电磁学计算方法的比较
- 格式:doc
- 大小:39.50 KB
- 文档页数:9
计算电磁学CEM(computational electromagnetics)是笔者在研发过程中认为最复杂的物理场,难度在CFD和计算材料学之上。
计算电磁学的复杂主要表现在物理场抽象,计算规模大,同时求解方法众多,涉及到大量的底层技术知识。
求解的偏微分方程是麦克斯韦方程组,麦克斯韦在奥斯特,法拉利等前人试验基础上通过数学推理得到了完整的方程组,在该方程组的理论支持下,有了后来的电磁学的飞速发展。
该方程组完整的描述了电,磁,材料,频率,时间之间的关系。
求解电磁学可分为三类:解析法,数值法,以及半解析半数值。
(1) 时域方法与谱域方法电磁学的数值计算方法可以分为时域方法(Time Domain或TD)和频域方法(Frequeney Domain或FD)两大类。
时域方法对Maxwell方程按时间步进后求解有关场量。
最著名的时域方法是时域有限差分法(Finite Difference Time Domain或FDTD)。
这种方法通常适用于求解在外界激励下场的瞬态变化过程。
若使用脉冲激励源,一次求解可以得到一个很宽频带范围内的响应。
时域方法具有可靠的精度,更快的计算速度,并能够真实地反应电磁现象的本质,特别是在诸如短脉冲雷达目标识别、时域测量、宽带无线电通讯等研究领域更是具有不可估量的作用。
频域方法是基于时谐微分、积分方程,通过对N个均匀频率采样值的傅立叶逆变换得到所需的脉冲响应,即研究时谐(Time Harmonic)激励条件下经过无限长时间后的稳态场分布的情况,使用这种方法,每次计算只能求得一个频率点上的响应。
过去这种方法被大量使用,多半是因为信号、雷达一般工作在窄带。
当要获取复杂结构时域超宽带响应时,如果采用频域方法,则需要在很大带宽内的不同频率点上的进行多次计算,然后利用傅立叶变换来获得时域响应数据,计算量较大;如果直接采用时域方法,则可以一次性获得时域超宽带响应数据,大大提高计算效率。
特别是时域方法还能直接处理非线性媒质和时变媒质问题,具有很大的优越性。
电磁学电容和电势能的计算电磁学是物理学的一个重要分支,研究电荷和电磁场之间的相互作用。
在电磁学中,电容和电势能是两个基本概念,它们在电路分析和电磁场计算中起着重要的作用。
本文将介绍电磁学中电容和电势能的计算方法,以及它们在实际应用中的意义。
一、电容的计算电容是指导体之间存储电荷的能力,通常用电容量来表示,单位是法拉(F)。
常见的电容器有平行板电容器和球形电容器,它们的电容可以通过以下公式计算:1. 平行板电容器的电容计算:平行板电容器由两块平行的导体板组成,之间填充绝缘材料。
假设两板面积为A,板间距为d,绝缘材料的相对介电常数为ε。
电容C可以通过以下公式计算:C = ε * ε0 * A / d其中,ε0是真空中的介电常数,约等于8.85 × 10^(-12) F/m。
2. 球形电容器的电容计算:球形电容器由一个内导体球和一个外导体球组成,内外导体球之间的空间被填充绝缘材料。
假设内外球的半径分别为R1和R2,绝缘材料的相对介电常数为ε。
电容C可以通过以下公式计算:C = 4π * ε * ε0 * R1 * R2 / (R2 - R1)二、电势能的计算电势能是指电荷在电场中具有的能量。
在电磁学中,电荷在电场中的电势能可以通过以下公式计算:U = q * V其中,U是电势能,单位是焦耳(J);q是电荷量,单位是库仑(C);V是电势,单位是伏特(V)。
对于一个带电粒子在电势为V的区域中,其电势能等于电荷量乘以电势。
如果存在多个电荷粒子,其总电势能等于每个电荷粒子的电势能之和。
三、电容和电势能的应用电容和电势能在电路分析和电磁场计算中有广泛的应用。
1. 电容的应用:平行板电容器广泛应用于电子器件中,如电容耦合放大器、滤波器等。
通过合理设计电容器的参数,可以实现对电信号的放大、滤波和耦合等功能。
球形电容器常用于高压实验和粒子加速器中,如范德格拉夫发电机和静电加速器。
通过控制电容器的参数,可以实现对电荷的存储和释放,从而产生高电压和高能粒子。
物理掌握电磁感应和电磁场的计算方法和应用技巧电磁感应和电磁场是物理学中的重要概念,在实际应用中具有广泛的应用。
了解电磁感应和电磁场的计算方法和应用技巧对于理解和解决相关问题至关重要。
本文将详细介绍电磁感应和电磁场的计算方法和应用技巧。
一、电磁感应的计算方法和应用技巧电磁感应是指导线中的电流通过改变或磁场的强度与方向变化时,在其附近产生感应电动势的现象。
电磁感应可根据法拉第电磁感应定律进行计算。
根据法拉第电磁感应定律,感应电动势的大小与导线回路的变化速率成正比。
根据这个原理,我们可以计算出感应电动势的大小。
在应用中,电磁感应常被用于发电机、变压器等设备的工作原理中。
例如,在发电机中,通过转动磁场和引起导线中的电流变化,将机械能转变为电能。
而在变压器中,通过交变电流在原线圈中产生交变磁场,从而在二次线圈中产生感应电动势进而变换电压。
二、电磁场的计算方法和应用技巧电磁场是电荷和电流产生的电场和磁场相互作用的结果。
电场表示电荷的分布情况,而磁场表示电流的分布情况。
电磁场的计算方法通过麦克斯韦方程组进行计算。
麦克斯韦方程组是描述电场和磁场的基本方程。
在应用中,电磁场的计算和应用技巧广泛应用于电磁波传播、电磁屏蔽、电磁传感等领域。
例如,在无线通信领域,电磁场的计算方法用于预测电磁波的传播情况,帮助设计天线和无线信号覆盖范围。
而在电磁屏蔽领域,通过合理设计和布置屏蔽结构,减少电磁辐射对周围环境和设备的干扰。
此外,电磁场的计算方法还可以用于电磁传感技术的开发,例如用于检测和测量电磁波、电磁场的强度或方向。
三、物理学中的电磁感应和电磁场的实践应用除了计算方法和应用技巧,电磁感应和电磁场还有许多实际应用。
以下是一些典型的应用案例:1. 电磁感应应用于感应炉:感应炉是利用电磁感应原理将电能转化为热能的装置。
通过变换器产生高频交流电磁场,感应炉中的金属导体在电磁场中产生感应电流,从而产生热量。
感应炉可广泛应用于钢铁冶炼、有色金属加热等行业。
高中物理电磁学的计算题解题技巧电磁学是高中物理中的重要内容之一,也是学生们较为困惑的部分。
在学习电磁学时,学生们经常会遇到各种计算题,需要掌握一定的解题技巧。
本文将以几个常见的电磁学计算题为例,介绍一些解题技巧,帮助高中学生更好地理解和应用电磁学知识。
1. 静电场强度计算题静电场强度的计算是电磁学中的基础题型。
例如,给定一个点电荷和一个观察点,要求计算观察点处的电场强度。
解决这类问题时,首先需要明确电场强度的定义,即单位正电荷所受到的力。
然后,根据库仑定律,计算出电荷与观察点之间的距离和电荷的大小,最后代入公式求解。
2. 电场能量计算题电场能量的计算是电磁学中的另一个重要题型。
例如,给定一个电容器,要求计算其中储存的电场能量。
解决这类问题时,需要掌握电场能量的计算公式,即电场能量等于电容器两极板之间的电压乘以电容值的平方再除以2。
根据题目给出的条件,计算出电压和电容值,代入公式求解即可。
3. 磁感应强度计算题磁感应强度的计算是电磁学中的又一个常见题型。
例如,给定一个长直导线和一个观察点,要求计算观察点处的磁感应强度。
解决这类问题时,需要掌握磁感应强度的计算公式,即磁感应强度等于导线上电流元素产生的磁场对观察点的影响之和。
根据题目给出的条件,计算出导线上电流元素的大小和观察点与电流元素之间的距离,然后代入公式求解。
4. 洛伦兹力计算题洛伦兹力的计算是电磁学中的一道较为复杂的题型。
例如,给定一个带电粒子在磁场中运动,要求计算粒子所受的洛伦兹力。
解决这类问题时,首先需要明确洛伦兹力的定义,即电荷在磁场中受到的力。
然后,根据洛伦兹力的计算公式,计算出电荷的速度、电荷的大小以及磁感应强度,最后代入公式求解。
在解决以上几类电磁学计算题时,不仅需要掌握相应的计算公式,还需要注意以下几点技巧:1. 弄清题目要求:在解题前,仔细阅读题目,了解题目要求和给出的条件。
明确需要计算的物理量和已知的物理量,有助于确定解题思路。
电磁学的数值计算方法电磁学是研究电场和磁场相互作用的学科,它在日常生活和科学研究中起着重要的作用。
随着计算机技术的快速发展,数值计算方法在电磁学中的应用也越来越广泛。
本文将介绍几种常用的电磁学数值计算方法,并探讨其原理和应用。
一、有限差分法(Finite Difference Method)有限差分法是一种基于离散化空间和时间的数值计算方法,常用于求解求解具有边值条件的偏微分方程。
在电磁学中,有限差分法可以用来求解电磁场的静电场、静磁场以及时变电磁场等问题。
该方法通过将空间和时间进行网格离散化,将偏微分方程转化为差分方程,并用迭代方法求解得到数值解。
二、有限元法(Finite Element Method)有限元法是一种广泛应用于各种物理问题求解的数值计算方法,电磁学也不例外。
该方法通过将求解区域划分为有限的小元素,并在局部内部逼近真实场量的变化。
在电磁学中,有限元法可以用来求解电场、磁场以及电磁波传播等问题。
通过选择合适的元素类型和插值函数,以及建立元素之间的边界条件,可以得到电磁场的数值解。
三、时域积分法(Time Domain Integral Method)时域积分法是一种基于格林函数的数值计算方法,通过积分形式表示电磁场的边界条件和过渡条件,进而求解电磁场。
时域积分法广泛应用于求解电磁波的辐射和散射问题,如天线辐射和散射、电磁波在介质中的传播等。
该方法通过离散化电磁场的源和观测点,并利用格林函数的性质进行数值积分,得到电磁场的数值解。
四、有限时域差分法(Finite-Difference Time-Domain Method)有限时域差分法是一种基于电磁场的离散化网格和时间的有限差分法,是求解各种电磁问题最常用的数值计算方法之一。
有限时域差分法通过离散化时空域,将麦克斯韦方程组转化为差分方程组,并通过时间步进的方式求解得到电磁场的数值解。
该方法适用于求解各种电磁波传播、辐射和散射等问题。
各种计算电磁学方法比较和对应软件求几种计算电磁学方法的区别和比较计算电磁学是指对一定物质和环境中的电磁场相互作用的建模过程,通常包括麦克斯韦方程计算上的有效近似。
计算电磁学被用来计算天线性能,电磁兼容,雷达散射截面和非自由空间的电波传播等问题。
计算电磁学的主要思想有,基于积分方程的方法,基于微分(差分)方程的方法,及其他模拟方法。
1.基于积分方程的方法1.1 离散偶极子近似(discrete dipole approximation,DDA)DDA是一种计算电磁波在任意几何形状物体上散射和吸收的方法,其表达式基于麦克斯韦方程的积分形式。
DDA用有限阵列的可极化点来近似连续形式的物体。
每个点通过对局部电场的响应获得对应的偶极子矩量,然后这些偶极子通过各自的电场相互作用。
因此,DDA有时也被认为是耦合偶极子近似。
这种线性方程的计算一般采用共轭梯度迭代法。
由于离散矩阵的对称性,就可能在迭代中使用FFT计算矩阵的向量乘法。
1.2 矩量法(Method of Moments,MoM ),边界元法(Boundary Element Method,BEM )MoM和BEM是求解积分形式(边界积分形式)的线性偏微分方程的数值计算方法,已被应用于如流体力学,声学,电磁学等诸多科技领域。
自从上世纪八十年代以来,该方法越来越流行。
由于只计算边界值,而不是方程定义的整个空间的数值,该方法是计算小表面(体积)问题的有效办法。
从概念上讲,它们在建模后的表面建立网格。
然而对于很多问题,此方法的效率较基于体积离散的方法(FEM,FDTD)低很多。
原因是,稠密矩阵的生成将意味着存储需求和计算时间会以矩阵维数的平方律增长。
相反的,有限元矩阵的存储需求和计算时间只会按维数的大小线性增长。
即使可以采用矩阵压缩技术加以改善,计算成功率和因此增加的计算复杂性仍强烈依赖问题的本质。
BEM可用在能计算出格林函数的场合,如在线性均匀媒质中的场。
电磁场计算方法及其应用分析在现代科技发展中,电磁场理论是非常重要的一部分。
从电信号传输到电气化系统,电磁场的应用涵盖了许多领域。
因此,电磁场计算方法的研究也显得格外重要。
本文将会分析和总结电磁场计算方法及其应用。
一、电磁场计算方法电磁场计算方法是用电场和磁场公式计算电磁场中所有点的电量和磁量,以预测电磁场在特定区域的分布和行为。
常用电磁场计算方法包括有限元法、有限差分法、边界元法等。
有限元法是一种能够处理非线性和非均匀介质的数值分析方法。
它把复杂的问题分解成许多小区域并求解基本方程,然后再用普通微分方程或多项式插值法将各小区域的解合并成整个问题的解。
有限元方法有很强的可靠性和通用性,可以应用于多维问题的计算中。
有限差分法是一种基于隐式差分格式的计算方法,通过对电磁场的微分方程进行离散化后,逐步求解梯度和散度等一系列差分方程。
有限差分法相对于有限元法来说,更加直接并且易于实现,因此在电磁场计算中有时被采用。
而边界元法则是一种基于格林公式的方法。
将求解区域的边界分解为离散的面元,并在每个面元上建立基函数,在求解过程中需要考虑面元之间边界条件的转化。
边界元法处理边界问题时非常有效。
以上三种方法都有着广泛的应用场景。
不同的计算方法都有着不同的优缺点,在实际应用中需要灵活选择。
二、电磁场计算应用分析1. 无线电通信场景在通信场景中,电磁场计算方法可以用于模拟无线信号的传输,来寻找最佳的信道码型。
比如,在手机通信中,不同地点的信号强度是不同的,我们可以通过电磁场计算方法,合理地安排网络基站,并加强信号覆盖,减少无线信号干扰等。
2. 电子电缆设计电缆结构中布线排列的合理性可以影响电磁场的分布以及对电缆本身的影响,甚至会对通讯信号传输产生噪声干扰等。
电磁场计算方法可以模拟电缆布线的情况,从而对电缆结构进行最优化设计,提高电缆的性能指标。
3. 电动车辆电磁兼容性分析电磁兼容性分析是电动车辆应用中的一个重要环节。
电动车辆中存在大量的电子设备、电气传输系统以及功率电子器件等,会产生相当大的电磁辐射干扰,导致出现各种问题。
电磁学公式总结⑴电阻 r①电阻等于材料密度乘以电阻率(长度除以横截面积) r=ρ×(l/s)②电阻等同于电压除以电流 r=u/i③电阻等于电压平方除以电功率 r=u^2;/p电阻:r=u^2/p⑵电功是 w电功等同于电流乘坐电压乘坐时间 w=uit(普通公式)电功等于电功率乘以时间 w=pt电功等同于电荷乘坐电压 w=uq电功等于电流平方乘电阻乘时间 w=i^2rt(纯电阻电路)电功等同于电压平方除以电阻再除以时间w=(u^2/r)×t(同上)⑶电功率 p①电功率等同于电压除以电流 p=ui②电功率等于电流平方乘以电阻 p=i^2*r(纯电阻电路)③电功率等同于电压平方除以电阻 p=u^2/r(同上)④电功率等于电功除以时间 p=w/t电功率p=ui注:当相同的电阻在同一电路中时,功率会变成之前的四分之一。
⑷电热q电热等于电流平方乘电阻乘时间 q=i^2rt(普通公式)电热等同于电流除以电压乘坐时间 q=uit=w(氢铵电阻电路)电热等于电压平方除以电阻再乘以时间q=(u^2/r)t(纯电阻电路)电热在通常情况下就是等同于消耗的`电能的,前提条件就是在氢铵电阻的用电器中。
1. p=w/t 主要适用于已知电能和时间求功率2. p=ui 主要适用于于未知电压和电流谋功率3. p=u^2/r =i^2r主要适用于纯电阻电路通常用作并联电路或电压和电阻中存有一个变量解电功率4.p=i^2r 主要用于纯电阻电路通常用作串联电路或电流和电阻中存有一个变量解电功率5.p=n/nt 主要适用于有电能表和钟表求解电功率t-----用电器单独工作的时间,单位为小时n----用电器单独工作 t 时间内电能表转盘转过的转数n----电能表铭牌上每消耗 1 千瓦时电能表旋钮抬起的转数6.功率的比例关系串联电路:p/p'=r/r' p总=p'*p''/p'+p"并联电路:p/p'=r'/r p总=p'+p"。
各种计算电磁学方法比较和仿真软件计算电磁学方法是基于电磁理论和数值计算方法的电磁场分析方法,广泛应用于电磁设备的设计和分析中。
在电磁场计算中,常见的方法包括有限差分法(Finite Difference Method, FDM)、有限元法(Finite Element Method, FEM)、边界元法(Boundary Element Method, BEM)和时域积分方程法(Time Domain Integral Equation Method, TDIE)等,每种方法都有其特点和适用范围。
有限差分法是一种有限差商逼近的数值求解方法,将连续域中的偏微分方程转化为差分方程,然后通过离散化求解得到电磁场分布。
有限差分法具有简单、易于理解和实现的优点,适用于处理规则的几何体和均匀介质的场问题。
然而,当处理复杂几何体和非均匀介质问题时,有限差分法的计算效率较低。
有限元法是一种通过分割计算域为有限个简单形状单元,并在每个单元上采用多项式近似的方法。
有限元法可以较好地处理任意形状的几何体和非均匀介质问题,并且对于大型复杂结构也具有较好的可扩展性。
有限元法在电磁场计算中广泛应用,例如在电感、电容和波导等领域。
边界元法是一种基于位势-势流理论的计算方法,将电磁场分析问题转化为求解边界上的积分方程。
边界元法可以处理复杂几何边界的问题,并且相对于有限元法,边界元法中的待求解变量的数目较少,计算量较小。
边界元法在电磁场计算中常用于处理表面波和边界散射等问题。
时域积分方程法是一种基于麦克斯韦方程组的数值计算方法,通过将时间导数和空间导数分开进行求解,可以用来描述电磁波在时域中的传播。
时域积分方程法可以处理电磁散射、辐射和天线等问题,并且对于时间反演分析也具有优势。
除了上述传统的计算电磁学方法,现代仿真软件也广泛用于电磁场计算和设计。
一些常见的电磁场仿真软件包括Ansys、COMSOL Multiphysics、CST Microwave Studio、FEKO和HFSS等。
电磁学计算方法的比较| [<<] [>>]摘要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。
关键词:矩量法;有限元法;时域有限差分方法;复射线方法1 引言1864 年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。
在11种可分离变量坐标系求解Maxwel l方程组或者其退化形式,最后得到解析解。
这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。
对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。
20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。
但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。
本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。
2 电磁场数值方法的分类电磁学问题的数值求解方法可分为时域和频域2大类。
频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。
时域法主要有时域差分技术。
时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。
例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。
若有非线性部分随时间变化,采用时域法更加直接。
另外还有一些高频方法,如GTD,UTD和射线理论。
从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。
IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。
3 几种典型方法的介绍有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。
后来这种方法得到发展并被非常广泛地应用于结构分析问题中。
目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。
有限元法是以变分原理为基础的一种数值计算方法。
其定解问题为:应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。
(1)时域有限差分方法时域有限差分(FDTD)是电磁场的一种时域计算方法。
传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。
他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。
FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。
电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。
在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。
这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。
因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。
而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。
这正是电磁场的感应原理。
这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。
在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。
这种不稳定表现为在解显式差分方程时随着时间步的继续计算结果也将无限制的67增加。
为了保证数值稳定性必须满足数值稳定条件:用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。
这种色散将导致非物理原因引起的脉冲波形的畸变、为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。
如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。
在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。
这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。
(2)复射线方法复射线是用于求解波场传播和散射问题的一种高频近似方法。
他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律。
复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。
其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(B undle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。
例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。
这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。
其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。
4 几种方法的比较和进展将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。
有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。
这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。
但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。
对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。
但是单独采用有限元法只能解决开域问题。
用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。
问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。
网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。
自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。
这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。
矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。
他的求解过程简单,求解步骤统一,应用起来比较方便。
然而77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。
另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。
矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。
FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。
但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。
因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。
因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。
FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。
复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。
典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。
目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。
尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。