二次函数根的分布总结练习
- 格式:doc
- 大小:219.50 KB
- 文档页数:4
高中二次函数根的分布教案及练习编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中二次函数根的分布教案及练习)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中二次函数根的分布教案及练习的全部内容。
一元二次方程根的分布问题设一元二次方程ax2+bx+c=0(a>0)的两根为x1,x2,且x1≤x2,k、p、m、n为常数,则一元二次方程有以下若干定理:两根在两个不同的区间内m<x1<n p<x2<q注:零分布是k分布的特殊情形(如下表).〖结论〗一般地,用函数思想结合图象来分析方程ax2+bx+c=0(a≠0)的实根分布情况要考虑四个必要条件.①二次项系数a,决定图象开口(延伸)方向;②判别式Δ=b 2-4ac ,决定与x 轴的位置; ③对称轴x=—b/2a ,决定图象左右平移;④特殊点(区间端点)所对函数值f(x 0)的正负,决定图象开口大小。
【例1】 若一元二次方程0)1(2)1(2=-++-m x m x m 有两个正根,求m 的取值范围。
【例2】 若一元二次方程0332=-++k kx kx 的两根都是负数,求k 的取值范围。
【例3】 k 在何范围内取值,一元二次方程0332=-++k kx kx 有一个正根和一个负根?4。
已知关于x 的方程02)1(2=+++a x a x 分别在下列条件下,求实数a 的取值范围。
(1)有一个根小于—1,有一个根大于1;(2)两根均在)1,1(-内。
例、5(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围;(2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; (3)关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围(4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围.6.分别求使方程032=+--m mx x 的两根满足下列条件的m 值的集合。
二次函数与根的分布一.二次函数与x轴交点1.抛物线与x轴的交点:二次函数2y ax bx c=++的图像与x轴的两个交点的横坐标1x、2x,是对应一元二次方程20ax bx c++=的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0∆>⇔抛物线与x轴相交;②有一个交点(顶点在x轴上)⇔0∆=⇔抛物线与x轴相切;③没有交点⇔0∆<⇔抛物线与x轴相离.2.平行于x轴的直线与抛物线的交点:可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是2ax bx c k++=的两个实数根.3.抛物线与x轴两交点之间的距离.若抛物线2y ax bx c=++与x轴两交点为()1A x,,()2B x,,由于1x、2x是方程20ax bx c++=的两个根,故1212b cx x x xa a+=-⋅=,:12AB x x=-==.二.二次函数与一元二次方程根的分布问题如下表(以0a>为例):知识精讲一.考点:二次函数与x 轴交点问题,利用二次函数解决一元二次方程根的分布问题. 二.重难点:1.二次函数与x 轴交点问题即当0y =时,转化为一元二次方程20ax bx c ++=; 2.在利用二次函数分析一元二次方程根的分布问题时要结合函数图像的性质来分析. 三.易错点:利用二次函数分析一元二次方程根的分布问题时首先确定开口方向,然后再结合函数的增减性,对称轴的位置,函数值等因素最终确定一元二次方程根的分布情况.题模一:根的分布问题例1.1.1 求实数a 的取值范围,使关于x 的方程()221260x a x a -=+++. (1)有两个实根12x x 、,且满足1204x x <<<;(2)至少有一个正根;(3)方程一个根大于0而小于2,另一个根大于4而小于6.【答案】 (1)715a -<<-;(2)1a ≤-;(3)1517a -<<-.【解析】 (1)设2()2(1)26f x x a x a =-+++;则有:0042(0)0(4)0b af f ∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩,解得:715a -<<- (2)可以利用韦达定理来解决此题①由图1、图2,可得:121200x x x x ∆≥⎧⎪+>⎨⎪⋅>⎩;解得:31a -<≤-②由图3,可得:121200x x x x ∆>⎧⎪+>⎨⎪⋅=⎩;解得:3a =-;③由图4,可得:1200x x ∆>⎧⎨⋅<⎩;解得:3a <-综上可得1a ≤-.(3)设2()2(1)26f x x a x a =+-++;则有:(0)0(2)0(4)0(6)0f f f f >⎧⎪<⎪⎨<⎪⎪>⎩,解得1517a -<<-.例1.1.2 抛物线y=-x 2+bx+c 上部分点的横坐标x ,纵坐标y 的对应值如下表:三点剖析从上表可知,下列说法正确的个数是( ) ①抛物线与x 轴的一个交点为(-2,0);②抛物线与y 轴的交点为(0,6);③抛物线的对称轴是x=1;④在对称轴左侧y 随x 增大而增大. A . 1 B . 2 C . 3 D . 4 【答案】C 【解析】 从表中知道: 当x=-2时,y=0, 当x=0时,y=6,∴抛物线与x 轴的一个交点为(-2,0),抛物线与y 轴的交点为(0,6), 从表中还知道: 当x=-1和x=2时,y=4, ∴抛物线的对称轴方程为x=12(-1+2)=0.5, 同时也可以得到在对称轴左侧y 随x 增大而增大. 所以①②④正确. 故选C .例1.1.3 二次函数y=x 2+px+q 中,由于二次项系数为1>0,所以在对称轴左侧,y 随x 增大而减小,从而得到y 越大则x 越小,在对称轴右侧,y 随x 增大而减大,从而得到y 越大则x 也越大,请根据你对这句话的理解,解决下面问题:若关于x 的方程x 2+px+q+1=0的两个实数根是m 、n (m <n ),关于x 的方程x 2+px+q ﹣5=0的两个实数根是d 、e (d <e ),则m 、n 、d 、e 的大小关系是( ) A . m <d <e <n B . d <m <n <e C . d <m <e <n D . m <d <n <e 【答案】B【解析】 二次函数y=x 2+px+q+1图象如图所示:结合图象可知方程x 2+px+q ﹣5=0的两个实数根即为函数y=x 2+px+q+1和y=6的交点, 即d <m <n <e例1.1.4 已知二次函数2y ax bx c =++(a ≠0)的图象过点()2,0A ,()2,4B --,对称轴为直线1x =-.(1)求这个二次函数的解析式;(2)若33x -<<,直接写出y 的取值范围;(3)若一元二次方程20ax bx c m ++=-(0a ≠,m 为实数)在33x -<<的范围内有实数根,直接写出m 的取值范围.【答案】 (1)2142y x x =+-(2)9722y -≤<(3)9722m -≤<【解析】 该题考查的是二次函数的基本性质. (1)∵对称轴为直线1x =-,图象过点()2,0A∴图象过点()4,0- ………………………………………..1分 设二次函数解析式为()()42y a x x =+- …………………………….2分 ∵图象过点()2,4B -- 解得12a = ∴()()1422y x x =+-即2142y x x =+- (2)当1x =-时,2114422y x x =+-=-, 当3x =-时,2114222y x x =+-=- 当3x =,2114322y x x =+-= …………………………3分 ∴9722y -≤< ……………………..4分(3)将一元二次方程20ax bx c m ++=-看作二次函数2m ax bx c =++,可知m y =,由(2)可知m 的取值范围为9722m -≤< …………………6分题模二:函数交点问题例 1.2.1 已知函数244y x x m =-+的图像与x 轴的交点坐标为(1x ,0),(2x ,0),且()()212112458x x x x x +--=,则该函数的最小值为( )A . 2B . -2C . 10D . -10【答案】D 【解析】函数244y x x m =-+的图象与x 轴的交点坐标为(1x ,0),(2x ,0),∴1x 与2x 是2440x x m -+=的两根,∴211440x x m -+=,121x x +=,124mx x =21144x x m ∴=- ()()212112458x x x x x +--=,∴()()12112458x x x m x x +---=即()()12128x x m x x +---=()118m ∴--=,解得9m =-,∴抛物线解析式为2214494102y x x x ⎛⎫=--=-- ⎪⎝⎭,故最小值为10-.例1.2.2 已知关于x 的函数()212y m x x m =-++图象与坐标轴只有2个交点,则m=__________.【答案】 1或0. 【解析】 解:(1)当m-1=0时,m=1,函数为一次函数,解析式为21y x =+,与x 轴交点坐标为 (12-,0);与y 轴交点坐标(0,1),符合题意; (2)当10m -≠时,1m ≠,函数为二次函数,与坐标轴有两个交点,则过原点,且与x 轴有两个不同的交点,于是()4410m m ∆=-->,解得,21524m ⎛⎫-< ⎪⎝⎭,解得m <或m >.将()0,0代入解析式得,0m =符合题意;(3)函数为二次函数时,还有另外一种情况是:与x 轴只有一个交点,与y 轴交于另一点,此时()4410m m ∆=--=,解得m =. 例1.2.3 若关于x 的一元二次方程(x ﹣1)(x ﹣2)=m 有实数根x 1、x 2,且x 1<x 2,有下列结论: ①x 1=1,x 2=2; ②m >﹣;③二次函数y=(x ﹣1)(x ﹣2)﹣m 的图象对称轴为直线x=1.5; ④二次函数y=(x ﹣1)(x ﹣2)+m 的图象与y 轴交点的一定在(0,2)的上方. 其中一定正确的有 (只填正确答案的序号). 【答案】 ②③.【解析】 当m=0时,x 1=1,x 2=2,所以①错误;方程整理为x 2﹣3x+2﹣m=0,△=(﹣3)2﹣4(2﹣m )0,解得m >﹣,所以②正确; 二次函数为y=x 2﹣3x+2﹣m ,所抛物线的对称轴为直线x=﹣﹣1.5,所以③正确;当x=0时,y=x 2﹣3x+2+m=2+m ,即抛物线与y 轴的交点为(0,2+m ),而m >﹣,所以二次函数y=(x ﹣1)(x ﹣2)+m 的图象与y 轴交点的一定在(0,)的上方,所以④错误. 故答案为②③.例1.2.4 已知关于x 的方程()()2131220k x k x k ++-+-=.(1)讨论此方程根的情况;(2)若方程有两个整数根,求正整数k 的值;(3)若抛物线()()2131220k x k x k ++-+-=与x 轴的两个交点之间的距离为3,求k 的值. 【答案】 (1)见解析(2)1;3(3)0;3-【解析】 该题考查的是二次函数与一元二次方程的综合题.(1)当1k =-时,方程44x --=0为一元一次方程,此方程有一个实数根; 当1k ≠-时,方程2(1)(31)22k x k x k ++-+-=0是一元二次方程, ∵()230k -≥,即0∆≥,∴ k 为除1-外的任意实数时,此方程总有两个实数根. 2分 综上,无论k 取任意实数,方程总有实数根.(2)13(3)2(1)k k x k -±-=+,11x =-,2x =421k -+.∵ 方程的两个根是整数根,且k 为正整数,∴ 当1k =时,方程的两根为1-,0;当3k =时,方程的两根为1-,1-.∴ 1k =,3. 4分(3)∵ 抛物线()()213122y k x k x k =++-+-与x 轴的两个交点之间的距离为3, ∴,123x x -=,或213x x -=.当123x x -=时,3k =-;当213x x -=时,0k =.综上,0k =,-3. 6分随练1.1 “如果二次函数y=ax2+bx+c 的图象与x 轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m 、n (m <n )是关于x 的方程1﹣(x ﹣a )(x ﹣b )=0的两根,且a <b ,则a 、b 、m 、n 的大小关系是( ) A . m <a <b <n B . a <m <n <b C . a <m <b <n D . m <a <n <b 【答案】A【解析】 依题意,画出函数y=(x ﹣a )(x ﹣b )的图象,如图所示.函数图象为抛物线,开口向上,与x 轴两个交点的横坐标分别为a ,b (a <b ). 方程1﹣(x ﹣a )(x ﹣b )=0 转化为(x ﹣a )(x ﹣b )=1, 方程的两根是抛物线y=(x ﹣a )(x ﹣b )与直线y=1的两个交点. 由m <n ,可知对称轴左侧交点横坐标为m ,右侧为n .由抛物线开口向上,则在对称轴左侧,y 随x 增大而减少,则有m <a ;在对称轴右侧,y 随x 增大而增大,则有b <n .综上所述,可知m <a <b <n .随练1.2 已知二次函数22y x x c =++.(1)当3c =-时,求出该二次函数的图象与x 轴的交点坐标;(2)若21x -<<时,该二次函数的图象与x 轴有且只有一个交点,求c 的取值范围. 【答案】 (1)()3,0-;()1,0(2)1c =或03c -<≤ 【解析】 该题考查的是二次函数与x 轴交点问题. (1)由题意,得223y x x =+- 当0y =时,2230x x +-= 解得13x =-,21x =∴该二次函数的图象与x 轴的交点坐标为()3,0-,()1,0. …………………………2分 (2)抛物线22y x x c =++的对称轴为1x =-……………………………………3分 ① 若抛物线与x 轴只有一个交点,则交点为()1,0-.有012c =-+,解得1c =. ………………………………………………………4分 ② 若抛物线与x 轴有两个交点,且满足题意,则有 当2x =-时,0y ≤,∴44c -+≤0,解得0c ≤.随堂练习当1x =时,0y >,∴120c ++>,解得3c >-.∴03c -<≤.……………………………………………………………………………6分 综上所述,c 的取值范围是1c =或03c -<≤.随练1.3 二次函数2y ax bx c =++(0a ≠,a ,b ,c 是常数)中,自变量x 与函数y 的对应值如下表:若1112m <<,则一元二次方程20ax bx c ++=(0a ≠)的两个根1x ,2x 的取值范围是( )A . 110x -<<,223x <<B . 121x -<<-,212x <<C . 101x <<,212x <<D . 121x -<<-,234x <<【答案】A 【解析】1112m <<,1122m ∴-<-<-,11122m <-<;由表中的数据可知,0y =在2y m =-与12y m =-之间,故对应的x 的值在1-与0之间,故223x <<. 随练1.4 若二次函数2y ax bx c =++的图象与x 轴有两个交点,坐标为A (m ,0),B (n ,0),且m n <,图象上有一点C (3,P )在x 轴下方,则下列判断正确的是( )A . 240b ac -≥B . 3m n <<C . ()()330m n --<D . 以上都不对 【答案】D【解析】 A .二次函数2y ax bx c =++的图象与x 轴有两个交点,坐标为A (m ,0),B (n ,0),且m n <,∴240b ac ->,故A 错误;B .a 的符号不能确定,B 错误;C .当0a >时,点C (3,P )在x 轴下方,3m n ∴<<,30m ∴->,30n -<,()()330m n ∴--<当0a <时,若点C 在对称轴的左侧,则3m n <<,30m ∴-<,30n -<,()()330m n ∴--> 若点C 在对称轴的右侧,则3m n <<,30m ∴->,30n ->,()()330m n ∴-->,则C 错误. 随练1.5 (1)关于x 的方程222320kx x k ---=有两实根,一个根小于1,另一个根大于1,求实数k 的取值范围;(2)已知二次方程()()22210m x mx m -+++=两根,分别属于()1,0-和()1,2,求m 的取值范围. 【答案】 (1)0k >或4k <-;(2)1142m <<. 【解析】 (1)令2()2232f x k x x k =---,0k ≠;由题()10kf <,()22320k k k ---<,()40k k +>即0k >或4k <-; (2)由题()()()()100120ff ff ⎧-<⎪⎨<⎪⎩ ,则()()()()2121041870m m m m ⎧-+<⎪⎨--<⎪⎩,11221748m m ⎧-<<⎪⎪∴⎨⎪<<⎪⎩,1142m ∴<<.随练1.6 若关于x 的函数()()22212y a x a x a =+--+-的图像与坐标轴有两个交点,则a 的值为__________.【答案】 2-,2或174. 【解析】 关于x 的函数()()22212y a x a x a =+--+-的图像与坐标轴有两个交点,所以可以分如下三种情况:①当函数为一次函数时,有20a +=,2a ∴=-,此时54y x =-,与坐标轴有两个交点; ②当函数为二次函数()2a ≠-,与x 轴有一个交点,与y 轴有一个交点; 函数与x 轴有一个交点,0∴∆=,()()()2214220a a a ∴--+-=,解得174a =; ③函数为二次函数时(2a ≠-),与x 轴有两个交点,与y 轴的交点和x 轴上的一个交点重合,即图象经过原点,20a ∴-=,2a =,当2a =,此时243y x x =-,与坐标轴有两个交点.随练1.7 已知二次函数()2211y kx k x =+--的图象与x 轴交点的横坐标为1x ,2x ()12x x <,那么下列结论:①方程()22110kx k x +--=的两根为1x ,2x ;②当2x x >时,0y >;③11x <-,21x >-;④21x x -=__________.【答案】 ①③.【解析】 ①二次函数()2211y kx k x =+--的图象与x 轴交点的横坐标,即为令0y =方程的两个根,故该结论正确;②由于k 值不确定,所以抛物线的开口方向可能向下,故该结论不一定成立; ③根据一元二次方程根与系数的关系,得1212k x x k -+=,121x x k=-,则 ()()121212112111110kx x x x x x k k-++=+++=-++=-<,11x ∴<-,21x >-,故该结论成立;④21x x -=k 的符号不确定,故该项错误.随练 1.8 已知抛物线2y x bx c =++的对称轴为2x =,若关于x 的一元二次方程20x bx c ---=在13x -<<的范围内有两个相等的实数根,则c 的取值范围是( ) A . 4c = B . 54c -<≤ C . 53c -<<或4c = D . 53c -<≤或4c = 【答案】D【解析】 由对称轴2x =可知,4b =,∴抛物线24y x x c =-+,令1x =-时,5y c =+;3x =时,3y c =-;关于x 的一元二次方程20x bx c ---=在13x -<<的范围内有两个相等的实数根,当0∆=时,即4c =,此时2x =,满足题意;当0∆>时,此时4c <,2y x bx c =++在13x -<<的范围内与x 轴有交点,()()530c c ∴+-≤,53c ∴-≤≤;当5c =,此时1x =-或5x =,不满足题意;∴c 的范围:53c -<≤或4c =,故选D .随练1.9 已知关于x 的一元二次方程()231210kx k x k ++++=.(1)求证:该方程必有两个实数根. (2)若该方程只有整数根,求k 的整数值(3)在(2)的条件下,在平面直角坐标系中,若二次函数()231210kx k x k ++++=与x 轴有两个不同的交点A 和B (A 在B 左侧),并且满足2OA OB =,求m 的非负整数值. 【答案】 (1)见解析(2)1±(3)1【解析】 该题考查的是一元二次方程综合. (1)()()()223142110k k k k ∆=++=+≥-∴该方程必有两个实数根. --------------------------1分(2)()()3112k k x k-+±+()()2311122k k x kk-+-+==-------------3分 ∵方程只有整数根,∴12k --应为整数,即1k应为整数 ∵k 为整数∴1k =± -------------------4分(3)根据题意,10k +≠,即1k ≠-, -------------------5分 ∴1k =,此时, 二次函数为223y x x m +=+∵二次函数与x 轴有两个不同的交点A 和B (A 在B 左侧) ∵m 为非负整数∴0m =或1m = ---------------------------------------------------6分当0m =时,二次函数为223y x x =+,此时3,02A ⎛⎫- ⎪⎝⎭,()0,0B不满足2OA OB =. ---------------------------------7分当1m =时,二次函数为2231y x x =++,此时()1,0A -,1,02B ⎛⎫- ⎪⎝⎭满足2OA OB =∴1m = --------------------------------8分作业1 若α、β是一元二次方程()2170mx m x m --+-=的实根,且满足10α-<<,01β<<,则m 的取值范围是______________ 【答案】 67m <<【解析】 该题考查的是一元二次方程与二次函数的关系.由题意,0m ≠,即二次函数()217y mx m x m =--+-与x 轴的两个交点横坐标分别为 已知二次函数过点()0,7m -,()1,6m -,()1,38m --, 故607067380m m m m ->⎧⎪-<⇒<<⎨⎪->⎩作业2 已知抛物线232y ax bx c =++,(1)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(2)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(3)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,有几个,证明你的结论;若没有,阐述理由.【答案】 (1)解析式为1232-+=x x y ;公共点坐标为()10-,和103⎛⎫⎪⎝⎭,(2)31=c 或51c -<≤-(3)在10<<x 范围内,该抛物线与x 轴有两个公共点【解析】 该题考查的是二次函数综合.(1)当1==b a ,1-=c 时,抛物线为1232-+=x x y , 方程01232=-+x x 的两个根为11-=x ,312=x . ∴该抛物线与x 轴公共点的坐标是()10-,和103⎛⎫⎪⎝⎭,. ·············································· 1’(2)当1==b a 时,抛物线为c x x y ++=232,且与x 轴有公共点.对于方程0232=++c x x ,判别式c 124-=∆≥0,有13c ≤. ····································· 2’ ①当31=c 时,由方程031232=++x x ,解得3121-==x x . 此时抛物线为31232++=x x y 与x 轴只有一个公共点103⎛⎫- ⎪⎝⎭,. ································· 3’ ②当31<c 时, 11-=x 时,c c y +=+-=1231,12=x 时,c c y +=++=5232.由已知11<<-x 时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为31-=x , 应有1200y y ≤⎧⎨>⎩ 即1050c c +≤⎧⎨+>⎩解得51c -<≤-. 综上,31=c 或51c -<≤-. ········································································ 4’ (3)对于二次函数c bx ax y ++=232,由已知01=x 时,01>=c y ;12=x 时,0232>++=c b a y ,又0=++c b a ,∴()3222a b c a b c a b a b ++=++++=+.于是02>+b a .而c a b --=,∴02>--c a a ,即0>-c a .∴0>>c a . ································································································· 5’ ∵关于x 的一元二次方程0232=++c bx ax 的判别式∴抛物线c bx ax y ++=232与x 轴有两个公共点,顶点在x 轴下方. ···························· 6’ 又该抛物线的对称轴3b x a=-, 由0=++c b a ,0>c ,02>+b a ,得a b a -<<-2, ∴12333b a <-<. ...………………………………………….7’ 又由已知01=x 时,01>y ;12=x 时,02>y ,观察图象,可知在10<<x 范围内,该抛物线与x 轴有两个公共点. 8’作业3 下列关于函数()()221312y m x m x =---+的图象与坐标轴的公共点的情况:①当3m ≠时,有三个公共点;②3m =时,只有两个公共点;③若只有两个公共点,则3m =;若有三个公共点,则3m ≠.其中描述正确的是( )A . 一个B . 两个C . 三个D . 四个【答案】A【解析】 令0y =,可得出()()2213120m x m x ---+=,()()()22231813m m m ∆=---=-,①当3m ≠,1m =±时,函数是一次函数,与坐标轴有两个交点,故错误;②当3m =时,0∆=,与x 轴有一个公共点,与y 轴有一个公共点,总共两个,故正确; ③若只有两个公共点,3m =或1m =±,故错误;综上只有②正确.作业4 二次函数()222y x k x k =+++与x 轴交于A ,B 两点,其中点A 是个定点,A ,B 分别在原点的两侧,且6OA OB +=,则直线1y kx =+与x 轴的交点坐标为__________.【答案】 1,04⎛⎫ ⎪⎝⎭或1,08⎛⎫- ⎪⎝⎭. 【解析】 A ,B 分别在原点的两侧,A 点在左侧,且6OA OB +=,∴设(),0A a ,则()6,0B a +,二次函数()222y x k x k =+++与x 轴的交点就是方程()2220x k x k +++=的根,()62a a k ∴++=-+,()62a a k +=,解得8a =-或2a =-;当2a =-时,4k =- ∴直线1y kx =+为直线41y x =-+,与x 轴的交点坐标为1,04⎛⎫ ⎪⎝⎭; 当8a =-时,8k = ∴直线1y kx =+为直线81y x =+,与x 轴的交点坐标为1,08⎛⎫- ⎪⎝⎭(不合题意舍去); 故直线1y kx =+与x 轴的交点坐标为1,04⎛⎫ ⎪⎝⎭. 作业5 在平面直角坐标系xoy 中,抛物线C :241y mx x =++.(1)当抛物线C 经过点A (-5,6)时,求抛物线的表达式及顶点坐标;(2)若抛物线C :241y mx x =++(0m >)与x 轴的交点的横坐标都在1-和0之间(不包括-1和0),结合函数的图象,求m 的取值范围;(3)参考(2)小问思考问题的方法解决以下问题:关于x 的方程34a x x--=在04x <<范围内有两个解,求a 的取值范围. 【答案】 (1)241y x x =++,顶点坐标为(-2,-3);(2)34m <≤;(3)13a -<<.【解析】 (1)抛物线C 经过点A (-5,6),625201m ∴=-+,解得1m =∴抛物线的表达式为()224123y x x x =++=+- ∴抛物线的顶点坐标为(-2,-3); (2)抛物线C :241y mx x =++(0m >)与x 轴的交点的横坐标都在1-和0之间,∴当1x =-时,0y >,且0∆≥,即4101640m m -+>⎧⎨-≥⎩,解得:34m <≤;(3)方程34a x x--=的解即为方程2430x x a --+=的解,而方程2430x x a --+=的解即为抛物线243y x x a =--+与x 轴交点的横坐标方程在04x <<范围内有两个解,∴当0x =时0y >,4x =时0y >,且0∆>,即()3016430a a -+>⎧⎪⎨--+>⎪⎩解得:13a -<<.作业6 已知关于x 的一元二次方程24120x x k -+-=有两个不等的实根,(1)求k 的取值范围;(2)若k 取小于1的整数,且此方程的解为整数,则求出此方程的两个整数根;(3)在(2)的条件下,二次函数2412y x x k =-+-与x 轴交于A 、B 两点(A 点在B 点的左侧),D 点在此抛物线的对称轴上,若60DAB ∠=︒,求点D 的坐标.【答案】 (1)32k >-(2)11x =,23x =(3)(或(2, 【解析】 该题考查的是二次函数综合. (1)∵方程24120x x k -+-=有两个不等的实根,∴0∆> ……………………………………………………1分即()()244121280k k ∆=--=+>- 解得32k >-………………………………………2分 (2)∵k 取小于1的整数∴1k =-或0 ………………………………………………3分∵方程的解为整数∴1k =- ………………………………………………4分 ∴此时方程为2430x x -+=解得11x =,23x = ……………………………………………5分(3)如图所示,根据(2),二次函数解析式为243y x x =-+∴点A ,B 的坐标为()1,0A ,()3,0B∴对称轴为2x =当点D 在AB 的上方时,坐标为(,当点D 在AB 的下方时,坐标为(2,∴点D 坐标为(或(2,…………………………………………7分作业7 已知两个二次函数y 1=x 2+bx+c 和y 2=x 2+m .对于函数y 1,当x=2时,该函数取最小值.(1)求b 的值;(2)若函数y 1的图象与坐标轴只有2个不同的公共点,求这两个公共点间的距离;(3)若函数y 1、y 2的图象都经过点(1,﹣2),过点(0,a ﹣3)(a 为实数)作x 轴的平行线,与函数y1、y2的图象共有4个不同的交点,这4个交点的横坐标分别是x1、x2、x3、x4,且x1<x2<x3<x4,求x4﹣x3+x2﹣x1的最大值.【答案】见解析【解析】。
二次函数根的分布欧阳家百(2021.03.07)一、知识点二次方程根的分布与二次函数在闭区间上的最值归纳一元二次方程02=++c bx ax 根的分布情况 分布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0()120,0x x >>一正根一负根即一个根小于0,一个大于0()120x x <<大致图象(0>a )得出的结论 ()00200b a f ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪>⎪⎩()00<f大致图象(0<a )得出的结论()00200b a f ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()00200b a f ∆>⎧⎪⎪->⎨⎪<⎪⎩()00>f表一:(两根与0的大小比较即根的正负情况)表二:(两根与k 的大小比较)表三:(根在区间上的分布)综合结论(不讨论a)()00200b a a f ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩()00200b a a f ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩()00<⋅f a分布情况两根都小于k 即k x k x <<21, 两根都大于k 即k x k x >>21, 一个根小于k ,一个大于k 即21x k x <<大致图象(>a )得出的结论 ()020b k a f k ∆>⎧⎪⎪-<⎨⎪>⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪>⎪⎩()0<k f大致图象(0<a )得出的结论 ()020b k a f k ∆>⎧⎪⎪-<⎨⎪<⎪⎩ ()020b k a f k ∆>⎧⎪⎪->⎨⎪<⎪⎩ ()0>k f综合结论(不讨论a)()020b k a a f k ∆>⎧⎪⎪-<⎨⎪⋅>⎪⎩()020b k a a f k ∆>⎧⎪⎪->⎨⎪⋅>⎪⎩()0<⋅k f akkk欧阳家百创编 二、经典例题例1:(实根与分布条件)已知βα, 是方程024)12(2=-+-+m x m x 的两个根,且βα<<2,求实数m 的取值范围。
一元二次方程根的散布一.一元二次方程根的基本分布——零散布所谓一元二次方程根的零散布,指的是方程的根相对于零的关系.比方二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根散布在零的两侧.设一元二次方程02=++c bx ax (0≠a )的两个实根为1x ,2x ,且21x x ≤.【定理1】01>x ,02>x (两个正根)⇔212124000b ac b x x a c x x a ⎧∆=-≥⎪⎪⎪+=->⎨⎪⎪=>⎪⎩,推论:01>x ,02>x ⇔⎪⎪⎩⎪⎪⎨⎧<>=>≥-=∆00)0(0042b c f a ac b 或⎪⎪⎩⎪⎪⎨⎧><=<≥-=∆00)0(0042b c f a ac b上述推论联合二次函数图象不可贵到.【例1】 若一元二次方程0)1(2)1(2=-++-m x m x m 有两个正根,求m 的取值规模.剖析:依题意有24(1)4(1)02(1)0101m m m m m mm ⎧⎪∆=++-≥⎪+⎪->⎨-⎪-⎪>⎪-⎩0<m <1.【定理2】01<x ,02<x ⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧>=<-=+≥-=∆000421212a c x x ab x x ac b ,推论:01<x ,02<x ⇔⎪⎪⎩⎪⎪⎨⎧>>=>≥-=∆00)0(0042b c f a ac b 或⎪⎪⎩⎪⎪⎨⎧<<=<≥-=∆00)0(0042b c f a ac b由二次函数图象易知它的准确性.【例2】 若一元二次方程0332=-++k kx kx 的两根都是负数,求k的取值规模.(512-≤k 或k>3)【定理3】210x x <<⇔0<a c【例3】 k 在何规模内取值,一元二次方程0332=-++k kx kx 有一个正根和一个负根?剖析:依题意有3k k -<0=>0<k <3【定理4】○101=x ,02>x ⇔0=c 且0<a b ;○201<x ,02=x ⇔0=c 且0>a b.【例4】 若一元二次方程03)12(2=-+-+k x k kx 有一根为零,则另一根是正根照样负根?剖析:由已知k -3=0,∴k =3,代入原方程得32x +5x =0,另一根为负.二.一元二次方程的非零散布——散布设一元二次方程02=++c bx ax (0≠a )的两实根为1x ,2x ,且21x x ≤.k 为常数.则一元二次方程根的k 散布(即1x ,2x 相对于k 的地位)有以下若干定理.【定理1】21x x k ≤<⇔⎪⎪⎩⎪⎪⎨⎧>->≥-=∆k a b k af ac b 20)(042 【定理2】kx x <≤21⇔⎪⎪⎩⎪⎪⎨⎧<->≥-=∆k a b k af ac b 20)(042.【定理3】21x k x <<⇔0)(<k af . 推论1210x x <<⇔0<ac .推论2211x x <<⇔0)(<++c b a a .【定理4】有且仅有11x k <(或2x )2k <⇔0)()(21<k f k f【定理5】221211p x p k x k <<≤<<⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧><<>>0)(0)(0)(0)(02121p f p f k f k f a 或⎪⎪⎪⎩⎪⎪⎪⎨⎧<>><<0)(0)(0)(0)(02121p f p f k f k f a此定理可直接由定理4推出,请读者自证.【定理6】2211k x x k <≤<⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<-<>>>≥-=∆2121220)(0)(004k a b k k f k f a ac b 或⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<-<<<<≥-=∆2121220)(0)(004k a b k k f k f a ac b三.例题与演习【例5】 已知方程02112=-+-m x x 的两实根都大于1,求m 的取值规模.(412912<<m )(2)若一元二次方程03)1(2=++-x m mx 的两个实根都大于-1,求m 的取值规模. (6252+>-<m m 或)(3)若一元二次方程03)1(2=++-x m mx 的两实根都小于2,求m 的取值规模. (62521+>-<m m 或)【例6】已知方程032222=-++m mx x 有一根大于2,另一根比2小,求m 的取值规模. (221221+-<<--m )(2)已知方程012)2(2=-+-+m x m x 有一实根在0和1之间,求m 的取值规模. (3221<<m ) (3)已知方程012)2(2=-+-+m x m x 的较大实根在0和1之间,求实数m 的取值规模. 变式:改为较小实根 (不成能;221<<m )(4)若方程0)2(2=-++k x k x 的两实根均在区间(1-.1)内,求k 的取值规模. (21324-<<+-k )(5)若方程012)2(2=-+-+k x k x 的两根中,一根在0和1之间,另一根在1和2之间,求k 的取值规模. (3221<<k ) (6)已知关于x 的方程062)1(22=-++--m m mx x m 的两根为βα、且知足βα<<<10,求m 的取值规模. (73-<<-m 或72<<m )【例7】已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,个中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的规模.(2)若方程两根均在区间(0,1)内,求m 的规模.本题重点考核方程的根的散布问题,解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义.技能与办法:设出二次方程对应的函数,可画出响应的示意图,然后用函数性质加以限制.解:(1)前提解释抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分离在区间(-1,0)和(1,2)内,画出示意图,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴2165-<<-m .(2)据抛物线与x 轴交点落在区间(0,1)内,列不等式组⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m 或(这里0<-m <1是因为对称轴x =-m 应在区间(0,1)内经由过程)演习:1. 若方程4(3)20x x m m +-•+=有两个不雷同的实根,求m 的取值规模. 提醒:令2x=t 转化为关于t 的一元二次方程有两个不合的正实根.答案:0<m <12.若关于x 的方程2lg(20)lg(863)0x x x a +---=有独一的实根,求实数a 的取值规模.提醒:原方程等价于2220020863x x x x x a ⎧+>⎪⎨+=--⎪⎩即2200 12630x x x x a <->⎧⎨+++=⎩或……①……②令()f x =2x +12x +6a +3(1) 若抛物线y=()f x 与x 轴相切,有△=144-4(6a +3)=0即a =112. 将a =112代入式②有x =-6不知足式①,∴a ≠112.(2) 若抛物线y=()f x 与x 轴订交,留意到其对称轴为x =-6,故友点的横坐标有且仅有一个知足式①的充要前提是(20)0(0)0f f -≥⎧⎨<⎩解得163162a -≤<-. ∴当163162a -≤<-时原方程有独一解.另法:原方程等价于2x +20x =8x -6a -3(x <-20或x >0)……③问题转化为:求实数a 的取值规模,使直线y =8x -6a -3与抛物线y =2x +20x (x <-20或x >0)有且只有一个公共点.固然两个函数图像都明白,但在什么前提下它们有且只有一个公共点却不显著,可将③变形为2x +12x +3=-6a (x <-20或x >0),再在统一坐标系平分离也作出抛物线y =2x +12x +3和直线y =-6a ,如图,显然当3<-6a ≤163即163162a -≤<-时直线y =-6a 与抛物线有且只有一个公共点.3. 已知()f x =(x -a )(x -b )-2(a <b ),并且α,β是方程()f x =0的两根(α<β),则实数a ,b ,α.β的大小关系是() A.α<a <b <βB.a <α<β<b C.a <α<b <βD.α<a <β<b4. 方程()f x =2ax bx c ++=0(a >0)的两个根都大于1的充要前提是()A 、 △≥0且f (1)>0B、f(1)>0且-ab>2C、△≥0且-ab>2,ca>1D、△≥0且f(1)>0,-ab>2.。
二次函数根的分部问题1、 二次函数2()(0)y f x ax bx c a ==++>在闭区间[,]m n 上的值域和最值问题。
① 当对称轴2b x m a=-≤时,函数2()(0)y f x ax bx c a ==++>在闭区间[,]m n 是单调递增函数,所以2max ()y f n an bn c ==++,2min ()y f m am bm c ==++;② 当对称轴(,]22b m n x m a +=-∈时,函数2()(0)y f x a x b x c a ==++>在区间(,]2b m a -上是单调递减函数,在区间(,]2b n a-上是单调递增函数,且||||22b b m n a a--≤--,所以2m a x ()y f n an bn c ==++,2min ()()()222b b b y f a b c a a a=-=-+-+; ③ 当对称轴(,]22b m n x n a +=-∈时,函数2()(0)y f x ax bxc a ==++>在区间(,]2b m a -上是单调递减函数,在区间(,]2b n a-上是单调递增函数,且||||22b b m n a a--≥--,所以2m a x ()y f m am bm c ==++,2min ()()()222b b b y f a b c a a a=-=-+-+; ④ 当对称轴2b x n a =-≥时,函数2()(0)y f x ax bx c a ==++>在闭区间[,]m n 是单调递减函数,所以2max ()y f m am bm c ==++,2min ()y f n an bn c ==++。
其中,值域就是在最大值与最小值之间。
综上所述:2max 2()()22()()22b m n f n an bn c x a y b m n f m am bm c x a +⎧=++=≤⎪⎪=⎨+⎪=++=≥⎪⎩ 22min 2()()2()()()()2222()()2b f m am bm c x m a b b b b y f a b c m x n a a a a b f n an bn c x n a ⎧=++=-≤⎪⎪⎪=-=-+-+<=-<⎨⎪⎪=++=-≥⎪⎩2、 二次函数2()(0)y f x ax bx c a ==++>在区间(,]n -∞上的值域和最值问题。
高一数学:二次方程根的分布一、一元二次方程02=++c bx ax )0(≠a 根的分布情况:设方程02=++c bx ax 的两实根为12,x x ,(不妨设21x x ≤),相应的二次函数为c bx ax x f ++=2)(,方程的根12,x x 即为此二次函数的零点, 即此二次函数的图象与x 轴的交点为)0,(1x 和)0,(2x ,因为02=++c bx ax )0(≠a 与0)(2=++x bx ax a 是同解的,故考虑具体的端点值时,考虑的是函数ac abx x a c bx ax a x af y ++=++==222)()(的端点值,这样只考虑开口向上的情况即可.解决根的分布问题的方法:数形结合,三看:一看判别式;二看对称轴;三看端点值.它们的分布情况见下表:如上图,只是可以过两端点,注注2:对于端点值是否可取,最好单独讨论;注3:以上11种情况都有相应的等价形式,对于具体题中的条件,往往是几种情况合在一起的,这时需要分类讨论,此时莫忘注1,注2 .特别注意下列两种情况:一. 函数)(x f 在()n m ,内仅有一个零点,可分:(1)方程0)(=x f 有且只有一根(两根重合时),且这个根在区间()n m ,内,即0∆=, 此时由0∆=可以求出参数的值,然后再将参数的值带入方程,求出相应的根, 检验根是否在给定的区间内,如若不在,舍去相应的参数的值.(2)若()0f m =,可以确定的求出相应的系数(或得到一个关系),从而可以求出另外一根, 若这另外的一根在区间()n m ,内,则满足条件;若不在,则这种情况不成立.(3)若()0f n =时,同理.(4)以上三种都讨论完了,只剩下一种情况,即只要0)()(<n f m f 即可.例1:已知624)(2++-=m mx x x f 在区间()3,0-内有且仅有一个零点,求m 的取值范围.解:①当0∆=时,即()2164260m m -+=,得出1m =-或32m =, 当1m =-时,根()23,0x =-∈-,即1m =-满足题意; 当32m =时,根()33,0x =∉-,故32m =不满足题意; ②当0151462129)3(=+=+++=-m m m f ,解得:1415-=m , 由韦达定理的两根之积为72767156232=+-=+=⨯-m x , 即)0,3(792-∈-=x ,满足条件,故1415-=m 合适; ③当062)0(=+=m f ,解得:3-=m ,由韦达定理的两根之和为12402-==+m x , 即)0,3(122-∉-=x ,不满足条件,故3-=m (舍);④当0)0()3(<⋅-f f 时,即0)62)(1514(<++m m ,得出14153-<<-m ,必满足条件. 综上所述所求m 的取值范围是:14153-≤<-m ,或1m =-. 注:你能发现这个题的巧解吗?二. 函数)(x f 在],[n m 内仅有一个零点,可同上分析.即先讨论0=∆(即方程两根重合)时的情况,验证相应的根是否合适;再看取到端点值时的情况,此时已知一根,由韦达定理易得另一根,验证是否满足条件;最后0)()(<n f m f 即可! 熟练之后,此次序可以灵活变通,只是请注意分类要不重不漏!例2:已知624)(2++-=m mx x x f 在区间]0,3[-内有且仅有一个零点,求m 的取值范围. 解:①当0∆=时,即()2164260m m -+=,得出1m =-或32m =, 当1m =-时,根]0,3[2-∈-=x ,即1m =-满足题意; 当32m =时,根]0,3[3-∉=x ,故32m =不满足题意; ②当0151462129)3(=+=+++=-m m m f ,解得:1415-=m , 由韦达定理的两根之积为72767156232=+-=+=⨯-m x , 即)0,3(792-∈-=x ,不满足条件,故1415-=m (舍);③当062)0(=+=m f ,解得:3-=m ,由韦达定理的两根之和为12402-==+m x , 即)0,3(122-∉-=x ,满足条件,故3-=m 合适;④当0)0()3(<⋅-f f 时,即0)62)(1514(<++m m ,得出14153-<<-m ,必满足条件. 综上所述所求m 的取值范围是:14153-<≤-m ,或1m =-. 注:你能发现这个题的巧解吗?注:讨论端点时,如果遇到下列情况,前参看下列题的处理办法!例3:已知方程02)2(2=++-x m mx 在区间()1,3上有一根,求m 的取值范围. 解:当0=m 时,易知方程仅有一个根为1,不满足条件当0≠m 时,令2)2()(2++-=x m mx x f ,因为()10f =, 所以()()()22212mx m x x mx -++=--,故另一根为2m, 由213m <<,得223m <<即为所求. 例4:已知方程02)2(2=++-x m mx 在区间]3,1[上有一根,求m 的取值范围. 解:当0=m 时,易知方程仅有一个根为1,满足条件;当0≠m 时,令)2)(1(2)2()(2--=++-=mx x x m mx x f ,必有一根为1 故另一根2m ,当12=m,即2=m 时合适; 否则必须满足:12<m 或32>m ,解得:0<m ,或320<<m ,或2>m综上所述,所求m 的取值范围是32<m 或2≥m .注:你能发现这两个题的巧解吗?以后再赘述吧,先抱歉了!二.根的分布经典题归类讲解例1、①m 取何实数值时,方程0)1(22=++-m x m x 有两个不等正实根.②m 取何实数值时,方程013422=-++m mx x 有两个负数根.③m 取何实数值时,关于x 的方程05)2(2=-+-+m x m x 的两个实根都大于2. 解:①令=)(x f m x m x ++-)1(22,其图像开口向上,对称轴为41+=m x , 判别式为168)1(22+-=-+=∆m m m m原条件⎪⎪⎩⎪⎪⎨⎧>=>+>+-=∆⇔0)0(0410162m f m m m 解得:2230-<<m 或223+>m ,即为所求.②令=)(x f 13422-++m mx x ,其图像开口向上,对称轴为m x -=, 判别式为)1)(21(16)2123(16)13(81622--=+-=--=∆m m m m m m . 原条件⎪⎪⎩⎪⎪⎨⎧>-=<-≥--=∆⇔013)0(00)1)(21(16m f m m m 解得:2131≤<m 或1≥m ,即为所求.③令=)(x f m x m x -+-+5)2(2,其图像开口向上,对称轴为21m x -=, 判别式为)4)(4(16)5(4)2(22-+=-=---=∆m m m m m .原条件⎪⎪⎩⎪⎪⎨⎧>+=-+-+=>-≥-+=∆⇔055424)2(2210)4)(4(m m m f m m m 解得:45-≤<-m ,即为所求.例2、①已知二次方程012)12(2=-+-+m mx x m 有一正根和一负根,求实数m 的取值范围.②已知二次函数33)42()2(2+++-+=m x m x m y 与x 轴有两个交点,一个在1=x 的左侧,一个在1=x 的右侧,求实数m 的取值范围.③m 取何实数值时,关于x 的方程05)2(2=-+-+m x m x 的一个实根大于2,另一个实根小于2.解:①令=)(x f 12)12(2-+-+m mx x m ,其图像开口方向不明,原条件0)1)(12()0()12(<-+=+⇔m f m ,解得:21->m . 即为所求. 注:利用两个之积012121<+-=m x x ,也可以快速得出!②令=)(x f 33)42()2(2+++-+m x m x m ,其图像开口方向不明,原条件0)12)(2()33422)(2()1()2(<++=++--++=+⇔m m m m m m f m , 解得:212-<<-m . 即为所求. 注:利用0)1)(1(21<--x x ,即021212422331)(2121<++=+++-++=++-m m m m m m x x x x 也可得.③令=)(x f m x m x -+-+5)2(2,其图像开口向上,原条件055424)2(<+=-+-+=⇔m m m f 解得:5-<m ,即为所求.注:利用0)2)(2(21<--x x ,即054)2(254)(22121<+=+---=++-m m m x x x x 也可得. 例3.①已知关于x 的方程:022=+-a ax x 有两个实根βα,,且满足2,10><<βα,求实数a 的取值范围.②已知关于x 的方程:062)1(22=-++--m m mx x m 有两个实根βα,,且满足βα<<<10, 求实数m 的取值范围.③已知关于x 的方程:0532=+-a x x 有两个实根βα,,且满足)3,1(),0,2(∈-∈βα,求实数a 的取值范围.解:①令=)(x f a ax x +-22,其图像开口向上,画图可得:原条件⎪⎩⎪⎨⎧<-=<-=>=⇔034)2(01)1(0)0(a f a f a f 解得:34>a ,即为所求.②令=)(x f 62)1(22-++--m m mx x m ,其图像开口方向不明,画图可得:原条件⎩⎨⎧<->-⇔0)1()1(0)0()1(f m f m ,即⎪⎩⎪⎨⎧<-++--->-+-⇔0)621)(1(0)6)(1(22m m m m m m m m即⎩⎨⎧<+-->+--⇔0)7)(7)(1(0)3)(2)(1(m m m m m m 解得:73-<<-m 或72<<m ,即为所求.③令=)(x f a x x +-532,其图像开口向上,画图可得:原条件⎪⎪⎩⎪⎪⎨⎧>+=+-=<-=+-=<=>+=++=-⇔0121527)3(022)1(0)0(0221012)2(a a f a a f a f a a f 解得:012<<-a ,即为所求.例4、①已知方程03222=+++m mx x 的两个不等实根都在区间)2,0(内,求实数m 的取值范围.②已知方程03222=+++m mx x 的两个不等实根都在区间]2,0[之外,求实数m 的取值范围. 解:令322)(2+++=m mx x x f ,其图像开口向上,对称轴为m x -=,由判别式0)3)(1(4)32(4)32(4422>-+=--=+-=∆m m m m m m ,得:1-<m 或3>m①的条件⎪⎪⎩⎪⎪⎨⎧>+=>+=<-<>∆⇔076)2(032)0(200m f m f m ,即⎪⎪⎪⎩⎪⎪⎪⎨⎧->-><<->-<⇔67230231m m m m m 或解得:167-<<-m 即为所求.②的条件可分为:两根都小于0,或两根都大于2,或一根小于0,一根大于2,三种情况故⎪⎩⎪⎨⎧>+=<->∆⇔032)0(00m f m 或⎪⎩⎪⎨⎧>+=>->∆076)2(20m f m 或⎩⎨⎧<+=<+=076)2(032)0(m f m f解得:3>m ,或无解,或23-<m ,故所求m 的取值范围是:23-<m 或3>m . 例5:已知集合}0107|{2≤+-=x x x A ,}05)2(|{2≤-+--=m x m x x B ,且A B ⊆, 求实数m 的取值范围.解:首先}52|{≤≤=x x A ;当∅=B 时,即不等式05)2(2≤-+--m x m x 无解,即0)5(4)2(2<---=∆m m 即:0162<-m ,解得:44<<-m ; -----(1)当∅≠B 时,即不等式05)2(2≤-+--m x m x 有解,其形式必为21x x x ≤≤; 其中21,x x 为方程05)2(2=-+--m x m x 的两个根,(不妨设21x x ≤) 按条件,只要5221≤≤≤x x 即可满足A B ⊆;按照根的分布的理论,此时只要满足:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥-+--=≥-+--=≤-≤≥-=∆05)2(525)5(05)2(24)2(52220162m m f m m f m m即⎪⎪⎩⎪⎪⎨⎧-≥-≥-≤≤-≥-≤55284,4m m m m m 或,解得:45-≤≤-m ,-----(2)由(1)(2)可得:所求的m 的取值范围是45≤≤-m .三.自己练习巩固提升1.设有一元二次方程02)1(22=++-+m x m x .试问:(1)m 为何值时,有一正根、一负根.(2)m 为何值时,有一根大于1、另一根小于1. (3)m 为何值时,有两正根. (4)m 为何值时,有两负根.(5)m 为何值时,仅有一根在[1,4]内.2. 关于x 的方程012=-++a ax x 有异号的两个实根,求a 的取值范围.3.如果方程032)3(22=-+++a x a x 的两个实根中一根大于3,另一根小于3,求实数a 的取值范围. 4.若方程07)1(82=-+++m x m x 有两个负根,求实数a 的取值范围. 5. 关于x 的方程0422=-+-a ax x 有两个正根,求a 的取值范围.6.设关于x 的方程0)(44222=+++-n m x n m x 有一个实根大于-1,另一个实根小于-1,则n m ,必须满足什么关系.7. 设关于x 的方程023222=---k x kx 有两个实根都在]0,2[-之间,求k 的取值范围.8.关于x 的方程02)13(72=--+-m x m x 的两个实根21,x x 满足2021<<<x x ,求m 的范围. 9.①已知方程065)9(222=+-+-+a a x a x 的一根小于0,另一根大于2,求实数a 的取值范围.②已知方程065)9(222=+-+-+a a x a x 的存在小于2的根,求实数a 的取值范围.。
一元二次方程根的分布一.一元二次方程根的基本分布——零分布所谓一元二次方程根的零分布,指的是方程的根相对于零的关系。
比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。
设一元二次方程02cbx ax(0a)的两个实根为1x ,2x ,且21x x 。
【定理1】01x ,02x (两个正根)2121240bac b x x a c x x a,推论:01x ,02x 0)0(0042bcf a ac b或0)0(0042bcf aac b 上述推论结合二次函数图象不难得到。
【例1】若一元二次方程0)1(2)1(2mxm xm 有两个正根,求m 的取值范围。
分析:依题意有24(1)4(1)02(1)0101m m m m m mm 0<m <1。
【定理2】01x ,02x 00421212ac x x a b x x ac b,推论:01x ,02x 0)0(0042bcf a ac b或0)0(0042bcf aac b 由二次函数图象易知它的正确性。
【例2】若一元二次方程0332kkx kx的两根都是负数,求k 的取值范围。
(512k或k>3)【定理3】21x x 0ac 【例3】k 在何范围内取值,一元二次方程0332k kxkx有一个正根和一个负根?分析:依题意有3k k<0=>0<k <3【定理4】○101x ,02x 0c 且0ab ;○201x ,02x 0c且0ab 。
【例4】若一元二次方程03)12(2k x k kx有一根为零,则另一根是正根还是负根?分析:由已知k -3=0,∴k =3,代入原方程得32x+5x =0,另一根为负。
二.一元二次方程的非零分布——k 分布设一元二次方程02cbx ax(0a)的两实根为1x ,2x ,且21x x 。
k 为常数。
则一元二次方程根的k 分布(即1x ,2x 相对于k 的位置)有以下若干定理。
一元二次函数根的分布(20130924)姓名成绩1.设有一元二次方程x2+2(m-1)x+(m+2)=0.试问:(1)m为何值时,有一正根、一负根.(2)m为何值时,有一根大于1、另一根小于1.(3)m为何值时,有两正根.(4)m为何值时,有两负根.(5)m为何值时,仅有一根在[1,4]内?2. 当m为何值时,方程有两个负数根?3. m取何实数值时,关于x的方程x2+(m-2)x+5-m=0的两个实根都大于2?4.(1)已知关于x方程:x2-2ax+a=0有两个实根α,β,且满足0<α<1,β>2,求实根a的取值范围.(2)m为何实数时,关于x的方程x2+(m-2)x+5-m=0的一个实根大于2,另一个实根小于2.5.已知函数的图象都在x轴上方,求实数k的取值范围.6.已知关于x的方程(m-1)x2-2mx+m2+m-6=0有两个实根α,β,且满足0<α<1<β,求实数m 的取值范围.7.已知关于x的方程3x2-5x+a=0的有两个实根α,β,满足条件α∈(-2,0),β∈(1,3),求实数a的取值范围.8.选择题(1)已知方程(m-1)x2+3x-1=0的两根都是正数,则m的取值范围是()A.B.C.D.(2)方程x2+(m2-1)x+(m-2)=0的一个根比1大,另一个根比-1小,则m的取值范围是()A.0<m<2 B.-3<m<1 C.-2<m<0 D.-1<m<1(3).已知方程有两个不相等的实数根,则k的取值范围是()A.B.C.D.9.已知关于x的方程3x2+(m-5)x+7=0的一个根大于4,而另一个根小于4,求实数m的取值范围.10.已知关于x 的方程x 2+2mx +2m +3=0的两个不等实根都在区间(0,2)内,求实数m 的取值范围.11:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x12:已知54x <,求函数14245y x x =-+-的最大值。
微专题11 二次函数根的分布问题【方法技巧与总结】1、实系数一元二次方程20(0)ax bx c a ++=≠的实根符号与系数之间的关系 (1)方程有两个不等正根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=->⎨⎪⎪=>⎪⎩(2)方程有两个不等负根12,x x ⇔212124000b ac b x x a c x x a ⎧⎪∆=->⎪⎪+=-<⎨⎪⎪=>⎪⎩(3)方程有一正根和一负根,设两根为12,x x ⇔120cx x a=< 2、一元二次方程20(0)ax bx c a ++=≠的根的分布问题 一般情况下需要从以下4个方面考虑: (1)开口方向;(2)判别式;(3)对称轴2bx a=-与区间端点的关系;(4)区间端点函数值的正负. 设12,x x 为实系数方程20(0)ax bx c a ++=>的两根,则一元二次20(0)ax bx c a ++=>的根的分布与其限定条件如表所示. 根的分布图像限定条件12m x x <<2()0b m a f m ∆>⎧⎪⎪->⎨⎪⎪>⎩ 12x m x <<()0f m <12x x m <<02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪>⎩ 在区间(,)m n 内 没有实根0∆<12120x x m x x m∆==≤=≥或02()0b m a f m ∆>⎧⎪⎪-<⎨⎪⎪≥⎩02()0b n a f n ∆>⎧⎪⎪->⎨⎪⎪≥⎩()0()0f m f n ≤⎧⎨≤⎩ Onm yxOnmyxOnm yxOnm yxOnm yx在区间(,)m n内有且只有一个实根()0()0f mf n>⎧⎨<⎩()0()0f mf n<⎧⎨>⎩在区间(,)m n内有两个不等实根2()0()0bm naf mf n∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩【题型归纳目录】题型一:正负根问题题型二:根在区间的分布问题题型三:整数根问题题型四:范围问题【典型例题】题型一:正负根问题例1.(2022·河南·郑州市回民高级中学高一阶段练习)已知m为实数,命题甲:关于x的不等式240mx mx+-<的解集为R;命题乙:关于x的方程22200x mx m-++=有两个不相等的负实数根.若甲、乙至少有一个为真命题,求实数m的取值范围为_______.例2.(2022·全国·高一单元测试)关于x的方程2210ax x++=的实数根中有且只有一个负实数根的充要条件为____________.OnmyxOnmyxOnmyx例3.(2022·甘肃·兰化一中高一阶段练习)若一元二次方程2330kx kx k ++-=的两根都是负数,求k 的取值范围为___________.例4.(2022·全国·高一专题练习)已知关于x 的二次方程2(21)210m x mx m +-+-=有一正数根和一负数根,则实数m 的取值范围是_____.例5.(2022·河南·高一阶段练习)(1)若不等式210ax bx +-<的解集是113xx ⎧⎫-<<⎨⎬⎩⎭∣,求,a b 的值; (2)若31b a =--,且关于x 的方程210+-=ax bx 有两个不同的负根,求a 的取值范围.例6.(2022·辽宁·沈阳市第八十三中学高一阶段练习)已知1x 、2x 是一元二次方程24410kx kx k -++=的两个实数根.(1)若1x 、2x 均为正根,求实数k 的取值范围;(2)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不能存在,请说明理由.题型二:根在区间的分布问题例7.(2022·全国·高一专题练习)已知一元二次方程x 2+ax +1=0的一个根在(0,1)内,另一个根在(1,2)内,则实数a 的取值范围为________.例8.(2022·全国·高一课时练习)已知关于x 的方程220x x a -+=. (1)当a 为何值时,方程的一个根大于1,另一个根小于1?(2)当a 为何值时,方程的一个根大于1-且小于1,另一个根大于2且小于3? (3)当a 为何值时,方程的两个根都大于0?例9.(2022·全国·高一专题练习)已知关于x 的一元二次方程2220x ax a -++=,当a 为何值时,该方程:有不同的两根且两根在(1,3)内.例10.(2022·江苏·高一专题练习)已知二次函数()2221R y x tx t t =-+-∈.(1)若该二次函数有两个互为相反数的零点,解不等式22210x tx t -+-≥;(2)若关于x 的方程22210x tx t -+-=的两个实根均大于2-且小于4,求实数t 的取值范围.例11.(2022·全国·高一单元测试)求实数m 的范围,使关于x 的方程()221?260.x m x m +-++= (1)有两个实根,且一个比2大,一个比2小; (2)有两个实根 αβ,,且满足014αβ<<<<; (3)至少有一个正根.例12.(2022·上海市七宝中学高一阶段练习)方程()2271320x a x a a -++--=的一个根在区间()0,1上,另一个根在区间()1,2上,则实数a 的取值范围为___________.例13.(2022·全国·高一专题练习)关于x 的方程()2140x a x --+=在区间[]1,3内有两个不等实根,则实数a 的取值范围是_____.例14.(2022·全国·高一单元测试)方程()2250x a x a --+-=的两根都大于2,则实数a 的取值范围是_____.例15.(2022·全国·高一专题练习)已知关于x 的方程220ax x ++=的两个实根一个小于0,另一个大于1,则实数a 的取值范围是_____.例16.(2022·全国·高一专题练习)已知方程()()22110x a x a a -+++=的两根分别在区间()0,1,()1,3之内,则实数a 的取值范围为______.例17.(2022·上海·高一专题练习)方程2240x ax -+=的两根均大于1,则实数a 的取值范围是_______例18.(2022·湖北·华中师大一附中高一开学考试)关于x 的方程()2290ax a x a +++=有两个不相等的实数根12,x x ,且121x x ,那么a 的取值范围是( ) A .2275a -<<B .25a > C .27a <-D .2011a -<<例19.(2022·全国·高一课时练习)关于x 的方程()22210x m x m +-+-=恰有一根在区间()0,1内,则实数m 的取值范围是( ) A .13,22⎡⎤⎢⎥⎣⎦B .12,23⎛⎤ ⎥⎝⎦C .1,22⎡⎫⎪⎢⎣⎭D .{}12,6723⎛⎤⋃- ⎥⎝⎦题型三:整数根问题例20.(2022·上海市实验学校高一开学考试)已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1)是否存在实数k ,使得()()12123222x x x x --=-成立?若存在,求出k 的值;若不存在,请说明理由;(2)求使12212x x x x +-的值为整数的实数k 的整数值.例21.(2022·上海·高三专题练习)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( ) A .13 B .18 C .21 D .26例22.(多选题)(2022·全国·高一课时练习)已知a ∈Z ,关于x 的一元二次不等式x 2-6x +a ≤0的解集中有且仅有3个整数,则a 的值可以是( ) A .5 B .6 C .7 D .9例23.(2022·全国·高一专题练习)若方程()22460x kx x --+=有两个不相等的实根,则k 可取的最大整数值是______.题型四:范围问题例24.(2022·上海·高一专题练习)已知t 是实数,若a ,b 是关于x 的一元二次方程2210x x t -+-=的两个非负实根,则()()2211a b --的最小值是___________.例25.(2022·吉林省实验中学高一阶段练习)设方程240x mx m -+=的两实根分别为12,x x . (1)当1m =时,求1211+x x 的值;(2)若120,0x x >>,求实数m 的取值范围及124x x +的最小值.例26.(2022·北京海淀·高一期末)已知函数()22f x x bx c =++(b ,c 为实数),()()1012f f -=.若方程()0f x =有两个正实数根1x ,2x ,则1211+x x 的最小值是( ) A .4 B .2C .1D .12例27.(2022·江苏·高一)已知关于x 的方程230x kx k -++=有两个正根,那么两个根的倒数和最小值是( ) A .-2 B .23C .89D .1例28.(2022·上海·华师大二附中高一期中)已知实数a b <,关于x 的不等式()210x a b x ab -+++<的解集为()12,x x ,则实数a 、b 、1x 、2x 从小到大的排列是( ) A .12a x x b <<< B .12x a b x <<< C .12a x b x <<< D .12x a x b <<<例29.(2022·福建厦门·高一期末)已知函数()()11f x x x a =-⋅--,a R ∈. (1)若0a =,解不等式()1f x <;(2)若函数()f x 恰有三个零点1x ,2x ,3x ,求123111x x x ++的取值范围. 【过关测试】一、单选题 1.(2022·江苏·高一专题练习)已知p :a m <(其中R a ∈,m ∈Z ),q :关于x 的一元二次方程2210ax x ++=有一正一负两个根.若p 是q 的充分不必要条件,则m 的最大值为( ) A .1B .0C .1-D .22.(2022·江苏·高一专题练习)已知方程2(2)50x m x m +-+-=有两个不相等的实数根,且两个实数根都大于2,则实数m 的取值范围是( ) A .(5,4)(4,)--+∞ B .(5,)-+∞ C .(5,4)--D .(4,2)(4,)--+∞3.(2021·北京·北师大实验中学高一期中)设方程2610x x -+=的两个不等实根分别为12,x x ,则12||x x -=( ) A .3B .6C .22D .424.(2021·江苏·高一课时练习)设a 为实数,若方程220x ax a -+=在区间(1,1)-上有两个不相等的实数解,则a 的取值范围是( ). A .(,0)(1,)-∞⋃+∞ B .(1,0)-C .1,03⎛⎫- ⎪⎝⎭D .1,0(1,)3⎛⎫-+∞ ⎪⎝⎭5.(2022·全国·高一课时练习)一元二次方程()22100ax x a ++=≠有一个正实数根和一个负实数根的一个充分不必要条件是( ) A .0a <B .0a >C .1a <-D .2a <6.(2021·四川·树德中学高一阶段练习)设集合{}2320A x x x =-+<,集合{}2210B x ax x =--=,若A B ⋂≠∅,则实数a 的取值范围是( ) A .34,43⎡⎫⎪⎢⎣⎭B .5,34⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .(1,)+∞7.(2022·全国·高一课时练习)要使关于x 的方程()22120x a x a +-+-=的一根比1大且另一根比1小,则实数a 的取值范围是( ) A .{}12a a -<< B .{}21a a -<< C .{}2a a <-D .{}1a a >8.(2021·甘肃·天水市第一中学高一阶段练习)已知一元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,则m 的值为( )A .4-B .5-C .6-D .7-二、多选题9.(2022·江苏南通·高一开学考试)已知不等式20(0)x ax b a ++>>的解集是{}|x x d ≠,则下列四个结论中正确的是( ). A .24a b =B .若不等式2+x ax b c +<的解集为(3,1)-,则7a b c ++=C .若不等式20x ax b +-<的解集为12(,)x x ,则120x x >D .若不等式2x ax b c 的解集为12(,)x x ,且12||4x x -=,则4c =10.(2021·江苏·海安高级中学高一阶段练习)一元二次方程240x x m -+=有正数根的充分不必要条件是( ) A .4m =B .5m =C .1m =D .12=-m11.(2022·湖南湖南·高一期末)若方程220x x λ++=在区间()1,0-上有实数根,则实数λ的取值可以是( ) A .3-B .18C .14D .112.(2021·全国·高一专题练习)已知关于x 的方程()230x m x m +-+=,则下列结论中正确的是( ) A .方程()230x m x m +-+=有一个正根一个负根的充要条件是{}0m m m ∈< B .方程()230x m x m +-+=有两个正实数根的充要条件是{}01m m m ∈<≤C .方程()230x m x m +-+=无实数根的充要条件是{}1m m m ∈> D .当m =3时,方程()230x m x m +-+=的两个实数根之和为0 13.(2021·江苏·高一专题练习)已知一元二次方程()()21102x m x m Z +++=∈有两个实数根12,x x ,且12013x x <<<<,则m 的值为( )A .-2B .-3C .-4D .-5三、填空题14.(2022·安徽省蚌埠第三中学高一开学考试)关于x 的方程210x ax ++=的一根大于1,一根小于1,则a 的取值范围是:__________________.15.(2021·北京师大附中高一期中)若关于x 的一元二次方程2240x ax -+=有两个实根,且一个实根小于1,另一个实根大于2,则实数a 的取值范围是________.16.(2021·上海·复旦附中高一期中)若关于x 的方程220x kx -+=的一根大于-1,另一根小于-1,则实数k 的取值范围为______.17.(2020·上海·高一专题练习)已知集合()(){}2|320,A x x x x x R =-+-≤∈,{}2|120,B x x ax x R =--≤∈,若A B ⊆,则实数a 的取值范围是______________. 四、解答题18.(2022·全国·高一期中)命题:p 关于x 的方程20x x m ++=有两个相异负根;命题():0,q x ∃∈+∞,2390x mx -+<.(1)若命题q 为假命题,求实数m 的取值范围;(2)若这两个命题有且仅有一个为真命题,求实数m 的取值范围.19.(2022·湖南·高一课时练习)若一元二次方程2570x x a --=的一个根在区间()1,0-内,另一个根在区间()1,2内,求实数a 的取值范围.20.(2021·辽宁·昌图县第一高级中学高一期中)已知()()2213f x x a x =+-+.(1)如果方程()0f x =在()0,3有两个根,求实数a 的取值范围; (2)如果[]1,2x ∃∈,()0f x >成立,求实数a 的取值范围.21.(2021·上海市七宝中学高一阶段练习)设二次函数()2f x ax bx c =++,其中R a b c ∈、、.(1)若()21,94b a c a =+=+,且关于x 的不等式()28200-+<x x f x 的解集为R ,求a 的取值范围; (2)若Z a b c ∈、、,且()()01f f 、均为奇数,求证:方程()0f x =无整数根; (3)若21,21,a b k c k ==-=,当方程()0f x =有两个大于1的不等根时求k 的取值范围.。
二次函数根的分布
一、简单的三种类型
利用Δ与韦达定理研究)0(02
≠=++a c bx ax 的根的分布
(1)方程有两个正根⎪⎪⎪
⎩⎪
⎪
⎪⎨⎧
>=>-=+≥-=∆⇔000421212a c x x a b x x ac b
(2)方程有两个负根⎪⎪⎪
⎩
⎪
⎪
⎪⎨⎧
>=<-=+≥-=∆⇔000421212a c x x a b x x ac b
(3)方程有一正一负根0<⇔
a
c
例1.若一元二次方程0)1(2)1(2
=-++-m x m x m 有两个正根,求m 的取值范围。
例2.k 在何范围内取值,一元二次方程0332
=-++k kx kx 有一个正根和一个负根
二、其它几种类型
借助函数图像研究)0(02
≠=++a c bx ax 的根的分布
设一元二次方程)0(02
≠=++a c bx ax 的两实根为1x ,2x ,且12x x ≤。
k 为常数。
则一元二次方程根的k 分布
(即1x ,2x 相对于k 的位置)有以下若干类型:
(1)⎪⎪⎩⎪
⎪⎨⎧
>->≥-=∆⇔≤<k a
b k af a
c b x x k 20)(04221【图例】
b
a
k f
a b x 2
)( k
解析:发现无论开口向上或向下,)(k f 与a 的值都是同号的.
例3.若方程42x +(m-2)x+(m-5)=0的两根都大于1,则求m 的取值范围.
(2)⎪⎪⎩⎪
⎪⎨⎧
<->≥-=∆⇔<≤k a
b k af a
c b k x x 20)(04221【图例】
解析:发现无论开口向上或向下,)(k f 与a 的值都是同号的.
(3)21x k x <<⇔0)(<k af 【图例】
解析:要保证两根分布于k 的两边,观察发现两种情况都是)(k f 与a 异号.
例4.方程x 2+2px+1=0有一个根大于1,一个根小于1,求p 的取值范围.
(4) 11x k <2k <⇔0)()(21<k f k f 【图例】
a
(f
(5) 112122,k x k p x p <<<<⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧><<>>0)(0)(0)(0)(02121p f p f k f k f a 或⎪⎪⎪⎩⎪
⎪⎪⎨⎧<>><<0
)(0
)(0)(0
)(021
21p f p f k f k f a
例5.若关于x 的方程x 2+(k-2)x+2k-1=0的两实根中,一根在0和1之间,另一根在1和2之间,求实数k 的取值范围.
(6)2211k x x k <≤<,则⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<-<>>>≥-=∆2121220)(0)(004k a b k k f k f a ac b 或⎪⎪⎪
⎪⎩
⎪
⎪⎪⎪⎨⎧<-<<<<≥-=∆212
1220
)(0)(004k a b k k f k f a ac b
例4.已知关于x 的方程223230x x m -+-=的两根都在[-1,1]上.求实数m 的取值范围.
针对练习
1.关于x 的方程m 2x +(2m+1)x+m=0有两个不等的实根,则m 的取值范围是( )
A.(-41, +∞)
B.(-∞,-41)
C.[-41,+∞]
D.(-4
1
,0)∪(0,+∞)
2.若方程2x -(k+2)x+4=0有两负根,求k 的取值范围.
3.若方程01222=-+-t tx x 的两个实根都在2-和4之间,求实数t 的取值范围.
4.若关于x 的方程kx 2-(2k+1)x-3=0在(-1,1)和(1,3)内各有一个实根,求k 的取值范围.
5.已知集合26
{|
1,},{|220,}1
A x x R
B x x x m x R x =≥∈=-+<∈+. (1)当{|14}A B x x =-<<I 时,求m 的值.(2)当A B A =U 时,求m 的取值范围.。