当前位置:文档之家› 放大电路的频率补偿的目的是什么,有哪些方法

放大电路的频率补偿的目的是什么,有哪些方法

放大电路的频率补偿的目的是什么,有哪些方法

最近遇到这个问题:放大电路的频率补偿的目的是什么,有哪些方法?

在网上找了好久,也没有发现正确的答案,于是自己在书中找到了,分享之。

答:通常,集成运放内部的频率补偿多为简单的滞后补偿或超前补偿,用以改变其频率响应,使之在开环查分增益降至0db是最大的附件相位位移为-135,这样,在引入负反馈且反馈网络为纯电阻时电路一定不会产生自己震荡了,并且有足够的稳定性。

运算放大器_参数详解

运算放大器参数详解 技术2010-12-19 22:05:36 阅读80 评论0 字号:大中小订阅 运算放大器(常简称为“运放”)是具有很高放大倍数的电路单元。在实际电路中,通常结合反馈网络共同组成某种功能模块。由于早期应用于模拟计算机中,用以实现数学运算,故得名“运算放大器”,此名称一直延续至今。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。随着半导体技术的发展,如今绝大部分的运放是以单片的形式存在。现今运放的种类繁多,广泛应用于几乎所有的行业当中。 历史 直流放大电路在工业技术领域中,特别是在一些测量仪器和自动化控制系统中应用非常广泛。如在一些自动控制系统中,首先要把被控制的非电量(如温度、转速、压力、流量、照度等)用传感器转换为电信号,再与给定量比较,得到一个微弱的偏差信号。因为这个微弱的偏差信号的幅度和功率均不足以推动显示或者执行机构,所以需要把这个偏差信号放大到需要的程度,再去推动执行机构或送到仪表中去显示,从而达到自动控制和测量的目的。因为被放大的信号多数变化比较缓慢的直流信号,分析交流信号放大的放大器由于存在电容器这样的元件,不能有效地耦合这样的信号,所以也就不能实现对这样信号的放大。能够有效地放大缓慢变化的直流信号的最常用的器件是运算放大器。运算放大器最早被发明作为模拟信号的运算(实现加减乘除比例微分积分等)单元,是模拟电子计算机的基本组成部件,由真空电子管组成。目前所用的运算放大器,是把多个晶体管组成的直接耦合的具有高放大倍数的电路,集成在一块微小的硅片上。 第一块集成运放电路是美国仙童(fairchild)公司发明的μA741,在60年代后期广泛流行。直到今天μA741仍然是各大学电子工程系中讲解运放原理的典型教材。 原理 运放如上图有两个输入端a,b和一个输出端o.也称为倒向输入端(反相输入端),非倒向输入端(同相输入端)和输出端.当电压加U-加在a端和公共端(公共端是电压的零位,它相当于电路中的参考结点.)之间,且其实际方向从a 端指向公共端时,输出电压U实际方向则自公共端指向o端,即两者的方向正好相反.当输入电压U+加在b端和公共端之间,U与U+两者的实际方向相对公共端恰好相同.为了区别起见,a端和b 端分别用"-"和"+"号标出,但不要将它们误认为电压参考方向的正负极性.电压的正负极性应另外标出或用箭头表示.反转放大器和非反转放大器如下图:

理解运放的频率补偿和单位增益稳定

运放的电压追随电路,如图1所示,利用虚短、虚断,一眼看上去简单 明了,没有什么太多内容需要注意,那你可能就大错特错了。理解好运放的 电压追随电路,对于理解运放同相、反相、差分、以及各种各样的运放的电路,都有很大的帮助。 图1 运放电压追随电路 电压追随电路分析 如果我们连接运放的输出到它的反相输入端,然后在同相输入端施加一 个电压信号,我们会发现运放的输出电压会很好的追随着输入电压。 假设初始状态运放的输入、输出电压都为0V,然后当Vin从0V开始增 加的时候,Vout也会增加,而且是往正电压的方向增加。这是因为假设Vin 突然增大,Vout还没有响应依然是0V的时候,Ve=Vin-Vout是大于0的, 所以乘上运放的开环增益,Vout=Ve*A,使得运放的输出Vout开始往正电压 的方向增加。 当随着Vout增加的时候,输出电压被反馈回到反相输入端,然后会减 小运放两个输入端之间的压差,也就是Ve会减小,在同样的开环增益的情 况下,Vout自然会降低。最终的结果就是,无论输入是多大的输入电压(当 然是在运放的输入电压范围内),运放始终会输出一个十分接近Vin的电压,但是这个输出电压Vout是刚好低于Vin的,以保证的运放两个输入端之间 有足够的电压差Ve,来维持运放的输出,也就是Vout=Ve*A。 运放电路中的负反馈 这个电路很快就会达到一个稳定状态,输出电压的幅值会很准确的维持 运放两个输入端之间的压差,这个压差Ve反过来会产生准确的运放输出电 压的幅值。将运放的输出与运放的反相输入端连接起来,这样的方式被称为 负反馈,这是使系统达到自稳定的关键。这不仅仅适用于运放,同样适用于 任何常见的动态系统。这种稳定使得运放具备工作在线性模式的能力,而不 是仅仅处于饱和的状态,全“开”或者全“关”,就像它被用于没有任何负 反馈的比较器一样。 由于运放的增益很高,在运放反相输入端维持的电压几乎与Vin相等。 举例来说,一个运放的开环增益为200 000。如果Vin等于6V,这时输出电 压会是5.999 970 000 149 999V。这在运放的输入端产生了足够的电压差 Ve=6V-5.999 970 000 149 999V=29.999 85uV,这个电压会被放大然后在 输出端产生幅值为5.999 970 000 149 999V的电压,从而这个系统会稳定 在这里。正如你所见,29.999 85uV是一个很小的电压,因此对于实际计算 来说,我们可以认为由负反馈维持的运放两个输入端之间的压差Ve=0V,整 个过程如图2所示。这也就是我们熟悉的“虚短”,而由于运放的两个输入

5.6集成运放的频率响应

5.6 集成运放的频率响应和频率补偿频率响应频率补偿

一、集成运放的频率响应 很大 或gs C C ''π低频特性很好 内部必须接补偿电容上限频率很低 -20dB/十倍频 -40dB/十倍频-900-1800-2700 f /H Z O f φ -1350-450-2250dB A od /lg 20 100 101 103 102 f 0 f c 104 -60dB/十倍频

时 c f f 0f = f 0 时极间电容引起的附加相移为±1800 -900-1800-2700 f /H Z O f φ -1350-450-2250dB A od /lg 20 100 101 103 102 f 0 f c 104 f c :单位增益带宽此时差模增益下降为0dB 电路将产生自激振荡

二、集成运放的频率补偿 频率补偿: 采用一定的手段改变集成运放的频率响应破坏可能产生自激振荡的条件 使电路稳定工作 dB A f f od 0lg 200<= 时,即使0 180 ->=?时,附加相位移或当c f f

-900-1800 00 f O f φ dB A od /lg 20 f 0 f c m G m ?0 lg 20f f od m A G == c f f m =-=? ?0 180为幅值裕度 m G 为相位裕度 m ?0 45 10≥-≤m m dB G ?,一般要求

1. 滞后补偿 滞后补偿:加入补偿电路后, 使运放的幅频特性在大于0dB的频率范围内 只存在一个拐点, 相当于一个RC回路的频率响应 ≥450的要求, 达到φ m 保证电路的稳定性 优点:简单易行 缺点:使频带变窄

频率补偿电路设计报告---电子设计大赛资料

频率补偿电路设计报告 摘要 本系统基于零极点补偿的理论,设计了一个频率补偿电路,能够补偿“模拟某传感器特性的电路模块”(以下简称“模拟模块”)的高频特性。该系统主要由前端模拟模块、中间级频率补偿模块、后端低通滤波模块组成。其中,频率补偿模块由并联的三个滤波电路和一个比例加法电路组成,通过调节增益比例关系,可以将补偿网络的传递函数分解成易于硬件实现的一阶并联系统,最终使其频率特性向高频拓展。通过测试,该系统的模拟模块能达到4.53KHz的截止频率;而串联补偿网络电路后,整个系统的截止频率能达到98.5KHz,且电压波动很好的控制在了12%以内,噪声均方根电压也小于10mv。其它方面,系统依赖MSP430F149单片机最小系统和辅助电路,完成了补偿电路的输出采样,能够记录各个频率点的电压波动,并通过液晶显示出通频带内的幅频特性。

一、方案论证与比较 方案一:程控增益控制抬高补偿频率范围内的电压。通过分析,程控增益能够实现频率补偿,利用单片机通过AD实时采样输出信号,与输入信号比较,从而控制程控放大器的放大倍数使输出与输入信号幅度基本一致。但是该方案在低频段很不稳定,且单片机的控制增益的速度有限,不能满足本题目的要求,舍去。方案二:幅值补偿法。根据模拟模块的输出Vb,通过一个移相网络使Vb的相位与输入信号Vs相同,经过一个减法器得到两者之差,然后在通过一个移相网络,使减法器的输出与Vb相位相同,最后它们经过一个加法器输出,达到输出信号与输入信号幅度基本相同,且不随频率的变化而大幅度变化,从而拓宽通频带,达到频率补偿的目的。但是输入信号经过模拟模块的输出Vb与Vs的相位差随着频率的变化而变化,锁相环构成的移相网络锁定频率很难跟上其变化,故输出信号的幅度达不到设计要求,舍去该方案。 方案三:零极点补偿法的串联实现。根据模拟模块的传递函数() G s,用补偿网 O 络() H s的零点消去原传递函数的极点,补偿传递函数的极点就变成了补偿后传 S 递函数的极点。因此,通过改变传递函数极点的方式可以拓展系统的高频特性。但是采用串联方式设计硬件电路时,可能会在传递函数化简时得到一阶积分系统,容易出现过冲,很难保证补偿网络的电压稳定。故舍去该方案。 方案四:零极点补偿法的并联实现。理论同方案三,只需将串联补偿传递函数化简成并联形式。其结构框图如图1。该方案将传递函数分解出真分式形式,且分子项不含零点,电路容易实现,所以最终选择该方案。 图1、并联补偿结构框图 虽然系统要求中不包含软件设计,但该系统进行了拓展,设计了一个单片机控制的显示器,能够很好的显示输出电压。系统框图如图2所示。

放大器极零点与频率响应

关于放大器极、零点与频率响应的初步实验 1.极零点的复杂性与必要性 一个简单单级共源差分对就包含四个极点和四个零点,如下图所示: 图1 简单单级共源全差分运放极零点及频率、相位响应示意图 上图为简单共源全差分运放的极零点以及频率响应的示意图,可以看到,运放共有四个极点,均为负实极点,共有四个零点,其中三个为负实零点,一个为正实零点。后面将要详细讨论各个极零点对运放的频率响应的影响。 正在设计中的折叠共源共栅运算放大器的整体极零点方针则包括了更多的极零点(有量级上的增长),如下图所示:

图2 folded-cascode with gain-boosting and bandgap all-poles details

图3 folded-cascode with gain-boosting and bandgap all-zeros details 从上述两张图可以看到,面对这样数量的极零点数量(各有46个),精确的计算是不可能的,只能依靠计算机仿真。但是手算可以估计几个主要极零点的大致位置,从而预期放大器的频率特性。同时从以上图中也可以看到,详细分析极零点情况也是很有必要的。可以看到46个极点中基本都为左半平面极点(负极

点)而仿真器特别标出有一个正极点(RHP )。由于一般放大器的极点均应为LHP ,于是可以预期这个右半平面极点可能是一个设计上的缺陷所在。(具体原因现在还不明,可能存在问题的方面:1。推测是主放大器的CMFB 的补偿或者频率响应不合适。 2。推测是两个辅助放大器的带宽或频率响应或补偿电容值不合适)其次可以从极零点的对应中看到存在众多的极零点对(一般是由电流镜产生),这些极零点对产生极零相消效应,减少了所需要考虑的极零点的个数。另外可以看到46个零点中45个为负零点,一个为正零点,这个正零点即是需要考虑的对放大器稳定性产生直接影响的零点。 以上只是根据仿真结果进行的一些粗略的分析,进一步的学习和研究还需要进行一系列实验。 1. 单极点传输函数——RC 低通电路 首先看一个最简单的单极点系统——RC 低通电 路,其中阻值为1k ,电容为1p ,传输函数为: sRC s H +=11)( 则预计极点p0=1/(2πRC )=1.592e8 Hz ,仿真得 到结果与此相同。 而从输出点的频率响应图中可以得到以下几个结 论: 图4 一阶RC 积分电路 1)-3dB 带宽点(截止频率)就是传输函数极点,此极点对应相位约为-45°。 2)相位响应从0°移向高频时的90°,即单极点产生+90°相移。 3)在高于极点频率时,幅度响应呈现-20dB/十倍频程的特性。 图5 一阶RC 电路极点与频率响应(R=1k C=1p )

开关调节器设计中的频率补偿(二)

开关调节器设计中的频率补偿(二)作者:Nigel Smith 便携式电源业务开发经理 德州仪器公司 在该系列文章的第一部分中,我们探讨了开关转换器的正向通道。在该第二部分(即最后一部分)中,我们将要探讨的是在环路处于关闭状态且全部电路被补偿时的反馈通道。 第二部分:反馈通道补偿 一旦正向通道的增益和相位响应为已知,那么就可以设计出误差放大器的响应。频率补偿的主要目的是为了确保:(a) 足够的相位裕度(通常大于 45°);及 (b) 一个足够的增益裕度(通常大于 10 dB)。除此以外,环路增益还应该通过单位增益 (unity),斜率为 -20dB/decade。 在将频率补偿设计出来以前,必须选择一个合适的交叉频率f c。高交叉频率的开关转换器可以对运行状态的变化迅速地做出响应,因此一般为较好的选择;但是,采样原理限制了可以使用的最大交叉频率。在实践中,f c 一般位于 1/10 和1/6 f sw之间,但是,如果该频率上误差放大器的开环路增益不足,那么则可能要进一步减小f c。 可以从其 Bode 曲线中选择理想的交叉频率、增益、相位和f c处正向通道的斜率。通过对两者进行比较,现在可以很容易地获得所要求的增益、相位和f c处补偿误差放大器的斜率。 通常使用的三种补偿方案为类型I、类型 II和类型 III(见图1)。类型 I 通常不用于开关调节器电路,这里将不作讨论。

图1、常用的补偿电路及其响应 类型 II 补偿在源端 (origin) 具有一个极点(以获得高 DC 增益),以及一个额外的零点和极点。其产生的频率响应包含一个介于零点和极点的偏平区域。类型II 补偿一般被用于那些在交叉频率上输出滤波器具有一个单极点衰减的应用中。通过确保交叉频率出现在误差放大器响应偏平部分的区域,可以获得f c上理想的 -20dB/decade 衰减。 表1、一个类型 II 补偿电路的相位变化 表2、一个类型 III 补偿电路的相位变化

常见运算放大电路

运算放大器分类总结

一、通用型运算放大器通用型运算放大器 通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例μA741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。下面就实验室里也常用的LM358来做一下介绍: LM358 内部包括有两个独立的、高增益、内部频率补偿的双运算放大器,适合于电源电压范围很宽的单电源使用,也适用于双电源工作模式,在推荐的工作条件下,电源电流与电源电压无关。它的使用范围包括传感放大器、直流增益模块和其他所有可用单电源供电的使用运算放大器的场合。: 外观管脚图 它的特点如下: ·内部频率补偿 ·直流电压增益高(约100dB) ·单位增益频带宽(约1MHz) ·电源电压范围宽:单电源(3—30V)双电源(±1.5 一±15V) ·低功耗电流,适合于电池供电 ·低输入偏流 ·低输入失调电压和失调电流 ·共模输入电压范围宽,包括接地 ·差模输入电压范围宽,等于电源电压范围 ·输出电压摆幅大(0 至Vcc-1.5V)

大信号频率响应大信号电压开环增益 电压跟随器对小信号脉冲的响应 电压跟随器对小信号脉冲的响应 常用电路: (1)、正向放大器 根据虚短路,虚开路,易知:

(2)、高阻抗差分放大器 电路左半部分可以看作两个同向放大器,分别对e1,e2放大(a+b+1)倍,右半部分为一个差分放大器放大系数为C,因此得到结果: 0 (21)(1) eCeea b (3)、迟滞比较器 将输入电平与参考电平作比较,根据虚短路,虚开路有: 将输入电平与参考电平作比较,根据虚短路,虚开路有: 二、高精度运算放大器 所谓高精度运放是一类受温度影响小,即温漂小,噪声低,灵敏度高,适合微小信号放大用的运算放大器。 高精度运算放大器的运用范畴很广,在产业领域中可用于量测仪器、控

频率补偿电路设计报告

频率补偿电路(B题) 电子科技大学余波何剑锋郝昊奇 摘要:本系统充分应用TI的高精度低噪放大器OPA2227,设计了噪声抑制比较好的频率补偿电路。本系统实现了题目要求的所有基本要求和发挥要求,并且频率在0到85KHz电压波动小于10%;系统所有滤波器均采用压控反馈形式,有效的防止了系统自激振荡而又可以适当的增大电压放大倍数;自制直流稳压电源及基于MSP430的液晶显示模块,可显示输入信号的频率。 关键词:频率补偿,压控反馈,低噪声 Abstract:This system makes application to TI's high-precision low-noise amplifier, OPA2227, and noise suppression better frequency compensation circuit. This system subject to the requirements of all the basic requirements and play requirements, and voltage fluctuations from 0 to 85KHz less than 10%; system, all filters are used to voltage-controlled feedback in the form of preventing the self-excited oscillation system and appropriate increase the voltage amplification factor; homemade DC power supply and MSP430-based liquid crystal display module can display the frequency of the input signal. Keywords: frequency compensation, voltage-controlled feedback, low-noise

几种常用集成运算放大器的性能参数

几种常用集成运算放大器的性能参数 1.通用型运算放大器 A741(单运放)、LM358(双运放)、LM324(四运放)及以场效应管为输入级的LF356都属于此种。它们是目前应用最为广泛的集成运算放大器。μ通用型运算放大器就是以通用为目的而设计的。这类器件的主要特点是价格低廉、产品量大面广,其性能指标能适合于一般性使用。例 2.高阻型运算放大器 ,IIB为几皮安到几十皮安。实现这些指标的主要措施是利用场效应管高输入阻抗的特点,用场效应管组成运算放大器的差分输入级。用FET作输入级,不仅输入阻抗高,输入偏置电流低,而且具有高速、宽带和低噪声等优点,但输入失调电压较大。常见的集成器件有LF356、LF355、LF347(四运放)及更高输入阻抗的CA3130、CA3140等。Ω这类集成运算放大器的特点是差模输入阻抗非常高,输入偏置电流非常小,一般rid>(109~1012) 3.低温漂型运算放大器 在精密仪器、弱信号检测等自动控制仪表中,总是希望运算放大器的失调电压要小且不随温度的变化而变化。低温漂型运算放大器就是为此而设计的。目前常用的高精度、低温漂运算放大器有OP-07、OP-27、AD508及由MOSFET组成的斩波稳零型低漂移器件ICL7650等。4.高速型运算放大器 s,BWG>20MHz。μA715等,其SR=50~70V/μ在快速A/D和D/A转换器、视频放大器中,要求集成运算放大器的转换速率SR一定要高,单位增益带宽BWG一定要足够大,像通用型集成运放是不能适合于高速应用的场合的。高速型运算放大器主要特点是具有高的转换速率和宽的频率响应。常见的运放有LM318、 5.低功耗型运算放大器 W,可采用单节电池供电。μA。目前有的产品功耗已达微瓦级,例如ICL7600的供电电源为1.5V,功耗为10μ由于电子电路集成化的最大优点是能使复杂电路小型轻便,所以随着便携式仪器应用范围的扩大,必须使用低电源电压供电、低功率消耗的运算放大器相适用。常用的运算放大器有TL-022C、TL-060C等,其工作电压为±2V~±18V,消耗电流为50~250 6.高压大功率型运算放大器 A791集成运放的输出电流可达1A。μ运算放大器的输出电压主要受供电电源的限制。在普通的运算放大器中,输出电压的最大值一般仅几十伏,输出电流仅几十毫安。若要提高输出电压或增大输出电流,集成运放外部必须要加辅助电路。高压大电流集成运算放大器外部不需附加任何电路,即可输出高电压和大电流。例如D41集成运放的电源电压可达±150V, 集成运放的分类 1. 通用型 这类集成运放具有价格低和应用范围广泛等特点。从客观上判断通用型集成运放,目前还没有明确的统一标准,习惯上认为,在不要求具有特殊的特性参数的情况下所采用的集成运放为通用型。由于集成运放特性参数的指标在不断提高,现在的和过去的通用型集成运放的特性参数的标准并不相同。相对而言,在特性

运算放大器稳定性及频率补偿学习报告

信息科学与技术学院 模拟CMOS集成电路设计——稳定性与频率补偿学习报告 姓名: 学号: 二零一零年十二月

稳定性及频率补偿 2010-12-3 一、自激振荡产生原因及条件 1、自激振荡产生原因及条件 考虑图1所示的负反馈系统,其中β为反馈网络的反馈系数,并假定β是一个与频率无关的常数,即反馈网络由纯电阻构成,不产生额外的相移(0β?= );H (s )为开环增益,则()H s β为环路增益。所以,该系统输入输出之间的相移主要由基本放大电路产生。 图1 基本负反馈系统 该系统的闭环传输函数(即系统增益)可写为: ()()1() Y H s s X H s β=+ 由上式可知,若系统增益分母1()H s j βω==-1,则系统增益趋近于∞,电路可以放大自身的噪声直到产生自激振荡,即:如果1()H j βω=-1,则该电路可以在频率1ω产生自激振荡现象。则自激振荡条件可表示为: 1|()|1H j βω= 1()180H j βω∠=- 注意到,在1ω时环绕这个环路的总相移是360 ,因为负反馈本身产生了180 的相移,这360 的相移对于振荡是必需的,因为反馈信号必须同相地加到原噪声信号上才能产生振荡。为使振荡幅值能增大,要求环路增益等于或者大于1。所以,负反馈系统在1ω产生自激振荡的条件为: (1)在该频率下,围绕环路的相移能大到使负反馈变为正反馈; (2)环路增益足以使信号建立。 2、重要工具波特图 判断系统是否稳定的重要工具是波特图。波特图根据零点和极点的大小表示一个复变函数的幅值和相位的渐进特性。波特图的画法: (1)幅频曲线中,每经过一个极点P ω(零点Z ω),曲线斜率以-20dB/dec(+20dB/ dec)变化; (2)相频曲线中,相位在0.1P ω(0.1Z ω)处开始变化,每经过一个极点P ω(零点Z ω),相位变化-45 (±45 ),相位在10P ω(10Z ω)处变化-90 (±90 ); (3)一般来讲,极点(零点)对相位的影响比对幅频的影响要大一些。

频率补偿电路

频率补偿电路(B题) 摘要:本系统以TI高性能音频运算放大器OPA2134为核心,组成多级模拟信号运算电路,对已知模拟模块的高频特性做补偿。模拟模块的信号输出分为两路处理,一路经过高通滤波器,补偿原电路的高频特性。另一路经过一个一阶RC低通网路,用来获取原通带特性。然后将低通信号衰减,最后将两路信号做加法线性放大、低通滤波,完成对高频特性的补偿。整个系统采用了高性能运算放大器,系统噪声小,运算电路稳定,失调电压小,波形失真小,较好的完成了设计要求。 关键词:频率补偿,OPA2134,模拟信号运算电路,高性能运算放大器

目录 一、系统方案设计与论证 (1) 1.1频率补偿电路 (1) 1.2总体方案描述 (1) 二、理论分析与计算 (2) 2.1“模拟模块”电路分析 (2) 2.2频率补偿电路 (2) 2.2.1 高通滤波器 (2) 2.2.2 低通滤波器 (3) 2.2.3 衰减电路、加法电路、比例放大电路、低通滤波器 (3) 三、各部分电路设计 (4) 3.1高通滤波 (4) 3.2低通滤波与衰减电路 (4) 3.3加法电路与比例放大电路 (4) 3.4100K H Z低通滤波电路 (5) 四、系统软件设计 (5) 五、测试方案与测试结果 (6) 5.1测试仪器 (6) 5.2“模拟模块”电路测试 (6) 5.3频率补偿测试 (6) 5.4输出噪声电压测量 (7) 六、参考文献 (7)

一、系统方案设计与论证 1.1 频率补偿电路 方案一:使用VCA810组成AGC(自动增益控制)电路自动稳定输出峰值,使频率补偿模块在一个较宽的频带内输出峰值稳定,然后经过低通滤波器调整通频带宽度。达到补偿高频特性的目的,此种方案补偿相对简单,频率补偿电路输出增益波动较小,但是AGC输入电压范围较小,随输入信号变化时需要动态切换衰减网络,电路复杂,实测低频段容易失真,故不采用。 方案二:使用FIR数字滤波器,由已知电路特性可推得其传递函数,然后计算数字滤波器传递函数,使用FPGA或是DSP做数字滤波,实现高频补偿,此方法实现复杂,程序的复杂度较高,鉴于时间有限和调试的难度,所以不采用。 方案三:使用模拟运算电路和模拟滤波电路对“模拟模块”输出信号进行分段处理,先补偿高频段,然后叠加上低频段,实现设计要求,此方案电路模块较多,但都是线性电路,波形失真小,低频特性好,单元电路简单,故选此方案。 1.2 总体方案描述 系统框图如图1所示,由四部分组成:“模拟模块”电路,频率补偿模块,单片机测频模块,电源模块。输入信号先经过“模拟模块”电路,模拟出传感器特性,然后送给频率补偿模块,频率补偿模块分为两路,一路经过高通,得到一个带通特性,另一路先经过低通滤波器再经过衰减器,使输出信号和高通输出信号匹配,然后将两路信号相加,两路频率特性相互补偿,通频带得到拓宽,然后将信号放大,最后经过100kHz的低通滤波器,限制输出的频带宽度。单片机实时显示测试频率。 图1 系统框图

运算放大器常见参数解析

运放常见参数总结 1.输入阻抗和输出阻抗(Input Impedance And Output Impedance) 一、输入阻抗 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 输入阻抗跟一个普通的电抗元件没什么两样,它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑 阻抗匹配问题 二、输出阻抗 无论信号源或放大器还有电源,都有输出阻抗的问题。输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。输出阻抗在电路设计最特别需要注意 但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)的内阻了。当这个电压源给负载供电时,就会有电流I从这个负载上流过,并在这个电阻上产生I×r 的电压降。这将导致电源输出电压的下降,从而限制了最大输出功率(关于为什么会限制最大输出功率,请看后面的“阻抗匹配”一问)。同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的 三、阻抗匹配 阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。阻抗匹配分为低频和高频两种情况讨论。我们先从直流电压源驱动一个负载入手。由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R 越小,则输出电流越大。负载R上的电压为:Uo=IR=U/[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。再来计算一下电阻R消耗的功率为:

10种运算放大器

各种不同类型的运算放大器介绍 董婷 076112班一.uA741M,uA741I,uA741C(单运放)高增益运算放大器用于军事,工业和商业应用.这类单片硅集成电路器件提供输出短路保护和闭锁自由运作。这些类型还具有广泛的共同模式,差模信号范围和低失调电压调零能力与使用适当的电位。目前价格1元/个。 温度等级 uA741主要参数 ABSOLUTE MAXIMUM RATINGS最大额定值

ELECTRICAL CHARACTERISTICS VCC = ±15V, Tamb = +25°C (unless otherwise specified) 电气特性 虚拟通道连接= ±15V ,Tamb = 25 ℃(除非另有说明)

二.CA3140 高输入阻抗运算放大器 CA3140高输入阻抗运算放大器,是美国无线电公司研制开发的一种BiMOS高电压的运算放大器在一片集成芯片上,该CA3140A和CA3140 BiMOS运算放大器功能保护MOSFET的栅极(PMOS上)中的晶体管输入电路提供非常高的输入阻抗,极低输入电流和高速性能。操作电源电压从4V至36V(无论单或双电源),它结合了压电PMOS晶体管工艺和高电压双授晶体管的优点.(互补对称金属氧化物半导体)卓越性能的运放。主要运用于单电源放大器在汽车和便携式仪表,有源滤波器,比较器,采样保持放大器,长期定时器,光电仪表,探测器,TTL 接口,入侵报警系统,函数发生器,音调控制,电源,便携式仪器。工作范围为-55 oC—125 oC。目前生产厂家主要是INTERSIL公司和HARRIS公司,报价为:2.7—3元/个。 引脚图

运放带宽,增益带宽积和频率响应

运放带宽,增益带宽积和频率响应 任何电路的带宽都是最重要的。因此,运放带宽是运算放大器电路中一个特别重要的因素. 运放带宽、增益和增益带宽积都是紧密相关的。 由于任何运放都有限的带宽,在任何电路的设计开始时,都必须仔细考虑增益、带宽和频率响应。 运放带宽 虽然运算放大器有一个非常高的增益,这一级别的增益开始下降在一个低频。开环断点,即增益下降3dB的频率通常只有几赫兹。 长寿命和仍然非常流行的741运算放大器有一个6赫兹左右的开环断点。除此之外,响应以-6dB/倍频程或-20 dB/10的速率下降。注:八度是频率的两倍,十年是频率的十倍,因此这两个数字是表达相同特征的两种方式。 典型运算放大器开环增益带宽图

运放增益、带宽及补偿 OP放大器通常具有较低的断点的主要原因之一是,几乎所有OP AMP都包含了一个称为补偿的特性。 这种频率补偿用于确保运算放大器在所有工作条件下保持稳定。最早的运放容易发生不稳定,因此,几乎所有运放IC设计中都引入了补偿,这是理所当然的。 无补偿的典型运放开环增益带宽 补偿对运放带宽的影响是为了减小断点.这意味着,如果没有补偿,断点和带宽将更大,但代价是不稳定。 反馈对运放带宽的影响 在使用运算放大器设计实际电路时,采用负反馈来控制增益。应用这种反馈可以使非常高的增益交换带宽。 这样,就可以在所需的带宽范围内实现非常平坦的频率响应曲线。

闭环运算放大器增益和频率响应 运放增益带宽积 在设计运放电路时,一个称为运放增益带宽积的图形是很重要的。 OP放大器增益带宽积通常是为特定的运放类型、开环配置和加载的输出指定的: GBP=Avxf GBP=Avxf 其中: 运放增益带宽积 AV=电压增益 F=截止频率(Hz) 对于电压反馈放大器,运算放大器增益带宽积为常数.但是,由于增益和带宽之间的关系不是线性的,所以它不适用于电流反馈放大器。 因此,将增益降低10倍将使带宽增加同样的因子。

频率补偿电路的设计

频率补偿电路的设计 摘要: 本设计是基于TI提供的芯片的模拟传感器频率补偿的模拟系统;该系统主要由模拟某传感器特性的电路模块模块、衰减网络模块、一阶有源RC低通滤波模块和加法器模块构成;电路频率补偿运用了自动控制、模拟电路、信号与系统知识分析通过改变原模拟某传感器特性的电路模块的零极点分布实现提高-3dB高频截止频率的功能,并通过matlab仿真计算出正确的系数保证输入基准信号在通频带范围内无失真输出、该作品具有的低功耗、低噪声等特色;最终本系统实现了50kHz 与100kHz频率段的补偿,且各项指标基本达标。 方案使用的TI芯片:OPA2227 TL082 NE5532

1.方案比较与论证 1.1系统总体方案 模拟某传感器特性 的电路模块 + ? R f 1 5.1M Ω C f 1 4.7pF V b A 5.1M Ω R f 2 C f 2 4.7pF 10M Ω R s V s 正弦波电压信号发生器 T K 频率补偿电路 V o TP1 TP2 图1 系统结构框图 1.2频率补偿电路 方案一:自动增益控制(AGC ) 自动增益电路具有使放大电路的增益自动地随信号强度而调整的自动控制稳定输出的能力,可以把模拟传感器特性的电路模块衰减的幅度以稳定电压输出,通过放大电路来提升衰减的电压并通过低通滤波器滤除所需截止频率以下的频率,从而实现频率补偿功能。 方案二:系统传递函数及零极点并联补偿法 计算出模拟模块的传输函数H 1(s ),推算出系统增益为常量时的频率补偿网络的传输函数H 2(s ),根据H 2(s )的特性求算出频率补偿网络的电路结构。由于模拟模块部分等效于一个低通滤波器,初步推测出频率补偿网络部分主要是低通滤波器,信号经模拟模块部分可变为幅度变化较小的信号,再通过截止频率50KHz 以上的低通滤波器,以及截止频率为13.27的的通滤波器和一个全通系统并联输入加法器叠加并放大便可以输出符合题干要求的信号,实现频率补偿。方案的系统框图如图2所示。 方案三:零极点串联补偿法 计算出模拟模块的传输函数H 1(s ),推算出系统增益为常量时的频率补偿网络的传输函数H 2(s ),根据H 2(s )的特性求算出频率补偿网络的电路结构。对各个通过串联模式连接并放大同样可以输出符合要求的信号,从而实现频率补偿 方案四:发射极电容补偿方法 发射极电容补偿方法是给发射极电阻并联一个小电容,电容的阻抗随频率的

运算放大器稳定性分析(一)

运算放大器稳定性分析(一) 上网日期: 2007年10月24日 关键字:运算放大器稳定性寄生电感 作者:Tim Green,TI公司Burr-Brown产品战略发展经理 1.0 引言 本系列所采用的所有技术都将“以实例来定义”,而不管它在其他应用中能否用普通公式来表达。为便于进行稳定性分析,我们在工具箱中使用了多种工具,包括数据资料信息、技巧、经验、SPICE仿真以及真实世界测试等,都将用来加快我们的稳定运放电路设计。尽管很多技术都适用于电压反馈运放,但上述这些工具尤其适用于统一增益带宽小于20MHz的电压反馈运放。选择增益带宽小于20MHz的原因是,随着运放带宽的增加,电路中的其他一些主要因素会形成回路,如印制板(PCB) 上的寄生电容、电容中的寄生电感以及电阻中的寄生电容与电感等。我们下面介绍的大多数经验与技术并非仅仅是理论上的,而且是从利用增益带宽小于20MHz的运放、实际设计并构建真实世界电路中得来的。 本系列的第1部分回顾了进行稳定性分析所需的一些基本知识,并定义了将在整个系列中使用的一些术语。 图1.0 稳定性分析工具箱 图字(上、下):数据资料信息、技巧、经验、Tina SPICE仿真、测试; 目的:学习如何用数据资料信息、技巧、经验法则、Tina SPICE仿真及测试来“更容易地”分析和设计运放,以确保环路稳定性; 注:用于统一增益带宽小于20MHz的电压反馈运放的技巧与经验法则。 1.1 波特图(曲线)基础

幅度曲线的频率响应是电压增益改变与频率改变的关系。这种关系可用波特图上一条以分贝(dB) 来表示的电压增益比频率(Hz) 曲线来描述。波特幅度图被绘成一种半对数曲线:x轴为采用对数刻度的频率(Hz)、y轴则为采用线性刻度的电压增益(dB) ,y轴最好是采用方便的每主格45°刻度。波特图的另一半则是相位曲线(相移比频率),并被描绘成以“度”来表示的相移比频率关系。波特相位曲线亦被绘成一种半对数曲线:x轴为采用对数刻度的频率(Hz)、y轴为采用线性刻度的相移(度),y轴最好是采用方便的每主格45°刻度。 图1.1 幅度与相位波特曲线(图) 图字(上、下):Aol曲线、幅度曲线、频率、相位曲线。 幅度波特图要求将电压增益转换成分贝(dB) 。进行增益分析时,我们将采用以dB(定义为20Log10A)表示的电压增益,其中A为以伏/伏表示的电压增益。

利用Matlab分析运算放大器电路

目录 摘要 (1) 1题目来源.............................................................................................................. . (2) 2研究意义 (2) 3系统分析 (3) 3.1任务及要求 (3) 3.2分析与计算 (3) 3.2.1电路频率响应分析 (3) 3.2.2自激分析 (4) 4编程和仿真 (5) 5仿真结果与分析................................................................................................... 6、7 6小结.. (8) 7心得体会 (9) 参考文献 (10) 附录 (11)

1题目来源 matlab是一种科学计算软件,在数学类科技应用软件中在数值计算方面首屈一指。它可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。而且的应用范围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以及计算生物学等众多应用领域。由于它使用方便,输入简捷,运算高效,内容丰富等特点,并且很容易由用户自行扩展,因此,matlab现已成为国外发达国家大学教学和科学研究中必不可少的工具。 结合我们所学的模拟电子技术,对其中的集成电路运算放大器求解电压增益和频率响应都不是一件容易的事情。但是运用matlab函数对其处理求解便变得容易,而且形象直观。让我们对电路的增益、频率响应以及自激现象的模拟更为简便。

运算放大器详细的应用电路(很详细)

§8.1?比例运算电路 8.1.1?反相比例电路 1.?基本电路 电压并联负反馈输入端虚短、虚断 特点: 反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低输出电阻小,带负载能力强 要求放大倍数较大时,反馈电阻阻值高,稳定性差。 如果要求放大倍数100,R1=100K,Rf=10M 2.T型反馈网络(T型反馈网络的优点是什么?) 8.1.2? 1.? 特点: V-=V+=Vi 2.? §8.2? 8.2.1? 1. 2. 8.2.2? 8.2.3? 例1: 则: 例2: 解: §8.3?积分电路和微分电路 8.3.1?积分电路 电容两端电压与电流的关系: 积分实验电路 积分电路的用途 将方波变为三角波(Vi:方波,频率500Hz,幅度1V) 将三角波变为正弦波(Vi:三角波,频率500Hz,幅度1V) (Vi:正弦波,频率500Hz,幅度1V) 思考:输入信号与输出信号间的相位关系? (Vi:正弦波,频率200Hz,幅度1V) 思考:输入信号频率对输出信号幅度的影响?

积分电路的其它用途: 去除高频干扰 将方波变为三角波 移相 在模数转换中将电压量变为时间量 §8.3?积分电路和微分电路 8.3.2?微分电路 微分实验电路 把三角波变为方波 (Vi:三角波,频率1KHz,幅度0.2V)输入正弦波 (Vi (Vi §8.4? 8.4.1? 改进电路 改进电路 8.4.2? 1.? 2.? §8.5?乘除运算电路 8.5.1?基本乘除运算电路 1.?乘法电路

乘法器符号 同相乘法器? 反向乘法器 2.?除法电路 8.5.2.?乘法器应用 1.?平方运算和正弦波倍频 如果输入信号是正弦波: 只要在电路输出端加一隔直电容,便可得到倍频输出信号。 2.?除法运算电路 注意:只有在VX2>0时电路才是负反馈 负反馈时,根据虚短、虚断概念: 3.? 3.? 4.? 成正比。 电流 若R 电压 负载接地 由负载不接地电路图可知: 讨论: 1.? 2.?当R2?/R1?=R3?/R4时,?则: 说明iO与VS成正比?,?实现了线性变换。 电压-电流和电流-电压变换器广泛应用于放大电路和传感器的连接处,是很有用的电子电路。 §8.6?有源滤波电路 8.6.1?滤波电路基础知识 一.?无源滤波电路和有源滤波电路 无源滤波电路:?由无源元件?(R,C,L)?组成 有源滤波电路:?用工作在线性区的集成运放和RC网络组称,实际上是一种具有特定频率响应的放大器。有源滤波电路的优点,?缺点:?请看书。 二.?滤波电路的分类和主要参数

运算放大器详细的应用电路(很详细)

§8.1 比 例运算电 路 8.1.1 反相比例电路 1. 基本电路 电压并联负反馈输入端虚短、虚断 特点: 反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低 输出电阻小,带负载能力强 要求放大倍数较大时,反馈电阻阻值高,稳定性差。 如果要求放大倍数100,R1=100K,Rf=10M 2. T型反馈网络(T型反馈网络的优点是什么?) 虚短、虚断

8.1.2 同相比例电路 1. 基本电路:电压串联负反馈 输入端虚短、虚断 特点: 输入电阻高,输出电阻小,带负载能力强 V-=V+=V i,所以共模输入等于输入信号,对运放的共模抑制比要求高 2. 电压跟随器 输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§8.2 加减运算电路 8.2.1 求和电路 1.反相求和电路 2.

虚短、虚断 特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系 3.同相求和电路 4. 虚短、虚断 8.2.2 单运放和差电路

8.2.3 双运放和差电路 例1:设计一加减运算电路 设计一加减运算电路,使 V o=2Vi1+5Vi2-10Vi3 解:用双运放实现

如果选Rf1=Rf2=100K,且R4= 100K 则:R1=50K R2=20K R5=10K 平衡电阻 R3= R1// R2// Rf1=12.5K R6=R4//R5//Rf2= 8.3K 例2:如图电路,求A vf,Ri 解: §8.3 积分电路和微分电路 8.3.1 积分电路 电容两端电压与电流的关系:

积分实验电路 积分电路的用途 将方波变为三角波(Vi:方波,频率500Hz,幅度1V)

相关主题
文本预览
相关文档 最新文档