因为ab>0,b=-8<0,所以a=3。
则a b=-3-(-8)=-3 + 8=5。
2. 计算:1 2+3 4+5 6+·s+99 100解析:1-2=-1,3 4=-1,·s,99-100=-1。
从1到100共100个数,两两一组,共100÷2 = 50组。
所以原式=(-1)×50=-50。
二、整式加减相关压轴题1. 已知A = 3x^2-2x + 1,B=5x^2-3x + 2,求2A 3B。
解析:2A=2(3x^2-2x + 1)=6x^2-4x+23B = 3(5x^2-3x + 2)=15x^2-9x+6则2A-3B=(6x^2-4x + 2)-(15x^2-9x+6)=6x^2-4x + 2-15x^2+9x 6=(6x^2-15x^2)+(9x-4x)+(2 6)=-9x^2+5x-42. 若a、b互为相反数,c、d互为倒数,m的绝对值是2,求(a +b)m^3+5m+2021cd的值。
解析:因为a、b互为相反数,所以a + b=0;因为c、d互为倒数,所以cd = 1;因为m的绝对值是2,所以m=±2。
当m = 2时,(a + b)m^3+5m+2021cd=0×2^3+5×2+2021×1=0 + 10+2021=2031当m=-2时,(a + b)m^3+5m+2021cd=0×(-2)^3+5×(-2)+2021×1=0-10 + 2021=2011三、一元一次方程相关压轴题1. 解方程:(1)/(2)<=ft[x-(1)/(2)(x 1)]=(2)/(3)(x-1)解析:先去小括号:(1)/(2)<=ft[x-(1)/(2)x+(1)/(2)]=(2)/(3)x-(2)/(3)(1)/(2)<=ft[(1)/(2)x+(1)/(2)]=(2)/(3)x-(2)/(3)再去中括号:(1)/(4)x+(1)/(4)=(2)/(3)x-(2)/(3)移项:(1)/(4)x-(2)/(3)x=-(2)/(3)-(1)/(4)通分:(3)/(12)x-(8)/(12)x=-(8)/(12)-(3)/(12)-(5)/(12)x=-(11)/(12)解得x=(11)/(5)2. 某班有学生45人,会下象棋的人数是会下围棋人数的3.5倍,两种棋都会及两种棋都不会的人数都是5人,求只会下围棋的人数。
七年级上册数学压轴题汇编经典及答案一、七年级上册数学压轴题1.已知射线OC 在AOB ∠的内部,射线OE 平分AOC ∠,射线OF 平分COB ∠.(1)如图1,若120,32AOB AOC ∠=︒∠=︒,则EOF ∠=__________度; (2)若,AOB AOC αβ∠=∠=,①如图2,若射线OC 在AOB ∠的内部绕点O 旋转,求EOF ∠的度数;②若射线OC 在AOB ∠的外部绕点O 旋转(旋转中AOC ∠、BOC ∠均是指小于180°的角),其余条件不变,请借助图3探究EOF ∠的大小,直接写出EOF ∠的度数. 2.如图,数轴上有A 、B 、C 、D 四个点,分别对应的数为a 、b 、c 、d ,且满足a ,b 是方程|9|1x +=的两根()a b <,2(16)c -与|20|d -互为相反数, (1)求a 、b 、c 、d 的值;(2)若A 、B 两点以6个单位长度秒的速度向右匀速运动,同时C 、D 两点以2个单位长度/秒向左匀速运动,并设运动时间为t 秒,问t 为多少时,6AC =?(3)在(2)的条件下,A 、B 、C 、D 四个点继续运动,当点B 运动到点D 的右侧时,问是否存在时间t ,使B 与C 的距离是A 与D 的距离的4倍?若存在,求时间t ;若不存在,请说明理由.3.已知数轴上三点M ,O ,N 对应的数分别为1-,0,3,点P 为数轴上任意一点,其对应的数为x .(1)如果点P 到点M 、点N 的距离相等,那么x 的值是______.(2)数轴上是否存在点P ,使点P 到点M 、点N 的距离之和是8?若存在,求出x 的值;若不存在,请说明理由.(3)如果点P 以每分钟1个单位长度的速度从点O 向右运动,同时另一点Q 从点N 以每分钟2个单位长度的速度向左运动.设t 分钟时点P 和点Q 到点M 的距离相等,则t 的值为______.(直接写出答案)4.已知,A ,B 在数轴上对应的数分用a ,b 表示,且()220100a b -++=,数轴上动点P 对应的数用x 表示.(1)在数轴上标出A 、B 的位置,并直接写出A 、B 之间的距离; (2)写出x a x b -+-的最小值;(3)已知点C 在点B 的右侧且BC =9,当数轴上有点P 满足PB =2PC 时, ①求P 点对应的数x 的值;②数轴上另一动点Q 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点Q 能移动到与①中的点P 重合的位置吗?若都不能,请直接回答.若能,请直接指出,第几次移动可以重合。
七年级上册上册数学压轴题(Word 版 含解析)一、压轴题1.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n 个()0a a ≠相除记作n a ,读作“a 的n 次商”.(1)直接写出结果:312⎛⎫= ⎪⎝⎭______,()42-=______.(2)关于除方,下列说法错误的是( ) A .任何非零数的2次商都等于1 B .对于任何正整数n ,()111n --=-C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数D .负数的奇数次商结果是负数,负数的偶数次商结果是正数. 深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢? (3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______ 615⎛⎫= ⎪⎝⎭______ (4)想一想,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.3.某市两超市在元旦节期间分别推出如下促销方式: 甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折; 已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少? (2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由. 4.已知线段AB =m (m 为常数),点C 为直线AB 上一点,点P 、Q 分别在线段BC 、AC 上,且满足CQ =2AQ ,CP =2BP .(1)如图,若AB =6,当点C 恰好在线段AB 中点时,则PQ = ;(2)若点C 为直线AB 上任一点,则PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ ﹣2PQ 与1的大小关系,并说明理由.5.(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解. ①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由; (2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PBPC+的值不变.6.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值. 7.已知AOB ∠是锐角,2AOC BOD ∠=∠.(1)如图,射线OC ,射线OD 在AOB ∠的内部(AOD AOC ∠>∠),AOB ∠与COD ∠互余;①若60AOB ︒∠=,求BOD ∠的度数; ②若OD 平分BOC ∠,求BOD ∠的度数.(2)若射线OD 在AOB ∠的内部,射线OC 在AOB ∠的外部,AOB ∠与COD ∠互补.方方同学说BOD ∠的度数是确定的;圆圆同学说:这个问题要分类讨论,一种情况下BOD ∠的度数是确定的,另一种情况下BOD ∠的度数不确定.你认为谁的说法正确?为什么?8.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A ,B ,C 在一条直线上,若AB =8,BC =3则AC 长为多少?通过分析我们发现,满足题意的情况有两种:情况 当点C 在点B 的右侧时,如图1,此时,AC =11;情况②当点C 在点B 的左侧时, 如图2此时,AC =5.仿照上面的解题思路,完成下列问题:问题(1): 如图,数轴上点A 和点B 表示的数分别是-1和2,点C 是数轴上一点,且BC =2AB ,则点C 表示的数是.问题(2): 若2x =,3y =求x y +的值.问题(3): 点O 是直线AB 上一点,以O 为端点作射线OC 、OD ,使060AOC ∠=,OC OD ⊥,求BOD ∠的度数(画出图形,直接写出结果).9.已知∠AOD =160°,OB 、OC 、OM 、ON 是∠AOD 内的射线.(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD .当OB 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(2)如图2,若∠BOC =20°,OM 平分∠AOC ,ON 平分∠BOD .当∠BOC 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(3)在(2)的条件下,若∠AOB =10°,当∠B0C 在∠AOD 内绕着点O 以2度/秒的速度逆时针旋转t 秒时,∠AOM =23∠DON.求t 的值. 10.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.11.如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转. (1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE 的旋转过程中,若∠AOE =7∠COD ,试求∠AOE 的大小.12.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°: (1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)2,14;(2)B ;(3)21()3-,45;(4)21()n a -;(5)29- 【解析】 【分析】(1)利用题中的新定义计算即可求出值; (2)利用题中的新定义计算即可求出值; (3)将原式变形即可得到结果; (4)根据题意确定出所求即可; (5)原式变形后,计算即可求出值. 【详解】 (1)3111111222222⎛⎫=÷÷=÷=⎪⎝⎭, ()()()()()4111222221224-=-÷-÷-÷-=⨯⨯=, 故答案为:2,14; (2)A .任何非零数的2次商都等于1,说法正确,符合题意;B .对于任何正整数n ,当n 为奇数时,()111n --=-;当n 为偶数时,()111n --=,原说法错误,不符合题意;C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数,说法正确,符合题意;D .负数的奇数次商结果是负数,负数的偶数次商结果是正数,说法正确,符合题意. 故选:B ;(3)()()()()()433333-=-÷-÷-÷-111()()33=⨯-⨯-21()3=-;611111115555555⎛⎫=÷÷÷÷÷ ⎪⎝⎭ 15555=⨯⨯⨯⨯45=;故答案为:21()3-,45; (4)由(3)得到规律:21()n n a a-=,所以,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于21()n a-,故答案为:21()n a-;(5)201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()2019324220202112366---⎛⎫=÷-÷---⨯ ⎪⎝⎭201820181111162966⎛⎫⎛⎫⎛⎫=⨯-⨯-⨯⨯ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭201811161866⎛⎫⎛⎫=--⨯⨯ ⎪ ⎪⎝⎭⎝⎭11186=-- 29=-.【点睛】本题考查了有理数的混合运算,新定义的理解与运用;熟练掌握运算法则是解本题的关键.对新定义,其实就是多个数的除法运算,要注意运算顺序. 2.(1)3.(2)存在.x 的值为3.(3)不变,为2. 【解析】 【分析】(1)根据非负数的性质和数轴上两点间距离即可求解;(2)分两种情况讨论,根据数轴上两点间的距离公式列方程即可求解;(3)先确定运动t 秒后,A 、B 、C 三点对应的数,再根据数轴上两点间的距离公式列方程即可求解. 【详解】解:(1)∵点A、B是数轴上的两个点,它们分别表示的数是2-和1∴A,B两点之间的距离是1-(-2)=3.故答案为3.(2)存在.理由如下:①若P点在A、B之间,x+2+1-x=7,此方程不成立;②若P点在B点右侧,x+2+x-1=7,解得x=3.答:存在.x的值为3.-的值不随运动时间t(秒)的变化而改变,为定值,是2.理由如下:(3)BC AB运动t秒后,A点表示的数为-2-t,B点表示的数为1+2t,C点表示的数为6+5t.所以AB=1+2t-(-2-t)=3+3t.BC=6+5t-(1+2t)=5+3t.所以BC-AB=5+3t-3-3t=2.【点睛】本题考查了一元一次方程、数轴、非负数、两点之间的距离,解决本题的关键是数轴上动点的运动情况.3.(1)甲超市实付款352元,乙超市实付款 360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.【解析】【分析】(1)根据两超市的促销方案,即可分别求出:当一次性购物标价总额是400元时,甲、乙两超市实付款;(2)设当标价总额是x元时,甲、乙超市实付款一样.根据两超市的促销方案结合两超市实付款相等,即可得出关于x的一元一次方程,解之即可得出结论;(3)设购物总额是x元,根据题意列方程求出购物总额,然后计算若在甲超市购物应付款,比较即可得出结论.【详解】(1)甲超市实付款:400×0.88=352元,乙超市实付款:400×0.9=360元;(2)设购物总额是x元,由题意知x>500,列方程:0.88x=500×0.9+0.8(x-500)∴x=625∴购物总额是625元时,甲、乙两家超市实付款相同.(3)设购物总额是x元,购物总额刚好500元时,在乙超市应付款为:500×0.9=450(元),482>450,故购物总额超过500元.根据题意得:500×0.9+0.8(x-500)=482∴x=540∴0.88x=475.2<482∴该顾客选择不划算.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)根据两超市的促销方案,列式计算;(2)找准等量关系,正确列出一元一次方程;(3)求出购物总额.4.(1)4;(2)PQ是一个常数,即是常数23m;(3)2AP+CQ﹣2PQ<1,见解析.【解析】【分析】(1)根据已知AB=6,CQ=2AQ,CP=2BP,以及线段的中点的定义解答;(2)由题意根据已知条件AB=m(m为常数),CQ=2AQ,CP=2BP进行分析即可;(3)根据题意,画出图形,求得2AP+CQ﹣2PQ=0,即可得出2AP+CQ﹣2PQ与1的大小关系.【详解】解:(1)∵CQ=2AQ,CP=2BP,∴CQ=23AC,CP=23BC,∵点C恰好在线段AB中点,∴AC=BC=12AB,∵AB=6,∴PQ=CQ+CP=23AC+23BC=23×12AB+23×12AB=23×AB=23×6=4;故答案为:4;(2)①点C在线段AB上:∵CQ=2AQ,CP=2BP,∴CQ=23AC,CP=23BC,∵AB=m(m为常数),∴PQ=CQ+CP=23AC+23BC=23×(AC+BC)=23AB=23m;②点C在线段BA的延长线上:∵CQ=2AQ,CP=2BP,∴CQ=23AC,CP=23BC,∵AB=m(m为常数),∴PQ =CP ﹣CQ =23BC ﹣23AC =23×(BC ﹣AC )=23AB =23m ; ③点C 在线段AB 的延长线上:∵CQ =2AQ ,CP =2BP ,∴CQ =23AC ,CP =23BC , ∵AB =m (m 为常数),∴PQ =CQ ﹣CP =23AC ﹣23BC =23×(AC ﹣BC )=23AB =23m ; 故PQ 是一个常数,即是常数23m ; (3)如图:∵CQ =2AQ , ∴2AP+CQ ﹣2PQ =2AP+CQ ﹣2(AP+AQ ) =2AP+CQ ﹣2AP ﹣2AQ =CQ ﹣2AQ =2AQ ﹣2AQ =0,∴2AP+CQ ﹣2PQ <1. 【点睛】本题主要考查线段上两点间的距离,掌握线段的中点的性质、线段的和差运算是解题的关键.5.(1)①AB=4;②线段MN 的长与点P 在线段AB 上的位置无关,理由见解析; (2)见解析. 【解析】 【分析】(1)由关于x 的方程()46n x n -=-无解.可得4n -=0,从而可求得n 的值; (2)根据线段中点的定义可知PN=12AP ,PM=12PB ,从而得到MN=12(PA+PB )=12AB ,于是可求;(3)设AB=a ,BP=b .先表示PB+PA 的长,然后再表示PC 的长,最后代入计算即可. 【详解】解:(1)①∵关于x 的方程()46n x n -=-无解.∴4n -=0,解得:n=4.故AB=4.②线段MN 的长与点P 在线段AB 上的位置无关,理由如下:∵M 为线段PB 的中点,∴PM= 12PB . 同理:PN= 12AP .. ∴MN=PN+PM=12(PB+AP )= 12AB= 12×4=2. ∴线段MN 的长与点P 在线段AB 上的位置无关.(2)设AB=a ,BP=b ,则PA+PB=a+b+b=a+2b .∵C 是AB 的中点,1122BC AB a ∴== 12PC PB BC a b ∴=+=+ 2212PA PB a b PC a b ++∴==+, 所以PA PB PC+的值不变. 【点睛】 本题主要考查的是中点的有关计算,掌握线段中点的定义是解题的关键.6.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.7.(1)①10°,②18°;(2)圆圆的说法正确,理由见解析.【解析】【分析】(1)①根据∠AOB 与∠COD 互余求出∠COD ,再利用角度的和差关系求出∠AOC+∠BOD=30°,最后根据∠AOC=2∠BOD 即可求出∠BOD ;②设∠BOD=x ,根据角平分线表示出∠COD 和∠BOC ,根据∠AOC=2∠BOD 表示出∠AOC ,最后根据∠AOB 与∠COD 互余建立方程求解即可;(2)分两种情况讨论:OC 靠近OA 时与OC 靠近OB 时,画出图形分类计算判断即可.【详解】解:(1)①∵∠AOB 与∠COD 互余,且∠AOB=60°,∴∠COD=90°-∠AOB=30°,∴∠AOC+∠BOD=∠AOB -∠COD=60°-30°=30°,∵∠AOC=2∠BOD ,∴2∠BOD+∠BOD=30°,∴∠BOD=10°;②设∠BOD=x ,∵OD 平分∠BOC ,∴∠BOD=∠COD=x ,∠BOC=2∠BOD=2x ,∵∠AOC=2∠BOD ,∴∠AOC=2x,∴∠AOB=∠AOC+∠COD +∠BOD=4x,∵∠AOB与∠COD互余,∴∠AOB+∠COD=90°,即4x+x=90°,∴x=18°,即∠BOD=18°;(2)圆圆的说法正确,理由如下:当OC靠近OB时,如图所示,∵∠AOB与∠COD互补,∴∠AOB+∠COD=180°,∵∠AOB=∠AOD+∠BOD,∠COD=∠BOC+∠BOD,∴∠AOD+∠BOD+∠BOC+∠BOD=180°,∵∠AOC=∠AOD+∠BOD+∠BOC,∴∠AOC+∠BOD=180°,∵∠AOC=2∠BOD,∴2∠BOD+∠BOD=180°,∴∠BOD=60°;当OC靠近OA时,如图所示,∵∠AOB与∠COD互补,∴∠AOB+∠COD=180°,∵∠AOB=∠AOD+∠BOD,∠COD=∠AOC+∠AOD,∴∠AOD+∠BOD+∠AOC+∠AOD=180°,∵∠AOC=2∠BOD,∴∠AOD+∠BOD+2∠BOD +∠AOD=180°,即3∠BOD+2∠AOD=180°,∵∠AOD不确定,∴∠BOD也不确定,综上所述,当OC 靠近OB 时,∠BOD 的度数为60°,当OC 靠近OA 时,∠BOD 的度数不确定,所以圆圆的说法正确.【点睛】本题考查角的计算,正确找出角之间的关系,分情况画出图形解答是解题的关键.8.问题(1)点C 表示的数是8或-4;问题(2)x y +的值为1,-1,5,-5;问题(3)150BOD ∠= , 30BOD ∠=;见解析.【解析】【分析】问题(1)分两种情况进行讨论,当C 在B 的左侧以及当C 在B 的右侧,并依据BC=2AB 进行分析计算.问题(2)利用2x =,3y =得到2,3x y =±=±,再进行分类讨论代入x ,y 求值. 问题(3)根据题意画出图形,利用角的和差关系进行计算,直接写出答案.【详解】解:问题(1) 点C 是数轴上一点,且BC=2AB ,结合数轴可知当C 在B 的左侧以及当C 在B 的右侧分别为-4或8.问题(2)∵2x =,3y =∴2, 3.x y =±=±情况① 当x=2,y=3时,x y +=5,情况② 当x=2,y=-3时,x y +=-1,情况③ 当x=-2,y=3时,x y +=1,情况④ 当x=-2,y=-3时,x y +=-5,所以,x y +的值为1,-1,5,-5.问题⑶【点睛】本题考查有理数与数轴,垂线的定义以及角的运算,根据题意画出图像进行分析.9.(1)∠MON 的度数为80°;(2)∠MON 的度数为70°或90°;(3)t 的值为21.【解析】【分析】(1)根据角平分线的定义进行角的计算即可;(2)分两种情况画图形,根据角平分线的定义进行角的计算即可;(3)根据(2)中前一种情况用含t 的式子表示角度,再根据已知条件即可求解.【详解】解:(1)因为∠AOD =160°,OM平分∠AOB,ON平分∠BOD,所以∠MOB=12∠AOB,∠BON=12∠BOD,即∠MON=∠MOB+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD)=12∠AOD=80°,答:∠MON的度数为80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=12∠AOC,∠BON=12∠BOD,①射线OC在OB左侧时,如图:∠MON=∠MOC+∠BON﹣∠BOC=12∠AOC+12∠BOD﹣∠BOC=12(∠AOC+∠BOD)﹣∠BOC=12(∠AOD+∠BOC)﹣∠BOC=12×180°﹣20°=70°;②射线OC在OB右侧时,如图:∠MON=∠MOC+∠BON+∠BOC=12∠AOC+12∠BOD+∠BOC =12(∠AOC+∠BOD)+∠BOC =12(∠AOD ﹣∠BOC)+∠BOC =12×140°+20° =90°;答:∠MON 的度数为70°或90°.(3)∵射线OB 从OA 逆时针以2°每秒的速度旋转t 秒,∠COB =20°,∴根据(2)中的第一种情况,得∠AOC =∠AOB+∠COB =2t°+10°+20°=2t°+30°.∵射线OM 平分∠AOC ,∴∠AOM =12∠AOC =t°+15°. ∵∠BOD =∠AOD ﹣∠BOA ,∠AOD =160°,∴∠BOD =150°﹣2t°.∵射线ON 平分∠BOD ,∴∠DON =12∠BOD =75°﹣t°. 又∵∠AOM :∠DON =2:3,∴(t+15):(75﹣t)=2:3,解得t =21. 根据(2)中的第二中情况,观察图形可知:这种情况不可能存在∠AOB=10°.答:t 的值为21.【点睛】本题考查角平分线的定义,角的计算.解决本题的关键是利用已知(已设)角,去计算或者表示未知角.10.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒ (2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.11.(1)130°;(2)∠AOD与∠COE的差不发生变化,为30°;(3)∠AOE=131.25°或175°.【解析】【分析】(1)求出∠COE的度数,即可求出答案;(2)分为两种情况,根据∠AOC=90°和∠DOE=60°求出即可;(3)根据∠AOE=7∠COD、∠DOE=60°、∠AOC=90°求出即可.【详解】(1)∵OC⊥AB,∴∠AOC=90°,∵OD在OA和OC之间,∠COD=20°,∠EOD=60°,∴∠COE=60°-20°=40°,∴∠AOE=90°+40°=130°,故答案为130°;(2)在△ODE旋转过程中,∠AOD与∠COE的差不发生变化,有两种情况:①如图1、∵∠AOD+∠COD=90°,∠COD+∠COE=60°,∴∠AOD-∠COE=90°-60°=30°,②如图2、∵∠AOD=∠AOC+∠COD=90°+∠COD,∠COE=∠DOE+∠DOC=60°+∠DOC,∴∠AOD-∠COE=(90°+∠COD)-(60°+∠COD)=30°,即△ODE在旋转过程中,∠AOD与∠COE的差不发生变化,为30°;(3)如图1、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°-∠COD=7∠COD,解得:∠COD=18.75°,∴∠AOE=7×18.75°=131.25°;如图2、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°+∠COD=7∠COD,∴∠COD=25°,∴∠AOE=7×25°=175°,即∠AOE=131.25°或175°.【点睛】本题考查了角的有关计算的应用,能根据题意求出各个角的度数是解此题的关键.注意分类思想的运用.12.(1)10.5°或14°或28°或31.5°;(2)74或218或212或634【解析】【分析】(1)分4种情况,根据奇分线定义即可求解;(2)分4种情况,根据奇分线定义得到方程求解即可.【详解】解:(1)如图1,∵∠MPN=42°,∵当PQ是∠MPN的3等分线时,∴∠MPQ=13∠MPN=13×42°=14°或∠MPQ=23∠MPN=23×42°=28°∵当PQ是∠MPN的4等分线时,∴∠MPQ=14∠MPN==14×42°=10.5°或∠MPQ=34∠MPN=34×42°=31.5°;∠MPQ=10.5°或14°或28°或31.5°;(2)依题意有①当3×8t=42时,解得t=74;②当2×8t=42时,解得t=218;③当8t=2×42时,解得t=212.④当8t=3×42时,解得:t=634,故当t为74或218或212或634时,射线PN是∠EPM的“奇分线”.【点睛】本题考查了旋转的性质,新定义奇分线,以及学生的阅读理解能力及知识的迁移能力.理解“奇分线”的定义是解题的关键.。
七年级数学上册 压轴解答题测试卷(含答案解析)一、压轴题1.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式: ①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______; (2)用合理的方法进行简便计算:1111924233202033⎛⎫-++---+ ⎪⎝⎭(3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|. 2.如图,数轴上A ,B 两点对应的数分别为4-,-1 (1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =3.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|; (应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 . (2)若点C (1,0),且CD ∥y 轴,且CD=2,则点D 的坐标为 . (拓展):我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5. 解决下列问题:(1)已知E (2,0),若F (﹣1,﹣2),求d (E ,F );(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,求t 的值;(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,求d (P ,Q ).4.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOCCOE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.5.如图1,点A ,B ,C ,D 为直线l 上从左到右顺次的4个点.(1) ①直线l 上以A ,B ,C ,D 为端点的线段共有 条;②若AC =5cm ,BD =6cm ,BC =1cm ,点P 为直线l 上一点,则PA +PD 的最小值为 cm ;(2)若点A在直线l上向左运动,线段BD在直线l上向右运动,M,N分别为AC,BD的中点(如图2),请指出在此过程中线段AD,BC,MN有何数量关系并说明理由;(3)若C是AD的一个三等分点,DC>AC,且AD=9cm,E,F两点同时从C,D出发,分别以2cm/s,1cm/s的速度沿直线l向左运动,Q为EF的中点,设运动时间为t,当AQ+AE+AF=32AD时,请直接写出t的值.6.如图1,点O为直线AB上一点,过点O作射线OC,OD,使射线OC平分∠AOD.(1)当∠BOD=50°时,∠COD=°;(2)将一直角三角板的直角顶点放在点O处,当三角板MON的一边OM与射线OC重合时,如图2.①在(1)的条件下,∠AON=°;②若∠BOD=70°,求∠AON的度数;③若∠BOD=α,请直接写出∠AON的度数(用含α的式子表示).7.如图1,在数轴上A、B两点对应的数分别是6,-6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)(1)如图1,若CF平分∠ACE,则∠AOF=_______;(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.①当t=1时,α=_________;②猜想∠BCE和α的数量关系,并证明;(3)如图3,开始∠D 1C 1E 1与∠DCE 重合,将∠DCE 沿数轴正半轴向右平移t (0<t<3)个单位,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α,与此同时,将∠D 1C 1E 1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕顶点C 1顺时针旋转30t 度,作C 1F 1平分∠AC 1E 1,记∠D 1C 1F 1=β,若α,β满足|α-β|=45°,请用t 的式子表示α、β并直接写出t 的值.8.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .9.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).10.点O 为直线AB 上一点,在直线AB 同侧任作射线OC 、OD ,使得∠COD=90°(1)如图1,过点O作射线OE,当OE恰好为∠AOC的角平分线时,另作射线OF,使得OF平分∠BOD,则∠EOF的度数是__________度;(2)如图2,过点O作射线OE,当OE恰好为∠AOD的角平分线时,求出∠BOD与∠COE 的数量关系;(3)过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,若∠EOC=3∠EOF,直接写出∠AOE的度数11.已知∠AOD=160°,OB、OC、OM、ON是∠AOD内的射线.(1)如图1,若OM平分∠AOB,ON平分∠BOD.当OB绕点O在∠AOD内旋转时,求∠MON的大小;(2)如图2,若∠BOC=20°,OM平分∠AOC,ON平分∠BOD.当∠BOC绕点O在∠AOD内旋转时,求∠MON的大小;(3)在(2)的条件下,若∠AOB=10°,当∠B0C在∠AOD内绕着点O以2度/秒的速度逆时针旋转t秒时,∠AOM=23∠DON.求t的值.12.点A在数轴上对应的数为﹣3,点B对应的数为2.(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=12x﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)①7+21;②10.82-;③22.83.23+-;(2)9;(3)10012004.【解析】【分析】(1)根据绝对值的性质:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值是0即可得出结论;(2)首先根据有理数的运算法则判断式子的符号,再根据绝对值的性质正确化简即可;(3)首先根据有理数的运算法则判断式子的符号,再根据绝对值的性质正确化简即可.【详解】解:(1)①|7+21|=21+7;故答案为:21+7;②110.80.822 -+=-;故答案为:1 0.82-;③23.2 2.83--=22.83.23+-故答案为:22.83.23+-;(2)原式=1111 9242 33202033 -++-=9(3)原式 =11111111... 23344520032004 -+-+-++-=11 22004 -=1001 2004【点睛】此题考查了有理数的加减混合运算,此题的难点把互为相反的两个数相加,使运算简便.做题时,要注意多观察各项之间的关系.2.(1)3;(2)12或74-;(3)13秒或79秒【解析】【分析】(1)根据数轴上两点间距离即可求解;(2)设点D 对应的数为x ,可得方程314x x +=+,解之即可;(3)设t 秒后,OA=3OB ,根据题意可得47312t t t t -+-=-+-,解之即可. 【详解】解:(1)∵A 、B 两点对应的数分别为-4,-1, ∴线段AB 的长度为:-1-(-4)=3; (2)设点D 对应的数为x ,∵DA=3DB , 则314x x +=+,则()314x x +=+或()314x x +=--, 解得:x=12或x=74-, ∴点D 对应的数为12或74-; (3)设t 秒后,OA=3OB , 则有:47312t t t t -+-=-+-, 则4631t t -+=-+,则()4631t t -+=-+或()4631t t -+=--+, 解得:t=13或t=79, ∴13秒或79秒后,OA=3OB . 【点睛】本题考查了一元一次方程的运用,数轴的运用和绝对值的运用,解题的关键是掌握数轴上两点之间距离的表示方法.3.【应用】:(1)3;(2)(1,2)或(1,﹣2);【拓展】:(1)5;(2)t =±2;(3)d (P ,Q )的值为4或8. 【解析】 【分析】(1)根据若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1-x 2|,代入数据即可得出结论; (2)由CD ∥y 轴,可设点D 的坐标为(1,m ),根据CD=2即可得出|0-m|=2,解之即可得出结论;【拓展】:(1)根据两点之间的折线距离公式,代入数据即可得出结论;(2)根据两点之间的折线距离公式结合d (E ,H )=3,即可得出关于t 的含绝对值符号的一元一次方程,解之即可得出结论;(3)由点Q 在x 轴上,可设点Q 的坐标为(x ,0),根据三角形的面积公式结合三角形OPQ 的面积为3即可求出x 的值,再利用两点之间的折线距离公式即可得出结论. 【详解】解:【应用】:(1)AB 的长度为|﹣1﹣2|=3. 故答案为:3.(2)由CD ∥y 轴,可设点D 的坐标为(1,m ), ∵CD=2,∴|0﹣m|=2,解得:m=±2, ∴点D 的坐标为(1,2)或(1,﹣2). 【拓展】 :(1)d (E ,F )=|2﹣(﹣1)|+|0﹣(﹣2)|=5. 故答案为:5.(2)∵E (2,0),H (1,t ),d (E ,H )=3, ∴|2﹣1|+|0﹣t |=3, 解得:t =±2.(3)由点Q 在x 轴上,可设点Q 的坐标为(x ,0), ∵三角形OPQ 的面积为3, ∴12|x |×3=3,解得:x =±2. 当点Q 的坐标为(2,0)时,d (P ,Q )=|3﹣2|+|3﹣0|=4; 当点Q 的坐标为(﹣2,0)时,d (P ,Q )=|3﹣(﹣2)|+|3﹣0|=8 综上所述,d (P ,Q )的值为4或8. 【点睛】本题考查了两点间的距离公式,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键.4.(1)30°;(2)BOC ∠+∠BOE =90°;(3)为定值2,理由见解析 【解析】 【分析】(1)根据差余角的定义,结合角平分线的性质可得∠BOE 的度数; (2)根据差余角的定义得到BOC ∠和AOE ∠的关系,(3)分当OE 在OC 左侧时,当OE 在OC 右侧时,根据差余角的定义得到COE ∠和AOC ∠的关系,再结合余角和补角的概念求出AOC BOCCOE∠-∠∠的值.【详解】解:(1)如图,∵COE ∠是AOC ∠的差余角 ∴AOC ∠-COE ∠=90°, 即AOC ∠=COE ∠+90°, 又∵OE 是BOC ∠的角平分线, ∴∠BOE =COE ∠,则COE ∠+90°+COE ∠+COE ∠=180°,解得COE ∠=30°;(2)∵BOC ∠是AOE ∠的差余角, ∴AOE ∠-BOC ∠=90°,∵AOE ∠=AOC ∠+COE ∠,BOC ∠=∠BOE +COE ∠, ∴AOC ∠-∠BOE =90°, ∵AOC ∠=180°-BOC ∠, ∴180°-BOC ∠-∠BOE =90°, ∴BOC ∠+∠BOE =90°; (3)当OE 在OC 左侧时, ∵COE ∠是AOC ∠的差余角, ∴AOC ∠-COE ∠=90°, ∴∠AOE =∠BOE=90°, 则AOC BOCCOE∠-∠∠=90COE BOCCOE ∠+︒-∠∠=COE COE COE ∠+∠∠=2;当OE 在OC 右侧时, 过点O 作OF ⊥AB ,∵COE ∠是AOC ∠的差余角, ∴AOC ∠=90°+COE ∠, 又∵AOC ∠=90°+COF ∠, ∴COE ∠=COF ∠, ∴AOC BOCCOE∠-∠∠=90COE BOCCOE∠+︒-∠∠=9090COE COF COE∠+︒-︒+∠∠=COE COFCOE ∠+∠∠=COE COE COE ∠+∠∠=2.综上:AOC BOCCOE∠-∠∠为定值2.【点睛】本题属于新概念题,考查了余角、补角的知识,仔细观察图形理解两个角的差余角关系、互补关系是解题的关键. 5.(1) ①6条;②10;(2)1122MN AD BC =-,证明见解析;(3) 1t =. 【解析】 【分析】(1)①根据线段的定义结合图形即可得出答案;②PA +PD 最小,即P 为AD 的中点,求出AD 的长即可;(2) 根据M ,N 分别为AC ,BD 的中点,得到12MC AC =,12BN BD =,利用MN MC BN BC =+-代入化简即可;(3) 根据C 是AD 的一个三等分点,DC >AC ,且AD=9cm ,得到3AC =,6CD =,并可得到2EC t =,FD t =,62t EQ +=,代入AQ+AE+AF=32AD ,化简则可求出t . 【详解】解:(1) ①线段有:AB ,AC ,AD ,BC ,BD ,CD ,共6条; ②∵BD =6,BC =1, ∴CD=BD-BC=6-1=5,当PA +PD 的值最小时,P 为AD 的中点, ∴5510PA PD AD AC CD +==+=+=; (2)1122MN AD BC =-. 如图2示:∵M ,N 分别为AC ,BD 的中点,∴12MC AC =,12BN BD = ∴MN MC BN BC =+- 1122AC BD BC =+- ()12AC BD BC =+- ()12AB BC BD BC =++- 1122AD BC =-; (3)如图示:∵C 是AD 的一个三等分点,DC >AC ,且AD=9cm ,∴3AC =,6CD =,根据E ,F 两点同时从C ,D 出发,速度是2cm/s ,1cm/s ,Q 为EF 的中点,运动时间为t , 则有:2EC t =,FD t =,6222EF AD AE FD t EQ --+=== 当AQ+AE+AF=32AD 时, 则有:32AE EQ AE AD FD AD +++-=即是:()()6932329922t t t t +-++-+-=⨯ 解之得:1t =.【点睛】 本题主要考查了两点间的距离,解决问题的关键是依据线段的和差关系列方程.6.(1)65°;(2)①25°;②35°;③1AON a 2∠=【解析】【分析】(1)由题意可得∠COD=1AOD2∠,∠AOD=∠AOB-∠BOD.(2)①由(1)可得∠AOC=∠COD=65°,∠AON=90°﹣∠AOC=25°②同①可得,∠AOC=∠COD=55°,∠AON=90°﹣∠AOC=35°③根据(2)可直接得出结论.【详解】解:(1)∠AOD=180°﹣∠BOD=130°,∵OC平分∠AOD,∴∠COD=12AOD∠=65°.故答案为:65°;(2)①由(1)可得∠AOC=∠COD=65°,∴∠AON=90°﹣∠AOC=25°,故答案为:25°;②∵∠BOD=70°,∴∠AOD=180°﹣∠BOD=110°,∵OC平分∠AOD,∴∠AOC=1552AOD∠=︒,∵∠MON=90°,∴∠AON=90°﹣∠AOC=35°;③1 AON2∠α=.【点睛】本题考查的知识点是角的和差问题,根据所给图形找出各角之间的数量关系是解题的关键. 7.(1)45°;(2)①30°;②∠BCE=2α,证明见解析;(3)α=45-15t ,β=45+15t,3t2=【解析】【分析】(1)根据角平分线的定义即可得出答案;(2)①首先由旋转得到∠ACE=120°,再由角平分线的定义求出∠ACF,再减去旋转角度即可得到∠DCF;②先由补角的定义表示出∠BCE,再根据旋转和角平分线的定义表示出∠DCF,即可得出两者的数量关系;(3)根据α=∠FCA-∠DCA,β=∠AC1D1+∠AC1F1,可得到表达式,再根据|α-β|=45°建立方程求解.【详解】(1)∵∠ACE=90°,CF平分∠ACE∴∠AOF=12∠ACE=45° 故答案为:45°; (2)①当t=1时,旋转角度为30°∴∠ACE=90°+30°=120°∵CF 平分∠ACE∴∠ACF=60°,α=∠DCF=∠ACF-30°=30°故答案为:30°;②∠BCE=2α,证明如下:旋转30t 度后,∠ACE=(90+30t)度∴∠BCE=180-(90+30t)=(90-30t)度∵CF 平分∠ACE∴∠ACF=12∠ACE=(45+15t)度 ∠DCF=∠ACF-30t=(45-15t)度∴2∠DCF=2(45-15t)= 90-30t=∠BCE即∠BCE=2α(3)α=∠FCA-∠DCA=12(90+30t)-30t=45-15t β=∠AC 1D 1+∠AC 1F 1=30t+12(90-30t)=45+15t ||45βα-=︒|30t|=45° ∴3t 2=【点睛】 本题考查了角平分线,角的旋转,角度的和差计算问题,熟练掌握角平分线的定义,找出图形中角度的关系是解题的关键.8.(1)经过30s ,P 、Q 两点相遇(2)答案不唯一,具体见解析(3)10【解析】【分析】(1)设经过t 秒时间P 、Q 两点相遇,根据OP+CQ=OA+AB+AC 列出方程即可解决问题; (2)分两种情形求解即可;(3)用t 表示AP 、EF 的长,代入化简即可解决问题;【详解】(1)设运动时间为t ,则290t t +=,30t =;所以经过30s ,P 、Q 两点相遇 (2)当点P 在线段AB 上时,如下图,AP+PB=60,∴AP=40,OP=50,∴P 用时50s,∵Q 是OB 中点,∴CQ=50,点Q 的运动速度为56/cm s ;当点P 在线段AB 的延长线上时,如下图,AP=2PB,∴AP=120,OP=140,∴P 用时140s,∵Q 是OB 中点,∴CQ=50,点Q 的运动速度为514/cm s ;(3)如下图,由题可知,OC=90,AP=x-20,EF=OF-OE=OF-12OP=50-12x, ∴2OC AP EF --=90-(x-20)-2(50-12x)=10 【点睛】本题考查两点间距离、路程、速度、时间之间的关系等知识,解题的关键是理解题意,找到等量关系,注意分类讨论是解题关键.9.(1)①5;②OQ 平分∠AOC ,理由详见解析;(2)5秒或65秒时OC 平分∠POQ ;(3)t =703秒. 【解析】【分析】(1)①由∠AOC =30°得到∠BOC =150°,借助角平分线定义求出∠POC 度数,根据角的和差关系求出∠COQ 度数,再算出旋转角∠AOQ 度数,最后除以旋转速度3即可求出t值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 10.(1)135°;(2)∠BOD=2∠COE;(3)67.5°.【解析】【分析】(1)由∠COD=90°,则∠AOC+∠BOD=90°,由OE平分∠AOC,OF平分∠BOD,得∠COE+∠DOF=45°,即可求出∠EOF的度数;(2)由题意得出∠BOD+∠AOC=90°,∠BOD=180°-∠AOD,再由角平分线的定义进行计算,即可得出结果;(3)由角平分线定义得出∠AOC=∠COE,∠COF=∠DOF=45°,再由∠BOD+∠AOC=90°,设∠EOF=x,则∠EOC=3x,∠COF=4x,根据题意得出方程,解方程即可.【详解】解:(1)如图:∵∠COD=90°,∴∠AOC+∠BOD=90°,∵OE平分∠AOC,OF平分∠BOD,∴∠COE+∠DOF=11()904522AOC BOD∠+∠=⨯︒=︒,∴∠EOF=∠COE+∠COD+∠DOF=45°+90°=135°;故答案为:135°;(2)∠BOD=2∠COE;理由如下:如图,∵∠COD=90°.∴∠BOD+∠AOC=90°,∵OE平分∠AOD,∴∠AOE=∠DOE=12∠AOD,又∵∠BOD=180°-∠AOD,∴∠COE=∠AOE-∠AOC=12∠AOD-(90°-∠BOD)=12(180°-∠BOD)-90°+∠BOD=12∠BOD,∴∠BOD=2∠COE;(3)如图,∵OC为∠AOE的角平分线,OF平分∠COD,∴∠AOC=∠COE,∠COF=∠DOF=45°,∵∠EOC=3∠EOF,设∠EOF=x,则∠EOC=3x,∴∠COF=4x,∴∠AOE=2∠COE=6x,∠DOF=4x,∵∠COD=90°,∴4x+4x=90°,解得:x=11.25°,∴∠AOE=6×11.25°=67.5°.【点睛】本题考查了角平分线定义、角的互余关系、邻补角定义以及角的计算;熟练掌握角平分线定义,得出角之间的关系是解决问题的关键.11.(1)∠MON的度数为80°;(2)∠MON的度数为70°或90°;(3)t的值为21.【解析】【分析】(1)根据角平分线的定义进行角的计算即可;(2)分两种情况画图形,根据角平分线的定义进行角的计算即可;(3)根据(2)中前一种情况用含t的式子表示角度,再根据已知条件即可求解.【详解】解:(1)因为∠AOD=160°,OM平分∠AOB,ON平分∠BOD,所以∠MOB=12∠AOB,∠BON=12∠BOD,即∠MON=∠MOB+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD)=12∠AOD=80°,答:∠MON的度数为80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=12∠AOC,∠BON=12∠BOD,①射线OC在OB左侧时,如图:∠MON=∠MOC+∠BON﹣∠BOC=12∠AOC+12∠BOD﹣∠BOC=12(∠AOC+∠BOD)﹣∠BOC=12(∠AOD+∠BOC)﹣∠BOC=12×180°﹣20°=70°;②射线OC在OB右侧时,如图:∠MON=∠MOC+∠BON+∠BOC=12∠AOC+12∠BOD+∠BOC=12(∠AOC+∠BOD)+∠BOC=12(∠AOD﹣∠BOC)+∠BOC=12×140°+20°=90°;答:∠MON的度数为70°或90°.(3)∵射线OB从OA逆时针以2°每秒的速度旋转t秒,∠COB=20°,∴根据(2)中的第一种情况,得∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=12∠AOC=t°+15°.∵∠BOD=∠AOD﹣∠BOA,∠AOD=160°,∴∠BOD=150°﹣2t°.∵射线ON平分∠BOD,∴∠DON=12∠BOD=75°﹣t°.又∵∠AOM:∠DON=2:3,∴(t+15):(75﹣t)=2:3,解得t=21.根据(2)中的第二中情况,观察图形可知:这种情况不可能存在∠AOB=10°.答:t的值为21.【点睛】本题考查角平分线的定义,角的计算.解决本题的关键是利用已知(已设)角,去计算或者表示未知角.12.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣2).∴PM﹣34BN=﹣34××(n﹣2),=(不变).②12PM+34BN=+34××(n﹣2)=34n﹣(随P点的变化而变化).∴正确的结论是:PM﹣BN的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.。
七年级数学上册数学压轴题(Word 版 含解析)一、压轴题1.请观察下列算式,找出规律并填空. 111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯. 则第10个算式是________,第n 个算式是________.根据以上规律解读以下两题:(1)求111112233420192020++++⨯⨯⨯⨯的值; (2)若有理数a ,b 满足|2||4|0a b -+-=,试求:1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++的值. 2.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c ()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”); ()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.3.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示; ②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .4.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由.5.如图9,点O 是数轴的原点,点A 表示的数是a 、点B 表示的数是b ,且数a 、b 满足()26120a b -++=.(1)求线段AB 的长;(2)点A 以每秒1个单位的速度在数轴上匀速运动,点B 以每秒2个单位的速度在数轴上匀速运动.设点A 、B 同时出发,运动时间为t 秒,若点A 、B 能够重合,求出这时的运动时间;(3)在(2)的条件下,当点A 和点B 都向同一个方向运动时 ,直接写出经过多少秒后,点A 、B 两点间的距离为20个单位.6.如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(90MON ∠=).(1)若35BOC ∠=,求MOC ∠的大小.(2)将图①中的三角板绕点O 旋转一定的角度得图②,使边OM 恰好平分BOC ∠,问:ON 是否平分AOC ∠?请说明理由.(3)将图①中的三角板绕点O 旋转一定的角度得图③,使边ON 在BOC ∠的内部,如果50BOC ∠=,则BOM ∠与NOC ∠之间存在怎样的数量关系?请说明理由.7.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.8.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOC COE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.9.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有 条. (2)总结规律:一条直线上有n 个点,线段共有 条.(3)拓展探究:具有公共端点的两条射线OA 、OB 形成1个角∠AOB (∠AOB <180°);在∠AOB 内部再加一条射线OC ,此时具有公共端点的三条射线OA 、OB 、OC 共形成3个角;以此类推,具有公共端点的n 条射线OA 、OB 、OC…共形成 个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?10.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.11.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°:(1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?12.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.【参考答案】***试卷处理标记,请不要删除一、压轴题1.111=10111011-⨯,()111=11n n n n -++;(1)20192020;(2)10094040【解析】【分析】归纳总结得到一般性规律,写出第10个等式及第n 个等式即可;(1)原式变形后,计算即可得到结果;(2)利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果.【详解】解:第10个算式是111=10111011-⨯, 第n 个算式是()111=11n n n n -++; (1)1111...12233420192020++++⨯⨯⨯⨯ =111111...22320192020-+-++- =112020- =20192020; (2)∵|2||4|0a b -+-=,∴a-2=0,b-4=0,∴a=2,b=4, ∴1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++=111124466820182020++++⨯⨯⨯⨯ =1111111...2244620182020⎛⎫-+-++- ⎪⎝⎭=111222020⎛⎫- ⎪⎝⎭=10094040【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(1)4-,1,6;(2)能;(3)5t +,53t +;(4)3AB BC -的值不会随时间t 的变化而变化,值为10【解析】【分析】(1)由一次项系数、最小的正整数、单项式次数的定义回答即可,(2)计算线段长度,若AB BC =则重叠,(3)线段长度就用两点表示的数相减,用较大的数减较小的数即可,(4)根据(3)的结果计算即可.【详解】(1)观察数轴可知,4a =-,1b =,6c =.故答案为:4-;1;6.(2)()145AB =--=,615BC =-=,AB BC =,则若将数轴在点B 处折叠,点A 与点C 能重合.故答案为:能.(3)经过t 秒后43a t =--,12b t =-,6c t =+,则5AB a b t =-=+, 53BC b c t =-=+.故答案为:5t +;53t +.(4)5AB t =+,∴3153AB t =+.又53BC t =+,∴()()315353AB BC t t -=+-+15353t t =+--10=.故3AB BC -的值不会随时间t 的变化而变化,值为10.【点睛】本题考查列代数式求值,有理数的概念及分类,多项式的项与次数,单项式的系数与次数,在数轴上表示实数,解题的关键是用字母表示线段长度.3.(1)3,3,1a -;(2)①42c -;②72-或152;③6 【解析】【分析】(1)根据两点间的距离公式解答即可;(2)①根据两点间的距离公式可得AC 与BC 的值,然后根据绝对值的性质化简绝对值,进一步即可求出结果;②分电子蚂蚁在点A 左侧、在点A 、B 之间和在点B 右侧三种情况,先根据两点间的距离和绝对值的性质化简绝对值,再解方程即可求出答案; ③代数式15c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之和,于是可确定当15c -≤≤时,代数式15c c 取得最小值,据此解答即可. 【详解】解:(1)数轴上表示2和5的两点之间的距离是523-=;数轴上表示﹣2和﹣5两点之间的距离是()()253---=; 数轴上表示1和a 的两点之间的距离是1a -; 故答案为:3,3,1a -;(2)①∵电子蚂蚁在点A 的左侧,∴11AC c c =--=--,55BC c c =-=-,∴1542AC BC c c c +=--+-=-;②若电子蚂蚁在点A 左侧,即1c <-,则10c +<,50c -<,∵1511c c ,∴()()1511c c -+--=,解得:72c =-; 若电子蚂蚁在点A 、B 之间,即15c -≤≤,则10c +>,50c -<, ∵1511c c ,∴15611c c ++-=≠,故此种情况不存在;若电子蚂蚁在点B 右侧,即5c >,则10c +>,50c ->, ∵1511c c ,∴()()1511c c ++-=,解得:152c =; 综上,c 表示的数是72-或152; ③∵代数式15c c 表示数轴上有理数c 所对应的点到﹣1和5所对应的两点距离之和,∴当15c -≤≤时,代数式15c c 的最小值是()516--=, 即代数式15c c 的最小值是6.故答案为:6.【点睛】本题考查了数轴上两点间的距离、绝对值的化简和应用以及简单的一元一次方程的解法等知识,属于常考题型,正确理解题意、熟练掌握上述知识是解题的关键.4.(1)-1.5;(2)存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒.【解析】【分析】(1)根据同一数轴上两点的距离公式可得结论;(2)分两种情况:当点Q 在A 的左侧或在A 的右侧时,根据Q 点与B 点的距离等于Q 点与A 点的距离的2倍可得结论;【详解】解:(1)数轴上点A 表示的数为-6;点B 表示的数为3;∴AB=9;∵P 到A 和点B 的距离相等,∴点P 对应的数字为-1.5.(2)由题意得:设Q 点运动得时间为t ,则QB=4.5+3t ,QA=4.53t -分两种情况:①点Q 在A 的左边时,4.5+3t=2()4.53t -,t=0.5,②点Q 在A 的右边时,4.5+3t=2()3 4.5t -,t=4.5,综上,存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒.【点睛】本题考查了数轴、一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分情况进行讨论.5.(1)18;(2)6或18秒;(3)2或38秒【解析】【分析】(1)根据偶次方以及绝对值的非负性求出a 、b 的值,可得点A 表示的数,点B 表示的数,再根据两点间的距离公式可求线段AB 的长;(2)分两种情况:①相向而行;②同时向右而行.根据行程问题的相等关系分别列出方程即可求解;(3)分两种情况:①两点均向左;②两点均向右;根据点A 、B 两点间的距离为20个单位分别列出方程即可求解.【详解】解:(1)∵|a﹣6|+(b+12)2=0,∴a﹣6=0,b+12=0,∴a=6,b=﹣12,∴AB=6﹣(﹣12)=18;(2)设点A、B同时出发,运动时间为t秒,点A、B能够重合时,可分两种情况:①若相向而行,则2t+t=18,解得t=6;②若同时向右而行,则2t﹣t=18,解得t=18.综上所述,经过6或18秒后,点A、B重合;(3)在(2)的条件下,即点A以每秒1个单位的速度在数轴上匀速运动,点B以每秒2个单位的速度在数轴上匀速运动,设点A、B同时出发,运动时间为t秒,点A、B两点间的距离为20个单位,可分四种情况:①若两点均向左,则(6-t)-(-12-2t)=20,解得:t=2;②若两点均向右,则(-12+2t)-(6+t)=20,解得:t=38;综上,经过2或38秒时,A、B相距20个单位.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值以及偶次方的非负性,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键.注意分类讨论思想的应用.6.(1)125°;(2)ON平分∠AOC,理由详见解析;(3)∠BOM=∠NOC+40°,理由详见解析【解析】【分析】(1)根据∠MOC=∠MON+∠BOC计算即可;(2)由角平分线定义得到角相等的等量关系,再根据等角的余角相等即可得出结论;(3)根据题干已知条件将一个角的度数转换为两个角的度数之和,列出等式即可得出结论.【详解】解: (1) ∵∠MON=90°,∠BOC=35°,∴∠MOC=∠MON+∠BOC= 90°+35°=125°.(2)ON平分∠AOC.理由如下:∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°.又∵OM平分∠BOC,∴∠BOM=∠MOC.∴∠AON=∠NOC.∴ON平分∠AOC.(3)∠BOM=∠NOC+40°.理由如下:∵∠CON+∠NOB=50°,∴∠NOB=50°-∠NOC.∵∠BOM+∠NOB=90°,∴∠BOM=90°-∠NOB=90°-(50°-∠NOC)=∠NOC+40°.【点睛】本题主要考查了角的运算、余角以及角平分线的定义,解题的关键是灵活运用题中等量关系进行角度的运算.7.(1)6;6;(2)不发生改变,MN为定值6,过程见解析【解析】【分析】(1)由点P表示的有理数可得出AP、BP的长度,根据三等分点的定义可得出MP、NP的长度,再由MN=MP+NP(或MN=MP-NP),即可求出MN的长度;(2)分-6<a<3及a>3两种情况考虑,由点P表示的有理数可得出AP、BP的长度(用含字母a的代数式表示),根据三等分点的定义可得出MP、NP的长度(用含字母a的代数式表示),再由MN=MP+NP(或MN=MP-NP),即可求出MN=6为固定值.【详解】解:(1)若点P表示的有理数是0(如图1),则AP=6,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=4,NP=23BP=2,∴MN=MP+NP=6;若点P表示的有理数是6(如图2),则AP=12,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=8,NP=23BP=2,∴MN=MP-NP=6.故答案为:6;6.(2)MN的长不会发生改变,理由如下:设点P表示的有理数是a(a>-6且a≠3).当-6<a<3时(如图1),AP=a+6,BP=3-a.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(3-a),∴MN=MP+NP=6;当a>3时(如图2),AP=a+6,BP=a-3.∵M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(a-3), ∴MN=MP-NP=6. 综上所述:点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长为定值6.【点睛】本题考查了两点间的距离,解题的关键是:(1)根据三点分点的定义找出MP 、NP 的长度;(2)分-6<a <3及a >3两种情况找出MP 、NP 的长度(用含字母a 的代数式表示).8.(1)30°;(2)BOC ∠+∠BOE =90°;(3)为定值2,理由见解析【解析】【分析】(1)根据差余角的定义,结合角平分线的性质可得∠BOE 的度数;(2)根据差余角的定义得到BOC ∠和AOE ∠的关系,(3)分当OE 在OC 左侧时,当OE 在OC 右侧时,根据差余角的定义得到COE ∠和AOC ∠的关系,再结合余角和补角的概念求出AOC BOC COE∠-∠∠的值. 【详解】 解:(1)如图,∵COE ∠是AOC ∠的差余角∴AOC ∠-COE ∠=90°,即AOC ∠=COE ∠+90°,又∵OE 是BOC ∠的角平分线,∴∠BOE =COE ∠,则COE ∠+90°+COE ∠+COE ∠=180°,解得COE ∠=30°;(2)∵BOC ∠是AOE ∠的差余角,∴AOE ∠-BOC ∠=90°,∵AOE ∠=AOC ∠+COE ∠,BOC ∠=∠BOE +COE ∠,∴AOC ∠-∠BOE =90°,∵AOC ∠=180°-BOC ∠, ∴180°-BOC ∠-∠BOE =90°,∴BOC ∠+∠BOE =90°;(3)当OE 在OC 左侧时,∵COE ∠是AOC ∠的差余角,∴AOC ∠-COE ∠=90°,∴∠AOE =∠BOE=90°, 则AOC BOC COE∠-∠∠=90COE BOC COE ∠+︒-∠∠ =COE COE COE∠+∠∠ =2;当OE 在OC 右侧时,过点O 作OF ⊥AB ,∵COE ∠是AOC ∠的差余角,∴AOC ∠=90°+COE ∠, 又∵AOC ∠=90°+COF ∠, ∴COE ∠=COF ∠,∴AOC BOC COE ∠-∠∠ =90COE BOC COE∠+︒-∠∠ =9090COE COF COE∠+︒-︒+∠∠ =COE COF COE∠+∠∠ =COE COE COE∠+∠∠ =2.综上:AOC BOC COE∠-∠∠为定值2. 【点睛】本题属于新概念题,考查了余角、补角的知识,仔细观察图形理解两个角的差余角关系、互补关系是解题的关键.9.(1)45;(2)(1)2n n -;(3)(1)2n n -;(4)共需拍照991张,共需冲印2025张纸质照片【解析】【分析】(1)根据规律可知:一条直线上有10个点,线段数为整数1到10的和;(2)根据规律可知:一条直线上有n 个点,线段数为整数1到n 的和;(3)将角的两边看着线段的两个端点,那么角的个数与直线上线段的问题一样,根据线段数的规律探究迁移可得答案;(4)把45名学生看着一条直线上的45点,每2名学生拍1张两人照看着两点成的线段,那么根据(2)的规律即可求出两人合影拍照多少张,再加上集体照即可解答共拍照片张数,然后根据两人合影冲印,集体合影45张计算总张数即可.【详解】解:(1) 一条直线上有10个点,线段共有1+2+3+……+10=45(条).故答案为:45;(2) 一条直线上有n 个点,线段共有122)3(1n n n ⋯⋯+=-+++条. 故答案为:(1)2n n -; (3)由(2)得:具有公共端点的n 条射线OA 、OB 、OC …共形成(1)2n n -个角; 故答案为:(1)2n n -; (4)解:4545-119912+=() 45×(45-1)+1×45=2025 答:共需拍照991张,共需冲印2025张纸质照片【点睛】此题主要考查了线段的计数问题,体现了“具体---抽象----具体”的思维探索过程,探索规律、运用规律.解本题的关键是找出规律,此类题目容易数重或遗漏,要特别注意.10.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒ 72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.11.(1)10.5°或14°或28°或31.5°;(2)74或218或212或634【解析】【分析】(1)分4种情况,根据奇分线定义即可求解;(2)分4种情况,根据奇分线定义得到方程求解即可.【详解】解:(1)如图1,∵∠MPN=42°,∵当PQ是∠MPN的3等分线时,∴∠MPQ=13∠MPN=13×42°=14°或∠MPQ=23∠MPN=23×42°=28° ∵当PQ 是∠MPN 的4等分线时,∴∠MPQ=14∠MPN==14×42°=10.5° 或∠MPQ=34∠MPN=34×42°=31.5°; ∠MPQ=10.5°或14°或28°或31.5°;(2)依题意有①当3×8t=42时,解得t=74; ②当2×8t=42时,解得t=218; ③当8t=2×42时,解得t=212. ④当8t=3×42时,解得:t=634, 故当t 为74或218或212或634时,射线PN 是∠EPM 的“奇分线”. 【点睛】本题考查了旋转的性质,新定义奇分线,以及学生的阅读理解能力及知识的迁移能力.理解“奇分线”的定义是解题的关键.12.(1)图1中∠AOD=60°;图2中∠AOD=10°;(2)图1中∠AOD=n m 2+;图2中∠AOD=n m 2-. 【解析】【分析】(1)图1中∠BOC=∠AOC ﹣∠AOB=20°,则∠BOD=10°,根据∠AOD=∠AOB+∠BOD 即得解;图2中∠BOC=∠AOC+∠AOB=120°,则∠BOD=60°,根据∠AOD=∠BOD ﹣∠AOB 即可得解;(2)图1中∠BOC=∠AOC ﹣∠AOB=n ﹣m ,则∠BOD=n m 2﹣,故∠AOD=∠AOB+∠BOD=n m 2+;图2中∠BOC=∠AOC+∠AOB=m+n ,则∠BOD=n m 2+,故∠AOD=∠BOD ﹣∠AOB=n m 2-. 【详解】解:(1)图1中∠BOC=∠AOC ﹣∠AOB=70°﹣50°=20°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=10°,∴∠AOD=∠AOB+∠BOD=50°+10°=60°;图2中∠BOC=∠AOC+∠AOB=120°,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=60°, ∴∠AOD=∠BOD ﹣∠AOB=60°﹣50°=10°;(2)根据题意可知∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,如图1中,∠BOC=∠AOC ﹣∠AOB=n ﹣m ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2﹣, ∴∠AOD=∠AOB+∠BOD=n m 2+; 如图2中,∠BOC=∠AOC+∠AOB=m+n ,∵OD 是∠BOC 的平分线,∴∠BOD=12∠BOC=n m 2+, ∴∠AOD=∠BOD ﹣∠AOB=n m 2-. 【点睛】 本题主要考查角平分线,解此题的关键在于根据题意进行分类讨论,所有情况都要考虑,切勿遗漏.。
七年级数学上册数学压轴题练习(Word 版 含答案)一、压轴题1.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由. 2.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由.3.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOCCOE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.4.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a的值.5.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .6.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.7.对于数轴上的,,A B C 三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”. 例如数轴上点,,A B C 所表示的数分别为1,3,4,满足2AB BC =,此时点B 是点,A C 的“倍联点”.若数轴上点M 表示3-,点N 表示6,回答下列问题:(1)数轴上点123,,D D D 分別对应0,3. 5和11,则点_________是点,M N 的“倍联点”,点N 是________这两点的“倍联点”;(2)已知动点P 在点N 的右侧,若点N 是点,P M 的倍联点,求此时点P 表示的数. 8.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F分别是AC 、BD 的中点.(1)若8cm AC ,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写出结果不需证明.9.(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解. ①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由; (2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PBPC+的值不变.10.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数. 特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °. 发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论: 小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数. 类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.11.点A 在数轴上对应的数为﹣3,点B 对应的数为2. (1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值12.一般地,n 个相同的因数a 相乘......a a a ⋅,记为n a , 如322228⨯⨯==,此时,3叫做以2为底8的对数,记为2log 8 (即2log 83=) .一般地,若(0na b a =>且1,0)a b ≠>, 则n 叫做以a 为底b 的对数, 记为log a b (即log a b n =) .如4381=, 则4叫做以3为底81的对数, 记为3log 81 (即3log 814=) .(1)计算下列各对数的值:2log 4= ;2log 16= ;2log 64= . (2)观察(1)中三数4、16、64之间满足怎样的关系式,222log 4,log 16,log 64之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4) 根据幂的运算法则:n m n m a a a +=以及对数的含义说明上述结论.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)m =12,n =﹣3;(2)①5;②应64岁;(3)k =6,15 【解析】 【分析】(1)由非负性可求m ,n 的值;(2)①由题意可得3AB =m ﹣n ,即可求解;②由题意列出方程组,即可求解; (3)用参数t 分别表示出PQ ,B 'A 的长度,进而用参数t 表示出3PQ ﹣kB ′A ,即可求解. 【详解】解:(1)∵|m ﹣12|+(n +3)2=0, ∴m ﹣12=0,n +3=0, ∴m =12,n =﹣3; 故答案为:12,﹣3;(2)①由题意得:3AB =m ﹣n , ∴AB =3m n-=5, ∴玩具火车的长为:5个单位长度, 故答案为:5;②能帮小明求出来,设小明今年x 岁,奶奶今年y 岁, 根据题意可得方程组为:40116y x x y x y-=+⎧⎨-=-⎩ ,解得:1264x y =⎧⎨=⎩ ,答:奶奶今年64岁;(3)由题意可得PQ =(12+3t )﹣(﹣3﹣t )=15+4t ,B 'A =5+2t ,∵3PQ ﹣kB ′A =3(15+4t )﹣k (5+2t )=45﹣5k +(12﹣2k )t ,且3PQ ﹣kB ′A 的值与它们的运动时间无关, ∴12﹣2k =0, ∴k =6∴3PQ ﹣kB ′A =45﹣30=15 【点睛】本题主要考查数轴上的动点问题,关键是用代数式表示数轴上两点之间的距离,体现了数形结合思想和方程思想.2.(1)-1.5;(2)存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒. 【解析】 【分析】(1)根据同一数轴上两点的距离公式可得结论;(2)分两种情况:当点Q 在A 的左侧或在A 的右侧时,根据Q 点与B 点的距离等于Q 点与A 点的距离的2倍可得结论; 【详解】解:(1)数轴上点A 表示的数为-6;点B 表示的数为3; ∴AB=9;∵P 到A 和点B 的距离相等, ∴点P 对应的数字为-1.5.(2)由题意得:设Q 点运动得时间为t ,则QB=4.5+3t ,QA=4.53t - 分两种情况:①点Q 在A 的左边时,4.5+3t=2()4.53t -, t=0.5,②点Q 在A 的右边时,4.5+3t=2()3 4.5t -, t=4.5,综上,存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒. 【点睛】本题考查了数轴、一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分情况进行讨论.3.(1)30°;(2)BOC ∠+∠BOE =90°;(3)为定值2,理由见解析 【解析】 【分析】(1)根据差余角的定义,结合角平分线的性质可得∠BOE 的度数; (2)根据差余角的定义得到BOC ∠和AOE ∠的关系,(3)分当OE 在OC 左侧时,当OE 在OC 右侧时,根据差余角的定义得到COE ∠和AOC ∠的关系,再结合余角和补角的概念求出AOC BOCCOE∠-∠∠的值.【详解】解:(1)如图,∵COE ∠是AOC ∠的差余角 ∴AOC ∠-COE ∠=90°, 即AOC ∠=COE ∠+90°, 又∵OE 是BOC ∠的角平分线,∴∠BOE =COE ∠,则COE ∠+90°+COE ∠+COE ∠=180°, 解得COE ∠=30°;(2)∵BOC ∠是AOE ∠的差余角, ∴AOE ∠-BOC ∠=90°,∵AOE ∠=AOC ∠+COE ∠,BOC ∠=∠BOE +COE ∠, ∴AOC ∠-∠BOE =90°, ∵AOC ∠=180°-BOC ∠, ∴180°-BOC ∠-∠BOE =90°, ∴BOC ∠+∠BOE =90°; (3)当OE 在OC 左侧时, ∵COE ∠是AOC ∠的差余角, ∴AOC ∠-COE ∠=90°, ∴∠AOE =∠BOE=90°, 则AOC BOCCOE∠-∠∠=90COE BOCCOE ∠+︒-∠∠=COE COE COE ∠+∠∠=2;当OE 在OC 右侧时, 过点O 作OF ⊥AB ,∵COE ∠是AOC ∠的差余角, ∴AOC ∠=90°+COE ∠, 又∵AOC ∠=90°+COF ∠, ∴COE ∠=COF ∠, ∴AOC BOCCOE∠-∠∠=90COE BOCCOE∠+︒-∠∠=9090COE COFCOE∠+︒-︒+∠∠=COE COF COE ∠+∠∠=COE COE COE ∠+∠∠=2.综上:AOC BOCCOE∠-∠∠为定值2.【点睛】本题属于新概念题,考查了余角、补角的知识,仔细观察图形理解两个角的差余角关系、互补关系是解题的关键. 4.(1)2;(2)存在,t=125;(3)54或127【解析】 【分析】(1)根据AB 的长度和点P 的运动速度可以求得;(2)根据题意可得:当2BP BQ =时,点P 在AB 上,点Q 在BC 上,据此列出方程求解即可;(3)分两种情况:P 为接近点A 的三等分点,P 为接近点C 的三等分点,分别根据点的位置列出方程解得即可. 【详解】解:(1)∵8AB =,点P 的运动速度为2个单位长度/秒, ∴当P 为AB 中点时,42=2÷(秒);(2)由题意可得:当2BP BQ =时, P ,Q 分别在AB ,BC 上, ∵点Q 的运动速度为23个单位长度/秒, ∴点Q 只能在BC 上运动,∴BP=8-2t ,BQ=23t , 则8-2t=2×23t , 解得t=125, 当点P 运动到BC 和AC 上时,不存在2BP BQ =; (3)当点P 为靠近点A 的三等分点时,如图,AB+BC+CP=8+16+8=32, 此时t=32÷2=16, ∵BC+CQ=16+4=20, ∴a=20÷16=54, 当点P 为靠近点C 的三等分点时,如图, AB+BC+CP=8+16+4=28, 此时t=28÷2=14, ∵BC+CQ=16+8=24, ∴a=24÷14=127.综上:a 的值为54或127. 【点睛】本题考查了一元一次方程的应用—几何问题,在点的运动过程中根据线段关系列出方程进行求解,需要一定的想象能力和计算能力,难度中等.5.(1)50;(2)2BOD α∠=;(3)2α;(4)3602α︒- 【解析】 【分析】(1)根据“∠COD=90°,∠COE=25°”求出∠DOE 的度数,再结合角平分线求出∠AOD 的度数,即可得出答案;(2)重复(1)中步骤,将∠COE 的度数代替成α计算即可得出答案;(3)根据图得出∠DOE=∠COD-∠COE=90°-α,结合角平分线的性质以及平角的性质计算即可得出答案;(4)根据图得出∠DOE=∠COE-∠COD=α-90°,结合角平分线的性质以及平角的性质计算即可得出答案.【详解】解:(1)∵∠COD=90°,∠COE=25°∴∠DOE=∠COD-∠COE=65°又OE 平分∠AOD∴∠AOD=2∠DOE=130°∴∠BOD=180°-∠AOD=50°(2)∵∠COD=90°,∠COE=α∴∠DOE=∠COD-∠COE=90°-α 又OE 平分∠AOD∴∠AOD=2∠DOE=180°-2?α∴∠BOD=180°-∠AOD=2α (3)∵∠COD=90°,∠COE=α∴∠DOE=∠COD-∠COE=90°-α 又OE 平分∠AOD∴∠AOD=2∠DOE=180°-2?α∴∠BOD=180°-∠AOD=2α (4)∵∠COD=90°,∠COE=α∴∠DOE=∠COE-∠COD=α-90° 又OE 平分∠AOD∴∠AOD=2∠DOE=2?α-180°∴∠BOD=180°-∠AOD=360°-2α 【点睛】本题考查的是求角度,难度适中,涉及到了角平分线以及平角的性质需要熟练掌握.6.(1)90︒;(2)COD=10∠︒;(3)1752MON COD ∠=∠+︒,证明见解析 【解析】【分析】(1)利用角平分线定义得出12AOM MOC AOC x ∠=∠=∠=,12BON DON BOD y ∠=∠=∠=,再利用∠AOB 的和差关系进行列方程即可求解; (2)利用8MON COD ∠=∠,表达出∠AOC 、∠BOD ,利用∠AOB 的和差关系进行列方程即可求解; (3)画出图形后利用角的和差关系进行计算求解即可.【详解】解:(1)∵OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠.∴OM 平分∠AOC, ON 平分∠BOD∴设11,22AOM MOC AOC x BON DON BOD y ∠=∠=∠=∠=∠=∠= ∴2,2AOC x BOD y ∠=∠=,30MON MOC COD DON x y ∠=∠+∠+∠=+︒+ ∵2302150AOB AOC BOD COD x y ∠=∠+∠+∠=+︒+=︒∴60x y +=︒∴3090MON x y ∠=+︒+=︒故答案为: 90︒(2)∵8MON COD ∠=∠∴设=,8COD a MON a ∠∠=∵射线OD 恰好平方MON ∠∴14,2DOM DON MON a ∠=∠=∠= ∴43,COM DOM COD a a a ∠=∠-∠=-= ∵OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠.∴OM 平分∠AOC, ON 平分∠BOD∴113,422AOM MOC AOC a BON DON BOD a ∠=∠=∠=∠=∠=∠= ∴6,8AOC a BOD a ∠=∠= ∵68150AOB AOC BOD COD a a a ∠=∠+∠+∠=++=︒∴=10a ︒∴COD=10∠︒(3) 1752MON AOC ∠=∠+︒,证明如下: 当OC 与OA 重合时,设∠COD=x,则150150BOD AOB COD COD x ∠=∠-∠=︒-∠=︒-∵ON 平分∠BOD ∴117522DON BOD x ∠=∠=︒- ∴MON COD DON ∠=∠+∠ 1752x x =+︒- 1752x =︒+ ∴1752MON COD ∠=︒+∠当OC 在OA 的左侧时设∠AOD=a ,∠AOC=b,则∠BOD=∠AOB -∠AOD=150°-a ,∠COD=∠AOD+∠AOC=a+b ∵ON 平分∠BOD∴117522DON BOD a ∠=∠=︒- ∵OM 平分∠AOC∴1122AOM COM AOC b ∠=∠=∠= ∴∠MON=∠MOA+∠AOD+∠DON117522b a a =++︒- 117522b a =++︒ 1752COD =∠+︒当OD 与OA 重合时∵ON 平分∠AOB∴1752AON AOB ∠=∠=︒ ∵OM 平分∠AOC∴12MON AOC ∠=∠ ∴MON MOD AON ∠=∠+∠ 1752AOC =∠+︒ 综上所述 1752MON AOC ∠=∠+︒ 【点睛】本题考查了角平分线的动态问题,掌握角平分线的性质是解题的关键.7.(1)1D ;2D ,3D (2)点P 表示的数为24或212. 【解析】【分析】(1)分别计算D 1,D 2,D 3三点与M,N 的距离,再根据新定义的概念得到答案; (2)设点P 表示的数为x ,分以下情况列方程求解:①2NP NM =;②2NP NM =.【详解】解:(1)D 1M=3,D 1N=6,2D 1M=D 1N ,故D 1符合题意;D 2M=6.5,D 2N=2.5,故D 2不符合题意;D 3M=14,D 3N=5,故D 3不符合题意;因此点D 1是点,M N 的“倍联点”.又2D 2N= D 3N ,∴点N 是D 2,D 3的“倍联点”.故答案为:D 1;D 2,D 3.(2)设点P 表示的数为x ,第一种情况:当2NP NM =时,则62[6(3)]x -=⨯--,解得24x =.第二种情况:当2NP NM =时,则2(6)6(3)x -=--, 解得:212x =. 综上所述,点P 表示的数为24或212. 【点睛】本题考查了数轴及数轴上两点的距离、动点问题,认真理解新定义的概念是解题的关键.8.(1)17cm EF =;(2)EF 的长度不变,17cm EF =;(3)()12EOF AOB COD ∠=∠+∠. 【解析】【分析】 (1)根据已知条件求出BD=18cm ,再利用E 、F 分别是AC 、BD 的中点,分别求出AE 、BF 的长度,即可得到EF ;(2)根据中点得到12EC AC =,12DF DB =,由EF EC CD DF =++推导得出EF=()12AB CD +,将AB 、CD 的值代入即可求出结果; (3)由OE 、OF 分别平分AOC ∠和BOD ∠得到12COE AOC ∠=∠, 12DOF BOD ∠=∠,即可列得EOF COE COD DOF ∠=∠+∠+∠,通过推导得出()12EOF AOB COD ∠=∠+∠. 【详解】(1)∵30cm AB =,4cm CD =,8cm AC ,∴308418BD AB AC CD =--=--=cm ,∵E 、F 分别是AC 、BD 的中点, ∴142AE AC ==cm , 192BF BD ==cm , ∴304917EF AB AE BF =--=--=cm ,故17cm EF =;(2)EF 的长度不变. 17cm EF =∵E 、F 分别是AC 、BD 的中点,∴12EC AC =,12DF DB = ∴EF EC CD DF =++1122AC CD BD =++ 1()2AC BD CD =++ ()12AB CD CD =-+ ()117cm 2AB CD =+= (3)∵OE 、OF 分别平分AOC ∠和BOD ∠, ∴12COE AOC ∠=∠, 12DOF BOD ∠=∠, ∴EOF COE COD DOF ∠=∠+∠+∠,1122AOC COD BOD =∠+∠+∠, 1()2AOC BOD COD =∠+∠+∠, 1()2AOB COD COD =∠-∠+∠, ()12AOB COD =∠+∠, ∴()12EOF AOB COD ∠=∠+∠. 【点睛】 此题考查线段的和差、角的和差计算,解题中会看图形,根据图中线段或角的大小关系得到和差关系,由此即可正确解题.9.(1)①AB=4;②线段MN 的长与点P 在线段AB 上的位置无关,理由见解析; (2)见解析.【解析】【分析】(1)由关于x 的方程()46n x n -=-无解.可得4n -=0,从而可求得n 的值; (2)根据线段中点的定义可知PN=12AP ,PM=12PB ,从而得到MN=12(PA+PB )=12AB ,于是可求;(3)设AB=a ,BP=b .先表示PB+PA 的长,然后再表示PC 的长,最后代入计算即可.【详解】解:(1)①∵关于x 的方程()46n x n -=-无解.∴4n -=0,解得:n=4.故AB=4.②线段MN 的长与点P 在线段AB 上的位置无关,理由如下:∵M 为线段PB 的中点,∴PM= 12PB . 同理:PN= 12AP .. ∴MN=PN+PM=12(PB+AP )= 12AB= 12×4=2. ∴线段MN 的长与点P 在线段AB 上的位置无关.(2)设AB=a ,BP=b ,则PA+PB=a+b+b=a+2b .∵C 是AB 的中点,1122BC AB a ∴== 12PC PB BC a b ∴=+=+ 2212PA PB a b PC a b ++∴==+, 所以PA PB PC+的值不变. 【点睛】 本题主要考查的是中点的有关计算,掌握线段中点的定义是解题的关键.10.(1)135,135;(2)∠MON =135°;(3)同意,∠MON =(90°﹣12x °)+x °+(45°﹣12x °)=135°. 【解析】【分析】(1)由题意可得,∠MON =12×90°+90°,∠MON =12∠AOC +12∠BOD +∠COD ,即可得出答案;(2)根据“OM 和ON 是∠AOC 和∠BOD 的角平分线”可求出∠MOC +∠NOD ,又∠MON =(∠MOC +∠NOD )+∠COD ,即可得出答案;(3)设∠BOC =x °,则∠AOC =180°﹣x °,∠BOD =90°﹣x °,进而求出∠MOC 和∠BON ,又∠MON =∠MOC +∠BOC +∠BON ,即可得出答案.【详解】解:(1)图2中∠MON=12×90°+90°=135°;图3中∠MON=1 2∠AOC+12∠BOD+∠COD=12(∠AOC+∠BOD)+90°=1290°+90°=135°;故答案为:135,135;(2)∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC+∠NOD=12∠AOC+12∠BOD=12(∠AOC+∠BOD)=45°,∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;(3)同意,设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC=12∠AOC=12(180°﹣x°)=90°﹣12x°,∠BON=12∠BOD=12(90°﹣x°)=45°﹣12x°,∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【点睛】本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.11.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB =5. 解方程2x +1=12x ﹣5得x =﹣4. 所以BC =2﹣(﹣4)=6.所以. 设存在点P 满足条件,且点P 在数轴上对应的数为a ,①当点P 在点a 的左侧时,a <﹣3,PA =﹣3﹣a ,PB =2﹣a ,所以AP +PB =﹣2a ﹣1=8,解得a =﹣,﹣<﹣3满足条件;②当点P 在线段AB 上时,﹣3≤a ≤2,PA =a ﹣(﹣3)=a +3,PB =2﹣a ,所以PA +PB =a +3+2﹣a =5≠8,不满足条件;③当点P 在点B 的右侧时,a >2,PA =a ﹣(﹣3)=a +3,PB =a ﹣2.,所以PA +PB =a +3+a ﹣2=2a +1=8,解得:a =,>2,所以,存在满足条件的点P ,对应的数为﹣和.(2)设P 点所表示的数为n ,∴PA =n +3,PB =n ﹣2.∵PA 的中点为M ,∴PM =12PA =.N 为PB 的三等分点且靠近于P 点,∴BN =PB =×(n ﹣2).∴PM ﹣34BN =﹣34××(n ﹣2), =(不变).②12PM +34BN =+34××(n ﹣2)=34n ﹣(随P 点的变化而变化). ∴正确的结论是:PM ﹣BN 的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.12.(1)2,4,6;(2)4×16=64,222log 4+log 16log 64=;(3)log m+log log a a a n mn =;(4)见解析【解析】【分析】(1)根据对数的定义求解可得;(2)观察三个数字及对应的结果,找出规律;(3)将找出的规律写成一般形式;(4)设log m=x a ,log a n y =,利用n m n m a a a +=转化可推导.【详解】(1)∵224=,4 216=,6264= ∴2log 4=2,2log 16=4,2log 64=6(2)4、16、64的规律为:4×16=64∵2+4=6,∴2log 4+2log 16=2log 64(3)根据(2)得出的规律,我们一般化,为:log m+log log a a a n mn =(4)设log m=x a ,log a n y =则x a m =,y a n =∴x y x y a a mn a +==∴log mn=x+y a∴log mn=log m+log n a a a ,得证【点睛】本题考查指数运算的逆运算,解题关键是快速学习题干告知的运算法则,找出相应规律.。
七年级上册数学压轴题(培优篇)(Word 版 含解析)一、压轴题1.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x 的点与原点的距离,那么,如果数轴上两点P 、Q 表示的数为x 1,x 2时,点P 与点Q 之间的距离为PQ=|x 1-x 2|.根据上述材料,解决下列问题:如图,在数轴上,点A 、B 表示的数分别是-4, 8(A 、B 两点的距离用AB 表示),点M 、N 是数轴上两个动点,分别表示数m 、n.(1)AB=_____个单位长度;若点M 在A 、B 之间,则|m+4|+|m-8|=______;(2)若|m+4|+|m-8|=20,求m 的值;(3)若点M 、点N 既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______.2.如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(90MON ∠=).(1)若35BOC ∠=,求MOC ∠的大小.(2)将图①中的三角板绕点O 旋转一定的角度得图②,使边OM 恰好平分BOC ∠,问:ON 是否平分AOC ∠?请说明理由.(3)将图①中的三角板绕点O 旋转一定的角度得图③,使边ON 在BOC ∠的内部,如果50BOC ∠=,则BOM ∠与NOC ∠之间存在怎样的数量关系?请说明理由.3.某市两超市在元旦节期间分别推出如下促销方式:甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折;已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少?(2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由.4.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .5.如图,A 、B 、C 三点在数轴上,点A 表示的数为10-,点B 表示的数为14,点C 为线段AB 的中点.动点P 在数轴上,且点P 表示的数为x .(1)求点C 表示的数;(2)点P 从点A 出发,向终点B 运动.设BP 中点为M .请用含x 的整式表示线段MC 的长.(3)在(2)的条件下,当x 为何值时,2AP CM PC -=?6.(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解.①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由;(2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PB PC+的值不变.7.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.8.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数;(3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.9.已知∠AOD =160°,OB 、OC 、OM 、ON 是∠AOD 内的射线.(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD .当OB 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(2)如图2,若∠BOC =20°,OM 平分∠AOC ,ON 平分∠BOD .当∠BOC 绕点O 在∠AOD 内旋转时,求∠MON 的大小;(3)在(2)的条件下,若∠AOB =10°,当∠B0C 在∠AOD 内绕着点O 以2度/秒的速度逆时针旋转t 秒时,∠AOM =23∠DON.求t 的值. 10.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.11.点A 在数轴上对应的数为﹣3,点B 对应的数为2.(1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值12.设A 、B 、C 是数轴上的三个点,且点C 在A 、B 之间,它们对应的数分别为x A 、x B 、x C .(1)若AC =CB ,则点C 叫做线段AB 的中点,已知C 是AB 的中点.①若x A =1,x B =5,则x c = ;②若x A =﹣1,x B =﹣5,则x C = ;③一般的,将x C 用x A 和x B 表示出来为x C = ;④若x C =1,将点A 向右平移5个单位,恰好与点B 重合,则x A = ;(2)若AC =λCB (其中λ>0).①当x A =﹣2,x B =4,λ=13时,x C = . ②一般的,将x C 用x A 、x B 和λ表示出来为x C = .【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1) 12, 12; (2) -8或12;(3) 11,-9.【解析】【分析】(1)代入两点间的距离公式即可求得AB 的长;依据点M 在A 、B 之间,结合数轴即可得出所求的结果即为A 、B 之间的距离,进而可得结果;(2)由(1)的结果可确定点M 不在A 、B 之间,再分两种情况讨论,化简绝对值即可求出结果;(3)由|m +4|+n =6可确定n 的取值范围,进而可对第2个等式进行化简,从而可得n 与m 的关系,再代回到第1个等式即得关于m 的绝对值方程,再分两种情况化简绝对值求解方程即可.【详解】解:(1)因为点A 、B 表示的数分别是﹣4、8,所以AB =()84--=12,因为点M 在A 、B 之间,所以|m +4|+|m ﹣8|=AM +BM =AB =12,故答案为:12,12;(2)由(1)知,点M 在A 、B 之间时|m +4|+|m -8|=12,不符合题意;当点M 在点A 左边,即m <﹣4时,﹣m ﹣4﹣m +8=20,解得m =﹣8;当点M 在点B 右边,即m >8时,m +4+m ﹣8=20,解得m =12;综上所述,m 的值为﹣8或12;(3)因为46m n ++=,所以460m n +=-≥,所以6n ≤,所以88n n -=-, 所以828n m -+=,所以20n m =-, 因为46m n ++=,所以4206m m ++-=,即4260m m ++-=,当m +4≥0,即m ≥﹣4时,4260m m ++-=,解得:m =11,此时n =-9;当m +4<0,即m <﹣4时,4260m m --+-=,此时m 的值不存在.综上,m =11,n =-9.故答案为:11,﹣9.【点睛】此题考查了数轴的有关知识、绝对值的化简和一元一次方程的求解,第(3)小题有难度,正确理解两点之间的距离、熟练进行绝对值的化简、灵活应用数形结合和分类讨论的数学思想是解题的关键.2.(1)125°;(2)ON 平分∠AOC ,理由详见解析;(3)∠BOM=∠NOC+40°,理由详见解析【解析】【分析】(1)根据∠MOC=∠MON+∠BOC 计算即可;(2)由角平分线定义得到角相等的等量关系,再根据等角的余角相等即可得出结论; (3)根据题干已知条件将一个角的度数转换为两个角的度数之和,列出等式即可得出结论.【详解】解: (1) ∵∠MON=90° , ∠BOC=35°,∴∠MOC=∠MON+∠BOC= 90°+35°=125°.(2)ON 平分∠AOC .理由如下:∵∠MON=90°,∴∠BOM+∠AON=90°,∠MOC+∠NOC=90°.又∵OM 平分∠BOC ,∴∠BOM=∠MOC .∴∠AON=∠NOC .∴ON 平分∠AOC .(3)∠BOM=∠NOC+40°.理由如下:∵∠CON+∠NOB=50°,∴∠NOB=50°-∠NOC .∵∠BOM+∠NOB=90°,∴∠BOM=90°-∠NOB =90°-(50°-∠NOC )=∠NOC +40°.【点睛】本题主要考查了角的运算、余角以及角平分线的定义,解题的关键是灵活运用题中等量关系进行角度的运算.3.(1)甲超市实付款352元,乙超市实付款 360元;(2)购物总额是625元时,甲、乙两家超市实付款相同;(3)该顾客选择不划算.【解析】【分析】(1)根据两超市的促销方案,即可分别求出:当一次性购物标价总额是400元时,甲、乙两超市实付款;(2)设当标价总额是x 元时,甲、乙超市实付款一样.根据两超市的促销方案结合两超市实付款相等,即可得出关于x 的一元一次方程,解之即可得出结论;(3)设购物总额是x 元,根据题意列方程求出购物总额,然后计算若在甲超市购物应付款,比较即可得出结论.【详解】(1)甲超市实付款:400×0.88=352元,乙超市实付款:400×0.9=360元;(2)设购物总额是x 元,由题意知x >500,列方程:0.88x =500×0.9+0.8(x -500)∴x =625∴购物总额是625元时,甲、乙两家超市实付款相同.(3)设购物总额是x 元,购物总额刚好500元时,在乙超市应付款为:500×0.9=450(元),482>450,故购物总额超过500元.根据题意得:500×0.9+0.8(x -500)=482∴x =540∴0.88x =475.2<482∴该顾客选择不划算.【点睛】本题考查了一元一次方程的应用,解题的关键是:(1)根据两超市的促销方案,列式计算;(2)找准等量关系,正确列出一元一次方程;(3)求出购物总额.4.(1)50;(2)2BOD α∠=;(3)2α;(4)3602α︒-【解析】【分析】(1)根据“∠COD=90°,∠COE=25°”求出∠DOE 的度数,再结合角平分线求出∠AOD 的度数,即可得出答案;(2)重复(1)中步骤,将∠COE 的度数代替成α计算即可得出答案;(3)根据图得出∠DOE=∠COD-∠COE=90°-α,结合角平分线的性质以及平角的性质计算即可得出答案;(4)根据图得出∠DOE=∠COE-∠COD=α-90°,结合角平分线的性质以及平角的性质计算即可得出答案.【详解】解:(1)∵∠COD=90°,∠COE=25°∴∠DOE=∠COD-∠COE=65°又OE 平分∠AOD∴∠AOD=2∠DOE=130°∴∠BOD=180°-∠AOD=50°(2)∵∠COD=90°,∠COE=α∴∠DOE=∠COD-∠COE=90°-α 又OE 平分∠AOD∴∠AOD=2∠DOE=180°-2?α∴∠BOD=180°-∠AOD=2α (3)∵∠COD=90°,∠COE=α∴∠DOE=∠COD-∠COE=90°-α 又OE 平分∠AOD∴∠AOD=2∠DOE=180°-2?α∴∠BOD=180°-∠AOD=2α (4)∵∠COD=90°,∠COE=α∴∠DOE=∠COE-∠COD=α-90° 又OE 平分∠AOD∴∠AOD=2∠DOE=2?α-180°∴∠BOD=180°-∠AOD=360°-2α 【点睛】本题考查的是求角度,难度适中,涉及到了角平分线以及平角的性质需要熟练掌握.5.(1)2;(2)52x MC =+;(3)当25x =-或6x =时,有2AP CM PC -=成立. 【解析】【分析】(1)根据中点的定义,即可求出点C 的坐标;(2)先表示出点M 的数,然后利用线段上两点之间的距离,即可表示出MC 的长度; (3)分别求出AP ,MC 和PC 的长度,结合题意,分为三种情况进行讨论,即可求出x 的值.【详解】解:(1)点A 表示的数为10-,点B 表示的数为14,∴线段AB=14(10)24--=,∴点C 表示的数为:142422-÷=;(2)根据题意,点M 表示的数为:142x +,∴线段MC 的长度为:142522x x +-=+; (3)根据题意, 线段AP 的长度为:10x +,线段MC 的长度为:52x +, 线段PC 的长度为:2x -,∵2AP CM PC -=, ∴10(5)222x x x +-+=-, 整理得:15242x x -=+, ①当点P 在点C 的左边时,2x <,则20x ->, ∴15242x x -=+, 解得:25x =-; ②当点P 与点C 重合时,2x =, ∴15042x +=, 解得:10x =-(不符合题意,舍去);③当点P 在点C 的右边时,2x >,则20x -<, ∴15242x x -=+, 解得:6x =. ∴当25x =-或6x =时,有2AP CM PC -=成立. 【点睛】本题考查了数轴上的动点的问题,数轴上两点之间的距离,解一元一次方程,以及绝对值的意义,解题的关键是掌握数轴上两点之间的距离.6.(1)①AB=4;②线段MN 的长与点P 在线段AB 上的位置无关,理由见解析; (2)见解析.【解析】【分析】(1)由关于x 的方程()46n x n -=-无解.可得4n -=0,从而可求得n 的值; (2)根据线段中点的定义可知PN=12AP ,PM=12PB ,从而得到MN=12(PA+PB )=12AB ,于是可求;(3)设AB=a ,BP=b .先表示PB+PA 的长,然后再表示PC 的长,最后代入计算即可.【详解】解:(1)①∵关于x 的方程()46n x n -=-无解.∴4n -=0,解得:n=4.故AB=4.②线段MN 的长与点P 在线段AB 上的位置无关,理由如下:∵M 为线段PB 的中点,∴PM= 12PB . 同理:PN= 12AP .. ∴MN=PN+PM=12(PB+AP )= 12AB= 12×4=2. ∴线段MN 的长与点P 在线段AB 上的位置无关.(2)设AB=a ,BP=b ,则PA+PB=a+b+b=a+2b .∵C 是AB 的中点,1122BC AB a ∴== 12PC PB BC a b ∴=+=+ 2212PA PB a b PC a b ++∴==+, 所以PA PB PC+的值不变. 【点睛】 本题主要考查的是中点的有关计算,掌握线段中点的定义是解题的关键.7.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.8.(1)∠MEN =90°;(2)∠MEN =105°;(3)∠FEG =2α﹣180°,∠FEG =180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG ,求出∠NEF+∠MEG 即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN 平分∠AEF ,EM 平分∠BEF∴∠NEF =12∠AEF ,∠MEF =12∠BEF ∴∠MEN =∠NEF +∠MEF =12∠AEF +12∠BEF =12(∠AEF +∠BEF )=12∠AEB ∵∠AEB =180°∴∠MEN =12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.9.(1)∠MON的度数为80°;(2)∠MON的度数为70°或90°;(3)t的值为21.【解析】【分析】(1)根据角平分线的定义进行角的计算即可;(2)分两种情况画图形,根据角平分线的定义进行角的计算即可;(3)根据(2)中前一种情况用含t的式子表示角度,再根据已知条件即可求解.【详解】解:(1)因为∠AOD=160°,OM平分∠AOB,ON平分∠BOD,所以∠MOB=12∠AOB,∠BON=12∠BOD,即∠MON=∠MOB+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD)=12∠AOD=80°,答:∠MON的度数为80°;(2)因为OM平分∠AOC,ON平分∠BOD,所以∠MOC=12∠AOC,∠BON=12∠BOD,①射线OC在OB左侧时,如图:∠MON=∠MOC+∠BON﹣∠BOC=12∠AOC+12∠BOD﹣∠BOC=12(∠AOC+∠BOD)﹣∠BOC=12(∠AOD+∠BOC)﹣∠BOC=12×180°﹣20°=70°;②射线OC在OB右侧时,如图:∠MON=∠MOC+∠BON+∠BOC=12∠AOC+12∠BOD+∠BOC=12(∠AOC+∠BOD)+∠BOC=12(∠AOD﹣∠BOC)+∠BOC=12×140°+20°=90°;答:∠MON的度数为70°或90°.(3)∵射线OB从OA逆时针以2°每秒的速度旋转t秒,∠COB=20°,∴根据(2)中的第一种情况,得∠AOC=∠AOB+∠COB=2t°+10°+20°=2t°+30°.∵射线OM平分∠AOC,∴∠AOM=12∠AOC=t°+15°.∵∠BOD =∠AOD ﹣∠BOA ,∠AOD =160°,∴∠BOD =150°﹣2t°.∵射线ON 平分∠BOD ,∴∠DON =12∠BOD =75°﹣t°. 又∵∠AOM :∠DON =2:3,∴(t+15):(75﹣t)=2:3,解得t =21. 根据(2)中的第二中情况,观察图形可知:这种情况不可能存在∠AOB=10°.答:t 的值为21.【点睛】本题考查角平分线的定义,角的计算.解决本题的关键是利用已知(已设)角,去计算或者表示未知角.10.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84 EOF x y∴︒+︒︒∠=-=(3)当OI在直线OA的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI))=12∠AOB=12×120°=60°,∠PON=12×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t=152或15;当OI在直线AO的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.11.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN =PB =×(n ﹣2).∴PM ﹣34BN =﹣34××(n ﹣2), =(不变).②12PM +34BN =+34××(n ﹣2)=34n ﹣(随P 点的变化而变化). ∴正确的结论是:PM ﹣BN 的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.12.(1)①3;②-3;③2A B x x +;④-1.5;(2)①421λλ-+;②11λ+x A +1+λλx B . 【解析】【分析】(1)①②分别按所给的关系式及点在数轴上的位置,计算即可;③根据①②即可得到答案;④根据平移关系用x A +5表示出x B ,再按③中关系式计算即可;(2)①根据AC =λCB ,将x A =﹣2,x B =4,λ=13代入计算即可; ②根据AC =λCB ,变形计算即可.【详解】(1)C 是AB 的中点, ①∵x A =1,x B =5, ∴x c =512+=3, 故答案为:3; ②∵x A =﹣1,x B =﹣5,∴x C =512--=﹣3 故答案为:﹣3;③ x C =2AB x x +, 故答案为:2A B x x +; ④∵将点A 向右平移5个单位,恰好与点B 重合,∴x B =x A +5,∴x C =2A B x x +=52A A x x ++=1, ∴x A =﹣1.5 故答案为:﹣1.5;(2)①∵AC =λCB ,x A =﹣2,x B =4,λ=13, ∴x C ﹣(﹣2)=λ(4﹣x C )∴(1+λ)x C =4λ﹣2,∴x C =421λλ-+, 故答案为:421λλ-+; ②∵AC =λCB ∴x C ﹣x A =λ(x B ﹣x C )∴(1+λ)x C =x A +λx B∴x C =11λ+x A +1λλ+x B 故答案为:11λ+x A +1λλ+x B . 【点睛】此题考查是线段类规律题,通过探究得出数轴上两点间的任意点的坐标的规律,正确理解题意是解题的关键.。
七年级数学上册数学压轴题(Word 版 含解析)一、压轴题1.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题. (1)请直接写出a 、b 、c 的值.a =b =c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.2.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示; ②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .3.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.4.如图,数轴上A ,B 两点对应的数分别为4-,-1 (1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =5.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a的值.6.如图1,点A ,B ,C ,D 为直线l 上从左到右顺次的4个点.(1) ①直线l 上以A ,B ,C ,D 为端点的线段共有 条;②若AC =5cm ,BD =6cm ,BC =1cm ,点P 为直线l 上一点,则PA +PD 的最小值为 cm ;(2)若点A 在直线l 上向左运动,线段BD 在直线l 上向右运动,M ,N 分别为AC ,BD 的中点(如图2),请指出在此过程中线段AD ,BC ,MN 有何数量关系并说明理由; (3)若C 是AD 的一个三等分点,DC >AC ,且AD=9cm ,E ,F 两点同时从C ,D 出发,分别以2cm/s ,1cm/s 的速度沿直线l 向左运动,Q 为EF 的中点,设运动时间为t ,当AQ+AE+AF=32AD 时,请直接写出t 的值. 7.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有 条. (2)总结规律:一条直线上有n 个点,线段共有 条.(3)拓展探究:具有公共端点的两条射线OA 、OB 形成1个角∠AOB (∠AOB <180°);在∠AOB 内部再加一条射线OC ,此时具有公共端点的三条射线OA 、OB 、OC 共形成3个角;以此类推,具有公共端点的n 条射线OA 、OB 、OC…共形成 个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?8.如图,两条直线AB,CD 相交于点O ,且90AOC ∠=,射线OM 从OB 开始绕O 点逆时针方向旋转,速度为15/s ,射线ON 同时从OD 开始绕O 点顺时针方向旋转,速度为12/s .两条射线OM 、ON 同时运动,运动时间为t 秒.(本题出现的角均小于平角)(1)当012t <<时,若369AOM AON ∠=∠-.试求出的值; (2)当06t <<时,探究BON COM AOCMON∠-∠+∠∠的值,问:t 满足怎样的条件是定值;满足怎样的条件不是定值?9.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数. 特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °. 发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论: 小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数. 类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.10.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度; (3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?11.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
最新七年级上册数学压轴题(Word版含解析)最新七年级上册数学压轴题(Word版含解析)一、堆放仪器箱问题我们需要研究如何堆放仪器箱,使得每层仪器箱的个数与层数之间满足一定的关系。
已知每层堆放仪器箱的个数an=n²−32n+247,其中n为整数且1⩽n<16.1) 当n=2时,an=187,则a5=5²−32×5+247=162,a6=6²−32×6+247=181.2) 第n层比第(n+1)层多堆放的仪器箱个数为an−a(n+1)=(n+1)−(n+1)²+32(n+1)−247.3) 假设每个仪器箱重54牛顿,每个仪器箱能承受的最大压力为160牛顿,并且堆放时每个仪器箱承受的压力是均匀的。
若仅堆放第1、2两层,每个仪器箱承受的平均压力为(2×54)/(2×160)=0.675.在确保仪器箱不被损坏的情况下,最多可以堆放4层。
因为当堆放第5层时,每个仪器箱承受的压力将超过160XXX,可能会被损坏。
二、数轴问题考虑数轴上点A、B、C的位置关系以及它们的数值。
1) a=-2,b=4,c=2.2) 点A与点C不能重合。
3) 设t秒后,点A到原点的距离为3t,点B到原点的距离为2t,点C到原点的距离为c。
则AB=-t,BC=t+2,因此AB=-3t/3,BC=(t+2)/3.4) 3AB-BC的值不随着时间t的变化而改变。
因为3AB-BC=-3t-2,是一个关于t的一次函数,其斜率为-3,即不随着t 的变化而改变。
三、求a、b、c问题已知b是最小的正整数,且a、b、c满足c-5+a+b=0.1) 根据条件可得a=-b+c+5,因此a、b、c不唯一。
2) x(1/x+1/x^2+5)=(x+1+2x^2)/x,化简过程如下:x(1/x+1/x^2+5)=(x+1)/x+2=(x+2x^2)/x。
3) 在条件a=-b+c+5和b=4下,设点A、B、C的坐标分别为a、4、c,点P的坐标为x。
1. 下列各组数中,有理数是()A. √-1B. √2C. πD. 3.142. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 圆3. 已知a > 0,b < 0,那么下列不等式中正确的是()A. a + b > 0B. a - b > 0C. -a - b > 0D. -a + b > 04. 下列方程中,无解的是()A. 2x - 4 = 0B. 3x + 5 = 2x + 8C. 5x = 0D. 2x + 3 = 05. 已知一元二次方程x^2 - 5x + 6 = 0的解为x1和x2,则x1 + x2的值为()A. 5B. 6C. 10D. 11二、填空题(每题5分,共25分)6. 若|a| = 3,则a的值为________。
7. 若a^2 = 4,则a的值为________。
8. 已知一元二次方程x^2 - 4x + 3 = 0的解为x1和x2,则x1 x2的值为________。
9. 若x + 2 > 0,则x的取值范围是________。
10. 若|2x - 1| = 3,则x的值为________。
三、解答题(每题10分,共30分)11. (10分)已知一元二次方程x^2 - 4x + 3 = 0,求该方程的解。
12. (10分)若a、b是方程2x^2 - 3x + 1 = 0的两个实数根,求a^2 + b^2的值。
13. (10分)已知函数y = kx + b(k ≠ 0)的图象经过点A(2,3),求该函数图象与x轴的交点坐标。
14. (15分)某市决定在市中心修建一座公园,该公园呈矩形,长为200米,宽为150米。
现计划将公园扩建,使得公园的长和宽都增加相同长度后,公园的面积增加800平方米。
求扩建后公园的长和宽。
15. (15分)某校组织一次数学竞赛,共有50名学生参加。
竞赛分为两个部分:选择题和解答题。
七年级数学下册期中考试压轴题专项练习
整理:夏圣策
1.如图1,已知直线l1∥l2,且l3和l1、l2分别交于A、B两点,点P在直线AB上,
(1)试找出∠1,∠2,∠3之间的等式关系,并说明理由;
(2)应用(1)的结论解下列问题:○1如图2,A点在B处北偏东40°方向,A点在C处的北偏西45°方向,求∠BAC的度数?
○2在图3中,小刀的刀片上、下是∥的,刀柄外形是一个直角梯形(下底挖去一小半圆),求∠1+∠2的度数?
2.已知一个角的两边与另一个角的两边分别平行,结合下图,试探索这两个角之间的关系,并说明你的结论.
(1)如图25-1,AB∥EF,BC∥DE.∠1与∠2的关系是:____________ 理由:
(2)如图25-2,AB∥EF,BC∥DE. ∠1与∠2的
关系是:
理由:
(3)由(1)(2)你得出的结论是:如果,
那么___________________.
25-1
25-2 E
D
B
A
F E
D B
A
1
1
2
2
C
C
F
(4)若两个角的两边互相平行,且一个角比另一个角 的2倍少30°,则这两个角度数的分别是___________
3、如图,已知直线1l ∥2l ,且3l 和1l 、2l 分别交于B A ,两点,点P 在AB 上。
(共12分)
(1)如果点P 和B A ,两点之间运动时,问1∠、2∠、3∠之间有什么关系?并证明。
(2)如果点P 在A 点上方运动时,试探究1∠、2∠、3∠之间的关系(点P 和A 不重合)
(3)如果点P 在B 点下方运动时,试探究1∠、2∠、3∠之间的关系(点P 和B 不重合)
4.如图①,将线段A 1A 2向右平移2个单位到B 1B 2,得到封闭图形A 1A 2B 2B 1(即阴影部分),在图②中,将折线A 1A 2A 3向右平移2个单位到B 1B 2B 3,得到封闭图形A 1A 2A 3 B 3B 2B 1(即阴影部分).
图① 图② 图③
图④ 图⑤
(1)在图③中,请你类似地画一条有两个折点的折线,同样向右平移2个单位,从而得到一个封闭图形,并用阴影表示;
(2)请你分别写出上述三个图形中阴影部分的面积(设长方形水平方向长均为a ,竖直方向长均为b ):S 1 =__________________,S 2 =__________________,S 3 =__________________;
(3)如图④,一块长方形草地,长为20米,宽为10米,草地上有一条弯曲的小路(小路任何地方的宽度都是2米),请你写出小路部分所占的面积是___________________米
(4)如图⑤,若在(3)中的草地又有一条横向的弯曲小路(小路任何地方的宽度都是1米),请你写出小路部分所占的面积是__________________米
2
.
5.对于同一平面的三条直线a 、b 、c ,给出下列5个论断, ①a ∥b ②b ∥c ③a ⊥b ④a ∥c ⑤a ⊥c 以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题,画出对应图形,并说明理由。
已知: 结论 理由:
6.已知,AB∥CD,分别探讨四个图形中∠APC,∠PAB,∠PCD的关系.
(1)请探究图1、图2中三个角的关系,并任选一个加以证明.
(2)猜想图3、图4中三个角的关系,不必说明理由. (提示:注意适当添加辅助线吆!)
7.如图,直线AD 与AB 、CD 相交于A 、D 两点,EC 、BF 与AB 、CD 相交于E 、
C 、B 、F ,如果∠1=∠2,∠B=∠C .求证:∠A=∠
D .
(3)P D
C
B
A
8.请把下列解题过程补充完整并在括号中注明理由:
如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.
解:∵EF∥AD,
∴∠2 =,()
又∵∠1=∠2,
∴∠1=∠3,
∴AB∥,()
∴∠BA C+=180°,()∵∠BAC = 70°,
∴∠AGD = .。