电磁学计算方法的比较
- 格式:doc
- 大小:39.50 KB
- 文档页数:9
计算电磁学CEM(computational electromagnetics)是笔者在研发过程中认为最复杂的物理场,难度在CFD和计算材料学之上。
计算电磁学的复杂主要表现在物理场抽象,计算规模大,同时求解方法众多,涉及到大量的底层技术知识。
求解的偏微分方程是麦克斯韦方程组,麦克斯韦在奥斯特,法拉利等前人试验基础上通过数学推理得到了完整的方程组,在该方程组的理论支持下,有了后来的电磁学的飞速发展。
该方程组完整的描述了电,磁,材料,频率,时间之间的关系。
求解电磁学可分为三类:解析法,数值法,以及半解析半数值。
(1) 时域方法与谱域方法电磁学的数值计算方法可以分为时域方法(Time Domain或TD)和频域方法(Frequeney Domain或FD)两大类。
时域方法对Maxwell方程按时间步进后求解有关场量。
最著名的时域方法是时域有限差分法(Finite Difference Time Domain或FDTD)。
这种方法通常适用于求解在外界激励下场的瞬态变化过程。
若使用脉冲激励源,一次求解可以得到一个很宽频带范围内的响应。
时域方法具有可靠的精度,更快的计算速度,并能够真实地反应电磁现象的本质,特别是在诸如短脉冲雷达目标识别、时域测量、宽带无线电通讯等研究领域更是具有不可估量的作用。
频域方法是基于时谐微分、积分方程,通过对N个均匀频率采样值的傅立叶逆变换得到所需的脉冲响应,即研究时谐(Time Harmonic)激励条件下经过无限长时间后的稳态场分布的情况,使用这种方法,每次计算只能求得一个频率点上的响应。
过去这种方法被大量使用,多半是因为信号、雷达一般工作在窄带。
当要获取复杂结构时域超宽带响应时,如果采用频域方法,则需要在很大带宽内的不同频率点上的进行多次计算,然后利用傅立叶变换来获得时域响应数据,计算量较大;如果直接采用时域方法,则可以一次性获得时域超宽带响应数据,大大提高计算效率。
特别是时域方法还能直接处理非线性媒质和时变媒质问题,具有很大的优越性。
电磁学电容和电势能的计算电磁学是物理学的一个重要分支,研究电荷和电磁场之间的相互作用。
在电磁学中,电容和电势能是两个基本概念,它们在电路分析和电磁场计算中起着重要的作用。
本文将介绍电磁学中电容和电势能的计算方法,以及它们在实际应用中的意义。
一、电容的计算电容是指导体之间存储电荷的能力,通常用电容量来表示,单位是法拉(F)。
常见的电容器有平行板电容器和球形电容器,它们的电容可以通过以下公式计算:1. 平行板电容器的电容计算:平行板电容器由两块平行的导体板组成,之间填充绝缘材料。
假设两板面积为A,板间距为d,绝缘材料的相对介电常数为ε。
电容C可以通过以下公式计算:C = ε * ε0 * A / d其中,ε0是真空中的介电常数,约等于8.85 × 10^(-12) F/m。
2. 球形电容器的电容计算:球形电容器由一个内导体球和一个外导体球组成,内外导体球之间的空间被填充绝缘材料。
假设内外球的半径分别为R1和R2,绝缘材料的相对介电常数为ε。
电容C可以通过以下公式计算:C = 4π * ε * ε0 * R1 * R2 / (R2 - R1)二、电势能的计算电势能是指电荷在电场中具有的能量。
在电磁学中,电荷在电场中的电势能可以通过以下公式计算:U = q * V其中,U是电势能,单位是焦耳(J);q是电荷量,单位是库仑(C);V是电势,单位是伏特(V)。
对于一个带电粒子在电势为V的区域中,其电势能等于电荷量乘以电势。
如果存在多个电荷粒子,其总电势能等于每个电荷粒子的电势能之和。
三、电容和电势能的应用电容和电势能在电路分析和电磁场计算中有广泛的应用。
1. 电容的应用:平行板电容器广泛应用于电子器件中,如电容耦合放大器、滤波器等。
通过合理设计电容器的参数,可以实现对电信号的放大、滤波和耦合等功能。
球形电容器常用于高压实验和粒子加速器中,如范德格拉夫发电机和静电加速器。
通过控制电容器的参数,可以实现对电荷的存储和释放,从而产生高电压和高能粒子。
物理掌握电磁感应和电磁场的计算方法和应用技巧电磁感应和电磁场是物理学中的重要概念,在实际应用中具有广泛的应用。
了解电磁感应和电磁场的计算方法和应用技巧对于理解和解决相关问题至关重要。
本文将详细介绍电磁感应和电磁场的计算方法和应用技巧。
一、电磁感应的计算方法和应用技巧电磁感应是指导线中的电流通过改变或磁场的强度与方向变化时,在其附近产生感应电动势的现象。
电磁感应可根据法拉第电磁感应定律进行计算。
根据法拉第电磁感应定律,感应电动势的大小与导线回路的变化速率成正比。
根据这个原理,我们可以计算出感应电动势的大小。
在应用中,电磁感应常被用于发电机、变压器等设备的工作原理中。
例如,在发电机中,通过转动磁场和引起导线中的电流变化,将机械能转变为电能。
而在变压器中,通过交变电流在原线圈中产生交变磁场,从而在二次线圈中产生感应电动势进而变换电压。
二、电磁场的计算方法和应用技巧电磁场是电荷和电流产生的电场和磁场相互作用的结果。
电场表示电荷的分布情况,而磁场表示电流的分布情况。
电磁场的计算方法通过麦克斯韦方程组进行计算。
麦克斯韦方程组是描述电场和磁场的基本方程。
在应用中,电磁场的计算和应用技巧广泛应用于电磁波传播、电磁屏蔽、电磁传感等领域。
例如,在无线通信领域,电磁场的计算方法用于预测电磁波的传播情况,帮助设计天线和无线信号覆盖范围。
而在电磁屏蔽领域,通过合理设计和布置屏蔽结构,减少电磁辐射对周围环境和设备的干扰。
此外,电磁场的计算方法还可以用于电磁传感技术的开发,例如用于检测和测量电磁波、电磁场的强度或方向。
三、物理学中的电磁感应和电磁场的实践应用除了计算方法和应用技巧,电磁感应和电磁场还有许多实际应用。
以下是一些典型的应用案例:1. 电磁感应应用于感应炉:感应炉是利用电磁感应原理将电能转化为热能的装置。
通过变换器产生高频交流电磁场,感应炉中的金属导体在电磁场中产生感应电流,从而产生热量。
感应炉可广泛应用于钢铁冶炼、有色金属加热等行业。
高中物理电磁学的计算题解题技巧电磁学是高中物理中的重要内容之一,也是学生们较为困惑的部分。
在学习电磁学时,学生们经常会遇到各种计算题,需要掌握一定的解题技巧。
本文将以几个常见的电磁学计算题为例,介绍一些解题技巧,帮助高中学生更好地理解和应用电磁学知识。
1. 静电场强度计算题静电场强度的计算是电磁学中的基础题型。
例如,给定一个点电荷和一个观察点,要求计算观察点处的电场强度。
解决这类问题时,首先需要明确电场强度的定义,即单位正电荷所受到的力。
然后,根据库仑定律,计算出电荷与观察点之间的距离和电荷的大小,最后代入公式求解。
2. 电场能量计算题电场能量的计算是电磁学中的另一个重要题型。
例如,给定一个电容器,要求计算其中储存的电场能量。
解决这类问题时,需要掌握电场能量的计算公式,即电场能量等于电容器两极板之间的电压乘以电容值的平方再除以2。
根据题目给出的条件,计算出电压和电容值,代入公式求解即可。
3. 磁感应强度计算题磁感应强度的计算是电磁学中的又一个常见题型。
例如,给定一个长直导线和一个观察点,要求计算观察点处的磁感应强度。
解决这类问题时,需要掌握磁感应强度的计算公式,即磁感应强度等于导线上电流元素产生的磁场对观察点的影响之和。
根据题目给出的条件,计算出导线上电流元素的大小和观察点与电流元素之间的距离,然后代入公式求解。
4. 洛伦兹力计算题洛伦兹力的计算是电磁学中的一道较为复杂的题型。
例如,给定一个带电粒子在磁场中运动,要求计算粒子所受的洛伦兹力。
解决这类问题时,首先需要明确洛伦兹力的定义,即电荷在磁场中受到的力。
然后,根据洛伦兹力的计算公式,计算出电荷的速度、电荷的大小以及磁感应强度,最后代入公式求解。
在解决以上几类电磁学计算题时,不仅需要掌握相应的计算公式,还需要注意以下几点技巧:1. 弄清题目要求:在解题前,仔细阅读题目,了解题目要求和给出的条件。
明确需要计算的物理量和已知的物理量,有助于确定解题思路。
电磁学的数值计算方法电磁学是研究电场和磁场相互作用的学科,它在日常生活和科学研究中起着重要的作用。
随着计算机技术的快速发展,数值计算方法在电磁学中的应用也越来越广泛。
本文将介绍几种常用的电磁学数值计算方法,并探讨其原理和应用。
一、有限差分法(Finite Difference Method)有限差分法是一种基于离散化空间和时间的数值计算方法,常用于求解求解具有边值条件的偏微分方程。
在电磁学中,有限差分法可以用来求解电磁场的静电场、静磁场以及时变电磁场等问题。
该方法通过将空间和时间进行网格离散化,将偏微分方程转化为差分方程,并用迭代方法求解得到数值解。
二、有限元法(Finite Element Method)有限元法是一种广泛应用于各种物理问题求解的数值计算方法,电磁学也不例外。
该方法通过将求解区域划分为有限的小元素,并在局部内部逼近真实场量的变化。
在电磁学中,有限元法可以用来求解电场、磁场以及电磁波传播等问题。
通过选择合适的元素类型和插值函数,以及建立元素之间的边界条件,可以得到电磁场的数值解。
三、时域积分法(Time Domain Integral Method)时域积分法是一种基于格林函数的数值计算方法,通过积分形式表示电磁场的边界条件和过渡条件,进而求解电磁场。
时域积分法广泛应用于求解电磁波的辐射和散射问题,如天线辐射和散射、电磁波在介质中的传播等。
该方法通过离散化电磁场的源和观测点,并利用格林函数的性质进行数值积分,得到电磁场的数值解。
四、有限时域差分法(Finite-Difference Time-Domain Method)有限时域差分法是一种基于电磁场的离散化网格和时间的有限差分法,是求解各种电磁问题最常用的数值计算方法之一。
有限时域差分法通过离散化时空域,将麦克斯韦方程组转化为差分方程组,并通过时间步进的方式求解得到电磁场的数值解。
该方法适用于求解各种电磁波传播、辐射和散射等问题。
各种计算电磁学方法比较和对应软件求几种计算电磁学方法的区别和比较计算电磁学是指对一定物质和环境中的电磁场相互作用的建模过程,通常包括麦克斯韦方程计算上的有效近似。
计算电磁学被用来计算天线性能,电磁兼容,雷达散射截面和非自由空间的电波传播等问题。
计算电磁学的主要思想有,基于积分方程的方法,基于微分(差分)方程的方法,及其他模拟方法。
1.基于积分方程的方法1.1 离散偶极子近似(discrete dipole approximation,DDA)DDA是一种计算电磁波在任意几何形状物体上散射和吸收的方法,其表达式基于麦克斯韦方程的积分形式。
DDA用有限阵列的可极化点来近似连续形式的物体。
每个点通过对局部电场的响应获得对应的偶极子矩量,然后这些偶极子通过各自的电场相互作用。
因此,DDA有时也被认为是耦合偶极子近似。
这种线性方程的计算一般采用共轭梯度迭代法。
由于离散矩阵的对称性,就可能在迭代中使用FFT计算矩阵的向量乘法。
1.2 矩量法(Method of Moments,MoM ),边界元法(Boundary Element Method,BEM )MoM和BEM是求解积分形式(边界积分形式)的线性偏微分方程的数值计算方法,已被应用于如流体力学,声学,电磁学等诸多科技领域。
自从上世纪八十年代以来,该方法越来越流行。
由于只计算边界值,而不是方程定义的整个空间的数值,该方法是计算小表面(体积)问题的有效办法。
从概念上讲,它们在建模后的表面建立网格。
然而对于很多问题,此方法的效率较基于体积离散的方法(FEM,FDTD)低很多。
原因是,稠密矩阵的生成将意味着存储需求和计算时间会以矩阵维数的平方律增长。
相反的,有限元矩阵的存储需求和计算时间只会按维数的大小线性增长。
即使可以采用矩阵压缩技术加以改善,计算成功率和因此增加的计算复杂性仍强烈依赖问题的本质。
BEM可用在能计算出格林函数的场合,如在线性均匀媒质中的场。
电磁场计算方法及其应用分析在现代科技发展中,电磁场理论是非常重要的一部分。
从电信号传输到电气化系统,电磁场的应用涵盖了许多领域。
因此,电磁场计算方法的研究也显得格外重要。
本文将会分析和总结电磁场计算方法及其应用。
一、电磁场计算方法电磁场计算方法是用电场和磁场公式计算电磁场中所有点的电量和磁量,以预测电磁场在特定区域的分布和行为。
常用电磁场计算方法包括有限元法、有限差分法、边界元法等。
有限元法是一种能够处理非线性和非均匀介质的数值分析方法。
它把复杂的问题分解成许多小区域并求解基本方程,然后再用普通微分方程或多项式插值法将各小区域的解合并成整个问题的解。
有限元方法有很强的可靠性和通用性,可以应用于多维问题的计算中。
有限差分法是一种基于隐式差分格式的计算方法,通过对电磁场的微分方程进行离散化后,逐步求解梯度和散度等一系列差分方程。
有限差分法相对于有限元法来说,更加直接并且易于实现,因此在电磁场计算中有时被采用。
而边界元法则是一种基于格林公式的方法。
将求解区域的边界分解为离散的面元,并在每个面元上建立基函数,在求解过程中需要考虑面元之间边界条件的转化。
边界元法处理边界问题时非常有效。
以上三种方法都有着广泛的应用场景。
不同的计算方法都有着不同的优缺点,在实际应用中需要灵活选择。
二、电磁场计算应用分析1. 无线电通信场景在通信场景中,电磁场计算方法可以用于模拟无线信号的传输,来寻找最佳的信道码型。
比如,在手机通信中,不同地点的信号强度是不同的,我们可以通过电磁场计算方法,合理地安排网络基站,并加强信号覆盖,减少无线信号干扰等。
2. 电子电缆设计电缆结构中布线排列的合理性可以影响电磁场的分布以及对电缆本身的影响,甚至会对通讯信号传输产生噪声干扰等。
电磁场计算方法可以模拟电缆布线的情况,从而对电缆结构进行最优化设计,提高电缆的性能指标。
3. 电动车辆电磁兼容性分析电磁兼容性分析是电动车辆应用中的一个重要环节。
电动车辆中存在大量的电子设备、电气传输系统以及功率电子器件等,会产生相当大的电磁辐射干扰,导致出现各种问题。
电磁学公式总结⑴电阻 r①电阻等于材料密度乘以电阻率(长度除以横截面积) r=ρ×(l/s)②电阻等同于电压除以电流 r=u/i③电阻等于电压平方除以电功率 r=u^2;/p电阻:r=u^2/p⑵电功是 w电功等同于电流乘坐电压乘坐时间 w=uit(普通公式)电功等于电功率乘以时间 w=pt电功等同于电荷乘坐电压 w=uq电功等于电流平方乘电阻乘时间 w=i^2rt(纯电阻电路)电功等同于电压平方除以电阻再除以时间w=(u^2/r)×t(同上)⑶电功率 p①电功率等同于电压除以电流 p=ui②电功率等于电流平方乘以电阻 p=i^2*r(纯电阻电路)③电功率等同于电压平方除以电阻 p=u^2/r(同上)④电功率等于电功除以时间 p=w/t电功率p=ui注:当相同的电阻在同一电路中时,功率会变成之前的四分之一。
⑷电热q电热等于电流平方乘电阻乘时间 q=i^2rt(普通公式)电热等同于电流除以电压乘坐时间 q=uit=w(氢铵电阻电路)电热等于电压平方除以电阻再乘以时间q=(u^2/r)t(纯电阻电路)电热在通常情况下就是等同于消耗的`电能的,前提条件就是在氢铵电阻的用电器中。
1. p=w/t 主要适用于已知电能和时间求功率2. p=ui 主要适用于于未知电压和电流谋功率3. p=u^2/r =i^2r主要适用于纯电阻电路通常用作并联电路或电压和电阻中存有一个变量解电功率4.p=i^2r 主要用于纯电阻电路通常用作串联电路或电流和电阻中存有一个变量解电功率5.p=n/nt 主要适用于有电能表和钟表求解电功率t-----用电器单独工作的时间,单位为小时n----用电器单独工作 t 时间内电能表转盘转过的转数n----电能表铭牌上每消耗 1 千瓦时电能表旋钮抬起的转数6.功率的比例关系串联电路:p/p'=r/r' p总=p'*p''/p'+p"并联电路:p/p'=r'/r p总=p'+p"。
各种计算电磁学方法比较和仿真软件计算电磁学方法是基于电磁理论和数值计算方法的电磁场分析方法,广泛应用于电磁设备的设计和分析中。
在电磁场计算中,常见的方法包括有限差分法(Finite Difference Method, FDM)、有限元法(Finite Element Method, FEM)、边界元法(Boundary Element Method, BEM)和时域积分方程法(Time Domain Integral Equation Method, TDIE)等,每种方法都有其特点和适用范围。
有限差分法是一种有限差商逼近的数值求解方法,将连续域中的偏微分方程转化为差分方程,然后通过离散化求解得到电磁场分布。
有限差分法具有简单、易于理解和实现的优点,适用于处理规则的几何体和均匀介质的场问题。
然而,当处理复杂几何体和非均匀介质问题时,有限差分法的计算效率较低。
有限元法是一种通过分割计算域为有限个简单形状单元,并在每个单元上采用多项式近似的方法。
有限元法可以较好地处理任意形状的几何体和非均匀介质问题,并且对于大型复杂结构也具有较好的可扩展性。
有限元法在电磁场计算中广泛应用,例如在电感、电容和波导等领域。
边界元法是一种基于位势-势流理论的计算方法,将电磁场分析问题转化为求解边界上的积分方程。
边界元法可以处理复杂几何边界的问题,并且相对于有限元法,边界元法中的待求解变量的数目较少,计算量较小。
边界元法在电磁场计算中常用于处理表面波和边界散射等问题。
时域积分方程法是一种基于麦克斯韦方程组的数值计算方法,通过将时间导数和空间导数分开进行求解,可以用来描述电磁波在时域中的传播。
时域积分方程法可以处理电磁散射、辐射和天线等问题,并且对于时间反演分析也具有优势。
除了上述传统的计算电磁学方法,现代仿真软件也广泛用于电磁场计算和设计。
一些常见的电磁场仿真软件包括Ansys、COMSOL Multiphysics、CST Microwave Studio、FEKO和HFSS等。
电磁学电容与电势能的计算电磁学是物理学的一门重要分支,它研究电荷和电流之间的相互作用以及电磁场的产生与传播。
在电磁学中,电容和电势能是两个核心概念,它们在电路分析和电场计算中起着重要的作用。
本文将重点介绍电磁学中电容与电势能的计算方法。
一、电容的计算电容是描述电路中蓄电能力的物理量,它定义为电荷量与电势差之比,即C=Q/V,其中C表示电容,单位为法拉(F),Q表示电荷量,单位为库仑(C),V表示电势差,单位为伏特(V)。
1. 并联电容的计算当电路中存在多个并联的电容器时,它们的总电容可以通过简单相加来计算。
假设电路中有n个并联的电容器C1,C2,…,Cn,它们的总电容记为CT。
则有以下关系式成立:1/CT = 1/C1 + 1/C2 + … + 1/Cn。
2. 串联电容的计算当电路中存在多个串联的电容器时,它们的总电容可以通过倒数之和的倒数来计算。
假设电路中有n个串联的电容器C1,C2,…,Cn,它们的总电容记为CT。
则有以下关系式成立:CT = C1 + C2 + … + Cn。
二、电势能的计算电势能是描述电荷在电场中相对位置的物理量,它表示电荷由某一位置移动到电势为零的参考位置所具有的能力。
在电磁学中,电势能由电荷的电量、电场强度和电势差共同决定。
1. 电荷在电场中的电势能当电荷在电场中移动时,它的电势能可以通过电势差和电荷量的乘积来计算。
假设电荷为q,电势差为V,则电荷在电场中的电势能U可以表示为:U = qV,其中U的单位为焦耳(J)。
2. 电势能密度对于连续分布的电荷体系,可以引入电势能密度的概念来描述单位体积内的电势能。
假设电荷体系的电势能密度为u,则其计算公式为:u = ε0E^2/2,其中ε0为真空介电常数,E表示电场强度。
三、举例为了更好地理解电容与电势能的计算方法,我们来举一个简单的例子。
假设存在一个电容器,其电容为C,电荷量为Q,电势差为V。
根据电容的定义公式C=Q/V,我们可以根据已知条件计算出电容的数值。
第二篇 电磁学求解电磁学问题的基本思路和方法本书电磁学部分涉及真空中和介质中的静电场和恒定磁场、电磁感应和麦克斯韦电磁场的基本概念等内容,涵盖了大学物理课程电磁学的核心内容.通过求解电磁学方面的习题,不仅可以使我们增强对有关电磁学基本概念的理解,还可在处理电磁学问题的方法上得到训练,从而感悟到麦克斯韦电磁场理论所体现出来的和谐与美.求解电磁学习题既包括求解一般物理习题的常用方法,也包含一些求解电磁学习题的特殊方法.下面就求解电磁学方面的方法择要介绍如下.1.微元法在求解电场强度、电势、磁感强度等物理量时,微元法是常用的方法之一.使用微元法的基础是电场和磁场的叠加原理.依照叠加原理,任意带电体激发的电场可以视作电荷元d q 单独存在时激发电场的叠加,根据电荷的不同分布方式,电荷元可分别为体电荷元ρd V 、面电荷元σd S 和线电荷元λd l .同理电流激发的磁场可以视作为线电流元激发磁场的叠加.例如求均匀带电直线中垂线上的电场强度分布.我们可取带电线元λd l 为电荷元,每个电荷元可视作为点电荷,建立坐标,利用点电荷电场强度公式将电荷元激发的电场强度矢量沿坐标轴分解后叠加统一积分变量后积分,就可以求得空间的电场分布.类似的方法同样可用于求电势、磁感应强度的分布. 此外值得注意的是物理中的微元并非为数学意义上真正的无穷小,而是测量意义上的高阶小量.从形式上微元也不仅仅局限于体元、面元、线元,在物理问题中常常根据对称性适当地选取微元.例如,求一个均匀带电圆盘轴线上的电场强度分布,我们可以取宽度为d r 的同心带电圆环为电荷元,再利用带电圆环轴线上的电场强度分布公式,用叠加的方法求得均匀带电圆盘轴线上的电场强度分布.2.对称性分析对称性分析在求解电磁场问题时是十分重要的.通过分析场的对称性,可以帮助我们了解电磁场的分布,从而对求解电磁学问题带来极大方便.而电磁场的对称性有轴对称、面对称、球对称等.下面举两个例子.在利用高斯定律求电场强度的分布时,需要根据电荷分布的对称性选择适当的高斯面,使得电场强度在高斯面上为常量或者电场强度通量为零,就能够借助高斯定律求得电场强度的分布.相类似在利用安培环路定律求磁感强度的分布时,依照电流分布的对称性,选择适当的环路使得磁感强度在环路上为常量或者磁场环流为零,借助安培环路定律就可以求出磁感强度的分布.3.补偿法补偿法是利用等量异号的电荷激发的电场强度,具有大小相等方向相反的特性;或强度相同方向相反的电流元激发的磁感强度,具有大小相等方向相反这一特性,将原来对称程度较低的场源分解为若干个对称程度较高的场源,再利用场的叠加求得电场、磁场的分布.例如在一个均匀带电球体内部挖去一个球形空腔,显然它的电场分布不再呈现球对称.为了求这一均匀带电体的电场分布,我们可将空腔带电体激发的电场视为一个外半径相同的球形带电体与一个电荷密度相同且异号、半径等于空腔半径的小球体所激发电场的矢量和.利用均匀带电球体内外的电场分布,即可求出电场分布.4.类比法 在电磁学中,许多物理量遵循着相类似的规律,例如电场强度与磁场强度、电位移矢量与磁感强度矢量、电偶αr l λεE l l cos d π4122/2/0⎰-=极子与磁偶极子、电场能量密度与磁场能量密度等等.他们尽管物理实质不同,但是所遵循的规律形式相类似.在分析这类物理问题时借助类比的方法,我们可以通过一个已知物理量的规律去推测对应的另外一个物理量的规律.例如我们在研究L C 振荡电路时,我们得到回路电流满足的方程显然这个方程是典型的简谐振动的动力学方程,只不过它所表述的是含有电容和自感的电路中,电流以简谐振动的方式变化罢了.5.物理近似与物理模型几乎所有的物理模型都是理想化模型,这就意味着可以忽略影响研究对象运动的次要因素,抓住影响研究对象运动的主要因素,将其抽象成理想化的数学模型.既然如此,我们在应用这些物理模型时不能脱离建立理想化模型的条件与背景.例如当带电体的线度远小于距所考察电场这一点的距离时,一个带电体的大小形状可以忽略,带电体就可以抽象为点电荷.但是一旦去研究带电体临近周围的电场分布时,将带电体当作点电荷的模型就失效了.在讨论物理问题时一定要注意物理模型的适用条件.同时在适用近似条件的情况下,灵活应用理想化模型可大大简化求解问题的难度.电磁学的解题方法还有很多,我们希望同学们通过练习自己去分析、归纳、创新和总结.我们反对在学习过程中不深入理解题意、不分析物理过程、简单教条地将物理问题分类而“套”公式的解题方法.我们企盼同学们把灵活运用物理基本理论求解物理问题当成是一项研究课题,通过求解问题在学习过程中自己去领悟、体会,通过解题来感悟到用所学的物理知识解决问题后的愉悦和快乐,进一步加深理解物理学基本定律,增强学习新知识和新方法的积极性.01d d 22=+i LCt i第五章 静 电 场5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( )分析与解 “无限大”均匀带电平板激发的电场强度为,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ).5 -2 下列说法正确的是( )(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ).5 -3 下列说法正确的是( )(A ) 电场强度为零的点,电势也一定为零(B ) 电场强度不为零的点,电势也一定不为零(C ) 电势为零的点,电场强度也一定为零(D ) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D ).*5 -4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A ) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止(B ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D ) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动2εσ分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B ).5 -5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21 e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8 个电子,8 个质子和8 个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为二个氧原子间的库仑力与万有引力之比为显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 5 -6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带 的上夸克和两个带的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律F 与径向单位矢量e r 方向相同表明它们之间为斥力.5 -7 质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k .证明电子的旋转频率满足其中ε0 是真空电容率,电子的运动可视为遵守经典力学规律.分析 根据题意将电子作为经典粒子处理.电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷.点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有由此出发命题可证.()e q 21max 10821-⨯⨯+=1108.2π46202max <<⨯==-Gmεq F F g e e 32e 31-()r r r r e εr q q εe e e F N 78.3π41π412202210===4320232me E εk =v 2202π41r e εr m =v证 由上述分析可得电子的动能为电子旋转角速度为由上述两式消去r ,得5 -8 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构.(1) 求氯离子所受的库仑力;(2) 假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力.分析 铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加.为方便计算可以利用晶格的对称性求氯离子所受的合力.解 (1) 由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故F 1 =0.(2) 除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力F 2 的值为F 2 方向如图所示.5 -9 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为(2) 在棒的垂直平分线上,离棒为r 处的电场强度为 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.re εm E K 202π8121==v 3022π4mr εe ω=432022232π4me E εωK ==v N 1092.1π3π4920220212⨯===aεe r εq q F 2204π1Lr Q εE -=2204π21L r r Q εE +=分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为整个带电体在点P 的电场强度接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,(2) 若点P 在棒的垂直平分线上,如图(A )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是证 (1) 延长线上一点P 的电场强度,利用几何关系 r ′=r -x 统一积分变量,则电场强度的方向沿x 轴. (2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为利用几何关系 sin α=r /r ′, 统一积分变量,则当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度r r q εe E 20d π41d '=⎰=E E d ⎰=LE i E d ⎰⎰==Ly E αE j j E d sin d ⎰'=L r πεq E 202d ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰E r εq αE L d π4d sin 2⎰'=22x r r +='()2203/22222041π2d π41L r r εQ r x L xrQ εE L/-L/+=+=⎰此结果与无限长带电直线周围的电场强度分布相同[图(B )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线. 5 -10 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第5 -3 节的例1 可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元,在点O 激发的电场强度为由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系,统一积分变量,有积分得 5 -11 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.rελL r L Q r εE l 0220π2 /41/π21lim =+=∞→θθR δS δq d sin π2d d 2⋅==()i E 3/2220d π41d r x qx ε+=θR x cos =θR r sin =()θθθεδθθR πδR θR πεr x q x πεE d cos sin 2 d sin 2cos 41d 41d 02303/2220=⋅=+=02/004d cos sin 2εδθθθεδE π⎰==分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为,而夹角为2θ.叠加后水分子的电偶极矩大小为,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布.解1 水分子的电偶极矩在电偶极矩延长线上解2 在对称轴线上任取一点A ,则该点的电场强度由于 代入得 测量分子的电场时, 总有x >>r 0 , 因此, 式中,将上式化简并略去微小量后,得 5 -12 两条无限长平行直导线相距为r 0 ,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.00er P =θer P cos 20=302π41x p εE =θer θP P cos 2cos 200==30030030cos π1cos 4π412π41x θer εx θer εx p εE ===+-+=E E E 2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+θxr r x r cos 202022-+=rθr x βcos cos 0-=()⎥⎥⎦⎤⎢⎢⎣⎡--+-=23/20202001cos 2cos π42x θxr r x θr x εe E ()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x θr x x θr x θxr r x cos 2231cos 21cos 2033/2033/20202300cos π1x θe r εE =分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力. 解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有(2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.5 -13 如图为电四极子,电四极子是由两个大小相等、方向相反的电偶极子组成.试求在两个电偶极子延长线上距中心为z 的一点P 的电场强度(假设z >>d ).分析 根据点电荷电场的叠加求P 点的电场强度.解 由点电荷电场公式,得()i i E E E x r x r ελx r x ελ-=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2i E F 00π2r ελλ==-+i E F 002π2r ελλ-=-=+-考虑到z >>d ,简化上式得 通常将Q =2qd 2 称作电四极矩,代入得P 点的电场强度5 -14 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.分析 方法1:由电场强度通量的定义,对半球面S 求积分,即 方法2:作半径为R 的平面S ′与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而解1 由于闭合曲面内无电荷分布,根据高斯定理,有依照约定取闭合曲面的外法线方向为面元d S 的方向,解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为① ()()k k k E 202020π41π412π41d z q εd z q εz q ε++-+=()()k k k E 42022220222206π4...321...32112π4/11/1112π4z qd εq z d z d z d z d z z εq z d z d z z εq =⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++-+++++-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+-+-=k E 403π41zQ ε=⎰⋅=S S d s E Φ∑⎰==⋅01d 0q εS S E ⎰⎰'⋅-=⋅=S S S E S E Φd d ⎰⎰'⋅-=⋅=S S S E S E Φd d E R πR E 22πcos π=⋅⋅-=Φ()r θθθE e e e E sin sin cos sin cos ++=5 -15 边长为a 的立方体如图所示,其表面分别平行于Oxy 、Oyz 和Ozx 平面,立方体的一个顶点为坐标原点.现将立方体置于电场强度 (k ,E 1 ,E 2 为常数)的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量.解 如图所示,由题意E 与Oxy 面平行,所以任何相对Oxy 面平行的立方体表面,电场强度的通量为零,即.而考虑到面CDEO 与面ABGF 的外法线方向相反,且该两面的电场分布相同,故有同理因此,整个立方体表面的电场强度通量5 -16 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径(为地球平均半径).由高斯定理r θθR e S d d sin d 2=ER θθER θθER SS2π0π2222πdsin d sin dd sin sin d ===⋅=⎰⎰⎰⎰S E Φ()12E kx E +E =i +j 0==DEFG OABC ΦΦ()[]()2221ABGF d a E dS E kx E =⋅++=⋅=⎰⎰j j i S E Φ22a E ABGF CDEO -=-=ΦΦ()[]()2121AOEF d a E dS E E -=-⋅+=⋅=⎰⎰i j i S E Φ()[]()()2121BCDG d a ka E dS E ka E Φ+=⋅++=⋅=⎰⎰i j i S E 3ka ==∑ΦΦ1m V 120-⋅E R R ≈E R ∑⎰=-=⋅q εR E E 021π4d S E地球表面电荷面密度单位面积额外电子数5 -17 设在半径为R 的球体内,其电荷为球对称分布,电荷体密度为k 为一常量.试分别用高斯定理和电场叠加原理求电场强度E 与r 的函数关系.分析 通常有两种处理方法:(1) 利用高斯定理求球内外的电场分布.由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有根据高斯定理,可解得电场强度的分布. (2) 利用带电球壳电场叠加的方法求球内外的电场分布.将带电球分割成无数个同心带电球壳,球壳带电荷为,每个带电球壳在壳内激发的电场,而在球壳外激发的电场由电场叠加可解得带电球体内外的电场分布解1 因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定理得球体内(0≤r ≤R )∑--⨯-=-≈=2902cm 1006.1π4/E εR q σE 25cm 1063.6/-⨯=-=e σn ()()R r ρkr ρ>=≤≤= 0R r 02Sπ4d r E ⋅=⋅⎰S E ⎰⎰=⋅V ρεd 1d 0S E r r ρq ''⋅=d π4d 20d =E rrεqe E 20π4d d =()()()()R r r r Rr>=≤≤=⎰⎰d R r 0d 0E E E E ⎰⎰=⋅V ρεd 1d 0S E ()4202πd π41π4r εk r r kr εr r E r==⎰球体外(r >R )解2 将带电球分割成球壳,球壳带电由上述分析,球体内(0≤r ≤R )球体外(r >R )5 -18 一无限大均匀带电薄平板,电荷面密度为σ,在平板中部有一半径为r 的小圆孔.求圆孔中心轴线上与平板相距为x 的一点P 的电场强度.分析 用补偿法求解利用高斯定理求解电场强度只适用于几种非常特殊的对称性电场.本题的电场分布虽然不具有这样的对称性,但可以利用具有对称性的无限大带电平面和带电圆盘的电场叠加,求出电场的分布.若把小圆孔看作由等量的正、负电荷重叠而成,挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度σ′=-σ)的小圆盘.这样中心轴线上的电场强度等效于平板和小圆盘各自独立在该处激发电场的矢量和. 解 由教材中第5 -4 节例4 可知,在无限大带电平面附近为沿平面外法线的单位矢量;圆盘激发的电场它们的合电场强度为()r εkr r e E 024=()4202πd π41π4r εk r r kr εr r E R==⎰()r εkR r e E 024=r r r k V ρq '''==d π4d d 2()r r rεkr r r r r k εr e e E 0222004d π4π41=''⋅'=⎰()r r Rr εkR r r r πr k πεr e e E 20222004d 441=''⋅'=⎰n εσe E 012=n e n r x x εσe E ⎪⎪⎭⎫⎝⎛+--=220212在圆孔中心处x =0,则E =0在距离圆孔较远时x >>r ,则上述结果表明,在x >>r 时,带电平板上小圆孔对电场分布的影响可以忽略不计.5 -19 在电荷体密度为ρ 的均匀带电球体中,存在一个球形空腔,若将带电体球心O 指向球形空腔球心O ′的矢量用a 表示(如图所示).试证明球形空腔中任一点的电场强度为分析 本题带电体的电荷分布不满足球对称,其电场分布也不是球对称分布,因此无法直接利用高斯定理求电场的分布,但可用补偿法求解.挖去球形空腔的带电球体在电学上等效于一个完整的、电荷体密度为ρ 的均匀带电球和一个电荷体密度为-ρ、球心在O ′的带电小球体(半径等于空腔球体的半径).大小球体在空腔内P 点产生的电场强度分别为E 1 、E 2 ,则P 点的电场强度 E =E 1 +E 2 . 证 带电球体内部一点的电场强度为所以 , 根据几何关系,上式可改写为n rx x εσe E E E 22212+=+=n nεσx r εσe e E 02202/112≈+=a E 03ερ=r E 03ερ=r E 013ερ=2023r E ερ-=()210213r r E E E -=+=ερa r r =-21a E 03ερ=5 -20 一个内外半径分别为R 1 和R 2 的均匀带电球壳,总电荷为Q 1 ,球壳外同心罩一个半径为R 3 的均匀带电球面,球面带电荷为Q 2 .求电场分布.电场强度是否为离球心距离r 的连续函数? 试分析.分析 以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面.由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等.因而 .在确定高斯面内的电荷后,利用高斯定理即可求出电场强度的分布.解 取半径为r 的同心球面为高斯面,由上述分析r <R 1 ,该高斯面内无电荷,,故 R 1 <r <R 2 ,高斯面内电荷 故 R 2 <r <R 3 ,高斯面内电荷为Q 1 ,故r >R 3 ,高斯面内电荷为Q 1 +Q 2 ,故电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图(B )所示.在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r =R 3 的带电球面两侧,电场强度的跃变量这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性.实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,本题中带电球壳内外的电场,在球壳的厚度变小时,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变.5 -21 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 >R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .24d r πE ⋅=⎰S E ∑q ∑⎰=/d εq S E ∑=⋅02/π4εq r E 0=∑q 01=E ()31323131R R R r Q q --=∑()()23132031312π4r R R εR r Q E --=2013π4r εQ E =20214π4r εQ Q E +=230234π4ΔεσR εQ E E E ==-=分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且,求出不同半径高斯面内的电荷.即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理r <R 1 ,在带电面附近,电场强度大小不连续,电场强度有一跃变 R 1 <r <R 2 ,r >R 2,在带电面附近,电场强度大小不连续,电场强度有一跃变这与5 -20 题分析讨论的结果一致.5 -22 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.⎰⋅=rL E d π2S E ∑q ∑=⋅0/π2εq rL E 0=∑q 01=E L λq =∑rελE 02π2=0=∑q 03=E 000π2π2ΔεσrL εL λr ελE ===分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为其中E 是点电荷Q 1 、Q 3 产生的合电场强度. (2) 根据电场力作功与电势能差的关系,有其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势). 解1 由题意Q 1 所受的合力为零解得由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为解2 与解1相同,在任一点电荷所受合力均为零时,并由电势 的叠加得Q 1 、Q 3 在点O 的电势将Q 2 从点O 推到无穷远处的过程中,外力作功比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多.5 -23 已知均匀带电长直线附近的电场强度近似为l E d 02⎰∞=Q W ()0202V Q V V Q W =-=∞()02π4π420312021=+d εQ Q d εQ Q Q Q Q 414132-=-=()2/322031π2yd εQ E E E yy y +=+=()dεQ y y d εQ Q Q W y 022/322002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E Q Q 412-=dεQd εQ d εQ V 003010π2π4π4=+=dεQ V Q W 0202π8=-='。
第二版1)真空中电场的高斯定理1)真空中磁场的安培环路定理1SSE dS qε⋅=∑∫∫���0LE dl ⋅=∫����2)真空中磁场的高斯定理0SB dS ⋅=∫∫����2)真空中电场的安培环路定理0LLB dl Iµ⋅=∑∫���1)磁介质中磁场的高斯定理0SB dS ⋅=∫∫����0LE dl ⋅=∫����1)电介质中电场的安培环路定理第二版2)电介质中的高斯定理2)磁介质中的安培环路定理∑∫∫+=⋅S Sq q S d E )(1'00ε��∑∫∑+=⋅LLLi I l d B '00µµ��l d M I l d B l ll ����⋅+=⋅∫∑∫00µµ∑∫=⋅−Il d M Bl���)(0µM BH ���−=0µ∑∫=⋅I l d H l��∫∫∑∫∫⋅−=⋅S S SS d P q S d E ����00011εε∑∫∫=⋅+00)(q S d P E S���εPE D ���+=0ε∑∫∫=⋅0q S d D S��电场、磁场公式对比大学物理第二版0D E P ε=+������0e P E χε=����电极化率相对电容率0r D E Eεεε==������绝对电容率E D P ������、与三者之间关系0(1)e D Eχε=+����1r eεχ=+''e p σSl P σVSl∆===∆∆∑0rE E ε=电场、磁场公式对比大学物理第二版MB H ���−=0µ()M H B ���+=0µHM m ��κ=()()Hk H k H B m m ����+=+=100µµ磁化率1=r m BB µκ=+相对磁导率HH B r ���µµµ==0绝对磁导率B H M ����、与三者之间关系'I lI Sl S I V p M ss m===∆=∑电场、磁场公式对比大学物理第二版=∫⋅l d E ��静电场稳恒磁场∑∫=⋅ii I l d B 0µ��0=•∫S d B ��∑∫=•i sq S d E 01ε��磁场没有保守性,它是非保守场,或无势场电场有保守性,它是保守场,或有势场电力线起于正电荷、止于负电荷。
电磁场的计算方法总结电磁场是电荷和电流在空间中产生的一种物理现象。
在科学研究和工程设计中,准确计算和描述电磁场对于解决问题和优化系统至关重要。
本文将对电磁场的计算方法进行总结,并介绍常用的计算技术和工具。
1. 静电场的计算方法静电场是指电荷静止或运动缓慢时产生的电磁场。
计算静电场常用的方法包括:- 库伦定律:用于计算离散点电荷之间的电场强度和势能。
根据库伦定律,两个电荷之间的作用力正比于它们的电荷量,反比于它们之间的距离的平方。
- 超级位置法:将连续分布的电荷视为无数个点电荷的叠加,通过积分计算得到电场强度和势能。
2. 磁场的计算方法磁场是由电流或磁化物质产生的一种物理现象。
计算磁场常用的方法包括:- 安培定律:用于计算电流在空间中产生的磁场强度和磁感应强度。
安培定律表明,一段电流元产生的磁场强度正比于电流元的大小,反比于它们之间的距离和它们之间夹角的正弦值。
- 超级电流法:将连续分布的电流视为无数个电流元的叠加,通过积分计算得到磁场强度和磁感应强度。
3. 电场与磁场的相互作用电场和磁场是密切相关的,它们之间存在相互作用。
计算电场与磁场相互作用的方法包括:- 洛伦兹力公式:描述电荷在电场和磁场中受到的作用力。
洛伦兹力公式表明,电荷在电场中受到的力等于电场强度与电荷量的乘积,而在磁场中受到的力等于磁感应强度、电荷量和电荷的速度之间的叉积的大小。
- 麦克斯韦方程组:描述电磁场的运动规律。
麦克斯韦方程组由四个偏微分方程组成,分别描述了电场和磁场的变化规律。
4. 电磁场的数值计算电磁场的数值计算方法是利用计算机模拟和数值计算技术来求解电磁场的分布和性质。
常用的数值计算方法包括:- 有限元法:将问题的区域划分为有限数量的小单元,利用有限元法的基本原理和方程来求解电磁场的分布和性质。
有限元法适用于复杂几何形状和材料分布的问题。
- 有限差分法:将问题的空间区域划分为网格,并利用有限差分方法来近似求解微分方程,从而得到电磁场的分布和性质。
电磁场数值计算方法引论计算电磁学:现代数学方法、现代电磁场理论与现代计算机相结核的一门新兴学科。
目的:求解电磁场分布以及计算电磁场与复杂目标的相互作用。
电磁场计算方法分类分类方法按数学模型:微分方程、积分方程、变分方程。
按求解域:频域、时域法。
按近似性:解析法、半解析法、渐进法和数值法。
1、解析法求出电磁分布的数学表达式。
其优点:(1)、精确(2)、参数改变时不要重新推导(3)、解中包含了对某些参数的依赖关系,容易发现规律性主要方法有:分离变量法、级数展开法、格林函数法、保角变换法和积分变换法。
缺点:只有个别情况才能用解析法解决,一般情况较难应用。
2、渐进法由求解物体的线度l与波长λ的关系可以划分为(1)、低频区。
lλ≈(2)、谐振区。
lλ(3)、高频区。
lλ低频区:静态场近似,电路近似(等效电路)高频区:光学近似。
GO 几何光学法 GTD 几何绕射光学UTD 一般几何绕射 UAT 一致渐进理论PTD 衍射的物理理论 STD 衍射谱理论缺点:求解复杂系统的电磁场问题时可能引起大的误差,只能应用于简单的电大系统。
3、数值法把数学方程离散化,把连续问题化为离散问题,把解析方程化为代数方程。
把连续连续的场分布转换为计算离散点的场值或者表达场的级数表达式的数值化系数。
(1)、有限差分法——求解电磁场满足的微分方程。
(麦氏方程、泊松方程以及波动方程)△、用差商近似代替导数,用查分近似代替微分。
△、把微分方程转化为差分方程(代数方程)。
特点:简单,物理概念明确。
(2)、矩量法——求解电磁场积分方程。
△、把未知函数展开为选定基函数表示的级数,存在未知函数。
△、把求解未知函数问题转变为求解系数问题。
△、再选择合适权函数,计算加权平均意义下的误差。
△、令误差为零,积分方程变为关于系数的代数方程。
△、矩量法在应用时若直接采用分解法和迭代法求解则计算量非常大,例如计算电大目标散射问题的计算,为解决这个问题,产生了一系列的快速算法。
电磁学电场和电势的计算电场和电势是电磁学中重要的概念。
在实际的电磁学应用中,我们需要计算电场和电势的数值,以便理解电磁现象和解决相关问题。
本文将介绍一些计算电场和电势的方法和公式。
一、电场的计算方法电场是描述电荷周围空间中的力的大小和方向的物理量。
计算电场需要了解电荷的性质和电磁力的作用机制。
1. 离散点电荷的电场计算离散点电荷的电场计算可以使用库仑定律。
库仑定律表明,两个点电荷之间的电场与它们之间的距离和电荷的大小有关。
假设有两个点电荷,电荷量分别为q1和q2,它们之间的距离为r。
根据库仑定律,两个点电荷之间的电场强度E可以通过以下公式计算:E = k * |q1| * |q2| / r^2其中,k为库仑常数,约为8.99 * 10^9 N·m^2/C^2。
|q1|和|q2|表示电荷的大小,r表示两个点电荷之间的距离。
2. 连续分布电荷的电场计算对于连续分布电荷,如均匀带电线、平面或球体,可以使用积分来计算电场的大小。
以均匀带电线为例,假设该线的总电荷量为Q,长度为L。
在距离该线的一点P处,其到线的距离为r。
我们可以通过积分计算点P处的电场强度E。
具体计算公式如下:E = ∫ (k * dq) / r^2其中,dq表示电荷元素,k为库仑常数,r为点P到dq的距离。
二、电势的计算方法电势是描述电荷周围空间中电势能的分布的物理量。
计算电势需要了解电场和电荷的数值关系。
1. 离散点电荷的电势计算对于离散点电荷,我们可以使用以下公式计算电势:V = k * q / r其中,V表示电势,k为库仑常数,q表示电荷量,r表示电荷到点的距离。
2. 连续分布电荷的电势计算对于连续分布电荷,电势的计算同样可以通过积分来实现。
以均匀带电线为例,假设电势为V,计算公式如下:V = ∫ (k * dq) / r其中,dq表示电荷元素,k为库仑常数,r为电势点到dq的距离。
三、实例分析现假设有一个带电球体,电荷量为Q,半径为R。
电磁学问题的计算方法及其应用电磁学是一门物理学科,主要研究电和磁的相互作用和规律。
在现代科技领域,电磁学的应用涉及到电信、嵌入式系统、无线通信、雷达、电子元器件等领域。
而对于电磁学问题的计算方法,下面将从两方面进行探讨。
一、计算方法1. 马克思威尔方程组马克思威尔方程组是电磁场的基础方程组。
它包括了电荷守恒方程、电场的高斯定理、磁场的安法定理和电磁感应定律。
利用这些方程,可以对电磁场进行完整的数学描述。
电荷守恒方程描述了电荷的守恒性质。
即电荷在任何时刻都会保持不变。
电场的高斯定理则是指出了电荷之间的相互作用,在物体表面遇到电场会受到压力的影响。
磁场的安法定理描述了磁场的传输和扩散。
最后,电磁感应定律描述了电场和磁场之间的相互影响。
2. 有限元法有限元法是近年来计算电磁问题的常规方法。
它的计算步骤主要分为几个步骤,即预处理、建模、求解、求解后处理和结果验证。
通过这些步骤,可以模拟电磁场在不同条件下的运行情况。
在实际应用中,有限元法主要用于电场、磁场和电磁波问题的计算。
应用有限元法可有效地避免一些电路设计中可能存在的问题,如电感和电容等元件的临界频率。
3. 有限差分法有限差分法是一种常见的电磁问题计算方法,它将电磁场的连续性转化为差分形式,并通过计算机进行离散化处理。
有限差分法的优势在于可以掌握计算的实时过程,方便进行迭代计算。
有限差分法可以直接用于计算静态电场、静态磁场和电磁波传播等问题。
但是当问题的计算规模越来越大时,有限差分法往往会变得相对耗时。
二、应用领域1. 电子器件设计电子器件设计需要考虑不同物理现象间的相互作用。
如电磁场、电流、电压等因素在电子器件设计中都会扮演重要的角色。
通过计算模拟这些物理现象,设计师可以大量节省实际制造时间、测试成本和成本。
电子器件设计领域中,经常会使用计算机辅助设计(CAD)软件,它能够以更快的速度和更高的准确性计算出电磁场分布和其它参数,并辅助进一步的优化电路设计。
少年易学老难成.-寸光阴不可轻电磁学il•算方法的比较摘要:介绍r电磁学计•算方法的研究进展和状态.对几种富有代表性的算法做了介绍,并比较r各自的优第和不足.包括矩虽法.有限元法.时域有限差分方法以及复射线方法等。
关键词:矩虽法:有限元法:时域有限差分方法:复射线方法1引言1864年Maxwell在前人的理论(岛斯定律.安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电碗场理论.并用数学模型揭示了自然界一切宏观电磁现彖所逍循的普遍规律,这就是着名的Maxwell方程。
在笛种可分离变址坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。
这种方法可以得到问题的准确解.而且效率也比较商. 但是适用范鬧太窄,只能求解具有规则边界的简取问题。
对于不规则形状或者任总形状边界则需要比较岛的数学技巧.甚至无法求得解析解。
20世纪60年代以來.随着电子计算机技术的发展.一些电磁场的数值计算方法发展起來,并得到广泛地应用•相对于经典电磁理论而言,数值方法受边界形状的约來大为减少,可以解决各种类型的复朵问題。
但各种数值讣算方法都有优缺点.一个复杂的问题往往难以依釜一种笊一方法解决,常需要将笋种方法结合起來,互相取长补短,因此混和方法日益受到人们的垂视。
木文综述了国内外计算电磁学的发展状况,对常用的电磁汁算方法做了分类。
2电磁场数值方法的分类电磁学问题的数值求解方法可分为时域利频域2大类。
频域技术主要有矩址法、有限差分方法等.频域技术发展得比较早. 也比较成熟。
时域法主要有时域差分技术。
时域法的引入是基于计算效率的考世.某些问题在时域中讨论起來计算址耍小。
例如求解目标对冲激脉冲的早期响应时•频域法必须在很大的带宽内进行多次采样汁算•然后做傅里叶反变换才能求得解答, il•算精度受到采样点的影响。
若有非线性部分随时间变化,采用时域法更加直接°另外还有一些商频方法.如GTD, UTD 和射线理论。
电磁场计算方法的比较研究一、引言电磁场是物理学中非常重要的一个概念,电磁场计算方法的研究一直是电磁场理论研究的热点。
电磁场的计算方法从传统的有限元方法、边界元方法、有限时间差分方法,到近年来新发展的神经网络、机器学习等方法,这些计算方法各自有其特点和优缺点。
为了更好地应用于电磁场理论研究,比较这些计算方法的优劣显得尤为重要。
二、传统电磁场计算方法的比较研究1. 有限元法有限元法是电磁场计算中应用最广泛的一种方法。
它的思想是将一块复杂的电磁场区域分割成许多小的单元,每个单元内的电磁场可以用一组基本函数(形状函数)来代表。
将基本函数组合起来可以得到整个区域内的电磁场。
有限元法适用于各种不规则形状的区域,但是对于一些具有瞬态特性的问题,如电磁波的传输问题,计算的精度较低,需要一定的改进。
2. 边界元法边界元法相对于有限元法来说,有一些优点,比如计算的对象是边界上的电磁场及其法向导数,所涉及的区域维数少,无需分割,同时算法的精度也较高。
但是,由于只计算边界上的电磁场,对于非边界上的电磁场,需要通过更复杂的边界条件内推,此过程中误差会被逐渐累积。
3. 有限时间差分法有限时间差分法主要应用于电磁波的传输问题,对计算范围减小和计算效果提高都有显著作用。
利用有限时间差分算法可以将波动方程离散化为时间步进的方式计算,相对于传统的分析方法,有限时间差分法的计算效率高,但其缺点也比较明显,比如计算误差比较大,难以在高频区域使用,并且需要在计算过程中准确控制时间步长等。
三、新型电磁场计算方法的比较研究1. 神经网络方法神经网络方法是近年来电磁场计算中的新生代方法之一,其利用人工神经网络来模拟电磁场的计算,克服了传统计算方法中存在的一些问题,使得计算速度更快、效果更优。
神经网络方法通过学习过程,自动构建模型来预测未知样本,可以适用于非线性问题,但需要一定的训练样本,而且在训练过程中可能存在过拟合等问题。
2. 机器学习方法机器学习方法是一种智能化、自适应的计算方法,与传统的解析方法、有限元方法等相比,最大的优点在于它在不依赖于具体物理模型的前提下,通过对一系列实验数据的学习,可以快速且准确地完成模型构建与求解。
电磁学计算方法的比较| [<<] [>>]摘要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。
关键词:矩量法;有限元法;时域有限差分方法;复射线方法1 引言1864 年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。
在11种可分离变量坐标系求解Maxwel l方程组或者其退化形式,最后得到解析解。
这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。
对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。
20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。
但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。
本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。
2 电磁场数值方法的分类电磁学问题的数值求解方法可分为时域和频域2大类。
频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。
时域法主要有时域差分技术。
时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。
例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。
若有非线性部分随时间变化,采用时域法更加直接。
另外还有一些高频方法,如GTD,UTD和射线理论。
从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。
IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。
3 几种典型方法的介绍有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。
后来这种方法得到发展并被非常广泛地应用于结构分析问题中。
目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。
有限元法是以变分原理为基础的一种数值计算方法。
其定解问题为:应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。
(1)时域有限差分方法时域有限差分(FDTD)是电磁场的一种时域计算方法。
传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。
他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。
FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。
电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。
在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。
这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。
因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。
而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。
这正是电磁场的感应原理。
这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。
在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。
这种不稳定表现为在解显式差分方程时随着时间步的继续计算结果也将无限制的67增加。
为了保证数值稳定性必须满足数值稳定条件:用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。
这种色散将导致非物理原因引起的脉冲波形的畸变、为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。
如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。
在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。
这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。
(2)复射线方法复射线是用于求解波场传播和散射问题的一种高频近似方法。
他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律。
复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。
其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(B undle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。
例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。
这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。
其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。
4 几种方法的比较和进展将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。
有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。
这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。
但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。
对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。
但是单独采用有限元法只能解决开域问题。
用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。
问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。
网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。
自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。
这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。
矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。
他的求解过程简单,求解步骤统一,应用起来比较方便。
然而77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。
另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。
矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。
FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。
但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。
因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。
因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。
FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。
复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。
典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。
目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。
尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。