2019-2020学年高中数学 第三章 概率 3.3 几何概型(2)学案新人教A版必修3.doc
- 格式:doc
- 大小:111.50 KB
- 文档页数:3
2019-2020年高中数学 3.3.2 几何概型(二)教案苏教版必修3总课题概率总课时第25课时分课题几何概型(二)分课时第 2 课时教学目标了解几何概型的基本特点;会进行简单的几何概率计算;了解随机数的意义,能运用模拟的方法估计概率.重点难点几何概型的概率的求法.引入新课1.什么叫几何概型?其特点如何?2.几何概型的常见类型有几种?例题剖析例1 在等腰直角三角形中,在斜边上任取一点,求小于的概率.例2 如图,在圆心角为的扇形中,以圆心为起点作射线.(1)求使得小于的概率;(2)求使得和都不小于的概率.利用随机模拟方法计算曲线和所围成的图形的面积.AB OB例3巩固练习1.已知等腰中,.(1)在直角边上任取一点,求的概率;(2)在内作射线,求的概率.2.在正方体中,棱长为.在正方体内随机取点,求使四棱锥的体积小于的概率.课堂小结几何概型的基本特点;几何概型的概率的求法.课后训练班级:高二()班姓名:____________ 一基础题1.已知直线,,则直线在轴上的截距大于的概率是________.2.已知实数,可以在,的条件下随机取数,那么取出的数对满足的概率是__________.3.如图,在直角坐标系内,射线落在的终边上,任作一条射线,求射线落在内的概率.4.两根相距的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于的概率.二提高题5.如图,在一个边长为的正方形内部画一个边长为的正方形,向大正方形内随机投点,求所投的点落入小正方形内的概率.xA TO2cm三能力题6.向如图所示的正方形椭机地投掷飞镖(假设所有飞镖都一定能投掷在正方形范围内),求飞镖落在阴影部分的概率.2019-2020年高中数学 3.3.2 函数的极值与导数教案新人教A版选修1-1●三维目标1.知识与技能了解函数极值的概念,会从几何直观理解函数的极值与其导数的关系,并会灵活应用;了解可导函数在某点取得极值的必要条件和充分条件.2.过程与方法通过对具体问题的观察、分析来增强学生数形结合的思维意识,提高学生运用导数的基本思想去分析和解决实际问题的能力,及灵活运用类比、归纳、化归等数学方法的能力.3.情感、态度与价值观通过设立问题情境,激发学生的学习动机和好奇心理,使其主动参与交流活动.通过对问题的提出、思考、解决培养学生自信、自立、自强的优良心理品质.通过教师对例题的讲解培养学生良好的学习习惯及科学的学习态度.●重点、难点重点:函数的极值的判断方法及求函数极值的步骤.难点:函数在某点取得极值必要条件和充分条件.观察图象特征、自主探究、小组合作总结归纳出求极值方法步骤,并了解极值存在的充分条件和必要条件,从而突破重点、难点.(教师用书独具)●教学建议本节课力在突出“以学生为主体”的教学理念.以问题探究为主要形式,依照学生的认知规律,采用自主学习与合作探究相结合的模式.教师在整堂课中引导着学生探索出函数的极值与导数的关系.对于检验学生学习的效果,采用问题和练习的形式给予检查和纠正.本着“学生是教学活动出发点,也是教学活动的落脚点”的教学思想,在整个教学活动中,不断激发学生的学习兴趣,让学生真正的参与到知识的成长过程.主要从以下几个方面对学生进行指导:(1)引导学生观察图象,产生认知冲突.极值好像是最值,又不是最值.(2)激发探究欲望.学生产生疑问之后,指导学生思考怎样解决问题,培养学生的分析和解决问题的能力.(3)指导学生合作探究,小组讨论并得出结论.●教学流程创设问题情境,引出问题:在x =a b 点附近,函数值有何特点?⇒引导学生结合给出图象,观察、比较、分析,导出问题答案,给出极值概念.⇒通过引导学生回答所提问题,理解极大值与极小值大小的辩证关系.⇒通过例1及其变式训练,使学生掌握求函数极值的步骤和方法.⇒通过例2及其变式训练,使学生掌握已知函数的极值求参数的方法.⇒通过例3及其变式训练,理解极值的含义,并学会通过极值解决综合问题.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.(对应学生用书第58页)函数y =f (x )的图象如图所示.1.函数在x =a 点的函数值与这点附近的函数值有什么大小关系?【提示】 函数在点x =a 的函数值比它在点x =a 附近的其他点的函数值都小 . 2.f ′(a )为多少?在点x =a 附近,函数的导数的符号有什么规律? 【提示】 f ′(a )=0,在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0. 3.函数在x =b 点处的情况呢?【提示】 函数在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0,且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0.1.极小值点与极小值函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0.则把点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.2.极大值点与极大值函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0;而且在点x =b 的左侧f ′(x )>0,右侧f ′(x )<0.则把点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.极大值点、极小值点统称为极值点,极大值和极小值统称为极值.【问题导思】函数的极大值一定大于极小值吗?【提示】 不一定,极值刻画的是函数的局部性质,反映了函数在某一点附近的大小情况,极大值可能比极小值还小.(对应学生用书第58页)(1)f (x )=13x 3-x 2-3x +3;(2)f (x )=3x+3ln x .【思路探究】 原函数――→求导导函数―→f x =0的点x 0――→判断两侧符号极值【自主解答】 (1)f ′(x )=x 2-2x -3.令f ′(x )=0,得x 1=3,x 2=-1,如下表所示:∴f (x )极大值=3,f (x )极小值=-6.(2)函数f (x )=3x+3ln x 的定义域为(0,+∞),f ′(x )=-3x 2+3x=x -x 2,令f ′(x )=0得x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:因此当x =11.求函数的极值首先要求函数的定义域,然后求f ′(x )=0的实数根,当实数根较多时,要充分利用表格,使极值点的确定一目了然.2.函数极值和极值点的求解步骤: ①确定函数的定义域; ②求方程f ′(x )=0的根;③用方程f ′(x )=0的根顺次将函数的定义域分成若干个小开区间,并列成表格; ④由f ′(x )在方程f ′(x )=0的根左右的符号,来判断f (x )在这个根处取极值的情况.求函数y =2x +8x的极值.【解】 函数的定义域为(-∞,0)∪(0,+∞).y ′=2-8x2,令y ′=0,得x =±2.当x 变化时,y ′、y 的变化情况如下表:极大值当x =2时,y 极小值=8.已知f (x )=x 3+ax 2+bx +c 在x =1与x =-3时都取得极值,且f (-1)=32,求a 、b 、c 的值.【思路探究】 (1)函数在x =1和x =-23时都取得极值,说明f ′(1)与f ′(-32)的结果怎样?(2)你能由已知条件列出方程组求解a 、b 、c 吗?【自主解答】 f ′(x )=3x 2+2ax +b ,令f ′(x )=0,由题设知x =1与x =-23为f ′(x )=0的解.∴⎩⎪⎨⎪⎧1-23=-23a ,-23=b3.解得a =-12,b =-2.∴f ′(x )=3x 2-x -2.当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表知,函数在x =1与-3处取得极值.∴a =-12,b =-2.∴f (x )=x 3-12x 2-2x +c ,由f (-1)=-1-12+2+c =32,得c =1.已知函数的极值情况,逆向应用来确定参数或求解析式时应注意两点: (1)常根据极值点处导数为0和极值两条件列出方程组,用待定系数法求解. (2)因为导数值为0不一定此点就是极值点,故利用上述方程组解出的解必须验证.已知f (x )=x 3+3ax 2+bx +a 2在x =-1和x =3处有极值,求a 、b 的值. 【解】 由f (x )=x 3+3ax 2+bx +a 2,得f ′(x )=3x 2+6ax +b . 又f (x )在x =-1和x =3处有极值, ∴f ′(-1)=3+b -6a =0,①f ′(3)=27+18a +b =0.②联立①②,得⎩⎪⎨⎪⎧a =-1,b =-9.∴f ′(x )=3x 2-6x -9=3(x +1)(x -3). 当x 变化时,f ′(x )、f (x )的变化情况如下:∴a =-1,b =-9符合题意.y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.【思路探究】 (1)能否由已知条件求出a 值,确定f (x )?(2)直线y =m 与y =f (x )的图象有三个不同交点的含义是什么?如何用数形结合求出m 的范围?【自主解答】 ∵f (x )在x =-1处取得极值, ∴f ′(-1)=3×(-1)2-3a =0,∴a =1. ∴f (x )=x 3-3x -1,f ′(x )=3x 2-3,由f′(x)=0解得x1=-1,x2=1.当x<-1时,f′(x)>0;当-1<x<1时,f′(x)<0;当x>1时,f′(x)>0.∴由f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.∵直线y=m与函数y=f(x)的图象有三个不同的交点,又f(-3)=-19<-3,f(3)=17>1,结合f(x)的单调性可知,m的取值范围是(-3,1).1.解答本题的关键是运用数形结合的思想将函数的图象与其极值建立起关系.2.极值问题的综合应用主要涉及到极值的正用与逆用,以及与单调性问题的综合,题目着重考查已知与未知的转化,以及函数与方程的思想、分类讨论的思想在解题中的应用.在解题过程中,熟练掌握单调区间问题以及极值问题的基本解题策略是解决综合问题的关键.已知a为实数,函数f(x)=-x3+3x+a.(1)求函数f(x)的极值,并画出其图象(草图);(2)当a为何值时,方程f(x)=0恰好有两个实数根?【解】(1)由f(x)=-x3+3x+a,得f′(x)=-3x2+3,令f′(x)=0,得x=1或x=-1.当x变化时,f′(x),f(x)的变化情况如下表:极大值为f(1)=a+2.由单调性、极值可画出函数f(x)的大致图象,如图所示,这里,极大值a+2大于极小值a-2.(2)结合图象,当极大值a+2=0时,有极小值小于0,此时曲线f(x)与x轴恰有两个交点,即方程f(x)=0恰有两个实数根,所以a=-2满足条件;当极小值a-2=0时,有极大值大于0,此时曲线f(x)与x轴恰有两个交点,即方程f(x)=0恰好有两个实数根,所以a=2满足条件.综上,当a=±2时,方程恰有两个实数根.(对应学生用书第60页)因未验根而致误已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,求常数a 、b 的值. 【错解】 因为f (x )在x =-1时有极值0且f ′(x )=3x 2+6ax +b , 所以⎩⎪⎨⎪⎧f -=0,f-=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0,解得⎩⎪⎨⎪⎧a =1,b =3,或⎩⎪⎨⎪⎧a =2,b =9.【错因分析】 解出a ,b 值后,未验证x =-1两侧函数的单调性而导致产生增根致误. 【防范措施】 可导函数在x 0处的导数为0是该函数在x 0处取得极值的必要不充分条件,而并非充要条件,故由f ′(x )=0而求出的参数需要检验,以免出错.【正解】 因为f (x )在x =-1时有极值0,且f ′(x )=3x 2+6ax +b .∴⎩⎪⎨⎪⎧f=0,f -=0,即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0,解得⎩⎪⎨⎪⎧a =1,b =3,或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0,所以f (x )在R 上为增函数,无极值,故舍去. 当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3).当x ∈(-∞,-3)时,f (x )为增函数; 当x ∈(-3,-1)时,f (x )为减函数; 当x ∈(-1,+∞)时,f (x )为增函数. 所以f (x )在x =-1时取得极小值, 因此a =2,b =9.1.极值是一个局部概念.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个定义域内是最大或最小.极值是不唯一的,极大值与极小值之间也无确定的大小关系.2.极大值点可以看成是函数的单调递增区间与单调递减区间的分界点,极小值点可以看成是函数的单调递减区间与单调递增区间的分界点.3.可导函数f(x)求极值的一般步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干个小开区间,并列成表格;(4)检查f′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值.(对应学生用书第60页)1.下列说法正确的是( )A .函数在闭区间上的极大值一定比极小值大B .函数在闭区间上的极大值一定比极小值小C .函数f (x )=|x |只有一个极小值D .函数y =f (x )在区间(a ,b )上一定存在极值【解析】 函数的极大值与极小值之间无确定的大小关系,单调函数在区间(a ,b )上没有极值,故A 、B 、D 错误,C 正确,函数f (x )=|x |只有一个极小值为0.【答案】 C2.函数f (x )的定义域为区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图3-3-5所示,则函数f (x )在(a ,b )内的极小值的个数为( )图3-3-5A .1B .2C .3D .4【解析】 在(a ,b )内,f ′(x )=0的点有A 、B 、O 、C .要为函数的极小值点,则在该点处的左、右两侧导函数的符号满足左负右正,只有点B 符合.【答案】 A3.函数y =f (x )是定义在R 上的可导函数,则f ′(x 0)=0是x 0为函数y =f (x )的极值点的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 f ′(x 0)=0⇒/ y =f (x )在x 0处有极值,但y =f (x )在x 0处有极值⇒f ′(x 0)=0,应选B.【答案】 B4.求函数y =x +1x的极值.【解】 y ′=1-1x 2=x 2-1x2,令y ′=0解得x =±1,而原函数的定义域为{x |x ≠0},∴当x变化时,y′,y的变化情况如下表:极大值极小值2.(对应学生用书第111页)一、选择题1.已知函数f(x),x∈R,有唯一极值,且当x=1时,f(x)存在极小值,则( ) A.当x∈(-∞,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0B.当x∈(-∞,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)>0C.当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0D.当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)<0【解析】f(x)在x=1时存在极小值,则当x<1时,f′(x)<0,当x>1时,f′(x)>0,应选C.【答案】 C图3-3-62.(xx·青岛高二检测)已知函数f(x)=ax3+bx2+c,其导函数f′(x)的图象如图3-3-6所示,则函数f(x)的极小值是( )A.a+b+c B.3a+4b+cC.3a+2b D.c【解析】由f′(x)的图象可知,当x=0时,函数取得极小值,f(x)极小值=c.【答案】 D3.函数f(x)=x3-3x2+3x( )A.x=1时,取得极大值B .x =1时,取得极小值C .x =-1时,取得极大值D .无极值点【解析】 f ′(x )=3x 2-6x +3=3(x -1)2≥0恒成立. ∴f (x )在(-∞,+∞)上是增函数,f (x )无极值. 【答案】 D4.(xx·临沂高二检测)已知函数f (x )=x 3+ax 2+3x +5在x =-3时取得极值,则a =( )A .2B .3C .4D .5【解析】 f ′(x )=3x 2+2ax +3,由题意:f ′(-3)=27-6a +3=0 ∴a =5.应选D. 【答案】 D5.如图3-3-7所示是函数f (x )=x 3+bx 2+cx +d 的大致图象,则x 21+x 22等于( )图3-3-7A.23B.43C.83D.123【解析】 函数f (x )=x 3+bx 2+cx +d 图象过点(0,0),(1,0),(2,0),得d =0,b +c +1=0,4b +2c +8=0,则b =-3,c =2,f ′(x )=3x 2+2bx +c =3x 2-6x +2,且x 1,x 2是函数f (x )=x 3+bx 2+cx +d 的两个极值点,即x 1,x 2是方程3x 2-6x +2=0的实根,x 21+x 22=(x 1+x 2)2-2x 1x 2=4-43=83.【答案】 C 二、填空题6.若函数y =-x 3+6x 2+m 的极大值为13,则实数m 等于________. 【解析】 y ′=-3x 2+12x =-3x (x -4). 令y ′=0得x 1=0,x 2=4. 列表可知y 极大=f (4)=32+m =13. ∴m =-19. 【答案】 -197.若f (x )=x 3+3ax 2+3(a +2)x +1有极大值和极小值,则a 的取值范围是________. 【解析】 f ′(x )=3x 2+6ax +3(a +2), 由题意f ′(x )=0有两个不等的实根,故Δ=(6a )2-4×3×3(a +2)>0,解之得a >2或a <-1. 【答案】 (-∞,-1)∪(2,+∞)8.(xx·昆明高二检测)如果函数y =f (x )的导函数的图象如图3-3-8所示,给出下列判断:图3-3-8(1)函数y =f (x )在区间(-3,-12)内单调递增;(2)函数y =f (x )在区间(-12,3)内单调递减;(3)函数y =f (x )在区间(4,5)内单调递增; (4)当x =2时,函数y =f (x )有极小值; (5)当x =-12时,函数y =f (x )有极大值.则上述判断中正确的是________. 【解析】 由导函数的图象知:当x ∈(-∞,-2)时,f ′(x )<0,f (x )单调递减; 当x ∈(-2,2)时,f ′(x )>0,f (x )单调递增; 当x ∈(2,4)时,f ′(x )<0,f (x )单调递减; 当x ∈(4,+∞)时,f ′(x )>0,f (x )单调递增; 在x =-2时,f (x )取极小值; 在x =2时,f (x )取极大值; 在x =4时,f (x )取极小值; 所以只有(3)正确. 【答案】 (3) 三、解答题9.求下列函数的极值. (1)f (x )=x 3-12x ;(2)f (x )=2xx 2+1-2. 【解】 (1)函数f (x )的定义域为R .f ′(x )=3x 2-12=3(x +2)(x -2).令f ′(x )=0,得x =-2或x =2.当x 变化时,f ′(x ),f (x )的变化情况如下表:且f (-2)=(-2)3-12×(-2)=16; 当x =2时,函数有极小值, 且f (2)=23-12×2=-16. (2)函数的定义域为R .f ′(x )=x 2+-4x 2x 2+2=-x -x +x 2+2.令f ′(x )=0,得x =-1或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:且f (-1)=-22-2=-3;当x =1时,函数有极大值; 且f (1)=22-2=-1.10.设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点. (1)试确定常数a 和b 的值;(2)判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由. 【解】 (1)因为f (x )=a ln x +bx 2+x , 所以f ′(x )=a x+2bx +1.由极值点的必要条件可知:f ′(1)=f ′(2)=0,即⎩⎪⎨⎪⎧a +2b +1=0,a2+4b +1=0,解方程组得a =-23,b =-16.(2)由(1)知f (x )=-23ln x -16x 2+x (x >0).f ′(x )=-23x -1-13x +1.当x ∈(0,1)时,f ′(x )<0; 当x ∈(1,2)时,f ′(x )>0; 当x ∈(2,+∞)时,f ′(x )<0.故在x =1处函数f (x )取得极小值56,在x =2处函数取得极大值43-23ln 2.所以x =1是函数f (x )的极小值点,x =2是函数f (x )的极大值点. 11.设a 为实数,函数f (x )=x 3-x 2-x +a . (1)求f (x )的极值;(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点? 【解】 (1)f ′(x )=3x 2-2x -1. 令f ′(x )=0,则x =-13或x =1.当x 变化时f ′(x )、f (x )变化情况如下表:所以f (x )的极大值是f ⎝ ⎛⎭⎪⎫-3=27+a ,极小值是f (1)=a -1.(2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1,由此可知x 取足够大的正数时有f (x )>0,x 取足够小的负数时有f (x )<0,所以曲线y =f (x )与x 轴至少有一个交点.因此若y =f (x )与x 轴仅有一个交点,应有527+a <0或a -1>0.所以当a ∈⎝⎛⎭⎪⎫-∞,-527∪(1,+∞)时曲线y =f (x )与x 轴仅有一个交点.(教师用书独具)已知函数f (x )=ax 2+b ln x ,其中ab ≠0,求证:当ab >0时,函数f (x )没有极值点.【证明】 ∵f (x )=ax 2+b ln x (ab ≠0)∴f (x )的定义域为(0,+∞) f ′(x )=2ax +b x =2ax 2+b x当ab >0时,若a >0,b >0,则f ′(x )>0,f (x )在(0,+∞)上是单调递增的;若a <0,b <0,则f ′(x )<0,f (x )在(0,+∞)上是单调递减的.∴当ab >0时,函数f (x )没有极值点.已知函数f (x )=ax 2+b ln x ,其中ab ≠0,求函数有极值时a 、b 满足的条件. 【解】 f (x )的定义域为(0,+∞),f ′(x )=2ax +b x =2ax 2+b x. 若函数f (x )有极值,首先f ′(x )=0,即2ax 2+b =0在(0,+∞)上有根. 因为ab ≠0,x 2=-b 2a,所以当ab <0时, 2ax 2+b =0在(0,+∞)上有根x =-b 2a . 又当a >0,b <0时,f ′(x )在x =-b 2a 两侧的符号是左负右正,此时函数f (x )在x =-b 2a取得极小值; 当a <0,b >0时,f ′(x )在x =-b 2a 两侧的符号是左正右负,此时函数f (x )在x =-b2a 取得极大值.综上,函数f(x)=ax2+b ln x(ab≠0)有极值时,a,b所满足的条件是ab<0.。
2019-2020学年高中数学第三章《概率》3.3几何概型新人教版必修3 一、教材分析教材的地位和作用“几何概型”是继“古典概型”之后的第二类等可能概率模型,在概率论中占有相当重要的地位,是等可能事件的概念从有限向无限的延伸,是为更广泛的满足随机模拟的需要而新增加的内容,这充分体现了数学与实际生活的紧密关系。
《几何概型》共安排2课时,本节课是第1课时,注重概念的建构和公式的应用,为第二课时的几何概型的应用以及体会随机模拟中的统计思想打下基础。
教学重点与难点重点:掌握几何概型的判断及几何概型中概率的计算公式。
难点:在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度。
通过数学建模解决实际问题。
[理论依据]本课是一节概念新授课,因此把掌握几何概型的判断及几何概型中概率的计算公式作为教学重点。
教学难点是在几何概型中把实验的基本事件和随机事件与某一特定的几何区域及其子区域对应,确定适当的几何测度。
此外,学生通过数学建模解决实际问题也较为困难,因此也是本节课的难点。
二、教学目标[知识与技能目标](1)体会几何概型的意义。
(2)了解几何概型的概率计算公式[过程与方法目标]通过古典概型的例子,稍加变化后成为几何概型,从有限个等可能结果推广到无限个等可能结果,让学生经历概念的建构这一过程,感受数学的拓广过程。
通过实际应用,培养学生把实际问题抽象成数学问题的能力,感知用图形解决概率问题的方法。
[情感与态度目标]体会概率在生活中的重要作用,感知生活中的数学,激发提出问题和解决问题的勇气,培养其积极探索的精神。
三、教学方法,教学模式,教学手段本节课采用以引导发现为主的教学方法,以归纳启发式作为教学模式,结合多媒体辅助教学。
四、学法指导通过合作交流,类比联想,归纳化归,总结提升,让学生在学习中学会怎样发现问题、分析问题、解决问题。
(1)了学生的思考范围。
(2)问现将一颗豆子随机地扔在正方形内计算它落在阴影部分的概古典概型几何概型联系区别求解方法基本事件个数的有限性基本事件发生的等可能性基本事件发生的等可能性基本事件个数的无限性与基本事件的位置、形状无关概率为0的事件是不可能事件,概率为1的事件是必然事件概率为0的事件未必是不可能事件,概率为1的事件未必是必然事件nmA P =)(的测度的测度Ω=A A P )(例题1:在棱长为2的正方体ABCD-A1B1C1D1 的棱AB 上任取一点,则点P 到点A 的距离小于等于1的概率为 变式1:在棱长为2的正方体ABCD-A1B1C1D1 的面AA1B1B 上任取一点P ,则点P 到点A 的距离小于等于1的概率为 A辨析:如图所示,正方体容器内倒置一个圆柱形容器,随机向正方体容器内投掷一颗豆子(假设豆子都能落在正方形区域内且豆子面积不计).试问:豆子落入圆锥形容器内的概率是多少?辨析变式:如图所示,正方体容器内倒置一个圆锥形容器,随机例题2:设点P是三角形ABC内部的一点,点运动时,试求S△PBC≤12S△ABC的概率.是关于六、评价分析1、评价教学目标的完成情况本节课创造性的使用教材,揭示矛盾,创设问题的情境,在问题情境中让古典概型自然地向几何概型的过渡,抓住了几何概型与古典概型的几大本质区别,让学生获得新知的同时体会了数学知识的拓广过程。
必修3学案 §3.3.2几何概型(2) ☆学习目标:1. 了解均匀随机数的概念;2. 掌握利用计算器(计算机)产生均匀随机数的方法;3. 会利用均匀随机数解决具体的有关概率的问题.☻知识情境: 1. 基本事件的概念: 一个事件如果 事件,就称作基本事件.基本事件的两个特点:10.任何两个基本事件是 的;20.任何一个事件(除不可能事件)都可以 .2. 古典概型的定义古典概型有两个特征:10.试验中所有可能出现的基本事件 ;20.各基本事件的出现是 ,即它们发生的概率相同.具有这两个特征的概率称为古典概率模型. 简称古典概型.3. 古典概型的概率公式, 设一试验有n 个等可能的基本事件,而事件A 恰包含其中的m 个基本事件,则事件A 的概率P(A)定义为:()P A == .4.几何概型的概念:10.将每个基本事件理解为从某个特定的几何 ,该区域中每一点被取到的机会都一样;20.一个随机事件的发生理解为恰好取到上述区域内的 .用这种方法处理随机试验,称为几何概型.5.几何概型的概率公式:在区域D 中随机地取一点, 记事件A ="该点落在其内部一个区域d 内",则事件A 发生的概率为:()P A == . ☻自我评价:1. (1)在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求:AM 小于AC 的概率.(2) 60AOB ∠=,2OA =,5OB =,在线段OB 上任取一点C ,试求: AOC ∆为钝角三角形的概率.2. 有一个半径为5的圆,现在将一枚半径为1硬币向圆投去,如果不考虑硬币完全落在圆外的情况,试求:硬币完全落入圆内的概率.3. (会面问题)两人相约7点到8点在某地会面, 先到者等候另一人20分钟, 求:两人会面的概率.4. 某路公共汽车5分钟一班准时到达某车站,求:任一人在该车站等车时间少于3分钟的概 率(假定车到来后每人都能上).☆问题探究:用随机模拟的方法估计圆周率的值.在如图的正方形中, 随机地撒一把豆子, 每个豆子落在正方形内 任何一点是等可能的, 落在每个区域的豆子数与这个区域的面积成正比. 即 ≈圆的面积落在圆中的豆子数正方形的面积落在正方形的豆子数假设正方形的边长为2, 则 224ππ==⨯圆的面积正方形的面积由于落在每个区域的豆子数是可以数出来的, 所以 4π≈⨯落在圆中的豆子数落在正方形的豆子数 这样一来就得到了π的近似值.可以发现, 随着试验次数的增加, π的近似值的精确度会越来越高.☆感悟:利用几何概型, 并通过随机模拟的方法可以近似地计算不规则图形的面积. ☆例题学习:例1 利用随机模拟的方法计算21y y x ==和所围成的图形(图中阴影部分)的面积.解 (1)利用计算器或计算器产生两组0~1区间的均匀随机数,1,a RAND b RAND ==;(2)进行平移和伸缩变换: 1()a a =-⋅(3)数出落在阴影内的点数1N : 即满足 的数对(,)a b .(4)用几何概型公式计算阴影部分)的面积.假如做1000次实验, 即1000N =, 数得1698N =, 那么S ≈=. 例2 利用随机模拟的方法计算曲线1y x=,1x =,2x =和0y =所围成的图形的面积.☻试一试1.如图,某人向圆内投镖, 如果他每次都投入圆内,那么他投中正方形区域的概率为( )A .2πB .1πC .23D .132.如图,有一圆盘其中的阴影部分的圆心角为45,若向圆内投镖,如果某人每次都投入圆内, 第1题那么他投中阴影部分的概率为( ) 第2题 A .18 B .14 C .12 D .343.现有100ml 的蒸馏水, 假定里面有一个细菌,现从中抽取20ml 的蒸馏水, 则抽到细菌的概率为( ) A .1100 B .120 C .110 D .154.利用随机模拟的方法近似计算21,6y x y =+=所围成区域的面积.参考答案:区域内随机地取一点 某个指定区域中的点☻自我评价:1.(1)分析:点M 随机地落在线段AB 上,故线段AB 为区域D .当点M 位于图中线段'AC内时,AM AC <,故线段'AC 即为区域d .解:在AB 上截取'AC AC =.于是'()()P AM AC P AM AC <=<'AC AB =AC AB==. 答:AM 小于AC 的(2)解:如图,由平面几何知识:当AD OB ⊥时,1OD =;当OA AE ⊥时,4OE =,1BE =.当且仅当点C 在线段OD 或BE 上时,AOC ∆为钝角三角形记"AOC ∆为钝角三角形"为事件M ,则11()0.45OD EB P M OB ++===即AOC ∆为钝角三角形的概率为0.4.2. 解:由题意,如图,因为硬币完全落在圆外的情况是不考虑的,所以硬币的中心均匀地分布在半径为6的圆O 内,且只有中心落入与圆O 同心且半径为 4的圆内时,硬币才完全落如圆内.记"硬币完全落入圆内"为事件A ,则2244()69P A ππ==. 答:硬币完全落入圆内的概率为49. 3. 因为两人谁也没有讲好确切的时间,故样本点由两个数(甲乙两人各自到达的时刻)组成. 以7点钟作为计算时间的起点,设甲乙各在第x 分钟和第y 分钟到达,则样本空间为 Ω:{(x,y) | 0≤x ≤60,0≤y ≤60},画成图为一正方形.会面的充要条件是|x -y| ≤20, 即事件A={可以会面}所对应的区域是图中的阴影线部分.P(A)=4. 可以认为人在任一时刻到站是等可能的. 设上一班车离站时刻为a ,则某人到站的一切可能时刻为 Ω= (a ,a +5),记A={等车时间少于3分钟}, 则他到站的时刻只能为g = (a +2, a +5)中的任一时刻,故P(A)= . 例2解:(1)利用计算器或计算机产生两组0到1区间上的随机数,1a RAND =,b RAND =; (2)进行平移变换:11a a =+;(其中,a b 分别为随机点的横坐标和纵坐标) (3)数出落在阴影内的点数1N ,用几何概型公式计算阴影部分的面积.例如,做1000次试验,即1000N =,模拟得到1689N =,9560)2060(60222=--=Ω的面积的面积g 53=Ω的长度的长度g所以 10.6891S N N ≈=,即0.689S ≈.。
3.3 几何概型(2)教学目标:1.了解几何概型的基本概念、特点和意义;2.了解测度的简单含义;3.了解几何概型的概率计算公式;4.能运用其解决一些简单的几何概型的概率计算问题.教学重点:测度的简单含义,即:线的测度就是其长度,平面图形的测度就是其面积,立体图形的测度就是其体积等.教学难点:如何确定事件的测度(是长度还是面积、体积等).教学方法:谈话、启发式.教学过程:一、知识回顾1.复习与长度有关的几何概型.有一段长为10米的木棍,现要截成两段,每段不小于3米的概率有多大?二、学生活动从每一个位置剪断都是一个基本事件,基本事件有无限多个.但在每一处剪断的可能性相等,故是几何概型.三、建构数学古典概型与几何概型的对比.相同:两者基本事件的发生都是等可能的;不同:古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个.2.几何概型的概率公式.积等)的区域长度(面积或体试验的全部结果所构成积等)的区域长度(面积或体构成事件A A P =)( 四、数学运用1.例题.与面积(或体积)有关的几何概型例1 在1L 高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10mL,含有麦锈病种子的概率是多少?解:取出10mL 麦种,其中“含有病种子”这一事件记为A ,则.1001为含有麦锈病种子的概率:答1001100010所有种子的体积取出种子的体积P(A)===变式训练:1.街道旁边有一游戏:在铺满边长为9 cm 的正方形塑料板的宽广地面上,掷一枚半径为1 cm 的小 圆板.规则如下:每掷一次交5角钱,若小圆板压在正方形的边上,可重掷一次;若掷在正方形内,须再交5角钱可玩一次;若掷在或压在塑料板的顶点上,可获 1元钱.试问:(1)小圆板压在塑料板的边上的概率是多少?(2)小圆板压在塑料板顶点上的概率是多少?解 (1)考虑圆心位置在中心相同且边长分别为7 cm 和9 cm 的正方形围成的区域内,所以概率为.8132979222=- 探究提高:几何概型的概率计算公式中的“测度”,既包含本例中的面积,也可以包含线段的长度、体积等,而且这个“测度”只与“大小”有关,而与形状和位置无关.与角度有关的几何概型例2 在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 小于AC 的概率.解:在AB 上截取AC ′=AC ,故AM <AC 的概率等于AM <AC ′的概率.记事件A 为“AM 小于AC ”, A C B C ’222)(=='==ACAC AB C A AB AC A P 答:AM <AC 的概率等于22. 思考:在等腰直角三角形ABC 中,过点C 在∠C 内作射线CM ,交AB 于M ,求AM 小于AC 的概率.此时的测度是作角是均匀的,就成了角的比较了. P (A )=43283'==∠∠ππACB ACC D d 例3 课本的例4.可化为几何概型的概率问题例4 甲、乙两人约定在6时到7时之间在某处会面, 并约定先到者应等候另一人一刻钟,过时即可离去. 求两人能会面的概率.思维启迪:在平面直角坐标系内用x 轴表示甲到达 约会地点的时间,y 轴表示乙到达约会地点的时间,用0分到60分表示6时到7时的时间段,则横轴0到60与纵轴0到60的正方形中任一点的坐标(x ,y )就表示甲、乙两人分别在6时到7时时间段内到达的时间.而能会面的时间由|x -y |≤15所对应的图中阴影部分表示.以x 轴和y 轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的充要条件是|x -y |≤15.在如图所示平面直角坐标系下,(x ,y )的所有可能结果是边长为60的正方形区域,而事件A “两人能够会面”的可能结果由图中的阴影部分表示.由几何概型的概率公式得: .167600302526003604560)(222=-=-==S S A P A 所以,两人能会面的概率是.167 2.练习.甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达A CB MC’是等可能的.(1)如果甲船和乙船的停泊时间都是4小时,求它们中 的任何一条船不需要等待码头空出的概率;(2)如果甲船的停泊时间为4小时,乙船的停泊时间为2小时,求它们中的任何一条船不需要等待码头空出的概率.解 (1)设甲、乙两船到达时间分别为x ,y ,则0≤x <24,0≤y <24且y -x ≥4或y -x ≤-4.作出区域⎪⎩⎪⎨⎧-<->-<≤<≤44,240,240x y x y y x 或设“两船无需等待码头空出”为事件A ,.362524242020212)(=⨯⨯⨯⨯=A P 则 (2)当甲船的停泊时间为4小时,乙船的停泊时间为2小时,两船不需等待码头空出,则满足x -y ≥2或y -x ≥4,设在上述条件时“两船不需等待码头空出”为事件B ,画出区域 .2882215764422424222221202021)(.24,240,240==⨯⨯⨯+⨯⨯=⎪⎩⎪⎨⎧>->-<≤<≤B P y x x y y x 或五、要点归纳与方法小结本节课学习了以下内容:1.适当选择观察角度,把问题转化为几何概型求解;2.把基本事件转化为与之对应的区域D ;3.把随机事件A 转化为与之对应的区域d ;4.利用几何概型概率公式计算.。
3.3.1 几何概型3.3.2 随机数的含义与应用1.几何概型的定义事件A理解为区域Ω的某一子区域A(如图所示),A的概率只与子区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关,满足以上条件的试验称为几何概型.2.几何概型的概率公式在几何概型中,事件A的概率定义为:P(A)=μAμΩ,其中μΩ表示区域Ω的几何度量,μA表示子区域A的几何度量.思考:几何概型有哪些特点?[提示](1)无限性:在每次随机试验中,不同的试验结果有无穷多个,即基本事件有无限多个;(2)等可能性:在每次随机试验中,每个试验结果出现的可能性相等,即基本事件的发生是等可能的.3.随机数的含义随机数就是在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会一样.4.产生随机数的方法(1)用函数型计算器产生随机数的方法:0~1之间的随机数,而且出现0~1内任何一个数的可能性是相同的.(2)用计算机软件产生随机数(这里介绍的是Scilab中产生随机数的方法):①Scilab中用rand()函数来产生0~1的均匀随机数.每调用一次rand()函数,就产生一个随机数.②如果要产生a~b之间的随机数,可以使用变换rand()*(b-a)+a得到.1.下列概率模型是几何概型的为 ( )A.已知a,b∈{1,2,3,4},求使方程x2+2ax+b=0有实根的概率B.已知a,b满足|a|≤2,|b|≤3,求使方程x2+2ax+b=0有实根的概率C.从甲、乙、丙三人中选2人参加比赛,求甲被选中的概率D.求张三和李四的生日在同一天的概率(一年按365天计算)B[A、C、D的基本事件是有限的,为古典概型,只有B为几何概型.]2.面积为S的△ABC,D是BC的中点,向△ABC内部投一点,那么点落在△ABD内的概率为( )A.13B.12C.14D.16B[向△ABC内投一点的结果有无限个,属几何概型.设点落在△ABD内为事件A,则P(A)=△ABD面积△ABC面积=12.]3.用随机模拟方法求得某几何概型的概率为m,其实际概率的大小为n,则( ) A.m>nB.m<nC.m=nD.m是n的近似值D[随机模拟法求其概率,只是对概率的估计.]4.在区间[-1,2]上随机取一个数x,则|x|≤1的概率为________.23[∵区间[-1,2]的长度为3,由|x|≤1得x∈[-1,1],而区间[-1,1]的长度为2,x取每个值为随机的,∴在[-1,2]上取一个数x ,|x |≤1的概率P =23.][1.古典概型和几何概型有何异同点?[提示] 相同点:古典概型与几何概型中每一个基本事件发生的可能性都是相等的. 不同点:古典概型要求随机试验的基本事件的总数必须是有限的;几何概型要求随机试验的基本事件的个数是无限的,而且几何概型解决的问题一般都与几何知识有关.2.P (A )=0⇔A 是不可能事件,P (A )=1⇔A 是必然事件是否成立?[提示] (1)无论是古典概型还是几何概型,若A 是不可能事件,则P (A )=0肯定成立;若A 是必然事件,则P (A )=1肯定成立.(2)在古典概型中,若事件A 的概率P (A )=0,则A 为不可能事件;若事件A 的概率P (A )=1,则A 为必然事件.(3)在几何概型中,若事件A 的概率P (A )=0,则A 不一定是不可能事件,如:事件A 对应数轴上的一个点,则其长度为0,该点出现的概率为0,但A 并不是不可能事件;同样地,若事件A 的概率P (A )=1,则A 也不一定是必然事件.3.解决几何概型问题的关键是什么?几何概型求概率问题一般有几种类型?[提示] 解决几何概型的关键是把握好“测度”问题,常见测度为长度(角度)、面积、体积.【例1】如图,在△ABC中,∠B=60°,∠C=45°,高AD=3,在边BC上找一点M,求BM<1的概率.[思路探究]由题意M是边BC上一点,故试验全部结果构成的区域长度为边BC的长,E 事件的区域长度为1.可由几何概型概率公式求解.[解]∵AD⊥BC,∠B=60°,∠C=45°,∴BD=1,DC=3,∴BC=1+ 3.记事件E为“在BC上找一点M,使BM<1”,则P(A)=1BC =11+3=3-12.1.(变条件)本例把“在边BC上找一点M”改为“在∠BAC内作射线AM交BC于点M”,其他条件不变,求BM<1的概率.[解]∵∠B=60°,∠C=45°,∴∠BAC=75°,∵AD ⊥BC ,AD =3,∴BD =1,∠BAD =30°.记事件F 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”, 则P (F )=30°75°=25.2.(变结论)本题条件不变,求M 到边BC 两端点的距离均大于1的概率. [解] ∵AD ⊥BC ,∠B =60°,∠C =45°, ∴BD =1,DC =3,∴BC =1+ 3.记事件G 为“在BC 上找一点M ,使M 到BC 两端点的距离均大于1”,则P (G )=1+3-21+3=2- 3.1.若一次试验中所有可能的结果和某个事件A 包含的结果(基本事件)都对应一个长度,如线段长、时间区间长、距离、路程等,那么需要先求出各自相应的长度,然后运用几何概型的概率计算公式求出事件A 发生的概率.2.“角度”型几何概型问题容易与“长度”型混淆,求解时应特别注意辨别.【例2】甲、乙两人约定在6时到7时在某处会面,并约定先到者应等候另一人20分钟,过时即可离去,求两人能会面的概率.[思路探究]解答本题可先求出解析图中阴影部分面积及整个区域面积,然后利用几何概型公式求出相应事件的概率.[解]用x和y分别表示甲、乙两人到达约会地点的时间,则两人能会面的条件是|x-y|≤20.在平面上建立直角坐标系如图所示,则(x,y)的所有可能结果是边长为60的正方形,可能会面的时间用图中阴影部分表示,所以P (A )=602-402602=59.1.解此类几何概型问题的关键是:(1)根据题意确认是否是与面积有关的几何概型问题.(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积,套用公式从而求得随机事件的概率.2.对于几何概型,关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率.1.如图所示,一个等腰直角三角形的直角边长为2,分别以三个顶点为圆心,1为半径在三角形内作圆弧,三段圆弧与斜边围成区域M(图中白色部分).若在此三角形内随机取一点P,则点P落在区域M内的概率为________.1-π4 [由题意知题图中的阴影部分的面积相当于半径为1的半圆面积,即阴影部分面积为π2,又易知直角三角形的面积为2,所以区域M 的面积为2-π2.故所求概率为2-π22=1-π4.]【例3】 一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个面的距离均大于1,称其为“安全飞行”,求蜜蜂“安全飞行”的概率.[思路探究] 利用体积之比求概率.[解] 依题意,在棱长为3的正方体内任意取一点,这个点到各面的距离均大于1.则满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体.由几何概型的概率公式,可得满足题意的概率为:P =1333=127.3.本例条件不变,求这个蜜蜂飞到正方体某一顶点A 的距离小于13的概率.[解] 到A 点的距离小于13的点,在以A 为球心,半径为13的球内部,而点又必须在已知正方体内,则满足题意的A 点的区域体积为43π×⎝ ⎛⎭⎪⎫133×18,所以P =43π×⎝ ⎛⎭⎪⎫133×1833=π2×37.与体积有关的几何概型问题的解决方法(1)如果试验的全部结果所构成的区域可用体积来度量,则其概率的计算公式为:P(A)=构成事件A的体积.试验的全部结果构成的体积(2)解决此类问题一定要注意几何概型的条件,并且要特别注意所求的概率是与体积有关还是与长度有关,不要将二者混淆.【例4】三个同心圆,半径分别为2 cm,4 cm,6 cm ,某人站在3 m 之外向此板投镖,设投镖击中线上或没有投中木板时不算,可重投,利用随机模拟的方法近似计算下列问题:(1)投中大圆内的概率是多少?(2)投中小圆与中圆形成的圆环的概率是多少? (3)投中大圆之外的概率是多少?[思路探究] 与面积有关的几何概型要表示平面图形内的点必须有两个坐标,我们可以产生两组随机数来表示点的坐标确定点的位置.[解] 记事件A ={投中大圆内},事件B ={投中小圆与中圆形成的圆环},事件C ={投中大圆之外}.①用计算机产生两组[0,1]上的均匀随机数,a 1=rand( ),b 1=rand( ). ②经过变换,a =a 1 16-8,b =b 1 16-8,得到两组[-8,8]的均匀随机数. ③统计投在大圆内的次数N 1(即满足a 2+b 2<36的点(a ,b )数),投中小圆与中圆形成的圆环次数N 2(即满足4<a 2+b 2<16的点(a ,b )数),投中木板的总次数N (即满足上述-8<a <8,-8<b <8的点(a ,b )数).④计算频率f n (A )=N 1N ,f n (B )=N 2N ,f n (C )=N -N 1N,即分别为概率P (A )、P (B )、P (C )的近似值.通过模拟得(1)P (A )≈0.44.(2)P (B )≈0.15.(3)P (C )≈0.56.1.解决本题的关键是利用随机模拟法和几何概率公式分别求得几何概率,然后通过解方程求得阴影部分面积的近似值.2.解决此类问题时注意两点:一是选取合适的对应图形,二是由几何概型正确计算概率.2.利用随机模拟的方法近似计算图中阴影部分(y =2-2x -x 2与x 轴围成的图形)的面积.[解] (1)利用计算机产生两组[0,1]上的均匀随机数,a 1=rand( ),b 1=rand( ). (2)经过变换a =a 1](3)统计试验总次数N 和落在阴影部分的点的个数N 1(满足条件b <2-2a -a 2的点(a ,b )的个数).(4)计算频率N 1N就是点落在阴影部分的概率的近似值.(5)设阴影部分面积为S .由几何概型概率公式得点落在阴影部分的概率为S 12.∴S 12≈N 1N .∴S ≈12N 1N,即为阴影部分面积的近似值.1.本节课的重点是了解几何概型的意义,会求几何概型的概率.难点是理解几何概型的特点和计算公式和计算机模拟试验.2.本节课要掌握以下几类问题:(1)理解几何概型,注意与长度有关的几何概型的求解关键点.(2)求解与面积相关的几何概型问题的三个关键点.(3)注意与体积有关的几何概型的求解策略.3.本节课的易错点:不能正确求出相关线段的长度或相关区域的面积或相关空间的体积.1.思考辨析(1)几何概型的概率与构成事件的区域形状无关.( )(2)在射击中,运动员击中靶心的概率在(0,1)内.( )(3)几何概型的基本事件有无数多个.( )(4)计算机或计算器只能产生[0,1]的均匀随机数,对于试验结果在[2,5]上的试验,无法用均匀随机数进行模拟估计试验.( )[答案] (1)√ (2)× (3)√ (4)×2.转动图中各转盘,指针指向红色区域的概率最大的是( )D [D 中红色区域面积是圆面积的一半,其面积比A ,B ,C 中要大,故指针指到的概率最大.]3.在区间(10,20]内的所有实数中,随机取一个实数a ,则这个实数a <13的概率是( ) A.13 B.17 C.310D .710C [∵a ∈(10,13), ∴P (a <13)=13-1020-10=310.]4.在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为边长作一个正方形,求作出的正方形面积介于36 cm 2与81 cm 2之间的概率.[解] 如图所示,点M 落在线段AB 上的任一点上是等可能的,并且这样的点有无限多个.设事件A 为“所作正方形面积介于36 cm 2与81 cm 2之间”,它等价于“所作正方形边长介于6 cm 与9 cm 之间”.取AC =6 cm ,CD =3 cm ,则当M 点落在线段CD 上时,事件A 发生. 所以P (A )=|CD ||AB |=312=14.。
第三章概率3.3几何概型3.3.1几何概型学习目标1.通过本节内容的学习,了解几何概型,理解其基本计算方法并会运用.2.通过对照前面学过的知识,自主思考,寻找几何概型的随机模拟计算方法,设计估计未知量的方案,培养实际操作能力.3.通过学习,体会试验结果的随机性与规律性,培养科学思维方法,提高对自然界的认知水平.合作学习一、设计问题,创设情境问题1:前面我们都学过哪些求概率的方法?学生思考后给出:.问题2:下面事件的概率能否用古典概型的方法求解?[情境一]教师取一根长度为60厘米的绳子,拉直后在任意位置剪断,使得剪出的两段的长都不小于绳子长度13(记为事件A),求此事件发生的概率.师生共同探究:此试验中,从每一个位置剪断都是一个试验结果,剪断位置可以是绳子上任一点,试验的可能结果为,发现不是,不可以用古典概型的方法求解.探索:如图所示,把绳子三等分,于是当剪断位置在中间一段时,事件A发生,于是P(A)=中间绳子长度整条绳子长度=13.教师:这个模型就是我们今天要学习的几何概率模型,简称几何概型.[情境二]教师用多媒体展示商场里面的抽奖场景视频,拿出如图所示的两个转盘,规定当指针指向B区域时顾客中奖.问题3:在两种情况下某顾客中奖的概率分别是多少?学生思考并回答,可见在图(1)中,顾客中奖的概率为,图(2)中顾客中奖的概率为.[情境三]问题4:一只苍蝇在一棱长为60cm的正方体笼子里飞.苍蝇距笼边大于10cm的概率是多少?问题5:同学们观察对比,找出三个情境的共同点与不同点.问题6:同学们能否根据自己的理解说说什么是几何概型?二、信息交流,揭示规律在问题情境的铺垫下,教师引导学生用自己的语言描述几何概型的概念:,简称为几何概型.问题7:古典概型与几何概型的区别和联系是什么?引导学生通过对前面三个情境的总结,得到在几何概型中,事件A发生的概率的计算公式为三、运用规律,解决问题【例1】在500mL的水中有一只草履虫,现从中随机取出2mL水样放到显微镜下观察,求发现草履虫的概率.【例2】取一个边长为2a的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆内的概率.【例3】某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,求他等待的时间不多于10分钟的概率.归纳总结:怎样求几何概型的概率?对于复杂的实际问题,解题的关键是要建立模型,找出随机事件与所有基本事件相对应的几何区域,把问题转化为几何概率问题,利用几何概率公式求解,具体分以下四个步骤:(1)(2)(3)(4)四、变式训练,深化提高1.在区间[1,3]上任意取一个数,则这个数不小于1.5的概率是多少?2.在高产小麦种子100mL中混入了一粒带锈病的种子,从中随机取出3mL,求含有带锈病种子的概率是多少?3.在墙上挂着一块边长为16cm的正方形木板,上面画了小、中、大三个同心圆,半径分别为2cm,4cm,6cm,某人站在3m之外向此板投镖,投镖击中线上或没有投中木板时都不算,可重投,问:(1)投中大圆内的概率是多少?(2)投中小圆与中圆形成的圆环的概率是多少?(3)投中大圆之外的概率是多少?五、反思小结,观点提炼布置作业1.必做题课本P142习题3.3A组第1,2题.2.选做题(1)在等腰直角三角形ABC中,在斜边AB上任取一点M,求AM小于AC的概率.(2)平面上画了一些彼此相距2a的平行线,把一枚半径r<a的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.(3)两人相约8点到9点在某地会面,先到者等候另一人20分钟,过时就可离去,试求这两人能会面的概率.参考答案一、设计问题,创设情境问题1:用做试验或计算机模拟试验等方法得到事件发生的频率来估计概率;用古典概型的公式计算事件发生的概率.问题2:无限个古典概型问题3:123 5二、信息交流,揭示规律如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型问题7:P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)三、运用规律,解决问题【例1】解:取出2mL水,其中“发现草履虫”这一事件记为A,则P(A)=取出水的体积所有水的体积=2500=0.004.答:发现草履虫的概率是0.004.【例2】解:记“豆子落入圆内”为事件A,则P(A)=圆的面积正方形的面积=πa24a2=π4.答:豆子落入圆内的概率为π4.【例3】解:记“等待的时间不多于10分钟”为事件A,则P(A)=1060=16.答:等待的时间不多于10分钟的概率为16.归纳总结(1)利用几何概型的定义判断该问题能否转化为几何概型求解;(2)把基本事件空间转化为与之对应的区域Ω;(3)把随机事件A转化为与之对应的区域A;(4)利用几何概型概率公式计算.四、变式训练,深化提高1.P=[1.5,3]的长度[1,3]的长度=3-1.53-1=1.52=0.75.2.P (A )=取出的小麦种子的体积所有小麦种子的体积=3100=0.03. 3.(1)P 1=大圆的面积正方形的面积=36π256=9π64.(2)P 2=中圆的面积-小圆的面积正方形的面积=16π-4π256=3π64.(3)P 3=1-大圆的面积正方形的面积=1-9π64.五、反思小结,观点提炼1.几何概型的概念及基本特点.2.几何概型中概率的计算公式;一般地,在几何区域Ω中随机地取一点,记事件“该点落在其内部一个区域A 内”为事件A ,则事件A 的概率计算公式为P (A )=μA μΩ.其中μΩ表示区域Ω的几何度量,μA 表示区域A 的几何度量.3.背景相似的问题,当等可能的角度不同时,其概率是不一样的.4.区域Ω内随机取点是指:该点落在区域Ω内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的测度成正比,而与其形状位置无关.布置作业 2.选做题:(1)解:在AB 上截取AC'=AC.于是 P (AM<AC )=P (AM<AC')=AC 'AB=AC AB=√22. 答:AM 小于AC 的概率为√22.(2)解:把“硬币不与任一条平行线相碰”记为事件A ,为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM ,垂足为M ,如图所示,这样线段OM 长度(记作OM )的取值范围就是[0,a ],只有当r<OM ≤a 时硬币才不与平行线相碰,所以,所求事件A 的概率P (A )=(r ,a ]的长度[0,a ]的长度=a -r a.(3)解:设甲、乙各在第x 分钟和第y 分钟到达,则样本空间为Ω:{(x ,y )|0≤x ≤60,0≤y ≤60},画成图为一正方形(如图).以x ,y 分别表示两人的到达时刻,则两人能会面的充要条件为|x-y|≤20,而能会面的点的区域用阴影标出,所求概率P=阴影的面积正方形的面积=602-402602=59.。
——教学资料参考参考范本——2019-2020学年度高中数学人教A版必修三教学案:第三章第3节几何概型-含答案______年______月______日____________________部门20xx最新高中数学人教A版必修三教学案:第三章第3节几何概型-含答案1.预习教材,问题导入根据以下提纲,预习教材P135~P136,回答下列问题.(1)教材问题中甲获胜的概率与什么因素有关?提示:与两图中标注B的扇形区域的圆弧的长度有关.(2)教材问题中试验的结果有多少个?其发生的概率相等吗?提示:试验结果有无穷个,但每个试验结果发生的概率相等.2.归纳总结,核心必记(1)几何概型的定义与特点①定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.②特点:(ⅰ)可能出现的结果有无限多个;(ⅱ)每个结果发生的可能性相等.(2)几何概型中事件A的概率的计算公式P(A)=.[问题思考](1)几何概型有何特点?提示:几何概型的特点有:①试验中所有可能出现的结果(基本事件)有无限多个;②每个基本事件出现的可能性相等.(2)古典概型与几何概型有何区别?提示:几何概型也是一种概率模型,它与古典概型的区别是:古典概型的试验结果是有限的,而几何概型的试验结果是无限的.[课前反思]通过以上预习,必须掌握的几个知识点:(1)几何概型的定义:;(2)几何概型的特点:;(3)几何概型的计算公式:.某班公交车到终点站的时间可能是11∶30-12∶00之间的任何一个时刻.往方格中投一粒芝麻,芝麻可能落在方格中的任何一点上.[思考1] 这两个试验可能出现的结果是有限个,还是无限个?提示:无限多个.[思考2] 古典概型和几何概型的异同是什么?名师指津:古典概型和几何概型的异同如表所示:名称古典概型几何概型相同基本事件发生的可能性相等点不同点①基本事件有限个①基本事件无限个②P(A)=0⇔A为不可能事件②P(A)=0A为不可能事件③P(B)=1⇔B为必然事件③P(B)=1B为必然事件1.取一根长为5 m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于2 m的概率有多大?[尝试解答] 如图所示.记“剪得两段绳长都不小于 2 m”为事件 A.把绳子五等分,当剪断位置处在中间一段上时,事件A发生.由于中间一段的长度等于绳长的,所以事件A发生的概率P(A)=.求解与长度有关的几何概型的关键点在求解与长度有关的几何概型时,首先找到试验的全部结果构成的区域D,这时区域D可能是一条线段或几条线段或曲线段,然后找到事件A发生对应的区域d,在找d的过程中,确定边界点是问题的关键,但边界点是否取到不会影响事件A的概率.1.(20xx·全国乙卷)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A. B. C. D.34解析:选B 如图,7:50至8:30之间的时间长度为40 分钟,而小明等车时间不超过10 分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20 分钟,由几何概型概率公式知所求概率为P==.故选B.2.(20xx·辽宁高考)若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是( )A. B. C. D.π8[尝试解答] 由几何概型的概率公式可知,质点落在以AB为直径的半圆内的概率P===,故选B.答案:B解与面积相关的几何概型问题的三个关键点(1)根据题意确认是否是与面积有关的几何概型问题;(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积;(3)套用公式,从而求得随机事件的概率.2.如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是( )A.1- B.-1 C.2- D.π4解析:选A 由几何概型知所求的概率P===1-.3.如图,在棱长为2的正方体ABCDA1B1C1D1 中,点O为底面ABCD的中心,在正方体ABCDA1B1C1D1 内随机取一点P,则点P到点O的距离大于1的概率为________.[尝试解答] 点P到点O的距离大于1的点位于以O为球心,以1为半径的半球外.记点P到点O的距离大于1为事件A,则P(A)==1-.答案:1-π12如果试验的全部结果所构成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的区域体积及事件A所占的区域体积.3.如图所示,有一瓶2升的水,其中含有1个细菌.用一小水杯从这瓶水中取出0.1升水,求小杯水中含有这个细菌的概率.解:记“小杯水中含有这个细菌”为事件A,则事件A的概率只与取出的水的体积有关,符合几何概型的条件.∵小水杯中有0.1升水,原瓶中有2升水,∴由几何概型求概率的公式得P(A)==0.05.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是了解几何概型的意义,会求几何概型的概率.难点是理解几何概型的特点和计算公式.2.本节课要掌握以下几类问题:(1)理解几何概型,注意与长度有关的几何概型的求解关键点,见讲1.(2)求解与面积相关的几何概型问题的三个关键点,见讲2.(3)注意与体积有关的几何概型的求解策略,见讲3.3.本节课的易错点:不能正确求出相关线段的长度或相关区域的面积或相关空间的体积,如讲1,2,3.课下能力提升(十九)[学业水平达标练]题组1 与长度有关的几何概型1.在区间[-2,3]上随机选取一个数X,则X≤1的概率为( )A. B. C. D.15解析:选B 在区间[-2,3]上随机选取一个数X,则X≤1,即-2≤X≤1的概率为P=.2.已知地铁列车每10 min一班,在车站停1 min,则乘客到达站台立即乘上车的概率是( )A. B. C. D.18解析:选 A 试验的所有结果构成的区域长度为10 min,而构成事件A的区域长度为1 min,故P(A)=.3.在区间[-2,4]上随机取一个数x,若x满足|x|≤m的概率为,则m=________.解析:由|x|≤m,得-m≤x≤m,当m≤2时,由题意得=,解得m =2.5,矛盾,舍去.当2<m<4时,由题意得=,解得m=3.答案:34.如图所示,在单位圆O的某一直径上随机地取一点Q,求过点Q且与该直径垂直的弦长长度不超过1的概率.解:弦长不超过1,即|OQ|≥,而Q点在直径AB上是随机的,记事件A={弦长超过1}.由几何概型的概率公式得P(A)==.∴弦长不超过1的概率为1-P(A)=1-.题组2 与面积、体积有关的几何概型5.在如图所示的正方形中随机撒入 1 000粒芝麻,则撒入圆内的芝麻数大约为________(结果保留整数).解析:设正方形边长为2a,则S正=4a2,S圆=πa2.因此芝麻落入圆内的概率为P==,大约有1 000×≈785(粒).答案:7856.一个球型容器的半径为3 cm,里面装有纯净水,因为实验人员不小心混入了一个H7N9 病毒,从中任取1 mL水,含有H7N9 病毒的概率是________.解析:水的体积为πR3=×π×33=36π(cm3)=36π(mL).故含有病毒的概率为P=.答案:136π7.(20xx·西安质检)如图,在正方体ABCDA1B1C1D1 内随机取点,则该点落在三棱锥A1ABC内的概率是________.解析:设正方体的棱长为a,则所求概率P=VA1ABCVABCDA1B1C1D1==.答案:168.如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是,则此长方体的体积是________.解析:设长方体的高为h,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率P==,解得h=3或h=-(舍去),故长方体的体积为1×1×3=3.答案:39.在街道旁边有一游戏:在铺满边长为9 cm的正方形塑料板的宽广地面上,掷一枚半径为1 cm的小圆板.规则如下:每掷一次交5角钱,若小圆板压在边上,可重掷一次;若掷在正方形内,需再交5角钱才可玩;若压在正方形塑料板的顶点上,可获得一元钱.试问:(1)小圆板压在塑料板的边上的概率是多少?(2)小圆板压在塑料板顶点上的概率是多少?解:(1)如图(1)所示,因为O落在正方形ABCD内任何位置是等可能的,小圆板与正方形塑料板ABCD的边相交接是在圆板的中心O到与它靠近的边的距离不超过1 cm时,所以O落在图中阴影部分时,小圆板就能与塑料板ABCD的边相交接,这个范围的面积等于92-72=32(cm2),因此所求的概率是=.(2)小圆板与正方形的顶点相交接是在圆心O与正方形的顶点的距离不超过小圆板的半径 1 cm时,如图(2)阴影部分,四块合起来面积为π cm2,故所求概率是.[能力提升综合练]1.下列关于几何概型的说法中,错误的是( )A.几何概型是古典概型的一种,基本事件都具有等可能性B.几何概型中事件发生的概率与它的位置或形状无关C.几何概型在一次试验中可能出现的结果有无限多个D.几何概型中每个结果的发生都具有等可能性解析:选A 几何概型和古典概型是两种不同的概率模型,故选A.2.已有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )解析:选A 利用几何概型的概率公式,得P(A)=,P(B)=,P(C)=,P(D)=,∴P(A)>P(C)=P(D)>P(B),故选A.3.如图,在面积为S的△ABC的边AB上任取一点P,则△PBC的面积大于的概率是( )A. B. C. D.23解析:选C 因为△ABC与△PBC是等高的,所以事件“△PBC的面积大于”等价于事件“|BP|∶|AB|>”.即P(△PBC的面积大于)==.4.已知事件“在矩形ABCD的边CD上随机地取一点P,使△APB 的最大边是AB”发生的概率为,则=( )A. B.C. D.74解析:选D 依题可知,设E,F是CD上的四等分点,则P只能在线段EF上且BF=AB.不妨设CD=AB=a,BC=b,则有b2+2=a2,即b2=a2,故=.5.(20xx·石家庄高一检测)如图,在平面直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA,则射线OA落在∠xOT内的概率为________.解析:记“射线OA落在∠xOT内”为事件A.构成事件A的区域最大角度是60°,所有基本事件对应的区域最大角度是360°,所以由几何概型的概率公式得P(A)==.答案:166.一个多面体的直观图和三视图如图所示,其中M是AB的中点.一只苍蝇在几何体ADFBCE内自由飞行,求它飞入几何体FAMCD 内的概率.解:由三视图可得直观图为直三棱柱且底面ADF中AD⊥DF,DF=AD=DC=a.因为VFAMCD=S四边形AMCD×DF=×(a+a)·a·a=a3,VADFBCE=a2·a=a3,所以苍蝇飞入几何体FAMCD内的概率为=.7.在长度为10 cm的线段AD上任取两点B,C.在B,C处折此线段而得一折线,求此折线能构成三角形的概率.解:设AB,AC的长度分别为x,y,由于B,C在线段AD上,因而应有0≤x,y≤10,由此可见,点对(B,C)与正方形K={(x,y)|0≤x≤10,0≤y≤10}中的点(x,y)是一一对应的,先设x<y,这时,AB,BC,CD能构成三角形的充要条件是AB+BC>CD,BC+CD>AB,CD+AB>BC,注意AB=x,BC=y-x,CD=10-y,代入上面三式,得y>5,x<5,y-x<5,符合此条件的点(x,y)必落在△GFE中(如图).同样地,当y<x时,当且仅当点(x,y)落在△EHI中,AC,CB,BD 能构成三角形,利用几何概型可知,所求的概率为=.。
3.3.1 几何概型1.了解几何概型的定义及特征.2.理解几何概型与古典概型的异同.3.掌握几何概型的概率公式.[学生用书P66])1.几何概型的定义及其特征(1)几何概型的定义事件A理解为区域Ω的某一子区域A,A的概率只与子区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关.满足以上条件的试验称为几何概型.(2)几何概型的特征①无限性:试验中所有可能出现的结果(基本事件)有无限多个;②等可能性:每个基本事件出现的可能性相等.(3)几何概型与古典概型的比较概率类型不同点相同点几何概型试验中所有可能出现的结果(基本事件)有无限多个每个基本事件出现的可能性一样,即都满足等可能性古典概型试验中的所有可能出现的结果只有有限个2.几何概型的概率计算(1)几何概型概率的计算公式在几何概型中,事件A的概率定义为P(A)=μAμΩ,其中μΩ表示区域Ω的几何度量,μA表示子区域A的几何度量.(2)与长度有关的几何概型的概率计算如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为P(A)=构成事件A的区域长度试验的全部结果所构成的区域长度.(3)与面积有关的几何概型的概率计算如果试验的结果所构成区域的几何度量可用面积表示,则其概率的计算公式为P (A )=构成事件A 的区域面积试验的全部结果所构成的区域面积.(4)与体积有关的几何概型的概率计算如果试验的结果所构成的区域的几何度量可用体积表示,则其概率的计算公式为P (A )=构成事件A 的区域体积试验的全部结果所构成的区域体积.1.下列概率模型中,几何概型的个数为( )①从区间[-10,10]上任取一个数,求取到的数在[0,1]内的概率; ②从区间[-10,10]上任取一个数,求取到绝对值不大于1的数的概率; ③从区间[-10,10]上任取一个整数,求取到大于1而小于3的数的概率; ④向一个边长为4 cm 的正方形内投一点,求点离中心不超过1 cm 的概率. A .1 B .2 C .3D .4解析:选C.①②中的概率模型是几何概型,因为区间[-10,10]上有无数个数,且每个数被取到的机会相等;③中的概率模型不是几何概型,因为区间[-10,10]上的整数只有21个,是有限的; ④中的概率模型是几何概型,因为在边长为4 cm 的正方形内有无数个点,且该区域内的任何一个点被投到的可能性相同.2.用力将一个长为三米的米尺拉断,假设该米尺在任何一个部位被拉断是等可能的,则米尺的断裂处恰在米尺的1米到2米刻度处的概率为( )A .23B .13C .16D .14解析:选B.由几何概型得,米尺的断裂处恰在米尺的1米到2米刻度处的概率为 P =2-13=13. 3.向如图所示的图形中随机撒一粒黄豆,则它落到阴影部分的概率为________.解析:设圆的半径为R ,则圆的面积为S =πR 2,阴影的面积S 阴=12·2R ·R =R 2,故所求概率P =S 阴S =R 2πR 2=1π. 答案:1π与长度有关的几何概型[学生用书P67]如图,A 、B 两盏路灯之间的距离是30米,由于光线较暗,想在其间再随意安装两盏路灯C 、D ,问A 与C ,B 与D 之间的距离都不小于10米的概率是多少?【解】 记E :“A 与C ,B 与D 之间的距离都不小于10米”,把AB 三等分,则中间长度为30×13=10米,所以P (E )=1030=13.求解与长度有关的几何概型的步骤(1)找到试验的全部结果构成的区域D ,这时区域D 可能是一条线段或几条线段或曲线段.(2)找到事件A 发生对应的区域d ,在找d 的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A 的概率.(3)利用几何概型概率的计算公式P =dD计算.一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是多少?(1)红灯亮;(2)黄灯亮;(3)不是红灯亮.解:在75秒内,每一时刻到达路口亮灯的时间是等可能的,属于几何概型. (1)P 1=红灯亮的时间全部时间=3030+40+5=25.(2)P 2=黄灯亮的时间全部时间=575=115.(3)P 3=不是红灯亮的时间全部时间=黄灯亮或绿灯亮的时间全部时间=5+4075=35.与面积有关的几何概型[学生用书P67](1)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A .16 B .14 C .38D .12(2)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1-2πB .12-1πC .2πD .1π【解析】 (1)易知点C 的坐标为(1,2),点D 的坐标为(-2,2),所以矩形ABCD 的面积为6,阴影部分的面积为32,故所求概率为14.(2)设扇形的半径为2,则其面积为π×224=π.记由两段小圆弧围成的阴影面积为S 1,另外三段圆弧围成的阴影面积为S 2,则S 1=2×(π4-12)=π2-1,S 2=π4×22-2×π2×12+π2-1=π2-1,故阴影部分的总面积为2×(π2-1)=π-2,因此任取一点,此点取自阴影部分的概率为π-2π=1-2π.【答案】(1)B(2)A与面积有关的几何概型的求解思路解决此类几何概型问题的关键是构造出随机事件对应的几何图形,利用图形的几何特征找出两个“面积”,套用几何概型的概率计算公式P(A)=构成事件A的区域面积试验的全部结果所构成的区域面积,从而求得随机事件的概率.在边长为2的正三角形ABC内任取一点P ,则点P到三个顶点的距离中至少有一个小于1的概率是( )A.33B.33πC.36D.36π解析:选D.以A,B,C为圆心,1为半径作圆,与△ABC相交得三个扇形(如图中阴影部分所示),当点P落在阴影部分时符合要求.因为正三角形的三个角均为60°,故三个扇形的面积之和恰好是半个圆的面积,可得所求概率为12×π×1212×2×3=36π.故选D.与体积有关的几何概型[学生用书P68]一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A.4π81B.81-4π81C.127D.827【解析】满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体.由几何概型的概率公式,可得满足题意的概率为:P=1333=127.【答案】 C若本例条件不变,求这个蜜蜂飞到与正方体某一顶点A的距离小于13的概率.解:到A 点的距离小于13的点,在以A为球心,半径为13的球内部,而点又必须在已知正方体内,则满足题意的点的区域体积为43π×⎝ ⎛⎭⎪⎫133×18.所以P =43π×⎝ ⎛⎭⎪⎫133×1833=π2×37.如图所示,有一瓶2升的水,其中含有1个细菌.用一小杯从这瓶水中取出0.1升水,求小杯水中含有这个细菌的概率.解:记“小杯水中含有这个细菌”为事件A ,则事件A 的概率只与取出的水的体积有关,符合几何概型的条件.因为小瓶中有0.1升水,原瓶中有2升水, 所以由几何概型求概率的公式得P (A )=0.12=0.05.1.几何概型试验必须满足的两个基本特点(1)无限性(即一次试验中可能出现的结果有无限个); (2)等可能性(每个结果的发生具有等可能性). 2.几何概型的计算步骤判断是否为几何概型↓确定并计算基本事件空间↓计算事件A 所含基本事件对应的区域的几何度量↓ 代入公式计算1.判断是否为几何概型是解题关键,必须明确指出.2.根据题意判断几何概型的几何度量是长度、面积还是体积.如果审题不准容易做出错误判断.1.下面关于几何概型的说法错误的是( ) A .几何概型也是古典概型的一种B .几何概型中事件发生的概率与位置、形状无关C .几何概型在一次试验中可能出现的结果有无限个D .几何概型中每个结果的发生具有等可能性解析:选A.几何概型基本事件的个数是无限的,而古典概型要求基本事件有有限个,故几何概型不是古典概型.2.一只小狗在如图所示的方砖上走来走去,则小狗最终停在条形方砖上的概率是( )A .18 B .79 C .29D .716解析:选C.该试验是几何概型,概率为条形方砖面积方砖总面积=29.3.如图,以正方形ABCD 的左右两边为直径在正方形内部作半圆,现在向该正方形区域内随机地投掷一飞镖,则飞镖落在图中阴影部分的概率是________.解析:依题意得这是个面积型的几何概型问题,由几何概型公式可知:P =阴影部分的面积正方形的面积=πr 22r ×2r =π4.答案:π44.一个球形容器的半径为3 cm ,里面装有纯净水,因不小心混入了1个感冒病毒,从中任取1 mL 水,含有感冒病毒的概率为________.解析:水的体积为43πR 3=43π×33=36π(cm 3)=36π(mL),则含有感冒病毒的概率P (A )=136π. 答案:136π, [学生用书P123(单独成册)])[A 基础达标]1.取一根长为3 m 的绳子AB ,拉直后在任意位置C 剪断,那么满足AC -BC ≥1的概率为( )A .12 B .13 C .14D .1解析:选B.设AC =x m ,x ∈[0,3], 则BC =(3-x )m. 因为AC -BC ≥1,所以2≤x ≤3,故所求的概率为3-23-0=13.故选B.2.已知集合A ={x |-1<x <5},B ={x |2<x <3},在集合A 中任取一个元素x ,则事件“x ∈A ∩B ”的概率为( )A .16B .13C .23D .45解析:选A.A ∩B ={x |2<x <3},因为集合A 表示的区间长度为5-(-1)=6,集合A ∩B 表示的区间长度为3-2=1, 所以事件“x ∈A ∩B ”的概率为16,故选A.3.如图所示,边长为2的正方形内有一封闭曲线围成的阴影区域.向正方形中随机扔一粒豆子,若它落在阴影区域内的概率为23,则阴影区域的面积为( )A .43B .83C .23D .无法计算解析:选B.设阴影区域的面积为S ,依题意,得23=S2×2,所以S =83.故选B.4.在区间[0,1]内任取两个数,则这两个数的平方和也在[0,1]内的概率是( ) A .π4B .π10C .π20D .π40解析:选A.设在[0,1]内取出的数为a ,b ,若a 2+b 2也在[0,1]内,则有 0≤a 2+b 2≤1.如图,试验的全部结果所构成的区域为边长为1的正方形,满足a 2+b 2在[0,1]内的点在14单位圆内(如图中阴影部分所示),故所求概率为14π1=π4,故选A. 5.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则ADAB=( )A .12B .14C .32D .74解析:选D.由于满足条件的点P 发生的概率为12,且点P在边CD 上运动,根据图形的对称性当点P在靠近点D 的CD 边的14分点时,EB =AB (当点P 超过点E 向点D 运动时,PB >AB ).设AB =x ,过点E 作EF ⊥AB 交AB 于点F ,则BF =34x .在Rt △FBE 中,EF 2=BE 2-FB 2=AB 2-FB 2=716x 2,即EF =74x ,所以AD AB =74. 6.如图,正方体的棱长为1,随机从正方体内取一点,则这点在三棱锥D ABC 内的概率为________.解析:因为正方体的棱长为1, 所以其体积V =1.又三棱锥D ABC 的体积V 1=13×12×1×1×1=16,所以从正方体内取一点,这点在三棱锥D ABC 内的概率为V 1V =161=16.答案:167.已知ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为________.解析:长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为π2,因此取到的点到O 的距离小于1的概率为π2÷2=π4,取到的点到O 的距离大于1的概率为1-π4.答案:1-π48.已知方程x 2+3x +p4+1=0,若p 在[0,10]中随机取值,则方程有实数根的概率为________.解析:因为总的基本事件是[0,10]内的全部实数,所以基本事件总数为无限个,符合几何概型的条件,事件对应的测度为区间的长度,总的基本事件对应区间[0,10],长度为10,而事件“方程有实数根”应满足Δ≥0,即9-4×1×⎝ ⎛⎭⎪⎫p4+1≥0,得p ≤5,所以对应区间[0,5],长度为5,所以所求概率为510=12.答案:129.有一个底面圆的半径为1,高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,求点P 到点O 的距离大于1的概率.解:圆柱的体积V 圆柱=π×12×2=2π是试验的全部结果构成的区域体积. 以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×4π3×13=2π3, 则构成事件A “点P 到点O 的距离大于1”的区域体积为2π-2π3=4π3,由几何概型的概率公式得P (A )=4π32π=23.10.在一个大型商场的门口,有一种游戏是向一个画满边长为5 cm 的均匀方格的大桌子上掷直径为2 cm 的硬币,如果硬币完全落入某个方格中,则掷硬币者赢得一瓶洗发水,请问随机掷一个硬币正好完全落入方格的概率有多大?解:如图,边长为5 cm 的正方形形成的区域表示试验的所有基本事件构成的区域,当硬币的中心落入图中以3 cm 为边长的正方形区域时,则试验成功,所以,随机地投一个硬币正好完全落入方格的概率为P =3252=925.[B 能力提升]11.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是( )A .14B .12C .34D .23解析:选C. 如图所示,在边AB 上任取一点P ,因为△ABC 与△PBC 是等高的,所以事件“△PBC 的面积大于S 4”等价于事件“|BP ||AB |>14”.即P (△PBC 的面积大于S 4)=34.12.有一个圆面,圆面内有一个内接正三角形,若随机向圆面上投一镖都中圆面,则镖落在三角形内的概率为________.解析:设圆面半径为R ,如图所示:△ABC 的面积S △ABC =3·S △AOC =3·12AC ·OD =3·CD ·OD =3·R sin 60°·R cos 60°=33R24, 所以P =S △ABC πR 2=33R 24πR 2=334π. 答案:334π13.设关于x 的一元二次方程x 2+2ax +b 2=0.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a 是从区间[0,3]上任取的一个数,b 是从区间[0,2]上任取的一个数,求上述方程有实根的概率.解:设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .(1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 包含9个基本事件,故事件A 发生的概率为P (A )=912=34.(2)试验的全部结果所构成的区域为 {(a ,b )|0≤a ≤3,0≤b ≤2}.构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }. 所以所求的概率为P (A )=3×2-12×223×2=23.14.(选做题)如图,已知AB 是半圆O 的直径,AB =8,M ,N ,P 是将半圆圆周四等分的三个等分点.(1)从A ,B ,M ,N ,P 这5个点中任取3个点,求这3个点组成直角三角形的概率; (2)在半圆内任取一点S ,求△SAB 的面积大于82的概率.解:(1)从A ,B ,M ,N ,P 这5个点中任取3个点,一共可以组成10个三角形:△ABM ,△ABN ,△ABP ,△AMN ,△AMP ,△ANP ,△BMN ,△BMP ,△BNP ,△MNP ,其中是直角三角形的只有△ABM ,△ABN ,△ABP 3个,所以组成直角三角形的概率为310.(2)连接MP ,ON ,OM ,OP ,取线段MP 的中点D ,则OD ⊥MP , 易求得OD =22,当S 点在线段MP 上时,S △ABS =12×22×8=82,所以只有当S 点落在阴影部分(不在MP 上)时,△SAB 面积才能大于82,而S 阴影=S 扇形MOP-S △OMP =12×π2×42-12×42=4π-8,所以由几何概型的概率公式得△SAB 的面积大于82的概率为4π-88π=π-22π.。
3.3 几何概型第2课时导入新课设计思路一:(问题导入)下图是卧室和书房地砖的示意图,图中每一块地砖除颜色外完全相同,小猫分别在卧室和书房中自由地走来走去.在哪个房间里,小猫停留在黑砖上的概率大?卧室(书房)设计思路二:(情境导入)在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00 至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.推进新课新知探究对于导入思路一:由于地砖除颜色外完全相同,小猫自由地走来走去,因此,小猫可能会停留在任何一块地砖上,而且在任何一块地砖上停留的可能性相同,对于这样一个随机事件的概率,有如下的结论:对于一个随机试验,如果我们将每个基本事件理解为从某特定的几何区域内随机地抽取一点,而该区域内每一点被取到的机会都一样,这样就可以把随机事件与几何区域联系在一起.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.几何概型与古典概型一样也是一种等可能事件的概率模型,它的特点是:(1)试验中所有可能出现的结果,也就是基本事件有无限多个.(2)基本事件出现的可能性相等.实际上几何概型是将古典概型中的有限性推广到无限性,而保留等可能性,这就是几何概型.几何概型的概率计算方法如下:一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率为 P(A)= 的测度的测度D d . 这里要求D 的测度不为0,其中“测度”的意义依D 确定,当D 分别是线段、平面图形和立体图形时,相应的“测度”分别是长度、面积和体积等.对于导入思路二:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型.(2)几何概型的概率公式:P (A )=)()(面积或体积的区域长度试验的全部结果所构成面积或体积的区域长度构成事件A . (3)几何概型的特点:1°试验中所有可能出现的结果(基本事件)有无限多个. 2°每个基本事件出现的可能性相等.应用示例思路1例1 取一个边长为2a 的正方形及其内切圆(如图所示),随机向正方形内丢一粒豆子,求豆子落入圆内的概率.分析:由于是随机丢豆子,故可以认为豆子落入正方形内任意一点都是机会均等的,这符合几何概型的条件,可以看成几何概型.于是利用几何概型求概率的公式,豆子落入圆中的概率应该等于圆面积与正方形面积的比.解:记“豆子落入圆内”为事件A ,则 P(A)=4422ππ==a a 正方形面积圆的面积. 答:豆子落入圆内的概率为4π. 点评:在解题时,首先要区分是古典概型还是几何概型,这两种随机事件的概率类型虽然每一个事件的发生都是等可能的,但是几何概型是有无数个基本事件的情形,古典概型是有有限个基本事件的情形.此外,本例可以利用计算机模拟,过程如下:(1)在Excel 软件中,选定A1,键入“=(rand ()-0.5)*2”.(2)选定A1,按“ctrl+C”.选定A2~A1 000,B1~B1 000,按“ctrl+V”.此时,A1~A1 000,B1~B1 000均为[-1,1]区间上的均匀随机数.(3)选定D1,键入“=power(A1,2)+ power (B1,2)”;再选定D1,按“ctrl+C”;选定D2~D1 000,按“ctrl+V”,则D 列表示A 2+B 2.(4)选定F1,键入“=IF(D1>1,1,0)”;再选定F1,按“ctrl+C”;选定F2~F1 000,按“ctrl+V”,则如果D 列中A 2+B 2>1,F 列中的值为1,否则F 列中的值为0.(5)选定H1,键入“FREQUENCY(F1:F10,0.5)”,表示F1~F10中小于或等于0.5的个数,即前10次试验中落到圆内的豆子数;类似的,选定H2,键入“FREQUENCY(F1:F20,0.5)”,表示前20次试验中落到圆内的豆子数;选定H3,键入“FREQUENCY(F1:F50,0.5)”,表示前50次试验中落到圆内的豆子数;选定H4,键入“FREQUENCY(F1:F100,0.5)”,表示前100次试验中落到圆内的豆子数;选定H5,键入“FREQUENCY(F1:F500,0.5)”,表示前500次试验中落到圆内的豆子数;选定H6,键入“FREQUENCY(F1:F1 000,0.5)”,表示前1 000次试验中落到圆内的豆子数.(6)选定I1,键入“H1*4/10”,表示根据前10次试验得到圆周率π的估计值;选定I2,键入“H2*4/10”,则I2为根据前20次试验得到圆周率π的估计值;类似操作,可得I3为根据前50次试验得到圆周率π的估计值,I4为根据前100次试验得到圆周率π的估计值,I5为根据前500次试验得到圆周率π的估计值,I6为根据前1 000次试验得到圆周率π的估计值.如图:例2 如图,在等腰直角三角形ABC 中,在斜边AB 上任取一点M ,求AM 小于AC 的概率.分析:在线段AB 上取一点C′,使得线段AC′的长度等于线段AC 的长度.那么原问题就转化为求AM 小于AC′的概率.所以,当点M 位于下图中的线段AC′上时,AM <AC ,故线段AC′即为区域d.区域d 的测度就是线段AC′的长度,区域D 的测度就是线段AB 的长度.解:在AB 上截取AC′=AC.于是P(AM<AC)=P(AM<AC′)=22=='AB AC AB C A . 答:AM 小于AC′的概率为22. 变式训练:若将例2改为:如下图,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与线段AB 交于点M ,求AM 小于AC 的概率.解:此时,应该看作射线CM 落在∠ACB 内部是等可能的.公式中的区域D 是∠ACB(内部),而区域d 求法应该与原题是一样的,即在线段AB 上取一点C′,使得线段AC′的长度等于线段AC 的长度(如图),那么区域d 就是∠ACC′(内部).从而区域d 的测度就是∠ACC′的度数,区域D 的测度就是∠ACB 的度数.∠ACC′=2135245180︒=︒-︒=67.5°,所以所求事件的概率为43905.67=︒︒=∠'∠ACB C AC . 点评:由此可见,背景相似的问题,当等可能的角度不同时,其概率是不一样的.此题可参考习题3.3的第6题.例3 (会面问题)甲、乙二人约定在 12 点到下午 5 点之间在某地会面,先到者等一个小时后即离去.设二人在这段时间内的各时刻到达是等可能的,且二人互不影响.求二人能会面的概率.分析:两人相约的时间都是5小时,设X ,Y 分别表示甲、乙二人到达的时刻,因此,0≤X≤5,0≤Y≤5,这样两人到达的时刻就构成一个正方形,而两人能会面必须满足|X -Y|≤1,而这个不等式所表示的是一个带状的,位于正方形内的图形,由于两人到达的时刻是随机的,而且,在每一个时刻到达的可能性是相同的,因此,符合几何概型所具有的特点,可以运用几何概型概率的计算方法来计算.解:记A={二人能会面}.以 X ,Y 分别表示甲、乙二人到达的时刻,于是0≤X≤5,0≤Y≤5,即点M 落在图中的阴影部分.所有的点构成一个正方形,即有无穷多个结果.由于每人在任一时刻到达都是等可能的,所以落在正方形内各点是等可能的,符合几何概型的条件.二人会面的条件是:|X -Y|≤1,故正方形的面积为5×5=25,阴影部分的面积为5-2×21×42=9.二人能会面的概率为259. 点评: 建立适当的数学模型,是解决几何概型问题的关键.对于“碰面问题”可以模仿本题建立数学模型.例 4 如图,随机投掷一个飞镖扎在靶子上,假设飞镖既不扎在黑色的靶心,也不扎在两个区域之间,更不会脱靶,求飞镖扎在下列区域的概率:(1)编号为25的区域;(2)编号在6到9之间的区域;(3)编号为奇数的区域.(每一个小区域的面积相同)分析:由于飞镖是随机投掷到靶子上,并且落在靶子的每一个位置的可能性相同,因此,符合几何概型的特点.解: 假设靶子的每一个区域的面积为1个单位,则靶子所在圆的面积为28个单位.(1)记事件A 为“飞镖扎在编号为25的区域”,则P(A)= 281. (2)记事件B 为“飞镖扎在编号为6到9之间的区域”,则P(B)=71284=. (3)记事件C 为“飞镖扎在编号为奇数的区域”,则P(C)=212814=. 答:(1)飞镖扎在编号为25的区域的概率为281;(2)飞镖扎在编号在6到9之间的区域的概率为71;(3)飞镖扎在编号为奇数的区域的概率为21. 点评:仔细研读题目,从题目提供的信息进行分析,寻找适当的解题方法,是解决本题的要害所在.思路2例1 在1 L 高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10 mL ,含有麦诱病种子的概率是多少?分析:病种子在这1 L 种子中的分布可以看作是随机的,取得的10 mL 种子可视为区域d ,所有种子可视为区域D.解:取出10 mL 麦种,其中“含有病种子”这一事件记为A ,则 P(A)=1001100010==所有种子的体积取出种子的体积. 答:含有麦诱病种子的概率为1001. 点评:由于病种子是随机地处在容器中,它可以位于容器的任何一个位置,而且在每一个位置的可能性相同,符合几何概型的特点,所以运用几何概型概率的计算方法来解决本题.例2 假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?分析:由于两人到达和离开的时刻是随机的,而且,在每一个时刻到达或离开的可能性是相同的,因此,符合几何概型所具有的特点,可以运用几何概型概率的计算方法来计算.解:如图,以横坐标x 表示报纸送到时间,纵坐标y 表示父亲离家时间建立平面直角坐标系,假设随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件A 发生,所以 P(A)=2226023060 =87.5%. 点评:建立适当的数学模型,该模型符合几何概型的特点,这是解答本题的关键所在.另外我们还可以运用计算机产生随机数来模拟该试验.设X 是0到1之间的均匀随机数,Y 也是0到1之间的均匀随机数.如果Y+7>X+6.5,即Y >X-0.5,那么父亲在离开家前能得到报纸.计算机模拟的方法:(1)选定A1,键入函数“=rand()”;(2)选定A1,按“ctrl+C”,选定A2~A50,B1~B50,按“ctrl+V”.此时,A1~A50,B1~B50均为[0,1]区间上的均匀随机数.用A 列的数加7表示父亲离开家的时间,B 列的数加6.5表示送报人送到报纸的时间.如果A+7>B+6.5,即A-B >-0.5,则表示父亲在离开家前能得到报纸.(3)选定D1,键入“=A1-B1”;再选定D1,按“ctrl+C”,选定D2D50,按“ctrl+V”.(4)选定E1,键入函数“=FREQUENCY(D1:D50,-0.5)”,E1表示统计D 列中小于或等于-0.5的数的个数,即父亲在离开家前不能得到报纸的频数.(5)选定F1,键入“=(50-E1)/50.F1表示统计50次试验中,父亲在离开家前能得到报纸的频率.下面是我们在计算机上做的50次试验,得到的结果是P(A)=0.88,如图:例3 假设一个直角三角形的两直角边的长都是0到1之间的随机数,试求斜边长小于34的事件的概率.分析:由于直角边的长是0到1之间的随机数,因此设两直角边的长分别为x,y ,而x,y 满足0≤x≤1,0≤y≤1,斜边长=4322<+y x ,x,y 可以落在0≤x≤1,0≤y≤1所表示的图形的任何一个位置,而且在每个位置的可能性相同,满足几何概型的特点.解:设两直角边的长分别为x,y ,则0≤x≤1,0≤y≤1,斜边长=4322<+y x ,如右图,样本空间为边长是1的正方形区域,而满足条件的事件所在的区域的面积为649)43(412ππ=⨯⨯.因此,所求事件的概率为P=6491649ππ=. 点评:根据已知条件,构造满足题目条件的数学模型,再运用几何概型的概率计算方法来计算某个事件发生的概率,是一种常用的求解概率问题的方法.例4 甲、乙两人相约于中午12点到13点之间在某一个地方碰面,并约定先到者等候20分钟后可以离开,试设计模拟方法估计两人能碰面的概率.分析:当两人到达碰面地点的时间相差在20分钟之内时,两人能碰面.我们可以用两个转盘来模拟两人到达碰面地点的时间.解: 运用转盘模拟的方法.具体步骤如下:(1)做两个带指针(分针)的转盘,标上刻度在0到60来表示时间,如右图;(2)每个转盘各转m 次,并记录转动得到的结果,以第一个转盘的结果x 表示甲到达碰面地点的时间,以第二个转盘的结果y 表示乙到达碰面地点的时间;(3)统计两人能碰面(满足|x -y|<20)的次数n ;(4)计算m n 的值,即为两人能碰面的概率的近似值(理论值为95). 点评:实施模拟的方法除了转盘模拟的方法外,还可以运用现代信息技术即计算机来模拟,具体操作如下:(1)新建一个电子表格文件,在A1的位置输入:=RAND( ) 60,产生一个0到60的随机数x ;(2)将A1位置处的表达式复制到B1处,这样又产生一个0到60的随机数y ;(3)在C1的位置处输入:=IF (A1-B1<=-20,0,IF (A1-B1<20,1,0),判断两人能否碰面(即是否满足|x -y|<20),如果是,就返回数值1,否则返回数值0;(4)将第一行的三个表达式复制100行,产生100组这样的数据,也就是模拟了100次这样的试验,并统计每次的结果;(5)在C101处输入:=SUM(C1:C100)/100统计这100次重复试验中正好两人能碰面的频率,即事件“两人能碰面”发生的概率的近似值.知能训练课本本节练习4、5.解答:4.设A={射线OA 落在∠xOT 内}.因为射线OA 落在∠xOT 内是随机的,也就是射线OA 可以落在∠xOT 内任意一个位置,这符合几何概型的条件,区域d 的测度是60,区域D 的测度是360,根据几何概型的概率计算公式,得P(A)=6136060=. 5.运用计算机模拟的结果大约为2.7左右.点评:根据实际问题的背景,判断是否符合几何概型的特点,如是则选择符合题意的“测度”,运用求几何概型概率的方法来解决问题,此外我们还可以设计符合问题的模拟方法来模拟得到问题的近似解.课堂小结在这节课上我们主要是运用几何概型求解一些问题的概率,以及运用模拟的方法求某一个事件的概率的近似值.结合上节课的内容可以知道,几何概型的概率问题仍然是随机事件的概率,与古典概型的区别是古典概型所含的基本事件的个数是有限个,而几何概型所包含的基本事件的个数是无限的.对于几何概型我们着重研究如下几种类型:(1)与长度有关的几何概型;(2)与面积有关的几何概型;(3)与体积有关的几何概型;(4)与角度有关的几何概型.其中我们对与面积有关的几何概型和与体积有关的几何概型要求重点掌握.作业课本习题3.3 4、5、6.设计感想几何概型是区别于古典概型的又一随机事件的概率模型,在解决实际问题时首先根据问题的背景,判断该事件是属于古典概型还是几何概型,这两者的区别在于构成该事件的基本事件的个数是有限个还是无限个.在使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例.随机数在日常生活中,有着广泛的应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣的量(如概率值、常数)有关,然后设计适当的试验,并通过这个试验的结果来确定这些量.这种方法也是我们研究问题常用的方法.习题详解习题3.31.记A={灯与两端距离都大于2 m}.因为把一盏灯挂在绳子上的位置是随机的,也就是说灯挂在绳子上的位置可以是绳子上任意一点,这符合几何概型的条件,根据P=的长度的长度L l ,得P(A)= 3162=. 答:灯与两端距离都大于2 m 的概率为13.2.记A={所投的点落入小正方形内}.由于是随机投点,故可以认为所投的点落入大正方形内任意一点都是机会均等的,这符合几何概型的条件,可以看成几何概型.于是利用几何概型求概率的公式,所投的点落入小正方形内的概率应该等于小正方形内面积与大正方形面积的比,即 P(A)=943222==大正方形面积小正方形面积. 答:所投的点落入小正方形内的概率为94. 3.记A={所投的点落在梯形内部}.由于是随机投点,故可以认为所投的点落入矩形内的任意一点都是机会均等的,这符合几何概型的条件,可以看成几何概型.于是利用几何概型求概率的公式,所投的点落入梯形内部的概率应该等于梯形面积与矩形面积的比,即 P(A)=125)2131(21=⨯⨯+⨯=b a b a a 矩形面积梯形面积. 答:所投的点落在梯形内部的概率为125. 4.设A={该点落在正方形内}.因为该点落在正方形内是随机的,也就是该点可以落在正方形内任意一个位置,这符合几何概型的条件,根据几何概型的求概率计算公式,得P(A)=ππ21121)21(22=⋅⋅. 答:乘客到达站台立即乘上车的概率为π21. 5.分析:直接求“硬币落下后与格线有公共点”的概率比较困难,可以考虑先求“硬币落下后与格线无公共点”的概率,再求“硬币落下后与格线有公共点的概率”.解:因为直径等于2 cm 的硬币投掷到正方形网格上是随机的,也就是硬币可以落在正方形网格上任意一个位置,这符合几何概型的条件.要求“硬币落下后与格线无公共点”的概率,根据几何概型的求概率计算公式: P(A)=的测度的测度D d ,因为每个小正方形的边长都等于6 cm ,硬币的直径为2 cm ,设有n 个小正方形,则区域d 的测度为n·π·12,区域D 的测度n·62,故“硬币落下后与格线无公共点”的概率为366122ππ=⋅⋅⋅n n ,而事件“硬币落下后与格线有公共点”是“硬币落下后与格线无公共点”的对立面,所以事件“硬币落下后与格线有公共点”的概率为1-36π. 答:硬币落下后与格线有公共点的概率为1-36π. 6.贝特朗算出了三种不同的答案,三种解法似乎又都有道理.人们把这种悖论称为概率悖论,或贝特朗奇怪论.贝特朗的解法如下:解法一:任取一弦AB ,过点A 作圆的内接等边三角形(如图1).因为三角形内角A 所对的弧,占整个圆周的31.显然,只有点B 落在这段弧上时,AB 弦的长度才能超过正三角形的边长a ,故所求概率是31. 解法二:任取一弦AB ,作垂直于AB 的直径PQ.过点P 作圆的内接等边三角形,交直径于N ,并取OP 的中点M (如图2).容易证明QN=NO=OM=MP.我们知道,弦长与弦心距有关.一切与PQ 垂直的弦,如果通过MN 线段的,其弦心距均小于QN ,则该弦长度就大于等边三角形边长,故所求概率是21. 解法三:任取一弦AB.作圆的内接等边三角形的内切圆(如图3),这个圆是大圆的同心圆,而且它的半径是大圆的21,它的面积是大圆的41,设M 是弦AB 的中点,显然,只有中点落在小圆内时,AB 弦才能大于正三角形的边长.因此所求的概率是41.图1 图2 图3细细推敲一下,三种解法的前提条件各不相同:第一种假设了弦的端点在四周上均匀分布;第二种假设弦的中点在直径上均匀分布;第三种假设弦的中点在小圆内均匀分布.由于前提条件不同,就导致三种不同的答案.这是因为在那时候概率论的一些基本概念(如事件、概率及可能性等)还没有明确的定义,作为一个数学分支来说,它还缺乏严格的理论基础,这样,对同一问题可以有不同的看法,以致产生一些奇谈怪论.。
黑龙江省大庆外国语学校高中数学 第三章《概率》《3.3几何概型》教案 新人教A 版必修3一、教学目标:1、 知识与技能:(1)正确理解几何概型的概念; (2)掌握几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型; (4)了解均匀随机数的概念;(5)掌握利用计算器(计算机)产生均匀随机数的方法; (6)会利用均匀随机数解决具体的有关概率的问题. 二、重点与难点:1、几何概型的概念、公式及应用;2、利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.三、学法:通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法; 四、教学过程:1、创设情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。
例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个。
2、基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; (2)几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.3、 例题分析: 课本例题略例1 判下列试验中事件A 发生的概度是古典概型, 还是几何概型。
(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如课本P132图3.3-1中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率。
2019-2020学年高中数学 第三章 概率 3.3 几何概型教案 新人教B版必修3教学目标1.了解几何概型的定义及其特点. 2.了解几何概型与古典概型的区别.3.会用几何概型的概率计算公式求几何概型的概率. 教学重难点1.注意理解几何概型与古典概型的区别.2.理解如何将实际问题转化为几何概型的问题,利用几何概型公式求解,概率公式为P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积教学过程[情境导学] 在现实生活中,常常会遇到试验的所有可能结果是无穷多的情况,例如:一个正方形方格内有一内切圆,往这个方格中投一个石子,求石子落在圆内的概率,由于石子可能落在方格中的任何一点,这个实验不能用古典概型来计算事件发生的概率.对此,我们必须学习新的方法来解决这类问题. 探究点一 几何概型的概念思考1 计算随机事件发生的概率,我们已经学习了哪些方法?答 (1)通过做试验或计算机模拟,用频率估计概率;(2)利用古典概型的概率公式计算.思考2 某班公交车到终点站的时间可能是11:30~12:00之间的任何一个时刻;往一个方格中投一粒芝麻,芝麻可能落在方格中的任何一点上.这两个试验可能出现的结果是有限个,还是无限个?若没有人为因素,每个试验结果出现的可能性是否相等? 答 出现的结果是无限个;每个结果出现的可能性是相等的.思考3 下图中有两个转盘,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜.你认为甲获胜的概率分别是多少?答 以转盘(1)为游戏工具时,甲获胜的概率为12;以转盘(2)为游戏工具时,甲获胜的概率为35.思考 4 上述每个扇形区域对应的圆弧的长度(或扇形的面积)和它所在位置都是可以变化的,从结论来看,甲获胜的概率与字母B 所在扇形区域的哪个因素有关?哪个因素无关?答 与扇形的弧长(或面积)有关,与扇形区域所在的位置无关.思考5 玩转盘游戏中所求的概率就是几何概型,你能给几何概型下个定义吗?参照古典概型的特征,几何概型有哪两个基本特征?答 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型;几何概型的基本特征:(1)可能出现的结果有无限多个;(2)每个结果发生的可能性相等. 思考6 古典概型和几何概型有什么相同点和不同点? 答 相同点:两者基本事件发生的可能性都是相等的;不同点:古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个. 例1 判断下列试验中事件A 发生的概型是古典概型,还是几何概型. (1)抛掷两颗骰子,求出现两个“4点”的概率; (2)思考3中,求甲获胜的概率.解 (1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B 区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域面积有关,因此属于几何概型.反思与感悟 判断一个概率是古典概型还是几何概型的步骤:(1)判断一次试验中每个基本事件发生的概率是否相等,若不相等,那么这个概率既不是古典概型也不是几何概型;(2)如果一次试验中每个基本事件发生的概率相等,再判断试验结果的有限性,当试验结果有有限个时,这个概率是古典概型;当试验结果有无限个时,这个概率是几何概型.跟踪训练1 判断下列试验是否为几何概型,并说明理由: (1)某月某日,某个市区降雨的概率.(2)设A 为圆周上一定点,在圆周上等可能地任取一点与A 连接,求弦长超过半径的概率.解 (1)不是几何概型,因为它不具有等可能性;(2)是几何概型,因为它具有无限性与等可能性.探究点二 几何概型的概率公式问题 对于具有几何意义的随机事件,或可以化归为几何问题的随机事件,一般都有几何概型的特性,那么,对于属于几何概型的试验,如何求某一事件的概率?有没有求几何概型的概率公式呢?思考1 有一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得的两段的长度都不小于1 m 的概率是多少?你是怎样计算的?答 从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点.如上图,记“剪得两段的长都不小于1 m”为事件A .把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的13,于是事件A 发生的概率P (A )=13.思考2 射箭比赛的箭靶涂有五个彩色的分环,从外向内依次为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫“黄心”.奥运会射箭比赛的靶面直径是122 cm ,黄心直径是12.2 cm ,运动员在距离靶面70 m 外射箭.假设射箭都等可能射中靶面内任何一点,那么如何计算射中黄心的概率?答 如右图,由于中靶点随机地落在面积为14×π×1222 cm 2的大圆内,若要射中黄心,则中靶点落在面积为14×π×12.22 cm 2的圆内,所以P =14×π×12.2214×π×1222=0.01.思考3 在装有5升纯净水的容器中放入一个病毒,现从中随机取出1升水,那么这1升水中含有病毒的概率是多少?你是怎样计算的?答 概率为15,由于病毒在5升水中的哪个位置的可能性都有,1升水中含有病毒的概率为1升水的体积除以5升水的体积.思考4 根据上述3个思考中求概率的方法,你能归纳出求几何概型中事件A 发生的概率的计算公式吗? 答 P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.例2 某公共汽车站每隔10分钟有一辆汽车到达,乘客到达车站的时刻是任意的,求乘客候车时间不超过6分钟的概率.解 如下图所示,设上辆车于时刻T 1到达,而下辆车于时刻T 2到达,则线段T 1T 2的长度为10,设T 是线段T 1T 2上的点,且TT 2的长为6,记“等车时间不超过6分钟”为事件A ,则事件A 发生即当点t 落在线段TT 2上,即D =T 1T 2=10,d =TT 2=6.所以P (A )=d D =610=35. 故乘客候车时间不超过6分钟的概率为35.反思与感悟 数形结合为几何概型问题的解决提供了简捷直观的解法.利用图解题的关键:首先用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的几何区域,然后根据构成这两个区域的几何长度(面积或体积),用几何概型概率公式求出事件A 的概率.跟踪训练2 某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.解 记“等待的时间小于10分钟”为事件A ,打开收音机的时刻位于[50,60]时间段内则事件A 发生.由几何概型的概率公式求得P (A )=60-5060=16,即“等待报时的时间不超过10分钟”的概率为16.探究点三 几何概型的应用例3 在Rt△ABC 中,∠A =30°,过直角顶点C 作射线CM 交线段AB 于M ,求使|AM |>|AC |的概率. 解设事件D 为“作射线CM ,使|AM |>|AC |”. 在AB 上取点C ′使|AC ′|=|AC |,因为△ACC ′是等腰三角形, 所以∠ACC ′=180°-30°2=75°,μA =90-75=15,μΩ=90, 所以P (D )=1590=16.反思与感悟 几何概型的关键是选择“测度”,如本例以角度为“测度”.因为射线CM 落在∠ACB 内的任意位置是等可能的.若以长度为“测度”,就是错误的,因为M 在AB 上的落点不是等可能的.跟踪训练3 在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM 交BC 于点M ,求BM <1的概率.解 ∵∠B =60°,∠C =45°,∴∠BAC =75°, 在Rt△ADB 中,AD =3,∠B =60°, ∴BD =ADtan 60°=1,∠BAD =30°. 记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式得P (N )=30°75°=25.【当堂测、查疑缺】1.下列关于几何概型的说法错误的是( )A .几何概型也是古典概型中的一种B .几何概型中事件发生的概率与位置、形状无关C .几何概型中每一个结果的发生具有等可能性D .几何概型在一次试验中能出现的结果有无限个 答案 A解析 几何概型与古典概型是两种不同的概型.2.面积为S 的△ABC ,D 是BC 的中点,向△ABC 内部投一点,那么点落在△ABD 内的概率为( ) A.13B.12C.14D.16答案 B解析 向△ABC 内部投一点的结果有无限个,属于几何概型.设点落在△ABD 内为事件M ,则P (M )=△ABD 的面积△ABC 的面积=12.3.ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4B .1-π4C.π8D .1-π8答案 B解析 若以O 为圆心,1为半径作圆,则圆与长方形的公共区域内的点满足到点O 的距离小于或等于1, 故所求事件的概率为P (A )=S 长方形-S 半圆S 长方形=1-π4.4.在区间[-1,1]上随机取一个数x ,则sin πx 4的值介于-12与22之间的概率为________.答案 56解析 ∵-1≤x ≤1,∴-π4≤πx 4≤π4.由-12≤sin πx 4≤22,得-π6≤πx 4≤π4,即-23≤x ≤1.故所求事件的概率为1+232=56.作业:习题3.3A 1,2,3。
2019-2020年高中数学第三章概率教案新人教版必修3一、课时学习目标知识与技能1、掌握随机事件、必然事件、不可能事件的概念。
2、正确理解事件A出现的频率的意义。
3、正确理解概率的概率和意义,明确事件A 发生的频率f n(A)与事件A发生的概率P(A)的区别与联系。
4、利用概率知识,正确理解现实生活中的实际问题。
过程与方法通过在抛硬币、抛骰子的试验中获取数据的过程,培养探索、归纳的能力和自主学习的能力。
情感、态度与价值观1、通过自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系。
2、培养辩证唯物主义观点,增强科学意识。
二、课前预习导学请同学们阅读P108—112,完成下列问题1、事件的有关概念(1)必然条件:在条件S下,_________会发生的事件,叫做相对于条件S的必然事件,简称必然事件;(2)不可能事件:在条件S下,__________会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件;(3)确定事件:__________事件与___________事件统称为相对于条件S的确定事件,简称确定事件;(4)随机事件:在条件S下,___________的事件叫做相对于条件S的随机事件,简称随机事件。
(5)_________事件与________事件统称为事件,一般用________表示。
2、概率与频率(1)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的_________,称事件A出现的比例fn(A)=为事件A出现的__________,显然频率的取值范围是____________。
(2)概率:在大量重复试验后,随着试验次数的增加,事件A发生的频率如果逐渐________在区间[0,1]中的某个______上,这个便称为事件A的概率,用P(A)表示,显示概率的取值范围是[0,1],且不可能事件的概率为_________,必然事件的概率为___________。
——教学资料参考参考范本——2019-2020学年度高中数学第3章概率3-3几何概型互动课堂学案______年______月______日____________________部门互动课堂疏导引导1.几何概型的定义在古典概型中,利用等可能性的概念,成功地计算了某一类问题的概率;不过,古典概型要求可能结果的总数必须有限.这不能不说是一个很大的限制,人们当然要竭力突破这个限制,以扩大自己的研究范围.因此历史上有不少人企图把这种做法推广到有无限多个结果而又有某种等可能性的场合.这类问题一般可以通过几何方法来求解.对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型.对于这一定义也可以作以下理解:设在空间上有一区域D,又知区域d包含在区域D内(如下图所示),而区域D与d都是可以度量的(可求面积、长度、体积等),现随机地向D内投掷一点M,假设点M 必落在D中,且点M可能落在区域D的任何部分,那么落在区域d内的概率只与d的度量(长度、面积、体积等)成正比,而与d的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.2.几何概型的概率计算一般地,在几何区域D中随机地抽取一点,记“该点落在其内部的一个区域d内”为事件A,则事件A发生的概率P(A)=.的测度的测度D d 这里要求D 的测度不为0,其中“测度”的意义依D 确定,当D 分别是线段、平面图形和立体图形时,相应的“测度”分别是长度、面积和体积等.疑难疏引 (1)几何概型的概率的取值范围同古典概型概率的取值范围一样,几何概型的概率的取值范围也是0≤P(A)≤1.这是因为区域d 包含在区域D 内,则区域d 的“测度”不大于区域D 的“测度”.当区域d 的“测度”为0时,事件A 是不可能事件,此时P(A)=0;当区域d 的“测度”与区域D 的“测度”相等时,事件A 是必然事件,此时P(A)=1.(2)求古典概型概率的步骤:①求区域D 的“测度”;②求区域d 的“测度”;③代入计算公式.(3)对于一个具体问题能否应用几何概率公式计算事件的概率,关键在于将问题几何化,也即可根据问题的情况,选取合适的参数,建立适当的坐标系,在此基础上,将试验的每一结果一一对应于该坐标系中的一点,使得全体结果构成一个区域,且是可度量的.案例1 某公共汽车站每隔5分钟有一辆车通过(假设每一辆车带走站上的所有乘客),乘客到达汽车站的任一时刻是任意的,求乘客候车时间不超过3分钟的概率.【探究】这是一个与长度有关的几何概型问题.记A=“候车时间不超过3分钟”.以x 表示乘客到车站的时刻,以t 表示乘客到车站后来到的第一辆汽车的时刻,据题意,乘客必然在(t-5,t ]内来到车站,于是D={x|t-5<x≤t}.若乘客候车时间不超过3分钟,必须t-3≤x ≤t,所以A={x|t-3≤x ≤t}据几何概率公式得P (A )==0.653=的长度的长度D d 规律总结 (1)把所求问题归结到x 轴上的一个区间内是解题的关键.然后寻找事件A 发生的区域,从而求得d 的测度.(2)本题也可这样理解:乘客在时间段(0,5]内任意时刻到达,等待不超过3分钟,则到达的时间在区间[2,5]内.案例 2 甲、乙两艘轮船都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停靠时必须等待的概率.【探究】这是一类与面积有关的几何概型问题.设A={两艘船中至少有一艘停靠时等待}.建立平面直角坐标系,x 轴表示甲船到达的时间,y 轴表示乙船到达的时间,则(x,y )表示的所有结果是以24为边长的正方形.事件A 发生的条件是0<x-y <6或0<y-x <6,即图中阴影部分,则D 的面积为242,d 的面积为242-182.∴P(A )=.167242824222=- 规律总结 (1)甲、乙两船都是在0—24小时内的任一时刻停靠,故每一个结果对应两个时间;分别用x,y 轴上的数表示,则每一个结果(x,y )就对应于图中正方形内的任一点.(2)找出事件A 发生的条件,并把它在图中的区域找出来,分别计算面积即可.(3)这一类问题我们称为约会问题.案例 3 在长度为a 的线段上任取两点将线段分成三段,求它们可以构成三角形的概率.【探究】解法一:假设x 、y 表示三段长度中的任意两个,因为是长度,所以应有x >0,y >0且x+y <a,即x 、y 的值在以(0,a )、(a,0)和(0,0)为顶点的三角形内,如右图所示.要形成三角形,由构成三角形的条件知,x 和y 都小于,且x+y >(如图阴影部分).2a 2a 又因为阴影部分的三角形的面积占形成总面积的,故能够形成三角形的概率为.4141 解法二:如右图,作等边三角形ABC,使其高为a,过各边中点作△DEF.△DEF 的面积占△ABC 的面积的.因为从△ABC 内任意一点P 到等边三角形三边的垂线段长度之和等于三角形的高(由等积法易知),为了使这三条垂线线段中没有一条的长度大于,P 点必须落在阴影部分即△DEF 内(DM=).所以符合题意要求的情况占全部情况的,即所求概率为.412a 2a 4141 解法三:如下图,作一边长为a 的正方形,过相对两边的中点作两条斜线,阴影部分占整个正方形面积的.令AB 上距离底边为x 的点表示第一个截点的位置,则第二个截点一定落入阴影部分(y <,z <).因此,符合题意要求的情况占全部情况的.412a 2a 411所以所求的概率为.4规律总结解决此题的关键在于弄清三角形三边长之间的关系,由题意易知,三边长之和为定值a,且三边长分别小于a2.把握住了这两点,就能使问题准确获解.3.随机数的产生与随机模拟方法(1)随机数的产生利用计算器或计算机产生[0,1]上的均匀随机数x1=RAND,然后利用伸缩和平移变换,x=x1*(b-a)+a,就可以得到[a,b]内的均匀随机数,试验的结果是[a,b]上的任何一个实数,并且任何一个实数都是等可能出现的.(2)随机模拟试验用频率估计概率时,需做大量的重复试验,费时费力,并且有些试验具有破坏性,有些试验无法进行,因而随机模拟试验就成为一种重要的方法,它可以在短时间内多次重复.用计算器或计算机模拟试验,首先需要把实际问题转化为可以用随机数来模拟试验结果的概率模型,也就是怎样用随机数刻画影响随机事件结果的量.我们可以从以下几个方面考虑:①由影响随机事件结果的量的个数确定需要产生的随机数组数.如长度型、角度型(一维)只用一组,面积型(二维)需要用两组.②由所有的基本事件总体(基本事件空间)对应区域确定产生随机数的范围.③由事件A发生的条件确定随机数所应满足的关系式.(3)随机模拟的基本思想是用频率近似于概率,频率可由试验获得.案例4 取一根长度为3 m的绳子,拉直后在任意位置剪断,用随机模拟法估算剪得两段的长都不小于1 m的概率有多大?【探究】在任意位置剪断绳子,则剪断位置到一端点的距离取遍[0,3]内的任意实数,并且每一个实数被取到的可能性相等,因此在任意位置剪断绳子的所有结果(即基本事件)对应[0,3 ]上的均匀随机数,其中[1,2]上的均匀随机数就表示剪断位置与端点的距离在[1,2]内,也就是剪得两段的长都不小于1 m,这样取得的[1,2]内的随机数个数与[0,3]内的随机数个数之比就是事件A发生的频率.【解析】记事件A={剪得两段的长都不小于1 m}.①利用计算器或计算机产生一组0到1区间的均匀随机数a1=RAND.②经过伸缩变换,a=a1*3.③统计出试验总次数N和[1,2]内的随机数个数N1.④计算频率fn(A)=N1/N即为概率P(A)的近似值.规律总结用随机模拟法估算几何概率的关键是把事件A及基本事件空间对应的区域转化为随机数的范围.案例 5 利用随机模拟方法计算图中阴影部分(曲线y=2x与x 轴,x=±1围成的部分)的面积.【探究】在坐标系中画出正方形,用随机模拟的方法可以求出阴影部分面积与正方形面积之比,从而求得阴影部分面积的近似值.【解析】(1)利用计算机产生两组[0,1]上的均匀随机数,a1=RAND,b1=RAND.(2)进行平移和伸缩变换,a=2a1-1,b=b1*2,得到一组[-1,1]上的均匀随机数和一组[0,2]上的均匀随机数.(3)统计试验总次数N 和落在阴影内的次数N1(满足条件b <2a 的点(a,b )).(4)计算频率,即为点落在阴影部分的概率的近似值.NN 1 (5)用几何概率公式求得点落在阴影部分的概率为P=.4S∴≈.N N 14S ∴S≈即为阴影部分面积的近似值.N N 14 规律总结 解决本题的关键是利用随机模拟法和几何概率公式分别求得几何概率,然后通过方程求得阴影部分面积的近似值.活学巧用1.判断下列概率模型是古典概型还是几何概型?(1)如下图,转盘上有8个面积相等的扇形.转动转盘,求转盘停止转动时指针落在阴影部分的概率.(2)在500 mL 的水中有一个草履虫,现从中随机取出2 mL 水样放到显微镜下观察,求发现草履虫的概率.解析:以上2个试验的可能结果个数无限,所以它们都不是古典概型.而是几何概型.2.利用几何概型求概率应注意哪些问题?解:应该注意到:(1)几何型适用于试验结果是无穷多且事件是等可能发生的概率类型;(2)几何概型主要用于解决与长度、面积、体积有关的题目;(3)公式为P(A)=;),(),(体积面积长度试验结果所构成的区域体积面积的区域长度构成事件A (4)计算几何概率要先计算基本事件总体与事件A 包含的基本事件对应的长度(角度、面积、体积).3.有一杯1 L 的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1 L 水,则小杯水中含有这个细菌的概率为( )A.0B.0.1C.0.01D.1解析:1个细菌在 1 L 的水中,在每一个位置都是可能的,那么只有这个细菌在这0.1 L 的水中,这件事件才能发生.由几何概型公式得P (A )==0.1.LL A 11.0=全部的体积的体积发生事件 答案:B4.如下图,如果你向靶子上射200支镖,大概有多少支镖落在红色区域(颜色较深的区域)( )A.50B.100C.150D.200解析:这是几何概型问题.这200支镖落在每一点的可能性都是一样的,对每一支镖来说,落在红色区域的概率P=,每一支镖落在红色区域的概率都是12,则200支镖落在红色区域的概率还是,则落在红色区域的支数=200支×=100支.21=圆的面积红色区域面积2121 答案:B5.如下图,假设你在每个图形上随机撒一粒黄豆,则它落到阴影部分的概率分别为_____________________,___________________.解析:这是几何概型问题,在平面上随机撒一粒黄豆,那么黄豆既可能落在三角形内,也可能落在圆内空白区域,并且落在每一点的可能性是一样的,只有落在三角形内才说明事件A 发生.①P(A )==.22a a π=圆的面积三角形的面积π1 ②P(A )==.圆的面积三个扇形的面积83 答案: π183 6.一个路口的红绿灯,红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒.当你到达路口时,看见下列三种情况的概率各是多少?(1)红灯;(2)黄灯;(3)不是红灯.解:在75秒内,每一时刻到达路口的时候是等可能的,属于几何概型.(1)P==;全部时间亮红灯的时间525)40(3030=++ (2)P==;全部时间亮黄灯的时间151755= (3)P===.全部时间不是红灯亮的时间全部时间黄灯或绿亮的时间537545= 7.在线段[0,3]上任取一点,则此点坐标不小于2的概率是( )A. B. C. D.31213297 解析:在线段[0,3]上任取一点的可能性是相等的,若在其上任意取一点,此点坐标不小于2,则该点应落在线段[2,3]上.所以,在线段[0,3]上任取一点,则此点坐标不小于2的概率应是线段[2,3]的长度与线段[0,3]的长度之比,即为.31答案:A8.圆O有一内接正三角形,向圆O随机投一点,则该点落在内接正三角形内的概率是_______.解析:向圆内投点,所投的点落在圆形区域内任意一点的可能性相等,所以本题的概率模型是几何概型.向圆O随机投一点,则该点落在内接正三角形内的概率应为正三角形的面积与圆的面积的比.答案:π4339.假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家之前能得到报纸(称为事件A)的概率是多少?解析:如下图所示,正方形区域内任取一点的横坐标表示送报人到达的时间,纵坐标表示父亲离开家去工作的时间.假设随机试验落在正方形内任何一点是等可能的,所以符合几何概型的条件,根据题意,只要点落到阴影部分,就表示父亲在离开家前得到报纸,即事件A发生,所以P(A)==87.5%.222602 3060-10.如右图所示,在直角坐标系内,射线OT落在60°的终边上,任作一条射线OA,求射线OA落∠xOT内的概率.分析:以O 为起点作射线OA 是随机的,因而射线OA 落在任何位置都是等可能的,落在∠xOT 内的概率只与∠xOT 的大小有关,符合几何概型的条件.解:设事件A“射线OA 落在∠xOT 内”.事件A 的角度是60°,区域D 的角度是360°,所以,由几何概率公式得P (A )=.6136060 11.甲、乙两辆货车停靠站台卸货的时间分别是6小时和4小时,用随机模拟法估算有一辆货车停靠站台时必须等待一段时间的概率.解析:设事件A :“有一辆货车停靠站台时必须等待一段时间”.(1)利用计算器或计算机产生两组0到1区间的均匀随机数,x1=RAND,y1=RAND.(2)经过伸缩变换,x=x1*24,y=y1*24得到两组[0,24]上的均匀随机数.(3)统计出试验总次数N 和满足条件-4≤x -y≤6的点(x,y )的个数N1.(4)计算频率fn(A)=,即为概率P (A )的近似值.NN 1 12.如右图,在长为4宽为2的矩形中有一以矩形的长为直径的半圆,试用随机模拟法近似计算半圆面积,并估计π值.解析:设事件A :“随机向矩形内投点,所投的点落在半圆内”.(1)利用计算机或计算机产生两组0到1区间的均匀随机数,x1=RAND,y1=RAND.(2)经过伸缩平移变换,x=x1*4-2,y=y1*2.(3)统计出试验总数N 和满足条件x2+y2<4的点(x,y )的个数N1.(4)计算频率fn(A)=,即为概率P (A )的近似值.N N 1 半圆的面积为S1=2π,矩形的面积为S=8.由几何概型概率公式得 P (A )=,所以=.所以即为π的近似值.4πN N 14πN N 1413.利用随机模拟法近似计算右图中阴影部分(曲线y=log3x 与x=3及x 轴围成的图形)的面积.解析:设事件A :“随机向矩形内投点,所投的点落在阴影部分”.(1)利用计算器或计算机产生两组0到1之间的均匀随机数,x1=RAND,y1=RAND.(2)经过伸缩平移变换,x=x1*3,y=y1*3.得到两组[0,3]的均匀随机数.(3)统计出试验总次数N 和满足条件y <log3x 的点(x,y )的个数N1.(4)计算频率fn(B)=,即为频率P (A )的近似值.NN 1 设阴影部分的面积为S,正方形的面积为9,由几何概率公式得P (A )=.9S所以=,故S=即为阴影部分面积的近似值.N N 19S N N 19。
2019-2020学年高中数学第三章概率 3.3 几何概型(2)学案新人教A
版必修3
班级:高()班学号:姓名:____ _______
学习目标:
进一步熟悉几何概型概率的求法,了解均匀随机数的产生及利用随机数模拟的方法求几何概型概率。
一、【学前准备】:
1、几何概型的概率问题特征:
2、几何概型的概率问题计算公式
二、【典型例题】
例1.取一根长为3m的绳子,拉直后在任意位置剪断,利用随机模拟法求剪得两段的长都不小于1m 的概率有多大?
例2.假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00~8:00之间。
问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?
y
三、【课堂练习】:
1.现向如图所示正方形内随机地投掷飞镖,求飞镖落在阴影部分 的概率.
2、某两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去,求两人会面的概率。
四、【课堂小结】:
1.在区间[a ,b]上的均匀随机数与整数值随机数的共同点都是等可能取值,不同点是均匀随机数可以取区间内的任意一个实数,整数值随机数只取区间内的整数.
2.利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题,体现了数学知识的应用价值.
3.用随机模拟试验不规则图形的面积的基本思想是,构造一个包含这个图形的规则图形作为参照,通过计算机产生某区间内的均匀随机数,再利用两个图形的面积之比近似等于分别落在这两个图形区域内的均匀随机点的个数之比来解决.
五、【课堂检测】:
1.几何概型中的试验结果是( )
4
y =
A .无限多个
B .有限个
C .非等可能的
D .不能确定
2.几何概型的随机模拟试验中,得到阴影内的样本点数为1N ,试验次数为N ,则下列说法正确的是( )
A .1N 与N 的大小无关
B .1
N N
是试验中的频率 C .
1N N 是试验中的概率 D .N 越大,1N
N
应越小
3.边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机 撒一粒豆子,它落在阴影区域内的概率为2
3
,则阴影区域的面积为 .
六、【课后作业】:
1.随机模拟方法产生的区间[0,1]上实数( )
A .非等可能的
B .0出现的机会少
C .1出现的机会少
D .是均匀分布的
2.边长为2的正方形中有一封闭曲线围成的阴影区域,在正方形中随机撒
100一粒豆子,恰有60粒豆子落在阴影区域内,则阴影区域的面积为( )
A . 125
B .65
C . 3
5
D .无法计算
3.在区间(0,1)上任取两个数,求两数之和小于6
5
的概率.。