人工智能教学方案大纲
- 格式:doc
- 大小:61.02 KB
- 文档页数:8
人工智能课程标准大纲一、引言人工智能(Artificial Intelligence,AI)作为一门前沿科技,正在深刻改变我们的生活和工作方式。
为了满足人工智能领域的人才需求,制定一份全面、系统的人工智能课程标准大纲是必要的。
本文将基于该需求,提出人工智能课程标准大纲的内容和要求。
二、课程目标1. 培养学生对人工智能基本概念和原理的了解;2. 培养学生掌握人工智能算法和技术的基本应用;3. 培养学生具备人工智能项目开发和应用的实践能力;4. 培养学生具备研究和创新的能力,能够解决人工智能领域的实际问题。
三、课程内容1. 人工智能基础知识1.1 人工智能的定义和发展历程1.2 人工智能的核心思想和基本原理1.3 人工智能在不同领域的应用案例2. 机器学习与数据挖掘2.1 机器学习的概念和分类2.2 监督学习、无监督学习和强化学习2.3 数据挖掘的基本任务和方法2.4 机器学习和数据挖掘在人工智能中的应用3. 自然语言处理与智能对话3.1 自然语言处理的基本任务和挑战3.2 词法分析、句法分析和语义分析3.3 机器翻译和智能问答系统3.4 智能对话系统的设计和实现4. 计算机视觉与图像处理4.1 数字图像的基础知识和处理方法4.2 特征提取和图像识别技术4.3 目标检测和目标跟踪算法4.4 计算机视觉在人工智能中的应用5. 人工智能项目开发与实践5.1 人工智能项目开发的基本流程5.2 数据采集、清洗和预处理5.3 模型训练、评估和优化5.4 项目部署和应用实践案例四、教学方法与评估方式1. 教学方法1.1 理论授课与案例分析相结合,提高学生的理论水平和实际应用能力1.2 实验操作和项目实践,培养学生的动手能力和团队合作意识1.3 学生讨论与思考,促进学生的批判性思维和创新思维2. 评估方式2.1 平时成绩:包括课堂参与、作业完成、实验报告等2.2 期中考试:考察学生对课程内容的理解和掌握程度2.3 期末项目:要求学生结合所学知识实现一个人工智能项目并撰写项目报告2.4 学科竞赛和学术论文:鼓励学生参与学科竞赛和撰写学术论文,对其进行评价和奖励五、参考教材和学习资源1. 参考教材1.1 "人工智能导论",作者:XXX1.2 "机器学习导论",作者:XXX1.3 "自然语言处理基础",作者:XXX1.4 "计算机视觉与图像处理",作者:XXX2. 学习资源2.1 人工智能开放平台提供的教学资源和案例2.2 相关学术期刊和会议上发表的最新研究成果2.3 网上公开课程和学术论文数据库的学习资料六、结语人工智能课程标准大纲旨在培养学生的人工智能基础知识、技术应用和实践能力,以应对快速发展的人工智能领域的需求。
人工智能详细教学大纲第一章:导论1.1 人工智能的定义和基本概念- 人工智能的定义和起源- 人工智能的发展历程1.2 人工智能的应用领域- 人工智能在医疗领域的应用- 人工智能在金融领域的应用- 人工智能在交通领域的应用第二章:机器学习基础2.1 机器学习的概述- 监督学习、无监督学习、强化学习的基本原理和区别- 机器学习的应用场景2.2 数据预处理- 缺失值处理- 异常值检测与处理- 特征选择与降维2.3 常见的机器学习算法- 逻辑回归- 决策树- 支持向量机- 集成学习第三章:深度学习3.1 深度学习的原理与应用- 深度学习的发展历程- 神经网络的基本结构和工作原理3.2 常用的深度学习框架- TensorFlow- PyTorch- Keras3.3 深度学习的应用案例- 图像分类与识别- 自然语言处理- 人脸识别第四章:自然语言处理4.1 自然语言处理的基础知识- 词向量表示- 语法分析和语义分析4.2 文本分类与情感分析- 文本特征提取- 文本分类算法4.3 机器翻译与问答系统- 神经机器翻译- 阅读理解模型第五章:计算机视觉5.1 计算机视觉的基本概念- 图像处理与特征提取- 目标检测与图像分割5.2 图像识别与物体识别- 卷积神经网络(CNN)- 目标检测算法(如YOLO、Faster R-CNN)5.3 视觉生成与图像风格迁移- 生成对抗网络(GAN)- 图像风格迁移算法第六章:人工智能伦理与法律6.1 人工智能的伦理问题- 隐私与数据安全- 就业与职业变革- 人工智能的道德问题6.2 人工智能的法律问题- 数据保护法与隐私权- 人工智能专利与知识产权- 算法歧视与公平性第七章:人工智能未来发展趋势7.1 人工智能的挑战和机遇- 人工智能的挑战与限制- 人工智能带来的机遇与可能性7.2 人工智能与人类的关系- 人工智能助力人类创新与发展- 人工智能对就业和教育的影响总结与展望本教学大纲全面介绍了人工智能的基本概念、机器学习、深度学习、自然语言处理、计算机视觉等领域的基础知识与应用。
人工智能课程大纲一、课程简介人工智能作为一门前沿的学科,其应用范围广泛,影响深远。
本课程旨在引导学生全面了解人工智能的基本概念、方法和应用领域,培养学生运用人工智能技术解决实际问题的能力。
二、课程目标1. 理解人工智能的基本概念和原理;2. 熟悉人工智能的核心技术和算法;3. 掌握人工智能在各个领域的应用案例和发展趋势;4. 培养学生运用人工智能技术解决实际问题的能力;5. 培养学生的团队协作和创新能力。
三、教学内容1. 人工智能概述- 人工智能的定义与发展历程- 人工智能的应用领域和挑战2. 机器学习与数据挖掘- 监督学习、无监督学习和强化学习的基本概念- 常用的机器学习算法和数据挖掘技术- 数据预处理和特征工程3. 深度学习与神经网络- 神经网络的基本原理与结构- 深度学习算法及其应用场景- 深度学习框架的使用和模型优化方法4. 自然语言处理与人机对话- 语言模型与文本分类技术- 机器翻译和文本生成- 人机对话系统的设计与实现5. 计算机视觉与图像处理- 图像特征提取与图像分类- 目标检测和图像分割- 图像生成与风格转换6. 智能推荐与个性化推荐- 推荐系统的原理与算法- 协同过滤与内容推荐- 个性化推荐系统的构建与优化7. 人工智能伦理与社会影响- 人工智能的伦理问题与挑战- 人工智能在社会中的应用与风险- 人工智能的未来发展与应对策略四、教学方法与评价方式1. 教学方法- 讲授理论知识,结合案例分析和实例讲解 - 引导学生自主学习和独立思考- 设计实践项目,培养实际操作能力- 进行小组讨论和课堂展示2. 评价方式- 课堂参与和讨论表现- 作业和实践项目的完成情况- 期末考核和论文撰写成果五、参考书目1.《机器学习》- 周志华2.《深度学习》- 邱锡鹏3.《自然语言处理综论》- 陆海英4.《计算机视觉:算法与应用》- Richard Szeliski5.《推荐系统实践》- 王喆六、备注事项1. 课程期限为一学期,每周两次课程,每次两小时;2. 学生需要具备基本的数学和编程基础;3. 课程设置了实验室实践环节,学生需进行相关实验和项目设计。
人工智能概论教学大纲(理论实验)(一)引言概述:人工智能(Artificial Intelligence,简称AI)是计算机科学和工程的一个分支,涉及到使机器能够完成人类认为需要智能的任务。
本教学大纲旨在介绍人工智能的基础概念、算法和应用,帮助学生了解人工智能的理论和实验基础,培养其相关技能和能力。
一、人工智能的概述1. 人工智能的定义和目标(a) 人工智能的定义和发展历程(b) 人工智能的主要目标和应用领域(c) 人工智能的局限性和挑战2. 人工智能的基本原理(a) 人工智能的基本思维模型和问题解决方法(b) 人工智能的算法和技术基础(c) 人工智能的数据和模型训练3. 人工智能的伦理和社会影响(a) 人工智能的伦理和道德问题(b) 人工智能对社会和经济的影响(c) 人工智能的未来发展趋势和挑战二、人工智能的核心技术1. 机器学习(a) 机器学习的基本概念和方法(b) 监督学习、无监督学习和强化学习(c) 机器学习的算法和模型2. 深度学习(a) 深度学习的原理和神经网络模型(b) 卷积神经网络和循环神经网络(c) 深度学习在计算机视觉和自然语言处理中的应用3. 自然语言处理(a) 自然语言处理的基本任务和技术(b) 语言模型和句法分析(c) 文本分类、情感分析和机器翻译4. 计算机视觉(a) 图像处理和特征提取(b) 目标检测和图像分割(c) 计算机视觉在智能驾驶和人脸识别中的应用5. 推荐系统(a) 推荐系统的原理和算法(b) 用户行为分析和个性化推荐(c) 推荐系统在电子商务和社交媒体中的应用三、人工智能的实验基础1. 编程语言和工具(a) Python语言和相关库(b) 机器学习和深度学习框架(c) 数据处理和可视化工具2. 数据集和特征工程(a) 常用的公开数据集和数据源(b) 数据预处理和特征选择(c) 数据集划分和交叉验证方法3. 算法实现和模型训练(a) 机器学习算法的实现和调优(b) 深度学习模型的搭建和训练(c) 实验结果评估和比较分析四、人工智能的应用案例1. 智能语音助手(a) 语音识别和语音合成技术(b) 人机对话系统和智能问答(c) 智能音箱和智能家居应用2. 自动驾驶技术(a) 传感器和感知技术(b) 路径规划和决策控制(c) 自动驾驶的挑战和安全问题3. 金融风控和欺诈检测(a) 信用评分和风险预测(b) 交易欺诈和异常检测(c) 金融科技的发展和应用前景4. 医疗诊断和辅助决策(a) 医学影像分析和疾病诊断(b) 基因数据分析和个性化治疗(c) 人工智能在医疗领域的挑战和限制5. 智能物联网和城市管理(a) 物联网技术和智能传感器(b) 智能交通和智能能源管理(c) 城市智能化的可行性和影响评估总结:本教学大纲介绍了人工智能的概述、核心技术、实验基础和应用案例。
人工智能课程教学大纲大纲:人工智能课程教学1. 简介- 介绍人工智能课程的重要性和普及程度- 解释人工智能的定义和应用领域2. 目标- 培养学生对人工智能的基本了解和认识- 培养学生分析和解决实际问题的能力- 引导学生思考人工智能对社会的影响3. 课程设计- 课程时长和学时安排- 教学方法和教学资源- 课程内容和模块划分4. 课程内容- 人工智能的历史和发展- 人工智能的基本概念和原理- 机器学习和深度学习算法- 自然语言处理和计算机视觉- 人工智能在各行业的应用案例5. 教学方式- 理论教学:通过讲解基本概念和原理,使学生理解人工智能的基本知识。
- 实践项目:组织学生参与实际项目,加深对人工智能算法和技术的理解和应用能力。
- 讨论和案例分析:通过讨论和分析真实案例,引导学生思考人工智能对社会的影响和伦理问题。
6. 评估方式- 考试:通过笔试和编程作业考察学生对人工智能基本概念和算法的掌握程度。
- 项目评估:评估学生在实践项目中的表现和能力发展情况。
- 讨论参与度:评估学生在课堂讨论和案例分析中的积极参与程度。
7. 教学资源- 教材:建议使用经典的人工智能教材,如《人工智能:一种现代的方法》。
- 在线资源:推荐学生使用在线资源,如人工智能开放平台、论坛和课程网站。
8. 参考文献- 列举相关的研究论文、教材和在线资源,供学生进一步学习和深入研究。
9. 结语- 强调人工智能课程的重要性和发展前景- 鼓励学生积极参与课程学习和实践项目以上是《人工智能课程教学大纲》的内容,通过系统的课程设计和教学方法,旨在培养学生对人工智能的基本了解和应用能力。
教学大纲涵盖了人工智能的基本概念、算法和应用案例,并通过理论教学、实践项目和讨论分析等方式,引导学生思考人工智能对社会的影响和伦理问题。
希望学生能够通过这门课程,掌握人工智能的基本知识,培养解决实际问题的能力,并为未来的发展和创新做出贡献。
人工智能专业课程大纲一、课程简介本专业课程旨在为学生提供人工智能领域的基础知识和技能,涵盖人工智能的理论基础、应用实践和发展趋势等内容。
通过本课程的学习,学生将具备深入了解人工智能相关概念和原理的能力,为将来从事人工智能领域的研究和应用工作打下坚实的基础。
二、课程目标1. 熟悉人工智能的基本概念和发展历程;2. 掌握人工智能的相关技术和算法;3. 能够运用人工智能技术解决实际问题;4. 了解人工智能领域的最新进展和趋势。
三、课程内容1. 人工智能概论- 人工智能的概念和定义- 人工智能的发展历程- 人工智能的基本原理和技术2. 机器学习- 机器学习的基本概念- 监督学习、无监督学习和强化学习- 机器学习算法及其应用3. 深度学习- 深度学习的原理和发展- 神经网络基础- 深度学习在图像识别、自然语言处理等领域的应用4. 自然语言处理- 自然语言处理的基本原理- 词向量表示和语言模型- 文本分类、情感分析等技术5. 计算机视觉- 计算机视觉的基本概念- 图像处理和特征提取- 目标检测、图像分割等技术6. 智能系统- 专家系统、推荐系统等智能系统概述- 智能系统的设计和应用- 人工智能在各个领域的应用案例分析四、教学方法本课程将采用理论讲授、案例分析、实践操作等教学方法相结合,以培养学生的人工智能理论基础和实践能力。
学生将通过课堂学习、实验练习和课程项目等形式不断提升自己的综合能力。
五、教学大纲- 每周开设2-3节理论课,包括基础知识讲解和技术应用案例分析;- 定期进行实践操作,让学生动手实践所学知识;- 每学期结合课程主题开展小组项目,培养学生的团队合作和问题解决能力。
六、评估方式- 平时表现占总评成绩的30%,包括课堂参与、作业完成等;- 期中考试占总评成绩的30%,主要考核对基础知识的掌握;- 期末考试占总评成绩的40%,主要考核对课程内容的综合掌握和理解能力。
通过本专业课程的学习,学生将具备从事人工智能领域研究和应用工作的必备知识和技能,为未来的职业发展奠定坚实基础。
《人工智能》课程教学大纲《人工智能》课程教学大纲一、课程基本信息开课单位课程名称开课对象学时/学分先修课程课程简介:人工智能是计算机科学的重要分支,是研究如何利用计算机来模拟人脑所从事的感知、XXX人工智能课程类别课程编码开课学期个性拓展GT第4或6学期网络工程专业、计算机科学与技术专业36学时/2学分(理论课:28学时/1.5学分;实验课:8学时/0.5学分)离散数学、数据结构、程序设计推理、研究、思考、规划等人类智能活动,来解决需要用人类智能才能解决的问题,以延伸人们智能的科学。
该课程主要讲述人工智能的基本概念及原理、知识与知识表示、机器推理、搜索策略、神经网络、机器研究、遗传算法等方面内容。
二、课程教学目标《人工智能》是计算机科学与技术专业的一门专业拓展课,通过本课程的研究使本科生对人工智能的基本内容、基本原理和基本方法有一个比较初步的认识,掌握人工智能的基本概念、基本原理、知识的表示、推理机制和智能问题求解技术。
启发学生开发软件的思路,培养学生对相关的智能问题的分析能力,提高学生开发应用软件的能力和水平。
三、教学学时分配《人工智能》课程理论教学学时分派表章次第一章第二章第三章第四章第五章第六章首要内容人工智能概述智能程序设计言语图搜索技术基于谓词逻辑的机器推理呆板进修与专家系统智能计算与问题求解合计学时分配35464628教学方法或手段讲授法、多媒体讲授法、多媒体探究式、多媒体讲授法、多媒体概述法、多媒体开导式、多媒体《人工智能》课程实验内容设置与教学要求一览表实学尝试序项目号名称配1)了解PROLOG语言中常1) Prolog运转环境;量、变量的表示方法;实分支2)使用PROLOG举行事实验与循实库、规则库的编写;库、规则库的编写方法;环程3)分支程序设计;一序设4)循环程序设计;一计5)输入出程序设计。
5)掌握PROLOG输入输出程序设计;1)了解PROLOG中的谓词1)谓词asserta和递归实与表实处理验程序二设计4)掌握PROLOG表处理程4)综合应用程序设计。
《人工智能》教学大纲人工智能教学大纲一、引言人工智能(Artificial Intelligence, AI)是现代科技发展的热点领域,其在各个行业中的应用不断深入。
AI教育的重要性与日俱增,为了适应时代的发展潮流,我们设计了本教学大纲,旨在引导学生系统地学习人工智能的基本概念、原理和应用,培养学生的AI思维和技术能力。
二、课程目标本课程旨在使学生掌握以下知识和技能:1. 理解人工智能的基本概念和发展历程;2. 掌握人工智能的核心算法和模型,如机器学习、深度学习等;3. 理解人工智能在各个领域的应用,并能够灵活运用相关技术解决实际问题;4. 培养学生的创新思维和团队合作能力,在人工智能领域具备综合素质。
三、教学内容与进度安排1. 第一阶段:人工智能概述(2周)- 人工智能的定义与分类- 人工智能在社会与经济中的地位与作用- 人工智能的发展历程及国内外研究进展2. 第二阶段:机器学习基础(4周)- 机器学习的基本概念与算法- 监督学习、无监督学习和半监督学习- 常见机器学习算法的原理与应用- 机器学习在图像处理、自然语言处理等领域的应用案例3. 第三阶段:深度学习与神经网络(5周)- 深度学习的基本原理与核心概念- 深度神经网络的结构与训练方法- 常见深度学习网络,如卷积神经网络、循环神经网络等 - 深度学习在计算机视觉、语音识别等领域的应用案例4. 第四阶段:人工智能应用与伦理(3周)- 人工智能在医疗、金融、智能交通等领域的应用案例 - 人工智能伦理与社会影响的讨论- 人工智能发展趋势与未来展望5. 第五阶段:实践项目与实验(4周)- 结合实际问题,进行人工智能算法的实践应用- 利用开源框架进行人工智能模型的训练与调优- 团队合作,完成人工智能项目的设计与实施四、教学方法与评价方式1. 教学方法- 授课结合案例分析,通过实例让学生更好地理解与应用知识;- 布置作业与小组讨论,培养学生的独立思考和合作能力;- 项目实践与实验,提升学生的动手能力与创新思维。
人工智能课程标准大纲一、课程简介本课程旨在介绍人工智能的基本概念、方法和应用领域,帮助学生建立对人工智能技术的初步认识,为日后深入学习打下基础。
二、课程目标1. 了解人工智能的历史、发展及基本概念;2. 掌握人工智能的基本原理和方法;3. 熟悉人工智能在各领域的应用,并能够分析和思考相关问题;4. 培养学生的创新思维和问题解决能力。
三、课程内容1. 人工智能基本概念- 人工智能简史- 人工智能的定义与范畴- 人工智能的研究方法2. 人工智能基本原理- 知识表示与推理- 机器学习与深度学习- 人工神经网络- 自然语言处理- 计算机视觉3. 人工智能应用- 人工智能在医疗健康领域的应用- 人工智能在金融领域的应用- 人工智能在智能交通领域的应用- 人工智能在工业制造领域的应用四、教学方法1. 理论授课2. 案例分析3. 课堂讨论4. 项目实践五、教材《人工智能:一种现代方法》《机器学习》《深度学习》《自然语言处理综述》六、考核评价1. 平时表现(出勤、作业完成情况等)占比30%2. 期中考试占比30%3. 期末考试占比40%七、参考文献1. Russell, S. J., & Norvig, P. (2003). Artificial intelligence: A modern approach.2. Murphy, K. P. (2012). Machine learning: a probabilistic perspective.3. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning.以上为人工智能课程标准大纲,在学习过程中希望同学们认真学习,积极思考,不断提升自己的专业技能和素养。
祝学习愉快!。
人工智能教学大纲【引言】本教学大纲旨在为人工智能课程的教学提供一个全面而系统的指导框架。
人工智能是如今热门的领域之一,该领域的快速发展为学生提供了广阔的职业发展机会。
因此,设计一份科学合理的人工智能教学大纲对学生的学习效果至关重要。
【一、课程概述】1.1 课程名称:人工智能基础1.2 学时安排:40学时1.3 课程目标:通过本课程的学习,学生应该能够1.3.1 理解人工智能的基本概念及相关技术的发展历程;1.3.2 掌握人工智能的基本原理和常用算法,并能够应用于实际问题;1.3.3 培养学生的创新思维和解决问题的能力。
【二、教学内容与学时安排】2.1 人工智能概述(2学时)2.1.1 人工智能定义及相关概念介绍2.1.2 人工智能的发展历史及应用领域2.1.3 人工智能对社会与经济的影响2.2 人工智能基础知识(8学时)2.2.1 机器学习基础2.2.1.1 监督学习2.2.1.2 无监督学习2.2.2 深度学习2.2.2.1 神经网络原理2.2.2.2 卷积神经网络2.2.2.3 递归神经网络2.2.3 自然语言处理2.2.3.1 词向量表示2.2.3.2 语言模型与文本生成2.3 人工智能算法与应用(20学时)2.3.1 人工智能算法概述2.3.2 决策树算法及应用2.3.3 支持向量机算法及应用2.3.4 随机森林算法及应用2.3.5 深度学习算法应用案例2.3.6 人工智能在图像处理中的应用2.3.7 人工智能在自然语言处理中的应用2.4 人工智能伦理与社会影响(6学时)2.4.1 人工智能的道德问题2.4.2 人工智能对就业市场的影响2.4.3 人工智能的隐私与安全问题【三、教学方法与手段】3.1 授课方法3.1.1 讲授:通过理论讲解传授基本概念、原理和算法知识;3.1.2 实践:通过实验、案例分析和项目实践培养学生的动手能力和解决问题的能力;3.1.3 讨论:通过课堂讨论激发学生的思维,培养创新能力。
人工智能课程教学大纲
【课程编码】JSZX0300
【适用专业】计算机科学与技术
【课时】 72(理论)+28(实验)
【学分】 3
【课程性质、目标和要求】
人工智能是计算机科学的重要分支,是计算机科学与技术专业本科生的专业限选课之一。
本课程介绍如何用计算机来模拟人类智能,即如何用计算机实现诸如问题求解、规划推理、模式识别、知识工程、自然语言处理、机器学习等只有人类才具备的"智能",使得计算机更好得为人类服务.
作为本科生一个学期的课程,重点掌握人工智能的基础知识和基本技能,以及人工智能的一般应用.完成如下教学目标:
(1)了解人工智能的概念和人工智能的发展,了解国际人工智能的主要流派和路线,了解国内人工智能研究的基本情况,熟悉人工智能的研究领域.
(2)较详细地论述知识表示的各种主要方法。
重点掌握状态空间法、问题归约法和谓词逻辑法,熟悉语义网络法,了解知识表示的其他方法,如框架法、剧本法、过程法等。
(3)掌握盲目搜索和启发式搜索的基本原理和算法,特别是宽度优先搜索、深度优先搜索、等代价搜索、启发式搜索、有序搜索、A*算法等.了解博弈树搜索、遗传算法和模拟退火算法的基本方法.
(4) 掌握消解原理、规则演绎系统和产生式系统的技术、了解不确定性推理、非单调推理的概念.
(5)概括性地介绍人工智能的主要应用领域,如专家系统、机器学习、规划系统、自然语言理解和智能控制等.
(6)简介人工智能程序设计的语言和工具.
(7) 掌握Visual Prolog编程环境,会使用Prolog语言编写简单的智能程序。
要求学生已修过《数据结构》、《离散数据》和《编译原理》。
【教学时间安排】
本课程计 3 学分,理论课时72 ,实验课时28。
学时分配如下表所示:
【教学内容要点】
教学要求的层次
课程的教学要求大体上分为三个层次:了解、理解和认识。
了解即能正确判别有关概念和方法;理解是能正确表达有关概念和方法的含义;认识是在理解的基础上加以灵活应用。
第一章绪论
一、学习目的要求
1、了解人工智能的定义、起源与发展
2、了解人工智能的研究与应用领域
3、理解人工智能求解方法的特点
二、主要教学内容
1、人工智能的定义、起源与发展
2、人工智能的研究与应用领域
3、人工智能求解方法的特点
第二章知识表示方法
一、学习目的要求
1、认识状态空间法
2、理解问题归约法
3、认识谓词逻辑法
4、认识语义网络法
5、认识框架表示
6、认识剧本表示
7、理解过程表示
二、主要教学内容
1、状态空间法
2、问题归约法
3、谓词逻辑法
4、语义网络法
5、框架表示
6、剧本表示
7、过程表示
第三章搜索原理
一、学习目的要求
1、认识盲目搜索
2、理解启发式搜索
3、了解遗传算法
4、了解模拟退火法
二、主要教学内容
1、盲目搜索
2、启发式搜索
3、遗传算法
4、模拟退火法
第四章推理技术
一、学习目的要求
1、理解消解原理
2、理解规则演绎系统
3、理解产生式系统
3、认识不确定性推理
4、理解非单调推理
二、主要教学内容
1、消解原理
2、规则演绎系统
3、产生式系统
4、不确定性推理
5、非单调推理
第五章机器学习
一、学习目的要求
1、了解机器学习的定义、研究意义与发展历史
2、认识机器学习的主要策略与基本结构
3、理解机械学习
4、理解基本解释经验的学习
5、了解基于事例的学习
6、了解基于概念的学习
7、了解基于类比的学习
8、理解基于神经网络的学习
二、主要教学内容
1、机器学习的定义、研究意义与发展历史
2、机器学习的主要策略与基本结构
3、机械学习
4、基本解释经验的学习
5、基于事例的学习
6、基于概念的学习
7、基于类比的学习
8、基于神经网络的学习
第六章规划系统
一、学习目的要求
1、理解规划的作用与任务
2、理解基于谓词逻辑的规划
3、了解STRIPS规划系统
4、了解分层规划
二、主要教学内容
1、规划的作用与任务
2、基于谓词逻辑的规划
3、STRIPS规划系统
4、分层规划
第七章专家系统
一、学习目的要求
1、不同模型的专家系统
2、理解专家系统
3、了解专家系统开发工具
4、理解专家系统实例
二、主要教学内容
1、专家系统
2、基于规则的专家系统
3、基于框架的专家系统
4、基于模型的专家系统
5、专家系统开发工具
6、专家系统实例
第八章自然语言理解
一、学习目的要求
1、理解语言及其理解的一般问题
2、理解句法和语义的自动分析
3、了解句子的自动理解
4、了解语言的自动生成
5、了解文本的自动翻译
6、理解自然语言理解系统的主要模型
7、理解自然语言理解系统应用举例
8、了解语音识别
二、主要教学内容
1、语言及其理解的一般问题
2、句法和语义的自动分析
3、句子的自动理解
4、语言的自动生成
5、文本的自动翻译
6、自然语言理解系统的主要模型
7、自然语言理解系统应用举例
8、语音识别
第九章智能控制
一、学习目的要求
1、了解智能控制的历史沿革
2、了解智能控制的研究领域
3、理解智能控制的学科结构理论
4、了解智能控制系统
二、主要教学内容
1、智能控制概述
2、智能控制的研究领域
3、智能控制的学科结构理论
4、智能控制系统
第十章人工智能程序设计
一、学习目的要求
1、了解逻辑型编程语言
2、综合应用LISP语言
3、综合应用PROLOG语言
4、了解关系数据库
二、主要教学内容
1、逻辑型编程语言
2、LISP语言
3、PROLOG语言
4、关系数据库
一、(实验1)Visual Prolog 环境的建立与熟悉
1、实验目的要求
⑴掌握Visual Prolog 安装与卸载。
⑵掌握Visual Prolog的基本特性。
⑶理解项目文件结构以及之间的关系。
⑷掌握调试项目的步骤。
2、实验主要内容
⑴ Visual Prolog的安装与卸载。
⑵构建Visual Prolog 项目。
3、实验条件
⑴需要Visual Prolog编程环境。
二、(实验2)Prolog语言元素
1、实验目的要求
⑴掌握Horn子句的表示方法。
⑵理解Prolog推理机的构建方法。
⑶掌握Prolog程序控制和Prolog算符。
2、实验主要内容
⑴ Prolog推理机。
⑵程序控制。
⑶算符。
三、(实验3)Visual Prolog 面向对象元素
1、实验目的要求
⑴掌握Visual Prolog中类与对象的概念与表示。
⑵理解对象模型
2、实验主要内容
⑴接口
⑵类的声明和类的实现
⑶学生对象的Prolog实现。
四、(实验4)PIE推理机的实现
1、实验目的要求
⑴掌握Prolog推理机的实现方法。
⑵理解Prolog推理机具体使用方法。
2、实验主要内容
⑴ Prolog推理机。
⑵家族定理的分析与实现。
…………
五、(实验5)三层结构的家族定理的设计与实现
1、实验目的要求
⑴掌握使用Visual Prolog开发三层结构的系统。
2、实验主要内容
⑴家族定理的GUI编程
⑵家族定理的逻辑层编码
⑶家族定理的数据层编码
【成绩考核方式】
1、成绩评定总则
本课程考核分为平时考核和期末闭卷考试和实验考核三部分。
其中平时成绩占15%,期末占60%,实验占25%。
2、平时成绩评定
平时成绩依据学生的课堂出勤率、作业完成情况进行评定。
评定时,应充分体现公平、公正、实事求是的原则,客观地评价学生平时的表现。
3、期末闭卷考试
期末闭卷考试。
试题的覆盖率至少要达到大纲要求的80%,试题的类型一般可以选择、填空、判断、解答、算法求解、设计为宜。
4、实验考核见实验大纲
【教材与参考书目】
指定教材:
《人工智能基础》,蔡自兴,蒙祖强。
高等教育出版社,2005年5月参考书目:
1《人工智能(上、下册)》,陆汝钤,北京:科学出版社, 1996年
2《人工智能原理》,石纯一等,北京:清华大学出版社,1993
3《人工智能基础》,高济等,北京:高等教育出版社,2002 【有关说明(教学建议)】
●本课程概念多、较抽象、涉及面广,因此教学形式以讲授方式为主。
●关键性概念、整体实现思想方面的问题可辅以课堂讨论的形式。
(编制:马乐荣/审核:郝继升)。