常微分方程建模方法概要
- 格式:doc
- 大小:774.50 KB
- 文档页数:29
微分方程的建模与解析解法一、引言微分方程是数学中的重要概念,广泛应用于各个领域的建模与分析问题中。
本文将介绍微分方程的建模过程,以及常见的解析解法。
二、微分方程的建模微分方程的建模通过描述问题中的变量与变量之间的关系来进行。
具体步骤如下:1. 了解问题:详细了解问题的背景和要解决的具体内容。
2. 确定变量:确定与问题相关的变量,归纳出关键变量和依赖变量。
3. 建立关系:根据问题的特点和变量之间的关系,建立微分方程。
4. 添加初始条件:在微分方程中添加相关的初始条件,这些条件旨在确定方程的具体解。
三、常见的微分方程解析解法微分方程的解析解是通过数学方法求出的解,可以明确地表示出问题的解决方案。
以下是常见的解析解法:1. 可分离变量法:对于形如dy/dx=f(x)g(y)的一阶微分方程,可以将x和y分离到方程的两边,然后分别进行积分求解。
2. 齐次方程法:对于形如dy/dx=f(x/y)的一阶微分方程,可以进行变量代换将其化为可分离变量形式的方程。
3. 线性微分方程法:对于形如dy/dx+p(x)y=q(x)的一阶线性微分方程,可以利用积分因子法求解。
4. 变量替换法:对于一些复杂的微分方程,通过适当的变量替换,可以将其化简为已知解法形式的微分方程来求解。
5. 求和法和积分法:对于高阶线性微分方程,可以通过求和法和积分法来求解特解,然后利用线性微分方程的叠加原理求得整个方程的解。
四、举例与实践为了更好地理解微分方程的建模与解析解法,我们来看一个具体的例子。
假设有一水槽中的水高度随时间变化的问题,可以建立如下微分方程:dh/dt = -k * sqrt(h)其中,h是水槽中的水高度,t是时间,k是一个常数。
使用可分离变量法,我们可以将此微分方程分离变量并进行求解:(1/√h)dh = -kdt对两边同时进行积分,得到:2√h = -kt + C1其中C1是积分常数。
通过一系列代数变换,我们可以求出水槽中水的高度h关于时间t的解析解:h = ((-kt + C1)/2)^2这个解析解可以明确地描述出水槽中水的高度随时间变化的规律。
数学建模中的常微分方程在科学中,常微分方程(ODE)是一种非常重要的数学工具,它在许多领域都有着广泛的应用,例如物理、化学、生物学等。
在数学建模中,ODE也起到了至关重要的作用。
一、什么是ODE?ODE是指只包含一个自变量(通常是时间)和它的一个或多个导数的方程。
例如,形式为dy/dx=f(x)的方程就是一个ODE,其中y是x的函数。
ODE分为一阶ODE和高阶ODE。
一阶ODE只包含y和它的一阶导数,而高阶ODE则包含更高阶的导数。
在数学建模中,我们通常使用一阶ODE来描述物理、化学、生物等系统。
二、ODE在数学建模中的应用1.物理建模ODE被广泛运用于物理建模中。
例如,在经典力学中,牛顿第二定律指出,质点的运动状态可以由ODE描述。
在电磁学中,麦克斯韦方程组也可以转化为ODE来描述电磁场的变化。
2.化学建模化学过程中涉及到许多反应,这些反应的速率常常可以使用ODE来描述。
在化学反应模型中,ODE可以用来描述化学反应底物的浓度、反应速率、反应机理等。
3.生物建模ODE在生物建模中也有着广泛的应用。
例如,ODE可用来描述种群数量的变化、生物系统的动力学行为、遗传学习环境等。
三、ODE的求解方法一阶ODE的求解方法非常多,例如欧拉方法、隐式欧拉方法、龙格-库塔方法等。
这些方法可以通过计算机程序实现。
四、数学建模实例考虑一个简单的数学建模实例:一个小球在重力作用下自由落体。
我们可以使用ODE来描述这一过程,即y''=-g,其中g为重力加速度。
假设小球的初始位置为y0,速度为v0,则小球的运动状态可以用ODE求解。
欧拉方法可以得到如下结果:y(n+1)=y(n)+h*v(n)v(n+1)=v(n)-h*g其中,h是自变量的步长。
通过不断迭代,我们可以得到小球落到地面的时间t和落地时的位置y(t)。
总结:ODE在数学建模中具有非常广泛的应用。
它不仅可以描述生物、化学、物理等系统的行为,还可以指导我们如何求解这些系统。
微分方程方法建模概述及举例微分方程是数学中的一个重要分支,广泛应用于各个领域,特别是自然科学和工程学科中的建模问题。
本文将概述微分方程方法建模的基本思路,并通过举例说明其在实际问题中的应用。
1.问题抽象化:首先需要将实际问题抽象成一个或一组微分方程。
通过观察问题的物理过程和规律,了解问题中的变量、因果关系以及其演化过程。
将这些信息用数学语言表示出来,通常是通过建立数学模型来描述问题。
2.建立微分方程:基于问题的抽象化模型,我们可以建立相应的微分方程。
根据物理规律和描述问题演化的数学关系,确定方程中的变量、常数和系数。
对于复杂问题,可能需要引入附加的假设和近似,以简化问题求解。
3.求解微分方程:通过求解微分方程,可以得到问题的数学解。
求解方法包括解析解和数值解两种。
解析解通常是通过变量分离、常数变易、积分变换等方法,求得方程的具体解析形式。
数值解则是通过数值计算方法,如欧拉法、龙格-库塔法等,近似计算出微分方程的解。
4.模型验证和分析:将求得的数学解与实际问题进行比较和分析,验证模型的有效性和准确性。
通过对模型进行敏感性分析和参数优化,对模型进行改进和完善。
现在我们来通过两个实际问题的建模例子,进一步说明微分方程方法的应用。
1.指数增长模型问题:假设一个生物种群遵循指数增长规律,种群数量在一段时间内以固定比率增加。
已知在初始时刻,种群数量为100只,经过3个小时后,种群数量增加到了1000只。
求解该问题。
解答:我们可以建立如下的微分方程模型:dy/dt = k * y其中,y表示种群数量,t表示时间,k为增长率。
根据已知条件,当t=0时,y=100;当t=3时,y=1000。
将这些条件代入微分方程,就可以求解得到k的值。
然后再根据k的值,求解出种群数量y随时间t的变化。
2.弹簧振动模型问题:一个弹簧系统在无外力作用下,其振动满足以下微分方程:m* d^2y/dt^2 = -k * y,其中m为弹簧的质量,k为弹簧的劲度系数。
常微分方程常微分方程的基本概念和求解方法常微分方程(Ordinary Differential Equations,简称ODE)是描述自变量只有一个的未知函数及其导数之间关系的方程。
在物理学、工程学、经济学等领域中,常微分方程被广泛应用于各种问题的建模与求解。
本文将介绍常微分方程的基本概念和求解方法。
一、常微分方程的基本概念常微分方程是描述未知函数及其导数之间关系的数学方程。
一般来说,常微分方程可以分为一阶常微分方程和高阶常微分方程两大类。
一阶常微分方程中未知函数的导数最高只有一阶导数,而高阶常微分方程中未知函数的导数可以是二阶、三阶,甚至更高阶的导数。
常微分方程的解是指能够满足方程条件的函数形式,解的形式可以是显式解或隐式解。
显式解是直接给出的解析表达式,而隐式解则是以方程的形式给出。
常微分方程的解集通常具有唯一性。
其中,初始值问题(Initial Value Problem,简称IVP)是对常微分方程的一种特殊求解方法。
在初始值问题中,除了给出方程本身的条件外,还需给出未知函数在某一点的值,用于确定解的具体形式。
二、常微分方程的求解方法常微分方程有多种求解方法,常见的方法包括分离变量法、二阶线性微分方程的特解法和常系数线性齐次微分方程的特征根法等。
具体求解方法选择取决于方程的形式和性质。
1. 分离变量法(Separation of Variables)分离变量法适用于可以将方程的变量分离并分别对各个变量积分的情况。
首先,将方程中的未知函数和其导数分别放在等号两边,然后对方程两边同时积分,最后解出未知函数。
2. 二阶线性微分方程的特解法对于二阶线性微分方程,可以采用特解法求解。
特解法的基本思想是假设未知函数的解具有特定形式,代入方程后求解得到特解。
特解法适用于方程的解一般形式已知的情况。
3. 常系数线性齐次微分方程的特征根法对于常系数线性齐次微分方程,可以采用特征根法求解。
特征根法的基本思想是假设未知函数的解具有指数形式,代入方程后求解得到特征根和特征向量。
微分方程方法建模微分方程方法是数学中一种重要的建模方法,通过将实际问题抽象为微分方程,再进行求解,可以得到问题的解析解或数值解。
微分方程方法建模的过程通常包括问题的建立、方程的确定、初值条件的确定、求解方程、结果的分析和验证等步骤。
首先,问题的建立是微分方程方法建模的首要步骤。
在问题建立过程中,我们需要仔细分析问题,确定出其中的关键因素和变量,并找出它们之间的关系。
例如,可以考虑一个简单的生长模型,假设一个细菌种群的数量随时间的变化。
在这个问题中,关键因素是细菌的增长速率和死亡速率,变量是时间和细菌数量。
我们可以用微分方程来描述这个模型,令N(t)表示时间t时刻的细菌种群数量,则细菌种群数量随时间的变化满足微分方程dN/dt = rN - cN,其中r是细菌增长速率,c是细菌死亡速率。
确定微分方程是建立模型的核心工作。
通常情况下,微分方程可以由物理定律或经验公式导出,也可以根据问题的特点进行假设推导。
在确定微分方程的过程中,需要考虑到问题的实际情况,确定问题的边界条件和约束条件。
例如,在考虑一个容器中的流体流动问题时,可以利用质量守恒和动量守恒定律导出流体的运动方程,然后根据容器的几何形状和边界条件确定相应的边界条件。
确定微分方程后,还需要确定初值条件。
初值条件是微分方程问题的额外信息,通过初值条件我们可以确定方程的特定解。
初值条件可以是方程在一些特定时刻的解,也可以是方程在一些特定点的解。
例如,在考虑细菌生长模型时,我们可以通过实验测得初始时刻的细菌数量N0,则细菌生长模型的初值条件为N(0)=N0。
求解微分方程是微分方程方法建模的核心内容。
微分方程的求解可以分为解析解和数值解两种方法。
解析解是指能够用解析表达式表示出的方程解,它们可以通过分离变量、常数变易和变量替换等方法求解。
数值解则是通过数值计算方法得到的逼近解,常见的数值方法有欧拉法、改进的欧拉法、四阶龙格-库塔法等。
在实际建模中,求解微分方程时往往会根据问题的复杂程度和需求选择合适的求解方法。
微分方程建模方法微分方程建模是数学建模中的一个重要分支。
它通过建立描述现象的微分方程模型,利用数学工具和方法来研究和解决与该现象相关的问题。
微分方程建模的步骤包括确定问题、建立模型、求解模型和验证模型。
本文将详细介绍微分方程建模的方法。
经验模型法是一种基于已有经验和实验数据的建模方法。
它根据实验数据的分析和总结,通过适当的函数拟合和参数调整,建立与实际问题相吻合的微分方程模型。
经验模型法的优点是简单直观,适用于较为简单和复杂程度较低的问题。
例如,考虑一个物体在空气中的自由下落问题。
经验发现,物体受到的空气阻力与速度成正比,可以建立微分方程模型:$$\frac{{d^2x}}{{dt^2}}=g-\frac{{kv^2}}{{m}}$$其中,$x$为物体的位移,$t$为时间,$m$为物体的质量,$v$为物体的速度,$k$为与物体形状和空气性质有关的常数,$g$为重力加速度。
这个模型可以进一步求解,得到物体的速度和位移随时间的变化规律。
理论模型法是一种基于物理规律和数学原理的建模方法。
它通过对问题的深入理解,运用物理学原理、工程学原理和其他学科的知识,建立与实际问题相对应的微分方程模型。
理论模型法的优点是准确性高,适用于复杂和精密度较高的问题。
例如,考虑一个物体在弹簧中的振动问题。
根据胡克定律,在弹簧恢复力和物体质量、加速度之间建立微分方程模型:$$m\frac{{d^2x}}{{dt^2}}=-kx$$其中,$x$为物体的位移,$t$为时间,$m$为物体的质量,$k$为弹簧的劲度系数。
这个模型可以求解得到物体的振动规律。
解析解法是指通过数学方法求解微分方程模型的解。
对于一些简单和常见的微分方程,可以通过积分、分离变量、变量替换等方法求得其解析解。
解析解法的优点是求解结果准确、精确,可以提供深入理解问题的信息。
但对于复杂和非线性的微分方程,往往难以求得解析解,需要借助数值方法。
数值解法是指通过数学计算机计算求解微分方程模型的解。
微分方程建模一般说来,微分方程建模的方法大致可以分为以下的几个步骤:1.根据实际问题的要求确定要研究的量,包括自变量、未知函数、必要的参数等以及它们各自的变化区间;2.列方程。
可以在合理假设的前提下,利用导数表示斜率、速度、变化率的实际意义,根据一些基本定理(几何的、物理的、化学的或生物学的等等)或规律,找出未知函数的导数(或微分)与相关各量之间的等量关系式,建立微分方程并确定定解条件(注:如果没有现成的定理可供利用,也可以用微元分析法与模拟近似法列出微分方程);3.解微分方程;4.对模型的适用性作出评价,即用已知的数据检验微分方程的解是否与实际相符。
若结果与实际存在一定的差距,则还要对方程进行修正和调整,直到得出较满意的结果为止。
下面,我们就通过一些实例说明微分方程建模的具体步骤。
一.增长模型在自然界和社会的经济活动中,许多量的变化都遵循着一个基本的规律:任一单位时间内的增量都与该量自身当时的大小成正比。
运用这一基本规律,就可以建立起各种各样的增长模型。
1.马尔萨斯人口模型严格地讲,讨论人口问题所建立的模型应属于离散型模型。
但在人口基数很大的情况下,突然增加或减少的只是单一的个体或少数几个个体,相对于全体数量而言,这种改变量是极其微小的,因此,我们可以近似地假设人口随时间连续变化甚至是可微的。
这样,我们就可以采用微分方程的工具来研究这一问题。
最早研究人口问题的是英国的经济系家马尔萨斯(Malthus )(1766—1834)。
他根据百余年的人口资料,经过潜心研究,在1798年发表的《人口论》中首先提出了人口增长模型。
他的基本假设是:任一单位时刻人口的增长量与当时的人口总数成正比,且比例系数为常数。
于是,设t 时刻的人口总数为)(t y ,则单位时间内人口的增长量即为tt y t t y ∆-∆+)()( 根据基本假设,有tt y t t y ∆-∆+)()()(t y r ⋅= (r 为比例系数) 令0→∆t ,可得微分方程y r dtdy ⋅= (4.1) 这就是著名的马尔萨斯人口方程。
全国大学生数学建模竞赛常用建模方法总结概要第一篇:全国大学生数学建模竞赛常用建模方法总结概要邯郸学院本科毕业论文题目学生指导教师年级专业二级学院(系、部)全国大学生数学建模竞赛常用建模方法探讨柴云飞闫峰教授 2009级本科数学与应用数学数学系2013年6月邯郸学院数学系郑重声明本人的毕业论文是在指导教师闫峰的指导下独立撰写完成的.如有剽窃、抄袭、造假等违反学术道德、学术规范和侵权的行为,本人愿意承担由此产生的各种后果,直至法律责任,并愿意通过网络接受公众的监督.特此郑重声明.论文经“中国知网”论文检测系统检测,总相似比为5.80%.毕业论文作者(签名):****年**月**日全国大学生数学建模竞赛常用建模方法探讨摘要全国大学生数学建模竞赛作为全国高校规模最大的基础性学科竞赛,越来越受到人们的重视,所以建模竞赛的方法也就变得尤为重要.随着竞赛的不断发展,赛题的开放性逐步增大,一道赛题可用多种解法,各种求解的算法有时会相互融合,同时也在向大规模数据处理方向发展,这就对选手的能力提出了更高的要求.由于建模方法种类众多,无法一一介绍,所以本文主要介绍了四种比较常用的数学建模竞赛方法,包括微分与差分方程建模方法、数学规划建模方法、统计学建模方法、图论方法,并结合历年赛题加以说明.关键词:数学建模竞赛统计学方法数学规划图论ICommonly Used Modeling Method ofChina Undergraduate Mathematical Contest in Modeling Chai yunfeiDirected by Professor Yan fengABSTRACTmore people as a basic subject of the largest national college competition.The method of modeling competition has become more and more important.Open questions gradually increased with the development of competition.Most of the games can be solved by lots of solutions.Sometimes these methods can be used together.And there is also a lot of data which puts forward higher requirement on the ability of players.The modeling methods is too numerous to mention, so this article mainly four kinds Commonly used modeling method are introduced that differential and difference equations modeling method, Mathematical programming modeling method, Statistics modeling method, graph theory and interprets with calendar year’s test questions.KEY WORDS:Mathematical contest in modeling Statistics method Mathematical programming Graph theoryII目录摘要........................................................................................................................... ...................I 英文摘要........................................................................................................................... . (II)前言........................................................................................................................... ..................1 1 微分方程与差分方程建模 (2)1.1 微分方程建模 (2)1.1.1 微分方程建模的原理和方法...............................................................................2 1.1.2 微分方程建模应用实例.......................................................................................3 1.2 差分方程建模 (4)1.2.1 差分方程建模的原理和方法...............................................................................4 1.2.2 差分方程建模应用实例.......................................................................................5 数学规划建模........................................................................................................................... ..52.1 线性规划建模的一般理论..............................................................................................6 2.2 线性规划建模应用实例.. (7)3 统计学建模方法 (8)3.1 聚类分析 (8)3.1.1 聚类分析的原理和方法.......................................................................................8 3.1.2 聚类分析应用实例...............................................................................................9 3.2 回归分析.. (9)3.2.1 回归分析的原理与方法.......................................................................................9 3.2.2 回归分析应用实例.............................................................................................10 图论建模方法...........................................................................................................................104.1 两种常见图论方法介绍 (11)4.1.1 模拟退火法的基本原理.....................................................................................11 4.1.2 最短路问题.........................................................................................................11 4.2 图论建模应用实例........................................................................................................12 5 小结........................................................................................................................... ................13 参考文献........................................................................................................................... ............14 致谢........................................................................................................................... . (15)前言全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛.参赛者需要根据题目要求,在三天时间内完成一篇包括模型假设、模型建立和求解、计算方法的设计和实现、模型结果的分析和检验、模型的改进等方面的论文.通过参加竞赛的训练和比赛,可以提高学生用数学方法解决实际问题的意识和能力,而且在培养团队精神和撰写科技论文等方面都会得到十分有益的锻炼.竞赛题目的涉及面比较宽,有工业、农业、工程设计、交通运输、经济管理、生物医学和社会事业等.竞赛选手不一定预先掌握深入的专业知识,而只需要学过高等数学的相关课程即可,并且题目具有较大的灵活性,便于参赛者发挥其创造能力.近年来,竞赛题目包含的数据较多,手工计算一般不能实现,所以就对参赛者的计算机能力提出了更高的要求,如2003年B题,某些问题的解决需要使用计算机软件;2001年A题,问题的数据读取需要计算机技术,并且对于给出的图像,需要用图像处理的方法获得;再如2004年A题则需要利用数据库数据,数据库方法,统计软件包等等.竞赛题目的总体特点可大致归纳如下:(1)实用性不断加强,问题和数据来自于实际,解决方法需要切合实际,模型和结果可以应用于实际;(2)综合性不断加强,解法多样,方法融合,学科交叉;(3)数据结构越来越复杂,包括数据的真实性,数据的海量性,数据的不完备性,数据的冗余性等;(4)开放性也越来越突出,题意的开放性,思路的开放性,方法多样,结果不唯一等.总体来说,赛题向大规模数据处理方向发展,求解算法和各类现代算法相互融合.纵观历年的赛题,主要用到的建模方法有:初等数学模型、微分与差分方程建模、组合概率、数据处理、统计学建模、计算方法建模、数学规划、图论方法、层次分析、插值与拟合、排队论、模糊数学、随机决策、多目标决策、随机模拟、计算机模拟法、灰色系统理论、时间序列等.本文不一一列举竞赛题目中涉及的所有方法,只是重点讨论其中一些比较常用的方法,包括微分与差分方程建模方法、数学规划建模方法、统计学建模方法、图论建模方法,并结合案例说明建模方法的原理及应用.微分方程与差分方程建模在很多竞赛题目中,常常会涉及很多变量之间的关系,找出它们之间的函数关系式具有重要意义.可在许多实际问题中,我们常常不能直接给出所需要的函数关系,但可以得到含有所求函数的导数(或微分)或差分(即增量)的方程,这样的方程称为微分方程或差分方程.建立微分方程或差分方程的数学模型是一种重要的建模方法.如1996年A题“最优捕鱼策略”,1997年A题“零件参数设计”,2003年A题“SARS的传播”,2007年A题“中国人口增长预测”,2009年A题“最优捕鱼策略”等赛题中,都用到了这种方法.1.1 微分方程建模1.1.1 微分方程建模的原理和方法一般来说,任何时变问题中随时间变化而发生变化的量与其它一些量之间的关系经常以微分方程的形式来表现.例1.1 有一容器装有某种浓度的溶液,以流量v1注入该容器浓度为c1的同样溶液,假定溶液立即被搅拌均匀,并以v2的流量流出混合后的溶液,试建立反映容器内浓度变化的数学模型.解注意到溶液浓度=变化而发生变化.不妨设t时刻容器中溶质质量为s(t),初始值为s0,t时刻容器中溶液体积为v(t),初始值为v0,则这段时间(t,t+∆t)内有溶液质量,因此,容器中溶液浓度会随溶质质量和溶液体积溶液体积⎧∆s=c1v1∆t-c2v2∆t,(1)⎨⎩∆V=v1∆t-v2∆t其中c1表示单位时间内注入溶液的浓度,c2表示单位时间内流出溶液的浓度,当∆t很小时,在(t,t+∆t)内有c2≈s(t)s(t)=.(2)V(t)V0+(v1-v2)t对式(1)两端同除以∆t,令∆t→0,则有⎧ds⎪dt=c1v1-c2v2⎪⎪dV.(3)=v1-v2⎨⎪dt⎪s(0)=s0,V(0)=V0⎪⎩即所求问题的微分方程模型.虽然它是针对液体溶液变化建立的,但对气体和固体浓度变化同样适用.实际应用中,许多时变问题都可取微小的时间段∆t去考察某些量之间的变化规律,从而建立问题的数学模型,这是数学建模中微分方程建模常用手段之一.常用微分方程建模的方法主要有:(1)按实验定律或规律建立微分方程模型.此种建模方法充分依赖于各个学科领域中有关实验定律或规律以及某些重要的已知定理,这种方法要求建模者有宽广的知识视野,这样才能对具体问题采用某些熟知的实验定律.(2)分析微元变化规律建立微分方程模型.求解某些实际问题时,寻求一些微元之间的关系可以建立问题的数学模型.如例1.1中考察时间微元∆t,从而建立起反应溶液浓度随时间变化的模型.此建模方法的出发点是考察某一变量的微小变化,即微元分析,找出其他一些变量与该微元间的关系式,从微分定义出发建立问题的数学模型.(3)近似模拟法.在许多实际问题中,有些现象的规律性并非一目了然,或有所了解亦是复杂的,这类问题常用近似模拟方法来建立问题的数学模型.一般通过一定的模型假设近似模拟实际现象,将问题做某些规范化处理后建立微分方程模型,然后分析、求解,并与实际问题作比较,观察模型能否近似刻画实际现象.近似模拟法的建模思路就是建立能够近似刻画或反映实际现象的数学模型,因此在建模过程中经常做一些较合理的模型假设使问题简化,然后通过简化建立近似反映实际问题的数学模型.1.1.2 微分方程建模应用实例例1.2(2003年高教社杯全国大学生数学建模竞赛A题)SARS 传播的预测.2003年爆发的“SARS”疾病得到了许多重要的经验和教训,使人们认识到研究传染病的传播规律的重要性.题目给出了感病情况的三个附件,要求对SARS的传播建立数学模型:(1)对SARS的传播建立一个自己的模型,并说明模型的优缺点;(2)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测.问题求解过程分析由于题目具有开放性,故选择文献[1]中的求解思路分析.传染病的传播模式可近似分为自由传播阶段和控后阶段,然后将人群分为易感者S,感病者I,移出者R三类.由三者之间的关系可得到下列微分方程:⎧dS⎪dt=-kIS⎪dI⎪⎪=kIS-hI,⎨dt⎪dR=hI⎪⎪dt⎪⎩S+I+R=N利用附件中给出的数据,可以将上述方程变形为dI=kNI-hI=λI,dt其中λ=kN-h,其解为I(t)=I0e-λt.其中I0为初始值.但此模型只适用于病例数与总人口数具有可比性的情况,当病例数远小于总人口数时,感病人数将随时间以指数增长.这是按实验定律或规律建立的微分方程模型.为进一步改进模型,用计算机跟踪病毒的个体传播情况,又建立计算机模拟模型.然后用计算机模拟北京5月10日之前SARS的传播情况,并对5月10日以后的传播情况进行预测.但是得到的有效接触率与实际统计数据有所偏差,所以统计数据,为参数的确定寻求医学上的支持,并以随机模拟取代完全确定性的模拟,对原模型进行改进,建立随机模拟模型.通过计算机编程,产生正态分布的随机数,并对传染情况进行500次模拟,即可进行预测,并可得出对SARS疫情控制提出的相应建议.1.2 差分方程建模1.2.1 差分方程建模的原理和方法差分方程在数学建模竞赛中应用的频率极高,所以要对这种方法引起足够的重视.它针对要解决的目标,引入系统或过程中的离散变量.具体方法是:根据实际的规律性质、平衡关系等,建立离散变量所满足的关系式,从而建立差分方程模型.差分方程可以分为不同的类型,如一阶和高阶差分方程,常系数和变系数差分方程,线性和非线性差分方程等等.建立差分方程模型一般要注意以下问题:(1)注意题中的离散变化量,对过程进行分析,尤其要注意形成变化运动过程的时间或距离的分化而得到离散变量;(2)通过对具体变化过程的分析,列出满足题意的差分方程,其中入手点是找出变量所能满足的平衡关系、增量或减量关系及规律,从而得到差分方程.1.2.2 差分方程建模应用实例例1.3(2007年高教社杯全国大学生数学建模竞赛A题)中国人口增长预测.题目要求从中国的实际情况和人口增长的特点出发,参考附录中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测,特别要指出模型中的优点与不足之处.问题求解过程分析由于题目具有开放性,故选择文献[2]中的求解思路分析.通过分析题中相关的数据,考虑到我国近年来人口发展的总趋势,因为涉及到人口的增长和变换,所以可以先用微分方程来建立模型,并对我国人口增长的中短期和长期趋势做出预测.首先,根据灰色系统理论,使用灰色关联分析模型法对人口系统结构进行关联分析,找出影响人口增长的主要因素;其次使用年龄推算法进行短期预测.在建立和求解长期预测模型时,根据人口阻滞增长模型(Logistic模型),可以考虑对中国人口老龄化进程加速、出生人口性别比例持续升高以及乡村人口城镇化等因素建立新的人口增长的差分方程模型.但是它仅给出了人口总数的变化规律,反映不出各类人口的详细信息,所以我们需要建立离散化的模型,并进一步可以得到全面系统地反应一个时期内人口数量状况的差分方程,可以用微分和差分方程理论来表现和模拟人口数量的变化规律.从而对人口分布的状况、变化趋势、总体特征等有更加详细和科学的了解.在模型的求解过程中,用到了MATLAB软件,并做参数估计,利用所得结果和题目给出的近五年来的人口数据,对我国人口发展趋势进行了预测,得到了在老龄化进程加速、出生人口性别比例持续升高以及乡村人口城镇化等因素影响下,未来我国人口发展预测情况.数学规划建模数学规划是指在一系列条件限制下,寻求最优方案,使得目标达到最优的数学模型,它是运筹学的一个重要分支.数学规划的内容十分丰富,包括许多研究分支,如:线性规划、非线性规划、整数规划、二次规划、0-1规划、多目标规划、动态规划、参数规划、组合优化、随机规划、模糊规划、多层规划问题等.在1993年A题“非线性交调的频率设计”,1993年B题“足球队排名”,1995年A题“飞行管理问题”,1996年B题“节水洗衣机”,1997年A题“零件的参数设计”,1998年A题“一类投资组合问题”,1999年B题“钻井布局”,2001年B题“公交车调度问题”,2002年A题“车灯线光源的优化”,2006年A题“出版社书号问题”,2007年B题“城市公交线路选择问题”等赛题中,都用到了规划的方法.在此以线性规划为例,对规划的方法进行探讨.2.1 线性规划建模的一般理论线性规划建模方法主要用于解决生产实际中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是研究线性约束条件下线性目标函数的极值问题的数学理论和方法.一般的优化问题是指用“最好”的方式,使用或分配有限的资源即劳动力、原材料、机器、资金等,使得费用最小或利润最大.优化模型的一般形式为:min(或max) z=f(x)(4)s.t.g(x)≤0.(i=1,2,Λ,m)(5)(x=(x1,x2,Λ,xn).T)由(4)、(5)组成的模型属于约束优化.若只有(4)式就是无约束优化.f(x)称为目标函数,g(x)≤0称为约束条件.在优化模型中,如果目标函数f(x)和约束条件中的g(x)都是线性函数,则该模型称为线性规划.建立实际问题线性规划模型的步骤如下:(1)设置要求解的决策变量.决策变量选取得当,不仅能顺利地建立模型而且能方便地求解,否则很可能事倍功半.(2)找出所有的限制,即约束条件,并用决策变量的线性方程或线性不等式来表示.当限制条件多,背景比较复杂时,可以采用图示或表格形式列出所有的已知数据和信息,从而避免“遗漏”或“重复”所造成的错误.(3)明确目标要求,并用决策变量的线性函数来表示,标出对函数是取极大还是取极小的要求.需要特别说明的是,要使用线性规划方法来处理一个实际问题,必须具备下面的条件:(1)优化条件:问题的目标有极大化或极小化的要求,而且能用决策变量的线性函数来表示.(2)选择条件:有多种可供选择的可行方案,以便从中选取最优方案.(3)限制条件:达到目标的条件是有一定限制的(比如,资源的供应量有限度等),而且这些限制可以用决策变量的线性等式或线性不等式表示出来.此外,描述问题的决策变量相互之间应有一定的联系,才有可能建立数学关系,这一点自然是不言而喻的.线性规划模型的求解可用图解法或单纯形法.随着计算机的普及和大量数学软件的出现,可以利用现成的软件MATLAB或LINGO等求解,在此不再叙述.2.2 线性规划建模应用实例例2.1(2006年高教社杯全国大学生数学建模竞赛B题)艾滋病疗法的评价及疗效的预测.题目给出了美国某艾滋病医疗试验机构公布的两组数据,数据涉及到了病人CD4和HIV的浓度含量的测试结果.根据所给的资料需要参赛者完成以下问题:(1)利用附件1的数据,预测继续治疗的效果,或者确定最佳治疗终止时间;(2)利用附件2的数据,评价4种疗法的优劣(仅以CD4为标准),并对较优的疗法预测继续治疗的效果,或者确定最佳治疗终止时间;(3)如果病人需要考虑4种疗法的费用,对评价和预测有什么影响.问题求解过程分析由于题目具有开放性,故选择文献[3]中的求解思路进行分析.首先对题目所给数据进行分析,考虑到治疗的效果与患者的年龄有关,将患者按年龄分组,如14~25岁,25~35岁,35~45岁及45岁以上4组.每组中按照4种疗法和4个治疗阶段(如0~10周,10~20周,20~30周,30~40周),构造16个决策单元.取4种药品量为输入,治疗各个阶段末患者的CD4值与开始治疗时CD4值的比值为输出.然后建立相应的数学模型,利用相对有效性评价方法,建立分式规划模型并经过变换,转化为线性规划模型求解,对各年龄组患者在各阶段的治疗效率进行评价.计算结果:对第1年龄组疗法2和4在整个治疗中效率较高,在第4阶段仍然有效;对第2年龄组疗法1在第1,2阶段有效;对第3年龄组疗法1,2,3在第1阶段有效;对第4年龄组疗法1,2在第1,2阶段有效.表明只有14~25岁的年4种轻患者,才能在治疗的最后阶段仍然有有效的疗法.随后,由线性规划模型的对偶形式建立预测模型,对各年龄组各种疗法下一阶段的疗效进行预测.若由某决策单元得到的实际输出大于预测输出,则该决策单元相对有效;反之,说明该种疗法对该组患者在治疗的未来阶段不再有效,应该转换疗法.统计学建模方法在数学建模竞赛中,常常会涉及到大量的数据,因此,我们就需要用统计学建模方法对这些数据进行处理.此类方法主要包括统计分析、计算机模拟、回归分析、聚类分析、数据分类、判别分析、主成分分析、因子分析、残差分析、典型相关分析、时间序列等.如2004年A题“奥运会临时超市网点设计问题”,2004年B题“电力市场的输电阻塞管理问题”,2007年A题“人口增长预测问题”,2008年B题“大学学费问题”,2012年A题“葡萄酒的评价”等都用到了这种建模方法.在此选取其中两类方法进行阐述.3.1 聚类分析3.1.1 聚类分析的原理和方法该方法说的通俗一点就是,将n个样本,通过适当的方法选取m 聚类中心,通过研究各样本和各个聚类中心的距离,选择适当的聚类标准,通常利用最小距离法来聚类,从而可以得到聚类.结果利用sas 软件或者spss 软件来做聚类分析,就可以得到相应的动态聚类图.这种模型的的特点是直观,容易理解.聚类分析的类型可分为:Q型聚类(即对样本聚类)和R型聚类(即对变量聚类).通常聚类中有相似系数法和距离法两种衡量标准.聚类方法种类多样,有可变类平均法、中间距离法、最长距离法、利差平均和法等.在应用时要注意,在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理.主要的方法步骤大致如下:(1)首先把每个样本自成一类;(2)选取适当的衡量标准,得到衡量矩阵;(3)重新计算类间距离,得到衡量矩阵;(4)重复第2步,直到只剩下一个类.3.1.2聚类分析应用实例例3.1(2012年高教社杯全国大学生数学建模竞赛A题)葡萄酒的评价.题目的附件中给出了某一年份一些葡萄酒的评价结果,和该年份这些葡萄酒的和酿酒葡萄的成分数据.要求参赛者建立数学模型解决以下问题:(1)分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信;(2)根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级;(3)分析酿酒葡萄与葡萄酒的理化指标之间的联系;(4)分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和葡萄酒的理化指标来评价葡萄酒的质量.问题求解过程分析由于题目具有开放性,故选择文献[4]中的求解思路分析.由于给定了酿酒葡萄的理化指标,首先可将附录2和附录3中的一些数据进行处理.并可以据此对各种酿酒葡萄进行聚类分析,但是,由于题目中所给的数据庞大,所以可通过主成分分析法,简化并提取大部分有效信息,再用聚类分析对酿酒葡萄进行分级.最后根据酿酒葡萄对应葡萄酒质量的平均值大小进行比较,排序分级.接下来针对问题中分析酿酒葡萄与葡萄酒理化指标之间的联系,及上面整理好的数据,采用回归分析原理,在SPSS中得到酿酒葡萄与葡萄酒的理化指标之间的联系.再通过相关分析,得出相应的相关系数,从而得到相应的判断结论.在分析酿酒葡萄与葡萄酒的理化指标之间的联系时,还用到了多元线性回归分析.该模型用于生活实践中,也可以解决很多实际问题.3.2 回归分析回归分析是利用数据统计原理,对大量数据进行数学处理,并确定因变量与某些自变量的相关关系,建立一个相关性较好的回归方程,并加以外推,用于预测今后的因变量的变化的分析方法.3.2.1回归分析的原理与方法回归分析是在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型;对回归模型的可信度进行检验;判断每个自变量对因变量的影响是否显著;判断回归模型是否适合这组数据;利用回归模型对进行预报或控制.回归分析主要包括一元线性回归、多元线性回归、非线性回归.回归分析的主要步骤为:(1)根据自变量和因变量的关系,建立回归方程.(2)解出回归系数.(3)对其进行相关性检验,确定相关系数.(4)当符合相关性要求后,便可与具体条件结合,确定预测值的置信区间.需要注意的是,要尽可能定性判断自变量的可能种类和个数,并定性判断回归方程的可能类型.另外,最好应用高质量的统计数据,再运用数学工具和相关软件定量定性判断.3.2.2 回归分析应用实例例3.2(2006年高教社杯全国大学生数学建模竞赛B题)艾滋病疗法的评价及疗效的预测.题目同例2.1.问题求解过程分析由于题目具有开放性,故选择文献[3]中的求解思路进行分析.问题2的解决就用到回归模型.首先分析数据知,应建立时间的一次与二次函数模型,并经过统计分析比较,确定哪种较好.所以可建立一个统一的回归模型,也可对每种疗法分别建立一个模型.以总体回归模型为例,分别用一次与二次时间函数模型进行比较,可知疗法1~3用一次模型较优,且一次项系数为负,即CD4在减少,从数值看疗法3优于疗法2和1;疗法4用二次模型较优,即CD4先增后减,在t 20左右达到最大.可以通过4条回归曲线进行比较,显示疗法4在30周之前明显优于其它.最后再用检验法作比较,结果是疗法1与2无显著性差异,而疗法1与3,2与3,3与4均有显著性差异.图论建模方法图论建模方法在建模竞赛中也经常涉及,应用十分广泛,并且解法巧妙,方法灵活多变.如1990年B题“扫雪问题”,1991年B题“寻找最优Steiner树”,1992年B题“紧急修复系统的研制”,1993年B题“足球队排名”,1994年A题“逢山开路问题”,1994年B题“锁具装箱问题”,1995年B题“天车与冶炼炉的作业调度”,1997年B题“截断切割的最优排列”,1998年B题“灾情巡视最佳路线”,1999年B题“钻井布局”,2007年B题“城市公交线路选择问题”等都应用到了图论的方法.图论近几年来发展十分迅速,在物理、化学、生物学、地理学、计算机科学、信息论、控制论、社会科学、军事科学以及计算机管理。
常微分方程建模方法及案例分析作者:沈延锋姜永慧沈延琦来源:《科技创新导报》2020年第24期摘要:常微分方程建模是数学建模中一类十分重要的方法,使用它通常需要建立含多个变量及导数信息的常系数微分方程。
本文首先给出了此类建模问题的基本思路、步骤和建模方法,然后通过最速降线、悬链线及药物扩散衰减三个问题对该建模方法进行了分析。
分析过程中强调了变量及其变量间关系的确定在常微分方程建立过程中的重要作用。
关键词:微分方程微元分析法最速降线悬链线药物扩散衰减中图分类号:O175 文献标识码:A 文章编号:1674-098X(2020)08(c)-0199-04Abstract: Ordinary differential equation modeling is a very important method in mathematical modeling. Using it, it is usually necessary to establish constant coefficient differential equations with multiple variables and derivative information. In this paper, we shall discuss the basic idea,steps and several methods about thus modeling problems firstly. Then three practical problems will be studied, as the brachistochrone problems, catenary problems and medicament diffusion problems. The important role of the determination of variables and their relations in the establishment of ordinary differential equations is emphasized.Key Words: Ordinary differential equations; Microelement analysis method; Brachistochrone; Catenary; Medicament diffusion函數的本质是两个变量之间的依赖关系,而对事物变化相互影响的关系研究是工程计算、医疗卫生和金融经济等众多领域中的核心问题。
常微分方程在人口增长模型中的数学建模人口增长是一个复杂而重要的社会问题,对于解决人口问题,了解人口增长模型是十分必要的。
常微分方程是研究自然现象的重要工具,它在人口增长模型中的应用也是十分广泛的。
本文将介绍常微分方程在人口增长模型中的数学建模。
一、人口增长模型的基本假设在建立人口增长模型之前,我们需要先进行一些基本假设。
首先,我们假设人口增长是一个连续的过程,即人口数量的变化是连续的。
其次,我们假设人口增长的速率与当前人口数量成正比,即人口增长率与人口数量成正比。
最后,我们假设人口增长的速率还受到其他因素的影响,比如出生率、死亡率、迁移率等。
二、人口增长模型的建立为了建立人口增长模型,我们需要引入常微分方程。
常微分方程是描述变量之间关系的方程,它包含一个未知函数及其导数。
在人口增长模型中,我们可以将人口数量表示为一个未知函数P(t),其中t表示时间。
根据前面的假设,我们可以得到人口增长率与人口数量的关系式:dP/dt = kP其中dP/dt表示人口数量P关于时间t的导数,k表示人口增长率。
这个关系式描述了人口数量随时间的变化规律。
三、人口增长模型的求解为了求解上述的常微分方程,我们可以使用分离变量法。
将上述方程改写为:1/P dP = k dt对上述方程两边同时积分,得到:ln|P| = kt + C其中C为常数。
进一步求解,得到:P(t) = e^(kt+C) = Ce^kt由于人口数量不能为负数,所以常数C必须为正数。
这个解表示了人口数量随时间的变化规律。
四、人口增长模型的应用通过上述的人口增长模型,我们可以对人口增长进行预测和分析。
通过调整人口增长率k和常数C的值,我们可以模拟不同的人口增长情况。
例如,如果k为正数,表示人口增长率为正,那么人口数量将会呈指数增长。
这在一些发展中国家中是比较常见的情况。
相反,如果k为负数,表示人口增长率为负,那么人口数量将会呈指数减少。
这在一些发达国家中是比较常见的情况。
常微分方程建模方法常微分方程建模方法可以分为定性分析和定量分析两个阶段。
定性分析是通过分析问题的物理背景和现象特征,确定微分方程的类型和形式。
而定量分析则是通过对微分方程进行求解,得到具体的解析解或数值解,来揭示问题的本质。
1.理解问题背景:了解问题的物理背景、现象特征、变量之间的关系等,分析问题的要素和限制条件。
2.建立数学模型:根据问题的特征和变量关系,建立微分方程模型。
通常可以利用物理定律、守恒定律、动力学方程等来描述问题的变化规律。
3.确定初始条件和边界条件:对于初值问题,需要确定初始条件;对于边值问题,需要确定边界条件。
这些条件是求解微分方程的前提。
4.分析微分方程:对建立的微分方程进行分析,研究方程的特性和性质。
可以利用变量分离、线性化、换元等方法来化简和求解方程。
5.求解微分方程:根据微分方程的类型和性质,选择合适的求解方法。
可以将高阶微分方程化简为一阶微分方程,然后利用解析解或数值解的方法求解。
6.模型验证和优化:对求解得到的解析解或数值解进行验证,检验模型的合理性和准确性。
如果模型不准确,需要进行调整和优化。
7.结果解释和应用:根据求解得到的结果,解释模型的含义和意义,并将模型应用到实际问题中,得出结论和预测。
常微分方程建模方法可以应用于各个领域,如物理学、生物学、工程学、经济学等。
例如,通过建立流体力学方程,可以研究流体的流动和扩散过程;通过建立生态学方程,可以研究生物种群的数量和分布变化;通过建立经济学方程,可以研究经济增长和波动。
总之,常微分方程建模方法是将实际问题抽象成数学模型的过程,通过求解微分方程来揭示问题的本质和规律。
建模过程需要充分理解问题的背景和特征,合理选择合适的数学工具和求解方法,最终得到有实际应用价值的结论和预测。
数学建模之欧拉算法(求解常微分⽅程)⽬录数学建模之求解常微分算法常微分⽅程欧拉算法定义定义:在数学和计算机科学中,欧拉⽅法,命名⾃它的发明者莱昂哈德·欧拉,是⼀种⼀阶数值⽅法,⽤以对给定初值的常微分⽅程(即初值问题)求解。
它是⼀种解决数值常微分⽅程的最基本的⼀类显型⽅法(Explicit method )。
欧拉法是常微分⽅程的数值解法的⼀种,其基本思想是迭代。
其中分为前进的EULER 法、后退的EULER 法、改进的EULER 法。
所谓迭代,就是逐次替代,最后求出所要求的解,并达到⼀定的精度。
误差可以很容易地计算出来。
⾮线性⽅程都是所谓“解不出来”的,即使是d yd x =y 2+x 2。
对于⽤微分⽅程解决实际问题来说,数值解法是⼀个重要的⼿段。
公式推导设微分⽅程为d y d x =f (x n ,y (x n )),a ≤x ≤b y (a )=y 0差商近似导数若⽤向前差商y (x n +1)−y (x n )h 代替y ′(x n )带⼊微分⽅程d y d x =f (x n ,y (x n ))中,可得y (x n +1)−y (x n )h ≈f (x n ,y (x n ))y (x n +1)=y (x n )+hf (x n ,y (x n ))如果⽤y (x n )的近似值y n 代⼊上式右端,所得结果作为y (x n +1)得近似值,记为y n +1,则有y n +1=y n +hf (x n ,y n ),n =0,1,⋯,N −1这样,微分⽅程的近似解可以通过求解下述式⼦来获得y n +1=y n +hf (x n ,y n ),n =0,1,⋯,N −1y 0=y (a )算法缺点欧拉算法简单地取切线地端点作为起点来计算,当步数增多时,误差会因积累⽽越来越⼤。
因此,欧拉算法⼀般不⽤于实际计算。
{{Processing math: 100%。
第二章 微分方程方法在应用数学方法解决实际问题的过程中,很多时候,要直接导出变量之间的函数关系较为困难,但要导出包含未知函数的导数或微分的关系式却较为容易,在这种情况下,就需要我们建立微分方程模型来研究。
事实上,微分方程是研究函数变化规律的有力工具,在物理、工程技术、经济管理、军事、社会、生态、环境、人口、交通等各个领域中有着广泛的应用.下面我们就介绍如何应用微分方程模型来解决实际问题.利用微分方程解决的问题通常可以分为两类:一类问题要求把未知变量直接表示为已知量的函数,这时,有些问题可以求出未知函数的解析表达式,在很多情况下只能利用数值解法;另一类问题只要求知道未知函数的某些性质,或它的变化趋势,这时可以直接根据微分方程定性理论来研究.2.1 微分方程的一般理论2.1.1微分方程简介所谓微分方程就是表示未知函数、未知函数的导数与自变量之间的关系的方程.若未知函数是一元函数的微分方程, 叫常微分方程.而未知函数是多元函数的微分方程, 叫偏微分方程. 例如()x y y y y y 2sin 5'12''10'''44=+-+- (2.1.1) 2''12'50x y xy y -+=(2.1.2) 2(')0y xy +=(2.1.3) 2'''0y y xy +=(2.1.4) 01)(=+n y(2.1.5) 2t xx u a u =(2.1.6) 其中,方程(2.1.6)是偏微分方程,其他都是常微分方程.微分方程中所出现的未知函数的最高阶导数的阶数, 叫微分方程的阶.例如,方程(2.1.1)是四阶微分方程,(2.1.3)是一阶微分方程.一般n 阶微分方程具有形式F (x , y , y ', ⋅ ⋅ ⋅ , y (n ) )=0或y(n)=f(x,y,y',⋅⋅⋅,y(n-1) ) .必须指出,)(n y是必须出现的,而)1(,yxΛ等变量则可以不出现,yy,',,-n如方程(2.1.5).若F(x,y,y',⋅⋅⋅,y(n) )是关于y及其各阶导数的线性函数,则称此方程是线性的,否则,称为非线性的.例如,方程(2.1.1)、(2.1.2)是线性微分方程,方程(2.1.3)是非线性微分方程.线性微分方程可以分为常系数和变系数两大类,常系数线性微分方程中未知函数及其导数的系数均为常数,而变系数线性微分方程中未知函数及其导数的系数不完全是常数.例如,方程(2.1.1)、(2.1.5)是常系数线性微分方程,而方程(2.1.2)是变系数线性微分方程.满足微分方程的函数(也就是,把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解.确切地说,设函数y=ϕ(x)在区间I 上有n阶连续导数,如果在区间I上,F[x,ϕ(x),ϕ'(x),⋅⋅⋅,ϕ(n) (x)]=0,那么函数y=ϕ(x)就叫做微分方程F(x,y,y',⋅⋅⋅,y(n) )=0在区间I上的解.如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解.若以显函数形式给出的解,称为显式解,以隐函数形式给出的解,就称为隐式解.为了确定微分方程的一个特定的解,我们通常给出这个解所必须满足的条件,这就是所谓的定解条件。
第二章 微分方程方法在应用数学方法解决实际问题的过程中,很多时候,要直接导出变量之间的函数关系较为困难,但要导出包含未知函数的导数或微分的关系式却较为容易,在这种情况下,就需要我们建立微分方程模型来研究。
事实上,微分方程是研究函数变化规律的有力工具,在物理、工程技术、经济管理、军事、社会、生态、环境、人口、交通等各个领域中有着广泛的应用.下面我们就介绍如何应用微分方程模型来解决实际问题.利用微分方程解决的问题通常可以分为两类:一类问题要求把未知变量直接表示为已知量的函数,这时,有些问题可以求出未知函数的解析表达式,在很多情况下只能利用数值解法;另一类问题只要求知道未知函数的某些性质,或它的变化趋势,这时可以直接根据微分方程定性理论来研究.2.1 微分方程的一般理论2.1.1微分方程简介所谓微分方程就是表示未知函数、未知函数的导数与自变量之间的关系的方程.若未知函数是一元函数的微分方程, 叫常微分方程.而未知函数是多元函数的微分方程, 叫偏微分方程. 例如()x y y y y y 2sin 5'12''10'''44=+-+- (2.1.1) 2''12'50x y xy y -+=(2.1.2) 2(')0y xy +=(2.1.3) 2'''0y y xy +=(2.1.4) 01)(=+n y(2.1.5) 2t xx u a u =(2.1.6) 其中,方程(2.1.6)是偏微分方程,其他都是常微分方程.微分方程中所出现的未知函数的最高阶导数的阶数, 叫微分方程的阶.例如,方程(2.1.1)是四阶微分方程,(2.1.3)是一阶微分方程.一般n 阶微分方程具有形式F (x , y , y ', ⋅ ⋅ ⋅ , y (n ) )=0或y(n)=f(x,y,y',⋅⋅⋅,y(n-1) ) .必须指出,)(n y是必须出现的,而)1(,yxΛ等变量则可以不出现,yy,',,-n如方程(2.1.5).若F(x,y,y',⋅⋅⋅,y(n) )是关于y及其各阶导数的线性函数,则称此方程是线性的,否则,称为非线性的.例如,方程(2.1.1)、(2.1.2)是线性微分方程,方程(2.1.3)是非线性微分方程.线性微分方程可以分为常系数和变系数两大类,常系数线性微分方程中未知函数及其导数的系数均为常数,而变系数线性微分方程中未知函数及其导数的系数不完全是常数.例如,方程(2.1.1)、(2.1.5)是常系数线性微分方程,而方程(2.1.2)是变系数线性微分方程.满足微分方程的函数(也就是,把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解.确切地说,设函数y=ϕ(x)在区间I 上有n阶连续导数,如果在区间I上,F[x,ϕ(x),ϕ'(x),⋅⋅⋅,ϕ(n) (x)]=0,那么函数y=ϕ(x)就叫做微分方程F(x,y,y',⋅⋅⋅,y(n) )=0在区间I上的解.如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解.若以显函数形式给出的解,称为显式解,以隐函数形式给出的解,就称为隐式解.为了确定微分方程的一个特定的解,我们通常给出这个解所必须满足的条件,这就是所谓的定解条件。
常见的定解条件是初始条件。
用于确定通解中任意常数的条件,称为初始条件.如x=x0 时,y=y0 ,y'= y'0 .一般写成00y y x x ==, 00y y x x '='=. 求微分方程满足初始条件的特解这样一个问题,叫做微分方程的初值问题,例如求微分方程y '=f (x , y )满足初始条件00y y x x ==的解的问题, 记为⎩⎨⎧=='=00),(y y y x f y x x . 微分方程的解的图形是一条曲线, 叫做微分方程的积分曲线.2.1.2微分方程初值问题的适定性在实际问题中,由于自然界本身就给出了问题唯一的答案,所以一个初值问题提得是否符合实际情况,从数学角度来看,可以从三个方面加以检验:(1)解的存在性,即初值问题是否有解?(2)解的唯一性,即初值问题的解是否只有一个?(3)解的稳定性,即当初值条件有微小变动时,解相应的只有微小的变动.一个初值问题的解如果满足存在性、唯一性和稳定性,则称此初值问题是适定的.微分方程的初值问题解的适定性具有重要的实际意义.微分方程模型通常是用来描述确定性的模型的.对于一个由实际问题所建立的微分方程模型,如果其初值问题的解不存在,或解不唯一,这样的模型本身就是不合理的,是没有实际意义的.因为在一定的条件下实际问题到最后总会有确定的结果,这反映在模型上,就是定解问题有唯一解.而解的稳定性更是具有重要的实际应用背景.由于由实际问题导出初值问题时,总要经过一些简化、近似的过程以及一些附加的假设,并且在测量初始条件的值和测量方程中各项系数(或参数)等的值时,不可避免地会出现测量误差,从而致使我们得到的微分方程模型,通常只能是近似地描述所讨论的实际问题,难免存在误差.当测量的数据出现微小的误差时,相应模型的“解”是否也只有微小的误差?如果回答是肯定的,我们就说这个模型的解(在某种意义下)是稳定的,否则,就说这个模型的解是不稳定的.显然,只有“稳定的”解才具有可靠性,只有“稳定的”解才会有使用价值.相反,“不稳定的”解是不会有任何使用价值的.因为初值、参数等的微小误差或干扰将导致“差之毫厘,谬以千里”的严重后果.同时,稳定性也是计算机利用数值方法求解的前提和保证.2.2 微分方程的平衡点及稳定性一个微分方程即使存在解,也有可能解不出.事实上,我们在学习高等数学的时候就知道,能用初等的方法求出解的微分方程只是极少数.更多的情况下,是没有初等解法的,这一事实为法国数学家刘维尔(Liouville)在1841年所证明.如果一个微分方程的解不是一个初等函数,由于我们不能将方程的解函数像初等函数一样地将它表示出来,也就可能出现方程解不出的情况.既然初等积分法有着不可克服的局限性,那么是否可以不求微分方程的解,而是从微分方程本身来推断其解的性质呢?定性理论和稳定性理论正是在这种背景下发展起来的.前者由法国数学家庞加莱(Poincaré,1854-1912)在19世纪80年代所创立,后者由俄国数学家李雅普罗夫(Liapunov,1857-1918)在同年代所创立.它们共同的特点就是在不求出方程的解的情况下,直接根据微分方程本身的结构和特点,来研究其解的性质.由于这种方法的有效性,近一百多年以来它们已经成为常微分方程发展的主流,并且在实际中有大量的应用.比如,在研究许多实际问题时,其变量的变化率仅与平衡状态有关而与时间并无直接的联系,或者人们最为关心的并非系统与时间有关的变化状态,而是系统最终(时间充分大之后)的发展趋势.例如,在研究某频危种群时,虽然我们也想了解它当前或今后的数量,但我们更为关心的却是它最终是否会绝灭,用什么办法可以拯救这一种群,使之免于绝种等等问题.要解决这类问题,就需要用到微分方程或微分方程组的稳定性理论.本节对定性理论和稳定性理论的一些基本概念和基本方法作一简单介绍.2.2.1一阶方程的平衡点及稳定性函数的变化率只和函数本身有关而与自变量无关的微分方程或微分方程组被称为自治系统,也称为动力系统. 通常,一阶微分方程可写成),(x t f dtdx =,而自治系统则可写成)(x f dtdx =,即右端不显含自变量t . 方程()0f x =的实根0x x =称为自治系统)(x f dtdx =的平衡点(或奇点).显然,根据平衡点的定义,0x x =也是自治系统的一个解(奇解),即微分方程不变化的解,也就是常数解.如果对任意给定的0>ε,存在0>δ(δ一般与ε和0t 有关),使得只要初始条件0()x t 满足00()x t x δ-<时,自治系统()dx f x dt=的解)(t x 均满足0()x t x ε-<(对所有的0t t ≥) 则称自治系统()dx f x dt=的平衡点0x 是(在李雅普洛夫意义下)稳定的. 如果自治系统()dx f x dt=的平衡点0x 稳定,且存在这样的00>δ使当000()x t x δδ-<≤时,自治系统的解()x t 都满足0lim ()t x t x →∞= 则称平衡点0x 是(在李雅普洛夫意义下)渐近稳定的;否则,称0x 是不稳定的.特别的,如果从所有可能的初始条件出发,都是是渐近稳定的,则称平衡点0x 是全局渐近稳定的.我们在这里讨论的稳定性都是指渐近稳定性.判断平衡点0x 是否稳定通常有两种方法:(1)间接法:求出自治系统)(x f dtdx =的解()x t ,利用上述稳定性的定义判断;(2)直接法:不求自治系统)(x f dt dx =的解()x t ,按线性近似判定稳定性,即利用()f x 在0x x =处的泰勒展开式,只取一次项,0()'()()f x f x x x ≈-,则方程)(x f dtdx =近似为: 00'()()dx f x x x dt=- (2.2.1) 方程(2.2.1)称为方程)(x f dtdx =的近似线性方程.显然,0x x =也是近似线性方程(2.2.1)的平衡点.因为方程(2.2.1)的通解为0'()0()f x t x t ce x =+ (2.2.2)其中c 是由初始条件决定的常数.由稳定性的定义很容易证明:若0'()0f x <,则0x 是方程(2.2.1)的稳定的平衡点;若0'()0f x >,则0x 是方程(2.2.1)的不稳定的平衡点.同样,根据李雅普洛夫理论,对于自治系统)(x f dtdx =,若0'()0f x <,则0x 是稳定的平衡点;若0'()0f x >,则0x 是不稳定的平衡点.例2.2.1 讨论微分方程2dy y y dt=-的平衡点稳定性. 解 I 间接法:易知,方程2()0f y y y =-=有两个常数解1()0y t =和2()1y t =这也是原微分方程的两个平衡点.当0≠y 和1y ≠时,原方程可写成(1)dy dt y y =- 解得ln ||ln |1|y y t c --=-+即原方程的通解为11ty ce =- 若有初始条件00(0)(0,1)y y y =≠,求得 011c y =-, 那么所给初值问题的解是01111ty e y =⎛⎫-- ⎪⎝⎭易知01lim ()lim 0111t t ty t e y →∞→∞==⎛⎫-- ⎪⎝⎭根据稳定性定义,0=x 是稳定的平衡点,1x =是不稳定的平衡点.II 直接法:由于'()21f y y =-'(0)10f =-<,'(1)10f =>,从而,0=x 是稳定的平衡点,1x =是不稳定的平衡点.在微分方程模型中,微分方程解的这种特性对许多实际问题的讨论是非常重要的.例如,研究对象为某温度控制系统.我们有一个理想温度x 和一个实际温度y ,x 和y 都是时间t 的函数,而x ,y 满足某个微分方程,假如我们能够设定一个控制器,使得x 和y 的关系更接近我们的需求,那么保证这个控制器稳定就是一个非常重要的前提.我们以空调为例,假设室内温度为y ,空调的设定温度为x ,x 和y 都是时间t 的函数,并且满足某个微分方程,现在我们要控制空调的制冷和加热系统,让y 在更短的时间内更快的接近x 或者空调最节能,首先就要保证这个控制系统稳定.特别是对于这种带时滞的系统,不稳定的情形往往是这样:假如室内温度是32度,设定温度是26度,模型不稳定的话有可能会过制冷一直到23度,然后又会加热到30度,接着又制冷到23度,再加热到30度,无限工作下去,这就是临界稳定,甚至在绝对不稳定的情况下,温度波动会离26度的平衡位置越来越远.2.2.2二阶(平面)方程的平衡点和稳定性二阶方程的一般形式可用两个一阶方程表示为112212()(,)()(,)dx t f x x dt dx t g x x dt⎧=⎪⎪⎨⎪=⎪⎩ (2.2.3) 右端不显含t ,这也是一个自治系统.方程组1212(,)0(,)0f x x g x x =⎧⎨=⎩ (2.2.4) 的实根0012(,)x x 称为自治系统(2.2.4)的平衡点.记为00012(,)P x x .如果从所有可能的初始条件出发,自治系统(2.2.4)的解12(),()x t x t 都满足101lim ()t x t x →∞=, 202lim ()t x t x →∞= (2.2.5) 则称平衡点00012(,)P x x 是稳定的(渐近稳定的);否则,称0P 是不稳定的.我们仍然用直接法讨论自治系统(2.2.4)的平衡点的稳定性,先做线性近似.考虑线性常系数方程11111222211222()()dx t a x a x dt dx t a x a x dt⎧=+⎪⎪⎨⎪=+⎪⎩ (2.2.6) 系数矩阵记为11122122a a A a a ⎡⎤=⎢⎥⎣⎦并假定det()0A ≠,则原点0(0,0)P 是方程组(2.2.6)的唯一平衡点,它的稳定性由特征方程det()0I A λ-=的根λ(A 的特征根)决定,特征方程det()0I A λ-=可以改写成下列形式:211220()det()p q p a a q A λλ⎧++=⎪=-+⎨⎪=⎩则特征根1,21(2p λ=- 方程组(2.2.6)的解一般形式为1212t t c e c e λλ+(12λλ≠)或112()t c c t e λ+(12λλ=),其中12,c c 为任意实数.由平衡点稳定性的定义式(2.2.5)可知,当12,λλ全为负数或有负实部时,0(0,0)P 是稳定的平衡点,反之,当12,λλ有一个为正数或有正实部时,0(0,0)P 是不稳定的平衡点.微分方程稳定性理论将平衡点分为结点、焦点、鞍点、中心等类型,完全由特征根12,λλ或相应的,p q 取值决定,表1简明地给出了这些结果.由表1可以看出,根据特征方程的系数,p q 的正负很容易判断平衡点的稳定性,准则如下:若0,0p q >>,则平衡点稳定;若0p <0q <或,则平衡点不稳定.以上是对线性方程组(2.2.6)的平衡点0(0,0)P 稳定性的结论,根据李雅普洛夫理论,对于一般的非线性自治系统(2.2.4),可以用近似线性方程来判断其平衡点00012(,)P x x 的稳定性,即 1212000000112111222000000212111222()(,)()(,)()()(,)()(,)()x x x x dx t f x x x x f x x x x dt dx t g x x x x g x x x x dt⎧=-+-⎪⎪⎨⎪=-+-⎪⎩ (2.2.7) 系数矩阵120012012(,)x x x x P x x f f A g g ⎡⎤=⎢⎥⎢⎥⎣⎦ 特征方程系数为0012012(,)()x x P x x p f g =-+∣,det()q A = 显然,00012(,)P x x 点对于方程(2.2.7)的稳定性可以由表1或特征方程的系数,p q 的正负判定,同样方法可以判定00012(,)P x x 是否自治系统(2.2.3)的稳定点.2.3 微分方程模型建立微分方程模型,一般有三种方法.一是应用已知规律直接列方程建模 在数学、力学、物理、化学等学科中已有许多经过实践检验的规律和定律,如牛顿运动定律、曲线的切线的性质等,这些都涉及到某些函数的变化率.由于本身就是微分方程形式,我们就可以根据相应的规律直接列出方程,从而建立数学模型.二是用微元法建模. 用微元法建立常微分方程模型,实际上是寻求微元之间的关系式.在建立这些关系式时也要用到已知的规律和定理.与第一种方法不同之处在于,这里不是直接对未知函数及其导数应用规律和定理来求关系式,而是对某些微元来应用规律,从而建立相关模型.三是用模拟近似法建模. 在社会科学、生物学、医学、经济学等学科的实践中,常常要用模拟近似法来建立微分方程模型.在这些领域中的一些现象的规律性我们还不是很清楚,即使有所了解也通常极其复杂,因此,在实际应用中,总要经过一些简化、近似的过程,并在不同的假设下建立微分方程,从数学上求解或分析解的性质,再同实际情况作对比,观察这个模型能否模拟、近似某些实际的现象.这三种方法中,我们在学习微分方程时做的应用题就属于第一种,这种方法相对比较简单,在这里,我们主要介绍用后两种方法来建微分方程模型.在实际的微分方程建模过程中,往往都是上述三种方法的综合应用。