高密度电法在工程勘察中的应用
- 格式:doc
- 大小:24.00 KB
- 文档页数:2
高密度电法在工程勘察中的应用摘要:随着社会的不断发展,城市规模的不断扩大,工程建设类别的增多向工程地质的勘察工作提出了更高的要求,传统单一的地质钻探技术已经不能满足当前满足工程的需要。
这就要求岩土工程人员跟进时代的发展,不断加强对新技术的研究,在对地下地质条件进行测定时采用多种勘测手法综合勘测,以便能够为设计方提供高质量的勘察资料。
基于此,文中笔者就高密度电法的工作原理及岩溶地质进行了简要的阐述,并根据工程实例说出了高密度电法在工程勘察中的应用。
关键词:高密度电法、工程勘察、电阻率一、前言随着我国各大城市规模的不断增大,工程建设作为关系民生的重要项目受到社会各界的密切关注。
岩溶是工程建设中最严重的地质现象,但是由于在指定的比较小的范围内,岩溶发育的不稳定性、随机性及隐藏的特点,给区内岩溶的分布及其发育情况的详查带来很大的难题,而仅依靠钻探办法难以达到人们预期的结果。
在我国的矿产勘察与项目建设中大部分都采用高密度电法,高密度电法利用岩溶与围岩在电性上普遍存在的差别,能很快的探测出岩溶的各方向生长状况,进而运用合适的办法来防止灾害的产生。
笔者通过列举下面的几个运用,证明高密度电法在工程岩溶勘察的桥基和隧道中适用性及准确性。
二、工作原理高密度电法是根据水文、工程及环境地质调查的实际需要而研制的一种电阻率法,在岩石的电阻率差异,矿石为基础,通过对电场分布的特点和变化的空间差异的观察和研究,查明地下地质构造和寻找地下非均匀电体的地球物理勘探方法的一类。
两种方法在数据采集过程中结合电阻率曲线和电阻率测深观测系统,高密度电阻率的方法,因此,大量的数据收集,对观测数据的准确性,在电异质体的检测取得了良好的地质效果。
如图1所示,当地面A2,B2电源的输入电流强度,形成地下稳态电场E,以A2、B2的中点为O为中心,1/3A2B2长的范围内电场为均匀场,在此范围内安置测量电极M、N得到电位差ΔU,其中k为装置系数,不同的测量装置的装置系数不同,由此可得视电阻率计算公式:图1:高密度电法探测原理示意三、岩溶地质及地球物理特征1、地质特征岩溶的岩性基本都是碳酸盐岩,常见的有泥灰岩、白云岩、白云质灰岩、以及灰岩等。
高密度电法在公路工程地质勘察中的应用摘要:随着经济的不断发展和基础实施的完善,我国交通建设事业得到空前的发展。
但是,由于人们购买能力的提升,目前道路交通建设情况还不能满足实际需求,导致交通拥堵和交通事故频发,因此要进行公路扩建。
在实际公路工程建设中,要综合考虑车流量和车载重,严格控制公路质量问题。
勘察工作是后续工程开展的基础和保障,会对公路最终施工效果产生直接影响。
因此,公路勘察方法必须科学严谨,而高密度电法能够快速准确地收集数据,最大限度地减少误差。
关键词:高密度电法;公路工程;地质勘察;应用1高密度电法简介1.1高密度电法基本原理高密度电法是一种工作效率较高的探测方法,通过调整电阻率,增加测量中的测点密度,并借助电场作用,分析不同岩层的电场异常现象,得出施工线路中岩层、地质构造等方面的问题。
高密度电法的排列组合参数多种多样,电极转换灵活,可以实现地质纵向和横向的二维探测,收集目标区域的地质数据,为工程施工提供准确有效的地质信息。
1.2设备组成高密度电法数据采集系统由3部分组成,即主机、电路电极转换器、电极系统。
测量系统具体流程分为三部分:开始前,将线接入多路电极自动转换系统,同时连接电法仪,使电极在采集过程中自动转换;测量时,利用单片机使其自动检查、自动控制位置变化、自动记录数据并存储电法仪中;测量后,数据在微机中得到处理,最后得到形象的数据图。
1.3高密度电法的优势相比传统的电阻率勘察法,高密度电法有其特有的优势。
一是根据实际应用可以具体地进行排列扫描,使得到的地质信息更为准确。
二是电极的布置可以一次性完成,降低了再布置的烦琐性和发生故障的可能性。
三是高密度电法在采集数据时可以实现自动化或半自动化勘测,避免了人为失误。
1.4高密度电法的注意事项首先,要注意接地电阻和电极布置的问题。
受施工现场的地质环境等因素影响,接地电阻和电极布置的技术难度较大。
因此,在设计布置接地电阻和电极时,尽可能选择湿泥土区域,以水作为导电体,以保证高密度电法测试结果的准确性。
岩土工程勘察中高密度电法的应用分析摘要:岩土工程勘察结果准确性将影响后续施工,而近年来多种新技术用于岩土工程勘察工作,高密度电法就是其中一种。
现阶段,高密度电法被用于勘察新疆地区岩土工程。
本文通过具体实例阐述了高密度电法勘探的方法原理和特点,分析了高密度电法在岩土勘察中的应用。
关键词:岩土工程;高密度电法;电阻率:勘察1 高密度电阻率法介绍高密度电法工作原理、常规电阻率法较为相似。
不同岩土体电性也不相同,高密度电法检测方法即向被检测岩土体施加电场,之后分析电流分布情况,并依据电流分布规律探析岩土情况。
和常规电阻率法一样,检测过程中,工作人员可利用A、B两个电极向地面输送电流(以I表示),之后检测M、N两级之间的电位差(以ΔV表示),并科学计算此地点的视电阻率值。
计算公式为:ρs=KΔV/I。
我们可依据检测到的视电阻率剖面,确定地下结构电阻率实际情况,最终达到明确地质情况的目的。
高密度电阻率法属于阵列勘探方式的一种。
在郊外进行岩土工程勘察工作时,需在探测点设置全部的电极,之后采用程控电极控制开关、微机工程电测仪,迅速、自动采集所需数据信息,并将这些数据信息保存到微机中,同时还可对这些数据信息进行研究并绘制出地电断面分布图示。
2 工程实例2.1 滑坡目的:推断滑动面及滑坡体。
1)断面测线长度为300m。
2)断面采用温纳法,电极距为5m,总电极数60个。
3)地质情况:依照勘察地质钻孔,主要地层为腐殖土、粉土、闪长岩。
4)断面解释:横向电阻率大致均匀分布,纵向物性层位较为清晰,且有规律可循,可依据相关数据了解边坡内部情况。
阻值变化范围(0-24589Ω.Μ)较大,表层0-6m为地表腐殖层电阻率在33~362Ω.Μ,6~19.5m电阻率在18Ω.Μ以下,层位均匀,起伏不大的粉土层。
19.5m以下电阻率在109Ω.Μ以上,推断为闪长岩;195-220m有滑坡裂缝。
1)断面测线长度为300m。
2)断面采用温纳法,电极距为5m,总电极数60个。
高密度电法在尼泊尔某水电站勘察中的应用摘要:准确地查明水电站坝址区地质地层状况,提供合理的岩土物理力学参数对坝址的设计至关重要。
本文介绍了高密度电法在尼泊尔某水电站跨河勘察实例,结合钻孔资料对高密度在厚覆盖层中的反演结果进行解释分析,阐述了高密度电法在厚覆盖层地区水电站勘察中较好的应用效果。
关键词:水电站勘察高密度电法厚覆盖层1.勘探区概况尼泊尔某水电站处在尼泊尔卡利甘达基河峡谷段,拟规划坝址区下伏地基结构复杂,根据前期地质勘探成果及现场踏勘情况,测区覆盖层多系第四系冲积物、残坡积物、崩积物等表层覆盖物,且覆盖层非常厚,成分主要为粘土、砂、粉砂及碎块石、卵砾漂石等。
基岩多为弱风化片麻岩、片岩为主。
确定使用高密度电阻率法对拟规划坝址区等处进行勘察,初步查明场地内岩土层的分布及构造等情况。
2. 高密度电法工作方法概述2.1高密度电法工作原理高密度电法作为地球物理勘探方法的一种,具有探测范围广、效率高等特点[1]。
高密度电法基于传统的对称四极直流电测深法基本原理[2],是集电剖面法和电测深法为一体的电法勘探方法。
高密度电法自动化采集存储大量的数据点,提高了工作效率,并有效避免了人工操作可能出现的错误。
仪器采集的大量数据为反演提供基础,对小目标的浅层勘探提供了可靠的保证。
2.2装置选择及外业工作方法简述为保证高密度数据横向和垂向的反演精度,对排列装置的选择多次进行现场试验[3]。
经过验证,温纳抗噪性强,在地形起伏较大的时候数据质量稳定性较好,反演结果更加可靠。
对于水电站的坝址区勘察,选择温纳装置效果更好。
现场工作中选取了温纳(α)排列装置,温纳装置测量原理见图1。
A和B为供电电极,M和N为测量电极,在测量过程中A、B、M、N逐点同时自排列起始端向末尾段移动,并始终保证AM=MN=NB,最终可得到倒梯形电阻率断面。
图1 温纳排列装置测量原理示意图实际工作中,需根据勘探范围以及场地条件合理布置排列长度。
为确保电极接地良好,在高密度数据采集之前需对电极进行接地电阻检查,采集过程中供电电压根据规范合理控制。
高密度电法在工程中的实际应用
高密度电法在工程中的实际应用,高密度电法在工程勘察中应用十分广泛,是当今工程物探的一种主要方法。
但由于方法的局限性,受诸多方面的影响,电法异常解释具有多解性。
这就增加了资料解释的难度。
因此,在研判电法异常的同时,还结合地质情况等因素进行综合分析,对异常进行合理,准确解释。
高密度电法和传统的电阻率法相比,其基本原理大致相同。
不的是高密度观测中测点的密度较高,现场测量时,需将全部电极置在一定间隔的测点上只上,然后进行观测。
由于使用电极数量,且可以自由组合,这样我们可以获取的地电信息,可以像地震勘一样,使用覆盖式的测量方式。
与常规电法相比,高密度电法具有下优点:(1)电极一次性布设完全,可以减少干扰和测量的误差;(2)以有效的测量多种电极排列方式进行,获取关于地电结构状态的丰富的地质信息;(3)实现了对数据的自动化全部采集和收录,采速度快,没有人工误差和错误;(4)允许现场对资料实时和脱机处,大大提高了智能化程度。
高密度电法在工程勘察中的应用潘文龙山西阳煤集团碾沟煤业有限公司山西阳泉【摘要】高密度电法属于工程勘察中比较常用的一种物探方法,其具有工作效率高、自动化程度高、异常现象直观等特点,因此在煤矿工程开采过程中得到了广泛的应用。
借助高密度电法可以对煤矿井下的采空区、断层、含水层等有个直观的了解和掌握,从而为煤矿工程后续的开采工作提供一定的借鉴和参考,有效的降低了不必要的灾害,提高了煤矿工程的开采效率。
【关键词】高密度电法;煤矿工程勘察;应用高密度电法在煤矿开采阶段得到了广泛的应用,其能够获取更加丰富、全面的地质信息,可以准确的对地下介质的地电情况进行反映,从而更好的提高了煤矿工程勘察的效果和质量。
在煤矿生产过程中,地下空洞(裂隙、空隙等)、采空区、断层、含水层等,这些都会对煤矿工程的正常开采产生或多或少的影响,借助高密度电法能够对上述现象进行准确的探测,从而为煤矿的正常、安全开采提供保障。
1.高密度电法概述1.1高密度电法含义实际上,高密度电法隶属于电阻率法的范畴,其一般是在常规电法勘探的基础上进行不断的改进和创新而发展起来的一项新技术手段。
高密度电法是根据岩土体的电性差异来进行判别的,通过对地下岩体施加电场,来发现地下传导电流的分布和变化规律。
实际上,高密度电法是借助微机来对测量电极和供电电极进行有效的选择和控制,这样不仅可以有效的提高设备的数据采集效率,而且还能提高测量的准确性。
高密度电法是阵列勘探方法,在进行野外测量的过程中,一般需要把几十至上百根电极按照一定的方式置于测点上,借助微机工程电测仪和程控电极转换开关就能够实现对数据的快速采集。
然后把测量的结果传送至微机上对数据进行针对性的处理,从而获取地电断面分布的解释结果。
同时,电阻率剖面图是高密度电法测量中比较常用的表示方法,其一般采用拟断面彩色图、等值线图或灰度图来对相关数据进行有效的采集,其能够直观的反映地电断面任何一个测点的电阻率变化情况,因此在煤矿工程勘察中得到了广泛的应用。
高密度电法的原理与应用1. 简介高密度电法是一种非侵入性地下勘探技术,通过在地下注入高频电流,通过监测地下电阻率来获取地下结构和岩石性质的信息。
该技术具有快速、精确、经济等优势,被广泛应用于地质勘探、水文地质、环境地质等领域。
2. 原理高密度电法的原理基于电流在地下流动过程中的电阻和电导差别。
当电流通过地下不同材质时,不同的岩石和土壤具有不同的导电性质,从而形成不同的电阻。
根据地下不同材质的电阻变化,可以推断出地下的结构和岩石性质。
3. 应用高密度电法广泛应用于以下领域:3.1 地质勘探•矿产资源勘探:高密度电法可以通过监测地下电阻率变化,找到可能的矿床位置。
特定电阻率反映不同矿石的存在,并可以帮助勘探人员进行目标矿床的发现。
•岩土工程:高密度电法可以在岩土工程中确定地层的分布、厚度和性质。
通过分析电阻率剖面,可以识别出地下土层的稠密程度、含水性质等参数,为工程设计提供基本数据。
3.2 水文地质•水资源调查:通过高密度电法,可以评估地下水资源的分布和储量。
地下水与土壤、岩石的导电性质有一定的关联,通过监测电阻率分布可以推测地下水的存在和含水层的性质。
•水文地质勘探:高密度电法可以用于探测地下水文地质条件,如寻找含水层、确定水位埋深等参数。
通过地下电阻率图像的解释,可以有效评估地下水资源的数量和质量。
3.3 环境地质•地下水污染调查:高密度电法可以用于检测地下水中的污染物浓度和分布情况。
不同污染物具有不同的导电性质,通过监测地下电阻率的变化,可以准确判断地下水的污染程度。
•环境监测:高密度电法可以用于监测地下储层的稳定性、溶洞的分布和岩溶地区的环境变化。
通过对电阻率分布的解释,可以判断地下空洞、结构变化等可能对环境产生影响的因素。
4. 优势与局限性4.1 优势•非侵入性:高密度电法可以在不破坏地下结构的情况下获取地下信息,对环境无污染。
•快速高效:高密度电法可以快速获取大范围的地下电阻率数据,并通过数据处理获得地下结构信息。
高密度电法在工程物探中的应用经过长时间的发展,我国的电法勘探技术在基础理论、方法技术和应用方面都取得巨大的发展,而高密度电法是八十年代中期发展起来的电法勘探新技术,本文就高密度电法勘探方法进行探讨,以及高密度电法在工程地质中的研究应用。
标签:高密度电法;工程地质;应用一、高密度电法概述(一)基本原理。
其原理为常规电法勘探原理。
因此电阻率剖面法的装置均可用于高密度电阻率法,常用于场地勘察、公路及铁路隧道选线、坝基及桥墩选址、采空区及地裂缝调查、水库渗漏研究、地下水污染调查等环境地质,与传统电阻率法相比快速、高效、自动化、获得的地电信息更丰富。
高密度电阻率法的物理前提是地下介质间的导电性差异。
它是通过A,B电极向地下供电流J,然后在M,N极间测量电位差△V,进而求得该记录点的视电阻率值ρS=K△V/I。
根据实测的视电阻率剖面,加以计算、分析、处理,便可以获得地层中电阻率的相关分布情况,从而可划分地层以及圈闭异常等。
现场测量使用的仪器是IYZD-6A多功能直流电法仪,采用的方法是a~排列(温纳),该装置适用于固定断面扫描测量,电极排列示意图如图1所示。
图1 电极排列示意图(二)工作流程。
高密度电法数据采集系统由主機、多路电极转换器、电极系三部分组成。
多路电极转换器通过电缆控制电极系各电极的供电与测量状态;主机通过通讯电缆、供电电缆向多路电极转换器发出工作指令,向电极供电并接收、存贮测量数据。
我们在工作时,总希望探测深度要深(即AB要大),又不会漏掉小的异常体(即MN要小)。
要提高横向分辨率,就要牺牲它的探测深度,反之亦然。
所以在设计极距时,既要充分考虑探测深度,又要兼顾横向分辨率。
(三)数据处理。
高密度电法的数据处理主要包括两大部分,即数据预处理和数据反演处理。
高密度电法装置类型较多。
各种装置的不同其数据整理过程也不尽相同。
在此以温纳(对称四级)装置为例,即选取AM=MN=NB=a,记录点取在MN的中间,仪器所测视电阻率计算公式为:ps=(KAB×△UMN)I,其中KAB=2xII×a工作电极数为60或120个,电极距选1~5m。
浅谈工程物探中高密度电法的应用在众多工程物探方法中,高密度电法作为应用最广泛的电法勘探方法,具有探测能力强、探测精度高、采集速度快的特点。
其使用直流电供电,一次可布设大量电极,获取数据量大,测量误差小、结果可靠性较高,探测信息丰富,在岩溶勘察、城市管线探测、水坝渗漏勘察、建筑选址地基勘探等中获得不错应用效果。
随着地球物理理论及仪器发展,数据技术的改进,高密度电法勘探技术也在不断提高,从最初的二维断面,逐步发展到三维结构成像,在工程物探中的应用越加广泛。
1 高密度电法的基本原理1.1工作原理高密度电法属于一种电阻率探测方法,根据地下岩土体导电性的不同,通过人工施加电场,分析电场作用下地下地层传导电流的分布规律,推断地下具有不同电阻率的地下地质结构,从而为解决地质问题提供参考。
高密度电法可一次性沿测线同时布设几十到几百根电极,视探测深度和探测目标体的尺度选择电极距及采集装置。
高密度测量系统按选定的供电、测量排列方式自动采集测量电极间的电位值及回路中的电流值。
工作系统如图1所示。
图2高密度电法温纳排列装置测量示意图高密度电法在数据观测装置多达十余种,如温纳、斯伦贝谢、偶极、三极装置等,如图2所示温纳(α)排列装置, AM=MN=NB为一个电极间距,通过AB极供电、MN测量得到一个测点,然后A、B、M、N逐点同时向右移动,测量得到另一个测点;同时电极间距按隔离系数由小到大的顺序等间隔增加,这样不断扫描测量下去,最终得到倒梯形断面。
在实际工作中,由于时间等因素,不可能对每种装置都进行观测,必须有针对性的选择最优装置进行数据采集。
1.2 特征识别不同的地质体具有不同的物理性质,运用物探方法对地下结构进行探测时,需要根据岩层的物理性质,对勘探结果进行合理的分析,高密度电法也必须遵循该原则。
如在岩溶勘察中,围岩与溶洞一般具有电性差异,溶腔充填情况表现出来的电性差异往往不同。
结合地质结构附存物性特征进行高密度电法勘探,是应用该方法的重要基础。
高密度电法在探测基岩面和坑道中的应用高密度电法也叫高密度电阻率法,是在常规电法勘探的基础上发展起来的一种新型的勘探方法,随着高密度电法的长期发展和广泛应用,人们对高密度电法应用技术的认识越来越深,而电子技术和计算技术的跨越式发展,使得高密度电阻法在装置选择上、采集方式上和数据处理上的技术都得到了较大程度的提高。
实质上,高密度电法是属于直流电阻率法中的一种,是一种集电测深和电剖面法于一体的多装置、多极距的组合勘探方法。
在工程勘察实例分析中,高密度电法在同一地质条件下不同装置形式的勘探效果是有一定区别的,接下来对高密度电法的不同勘探实测效果进行分析,并且得出相关结论。
一、高密度电法的简介高密度电法是指在岩土体的电性差异前提下,对在施加电场作用下的地下传导电流的变化规律进行研究和分析,换句话说,就是采用专门的仪器设备对岩土体的电性差异进行勘探,这种方法对于工程勘探有着较高的分辨率的特点。
在高密度电法中利用自动化和智能化的户外数据采集手段,可以以最快的速度采集到大量的原始数据,并且在采集数据过程中具有观测精度高、数据采集量大、地质信息丰富和生产效率高等特点。
除此之外,在布极过程中,可以在一次布极中完成同时完成纵向和横向的二维勘探,不仅能够将地下某一深度沿水平方向岩土体的电性变化情况进行探测,还能够将地层岩性岩纵向的电性变化情况进行勘察,也就是说高密度电法具有综合探测能力。
二、高密度电法在工程勘察中实测效果分析(一)测区工程地质条件分析从岩土勘察报告中我们可以明确了解到,测区地层岩性主要是由第四系覆盖层和基岩组成,在接近地表的为素填土,上部分为杂草和农作物,周围分布少量的垃圾,在下部主要以黄色黏性土和碎石为组成部分,成分相对较复杂,在素填土下部一定深度的地方主要是含有淤泥的素填土,越往下地层岩性越向粘土靠拢,具有低阻的特点,局部参杂着粉质粘土和少量的碎石,而在粘土层的下部则是基岩,基岩的主要特征是高阻,岩性是石灰石。
浅谈高密度电法在工程勘察的应用随着工程建设结构的复杂性以及建设空间的纵向延伸,其对工程勘察提出了更高的质量要求,传统的工程勘察手段已不能完全满足现代工程建设对工程勘察的需求。
基于此,为有效解决传统工程勘察中的问题,满足现代工程建设对工程勘察的多样性需求,高密度电法逐渐被应用在工程勘察中,为现代工程设计及建设提供了高质量的勘察资料,有效推动了土建行业的现代化进程。
一、高密度电法的工作原理在工作原理上,高密度电法与常规直流电法是保持一致性的,都是将工程勘察过程中地下目标导体导电性的差异性作为评价的基础,主要有计算机硬件等构成。
将高密度电法应用在工程地质勘察过程中具体是指,在专业高密度电法仪器设备的支持下,通过横向以及纵向勘探观测深层岩土层中的电性差异性,并采集某一深度范围内地质土体横向以及纵向的电性变化数据,以达到工程地质勘察的目的。
与传统工程勘察方式相比,高密度电法工程勘察方法具有电测深法和电剖面法两种方法的综合性优势,实现了工程野外勘察过程中观测的高精度性以及数据采集的自动化和智能化。
在工程勘察中,用高密度电法对周围探测区进行全面的勘测之后,可以通过分析其所采集到的直流电场数据对地下相关介质的电阻率分布进行全面的分析,其主要原理是地下介质构成和分布的不均匀性会导致发射的电流分布发生相应的变化,并进而引起地下介质电位的改变,转换成相应的电阻率,形成多方位投影数据资料,最终反演成像,构建出地下介质分布以及构成的精准结构,为工程建设提供准确的资料支持。
二、高密度电法在工程勘察中的具体应用随着高密度电法技术的逐渐成熟,其在工程勘察中的应用得到逐渐推广,主要体现在以下方面:1、高密度电法在覆盖层勘察中的应用高密度电法在覆盖层勘察中的应用是其在工程勘察中应用的重要领域之一。
为保障高密度电法在覆盖层勘察中应用的高效性及精确性,在利用高密度电法进行覆盖层勘察的过程中,要满足以下两方面的要求:一是要确保利用高密度电法勘察形成的剖面长度要满足覆盖层工程勘察对地质勘探深度的要求和标准;二是在进行勘察装置的选择过程中,要考虑到装置的稳定性及其影响因素。
高密度电法在工程勘察中的应用高密度电法的应用效率,这是不同于一般直流电法的重要方面,有着信息收集快、应用成本低的优势。
随着科学技术的发展,其应用方法也在逐渐完善,在工程勘察中的应用领域不断拓展,可以探测隐患堤坝、地下溶洞、地质灾害等问题。
本文介绍高密度电法的应用原理,将其在实际工程中的勘察状况进行解析。
标签:高密度电法;工程勘察;应用高密度电法起源于20世纪80年,属于物探新技术。
其应用基于静电场理论,实现地下探测,将探测目标周围介质存在的电性差异进行解读。
这一方法是通过阵列的方式完成高精度测量,将测量数据通过二维反演方法进行处理,结合计算机就能完成图线重塑,保证高分辨率的图像,解读信息量大的工程。
高密度电法应用过程中,具有信息收集快、应用成本低的优势,它的应用方法也在发展过程中逐渐完善,应用领域不断拓展,可以用于探测堤坝隐患、地下溶洞、地质灾害等,在这些方面,探测效果均十分明显。
1、高密度电法的应用原理高密度电法和直流电法的应用原理相同,高密度电法的应用是探测地下目标与周围介质之间的电性差异,属于一种物探勘探技术。
应用过程中对地下进行直流电流加载,在地表用观测仪器观察地下电场分布状况,研究电场分布规律,从而发现地质问题并将其解决。
2、工程研究及分析2.1工程状况工程位于长江南岸三斗坪镇,区域属于构造侵蚀剥蚀中低山峡谷地貌,地势走向由南向东,地面高程区间为67-79m,工程区域的自然斜坡坡角在10。
-25。
之间。
测出电测剖面,剖面长度为180m,极距3m,电性为成层状分布,上层接近是400Ω·m电阻率,层面表现为卵砾石层,电层层级分布不均,黏土、沙电阻率为300~400Ω·m,砾石层300Ω·m。
岩层产状缓和,朝东偏移,如图1.分析电测剖面,剖面长180m,极距3m,电性程度发生变化,松散破碎砂砾角石层500Ω·m.砾石层300~500Ω·m,完整砾石层300m,含水较多。
高密度电法在工程勘察中的应用
在建设发展中,遇到越来越多的复杂岩土地基,传统的勘察测量方法很难满足实际需要。
因此,本文分析了高密度电法的原理、特点,列举高密度电法在工程实例。
浅述了高密度电法的实际应用。
标签:高密度电法工程勘察应用
随着工程勘察市场竞争日益激烈,很多的勘察单位为了提升自身综合实力,不断引进各种先进的原位测试方法,以提高勘察的技术水平和精度。
其中高密度电法能够对整个场地进行全方位的测深勘察,对岩土地层进行合理的划分,可以有效保证实际工作中的准确、效率。
因此,本文就针对高密度电法在工程勘察中的应用展开浅述。
1高密度电法法系
高密度电法兴起与上个世纪80年代,随着科学技术的发展,电极转换器的研发成功,使得数据采集效率不断提高。
与传统的电法相比,高密度电法的信息量更大,可以充分利用实测数据进行反复的分析。
1.1高密度电法的工作原理
在实际勘察测量过程中,采用高密度电法最重要的前提就是岩土工程介质中在导电性能方面,存在不同程度的差異。
在使用过程中,高密度电法会通过A 和B两个电极向地下通电,从而建立一个人工电场,通过工作人员对地上M和N的电极测量电位差,然后记录下每个记录点的视电阻率值。
把测量出来的实测视电阻率值输入到电脑中,再经过合理有效的处理和解释后,进行地层的划分。
与其他一般电法不同,高密度电法是一种阵列勘探。
工作原理及工作系统示意详见图1、图2。
1.2高密度电法的主要特点
高密度电法就是高密度条件下的电阻法,主要根据岩石和土壤不同的导电性为基础,是一种在施加稳定电流场的前提下,分析和研究地下传导电流分布规律的方法,其测排点距离小。
高密度电法能够进行二维地电断面测量,还可以进行多种电极排列方式的扫描探测,具有点距小、采样密度高的特点;另外,高密度电法的另一个重要特点就是可以采用交叉测量和供电方式,最大限度的提高分辨能力,降低外界因素的干扰。
1.3高密度电法的优势
高密度电法需要的成本较低、效率很高,信息采集全面。
尤其适合完成目标体埋深较浅、规模较小、工程量不大的地质勘察任务。
其稳定性和可靠性不断提
高,可以实现长期野外工作,携带方便。
另外,高密度电法仪的应用,可以在任何位置进行测量、滚动测量和连续测量,尤其是对于山地地区的工程勘察,在地形条件复杂,传统钻机进场困难的情况下,高密度电法是一种理想方法。
2高密度电法在工程勘察中的应用实例
这次勘察,场地为山前的坡地,地形复杂,进钻困难。
根据现有钻探资料已知期基岩埋藏不深,采用高密度电法可以有效的摸清地层起伏和基本的分布情况,保证结果的有效性和准确性,要对坑探进行必要的取样,作为相应的补充和验证。
本次勘察采用的是DUK——2高密度电法测量仪器,采用的方法是高密度电法和温纳装置,然后把数据传输到计算机内,然后利用电阻率层析成像系统进行分析,再通过计算机形成高密度的剖面图。
图示两个剖面为东向西延伸,Ⅳ-Ⅳ’剖位于Ⅴ-Ⅴ’剖南侧,两剖面平行。
通过分析比较,可较准确的推测出沟谷的走向及趋势,明确风化壳的变化规律及基岩的完整性。
准确提供地质资料。
综上所述,随着科学技术的发展,高密度电法测量水平不断提高,定量和定性的解释更为科学合理,处理的图片和影像质量高,具有高效、准确以及操作起来非常方便的特点,这为高密度电法应用提供更为广阔的空间。
在山区、滑坡、岩溶、采空区均有较好的效果,但在其他方面仍需改进。
因此,要不断加大科技投入,完善高密度电法技术,提高工程勘察的质量。
参考文献
[1]祝杰,杜毅,亢会明,雷宛,张银松. 高密度电法在水域工程勘察中的应用[J]. 工程勘察,2011,10:80-83.
[2]黄佳坤,刘宏岳,林朝旭,殷勇,林孝城. 高密度电法在水底隧道工程勘察中的应用研究[J]. 工程勘察,2013,09:84-89.
[3]董双林,宫传梅. 高密度电法在工程地质勘察中的应用[J]. 山西建筑,2010,19:110-111.
[4]闫建飞. 高密度电阻率法应用技术研究[D].吉林大学,2009.
[5]姚伟. 高密度电法在隧道勘察中的应用分析[J]. 山西建筑,2009,29:319-321.
[6]田玉杰,张晓东. 高密度电法在工程勘察中的应用[J]. 西部探矿工程,2014,05:88-90.。