当前位置:文档之家› 11-导数的应用(1)

11-导数的应用(1)

11-导数的应用(1)
11-导数的应用(1)

2.函数的极值

(1)极大值:如果f(x1)比它附近点的函数值都要大.我们称f(x1)为函数个极值.

(2)极小值:如果f(x2)比它附近点的函数值都要小.我们称f(x2)为函数个极值.

函数的极大值、极小值统称为函数的.

基础自测:

1

导数的简单应用

第三讲导数的简单应用 考点一导数的几何意义1.导数公式 (1)(sin x)′=cos x; (2)(cos x)′=-sin x; (3)(a x)′=a x ln a(a>0); (4)(log a x)′=1 x ln a(a>0,且a≠1). 2.导数的几何意义 函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P处的切线的斜率k=f′(x0),相应的切线方程为y -f(x0)=f′(x0)·(x-x0). [对点训练] 1.(2018·兰州质检)曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为() A.(1,3) B.(-1,3) C.(1,3)和(-1,3) D.(1,-3) [解析]f′(x)=3x2-1,令f′(x)=2,则3x2-1=2,解得x=1或x=-1, ∴P(1,3)或(-1,3).经检验,点(1,3),(-1,3)均不在直线y=2x -1上,故选C. [答案]C 2.(2018·大同模拟)过点(1,-1)且与曲线y=x3-2x相切的切线方程为()

A .x -y -2=0或5x +4y -1=0 B .x -y -2=0 C .x -y +2=0 D .x -y -2=0或4x +5y +1=0 [解析] 设切点坐标为(x 0,y 0),y 0=x 30-2x 0,则曲线在(x 0,y 0) 处的切线斜率为y ′=3x 20-2,当x 0=1时斜率为1,切线方程为x - y -2=0,当x 0≠1时,过(1,-1)点的切线的斜率为x 30-2x 0+1x 0-1 =x 20+x 0-1=3x 20-2,解得x 0=-12,其斜率为-54,切线方程为5x +4y -1 =0,所以A 正确,故选A. [答案] A 3.(2018·西安质检)已知直线y =-x +m 是曲线y =x 2-3ln x 的一条切线,则m 的值为( ) A .0 B .2 C .1 D .3 [解析] 因为直线y =-x +m 是曲线y =x 2-3ln x 的切线,所以 令y ′=2x -3x =-1,得x =1,x =-32(舍),即切点为(1,1),又切点 (1,1)在直线y =-x +m 上,所以m =2,故选B. [答案] B 4.若曲线y =x 在点(a ,a )处的切线与两个坐标轴围成的三角形的面积为2,则a =________. [解析] y =x =x 12 ,∴y ′=12x -12 ,于是曲线在点(a ,a )处的 切线方程为y -a =1 2a (x -a ),令x =0,得y =a 2;令y =0,得x

导数及其应用概念及公式总结

导数与微积分重要概念及公式总结 1.平均变化率:=??x y 1212) ()(x x x f x f -- 称为函数f (x )从x 1到x 2的平均变化率 2.导数的概念 从函数y =f (x )在x =x 0处的瞬时变化率是: 000 0()()lim lim x x f x x f x y x x ?→?→+?-?=?? 我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =,即 0000 ()() ()lim x f x x f x f x x ?→+?-'=? 3.导数的几何意义: 函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率,(其中 00(,())x f x 为切点),即 0000 ()() ()lim x f x x f x f x k x ?→+?-'==? 切线方程为:()()()000x x x f x f y -'=- 4.常用函数的导数: (1)y c = 则'0y = (2)y x =,则'1y = (3)2y x =,则'2y x = (4)1y x = ,则'21y x =- (5)*()()n y f x x n Q ==∈,则'1n y nx -= (6)sin y x =,则'cos y x = (7)cos y x =,则'sin y x =- (8)()x y f x a ==,则'ln (0)x y a a a =?> (9)()x y f x e ==,则'x y e = (10)()log a f x x =,则'1 ()(0,1)ln f x a a x a = >≠

(完整word版)第一章导数及其应用测试题(含答案)

第一章导数及其应用测试题 一、 选择题 1.设x x y sin 12-=,则='y ( ). A .x x x x x 22sin cos )1(sin 2--- B .x x x x x 2 2sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .x x x x sin ) 1(sin 22--- 2.设1ln )(2+=x x f ,则=)2('f ( ) . A . 54 B .52 C .51 D .5 3 3.已知2)3(',2)3(-==f f ,则3 ) (32lim 3--→x x f x x 的值为( ). A .4- B .0 C .8 D .不存在 4.曲线3 x y =在点)8,2(处的切线方程为( ). A .126-=x y B .1612-=x y C .108+=x y D .322-=x y 5.已知函数d cx bx ax x f +++=2 3)(的图象与x 轴有三个不同交点)0,(),0,0(1x , )0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ?的值为( ) A .4 B .5 C .6 D .不确定 6.在R 上的可导函数c bx ax x x f +++=22 131)(2 3, 当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则 1 2 --a b 的取值范围是( ). A .)1,4 1( B .)1,2 1( C .)4 1,21(- D .)2 1,21(- 7.函数)cos (sin 21)(x x e x f x += 在区间]2 ,0[π 的值域为( ). A .]21,21[2π e B .)2 1 ,21(2πe C .],1[2πe D .),1(2π e 8.积分 =-? -a a dx x a 22( ).

高考数学大一轮复习配套课时训练:第二篇 函数、导数及其应用 第11节 导数的简单应用(含答案)

第11节导数的简单应用 课时训练练题感提知能 【选题明细表】 A组 一、选择题 1.函数f(x)=4x3-3x2-6x+2的极小值为( B ) (A)3 (B)-3 (C)(D)- 解析:f′(x)=12x2-6x-6=6(x-1)(2x+1), 因此f(x)在(-∞,-),(1,+∞)上为增函数, 在(-,1)上为减函数, 所以函数f(x)在x=1处取到极小值f(1)=-3.故选B. 2.(2013广东省六校质检)已知y=x3+bx2+(b+2)x+3是R上的单调增函数,则b的取值范围是( D ) (A)b<-1或b>2 (B)b≤-1或b≥2

(C)-1

又x∈[0,], 所以x=. 且f()=+, 又f(0)=2,f()=, 所以f()为最大值. 故选B. 5.(2013济宁模拟)若函数h(x)=2x-+在(1,+∞)上是增函数,则实数k的取值范围是( A ) (A)[-2,+∞) (B)[2,+∞) (C)(-∞,-2] (D)(-∞,2] 解析:因为h′(x)=2+, 若h(x)在(1,+∞)上是增函数, 则h′(x)≥0在(1,+∞)上恒成立, 故2+≥0恒成立, 即k≥-2x2恒成立. 又x>1, ∴-2x2<-2, 因此,需k≥-2,故选A.

专题一 第4讲 导数的简单应用

第4讲 导数的简单应用 [考情分析] 1.导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.2.应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题. 考点一 导数的几何意义与计算 核心提炼 1.导数的运算法则 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (3)?? ?? f (x ) g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2 (g (x )≠0). 2.导数的几何意义 (1)函数在某点的导数即曲线在该点处的切线的斜率. (2)曲线在某点的切线与曲线过某点的切线不同. (3)切点既在切线上,又在曲线上. 例1 (1)已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)-ln x ,则f ′(2)的值为( ) A.74 B .-74 C.94 D .-94 答案 B 解析 ∵f (x )=x 2+3xf ′(2)-ln x , ∴f ′(x )=2x +3f ′(2)-1x , 令x =2,得f ′(2)=4+3f ′(2)-1 2, 解得f ′(2)=-7 4 . (2)(2020·北京通州区模拟)直线l 经过点A (0,b ),且与直线y =x 平行,如果直线l 与曲线y =x 2相切,那么b 等于( ) A .-14 B .-12 C.14 D.12

答案 A 解析 直线l 经过点A (0,b ),且与直线y =x 平行,则直线l 的方程为y =x +b ,直线l 与曲线y =x 2相切,令y ′=2x =1,得x =12,则切点为????12,14,代入直线l 的方程,解得b =-14. 易错提醒 求曲线的切线方程要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点. 跟踪演练1 (1)(2020·内蒙古自治区模拟)曲线y =(ax +2)e x 在点(0,2)处的切线方程为y =-2x +b ,则ab 等于( ) A .-4 B .-8 C .4 D .8 答案 B 解析 y ′=e x (ax +2+a ), 故k =y ′|x =0=2+a =-2,解得a =-4, 又切线过点(0,2),所以2=-2×0+b , 解得b =2,所以ab =-8. (2)直线2x -y +1=0与曲线y =a e x +x 相切,则a 等于( ) A .e B .2e C .1 D .2 答案 C 解析 设切点为(n ,a e n +n ),因为y ′=a e x +1, 所以切线的斜率为a e n +1, 切线方程为y -(a e n +n )=(a e n +1)(x -n ), 即y =(a e n +1)x +a e n (1-n ), 依题意切线方程为y =2x +1, 故????? a e n +1=2,a e n (1-n )=1, 解得a =1,n =0. 考点二 利用导数研究函数的单调性 核心提炼 利用导数研究函数单调性的关键 (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域.

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

导数及其应用复习题及答案 (11)

第 1 页 共 1 页 导数及其应用复习题及答案 6.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________百万件. 解析 y ′=-3x 2+27=-3(x +3)(x -3),当00;当x >3时,y ′<0. 故当x =3时,该商品的年利润最大. 答案 3 7.(2020·安徽江南十校联考)已知x =1是函数f (x )=(x 2+ax )e x 的一个极值点,则曲线y =f (x )在点(0,f (0))处的切线斜率为________. 解析 由f (x )=(x 2+ax )e x ,得f ′(x )=(x 2+ax +2x +a )e x , 因为x =1是函数f (x )=(x 2+ax )e x 的一个极值点, 所以f ′(1)=(3+2a )e =0,解得a =-32. ∴f ′(x )=? ?? ??x 2+12x -32e x ,所以f ′(0)=-32. 所以曲线f (x )在点(0,f (0))处的切线斜率为-32. 答案 -32 8.(2020·汉中调研)直线y =b 分别与直线y =2x +1和曲线y =ln x 相交于点A ,B ,则|AB |的最小值为________. 解析 设两个交点分别为A ? ?? ??b -12,b ,B (e b ,b ), 则|AB |=e b -b -12. 令g (x )=e x -x -12,则g ′(x )=e x -12. 由g ′(x )=0,得x =-ln 2. 所以g (x )在区间(-∞,-ln 2)单调递减,在区间(-ln 2,+∞)上单调递增, ∴g (x )min =g (-ln 2)=1+ln 22. 答案 1+ln 22

微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的 关系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得 '()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,

高二数学导数及其应用练习题及答案

(数学选修1-1)第一章 导数及其应用 [提高训练C 组]及答案 一、选择题 1.若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 2.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( ) 3.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( ) A .),3[]3,(+∞--∞ B .]3,3[- C .),3()3,(+∞--∞ D .)3,3(- 4.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( ) A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C. (0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +> 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 则函数)(x f 在开区间),(b a 内有极小值点( A .1个 B .2个 C .3个 D .4个 二、填空题 1.若函数()()2 f x x x c =-在2x =处有极大值,则常数c 的值为_________;

2.函数x x y sin 2+=的单调增区间为 。 3.设函数())(0)f x ??π=+<<,若()()f x f x '+为奇函数,则?=__________ 4.设3 2 1()252 f x x x x =- -+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的 取值范围为 。 5.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则 数列1n a n ?? ? ?+?? 的前n 项和的公式是 三、解答题 1.求函数3(1cos 2)y x =+的导数。 2.求函数y = 3.已知函数3 2 ()f x x ax bx c =+++在2 3 x =-与1x =时都取得极值 (1)求,a b 的值与函数()f x 的单调区间 (2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围。 4.已知23()log x ax b f x x ++=,(0,)x ∈+∞,是否存在实数a b 、,使)(x f 同时满足下列 两个条件:(1))(x f 在(0,1)上是减函数,在[)1,+∞上是增函数;(2))(x f 的最小值是1,若存在,求出a b 、,若不存在,说明理由. (数学选修1-1)第一章 导数及其应用 [提高训练C 组] 一、选择题 1.A ' ' ()sin ,()sin f x x f αα==

第一章导数及其应用第11课时导数在实际生活中的应用教案苏教版选修2_2

导数在实际生活中的应用 【教学目标】 1. 进一步熟练函数的最大值与最小值的求法; ⒉初步会解有关函数最大值、最小值的实际问题. 【教学重点、难点】 解有关函数(如边际函数、边际成本)最大值、最小值的实际问题. 【教学过程】 一、复习引入: 导数在实际生活中有着广泛的应用,例如,用料最省、利润最大、效率最高等最优解问题,常常可以归结为函数的最值问题,从而可用导数来解决. 利用导数求函数的最值步骤: (1)求) (x f在(,) a b内的极值; (2)将) (x f的各极值与) (a f、) (b f比较得出函数) (x f在[,] a b上的最值. 二、例题分析: 例1、在边长为60cm的正方形铁片的四角切去相等的小正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,当箱底的边长是多少时,箱子的容积最大?最大容积是多少? 例2、圆柱形金属饮料罐的容积一定时,它的高与底面半径应怎样选取,才能使所用的材料最省?

b 变式:当圆柱形金属饮料罐的表面积为定值S 时,它的高与底面半径应怎样选取,才能使其容积有最大值? 例3、一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD 的面积为定值S 时,使得湿周CD BC AB l ++=最小,这样可使水流阻力小,渗透少,求此时的高h 和下底边长b . 例4、已知电源的内阻为r ,电动势为E ,当外电阻R 多大时,才能使电功率最大?最大电功率是多少?

例5、强度分别为a ,b 的两个光源A ,B 间的距离为d ,试问:在连结两光源的线段AB 上,何处照度最小?试就a =8,b =1,d =3时回答上述问题.(照度与光的强度成正比,与光源距离的平方成反比) 例6、在经济学中,生产x 单位产品的成本称为成本函数,记为()C x ,出售x 单位产品的收益称为收益函数,记为()R x ,()()R x C x -称为利润函数,记为()P x , (1)如果632()100.00351000C x x x x -=-++,那么生产多少单位产品时,边际)(x C '最低?(边际成本:生产规模增加一个单位时成本的增加量) (2)如果()501000C x x =+,产品的单价()1000.01p x x =-,那么怎样定价可使利润最大?

【高中数学选修2-2:第一章-导数及其应用-单元测试题

数学选修2-2第一章 单元测试题 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )的图像如图所示,则函数f (x )在开区间(a ,b )有极小值点( ) A .1个 B .2个 C .3个 D .4个 2.在区间[12,2]上,函数f (x )=x 2+px +q 与g (x )=2x +1 x 2在 同一点处取得相同的最小值,那么f (x )在[1 2 ,2]上的最大值是( ) A.13 4 B.54 C .8 D .4 3.点P 在曲线y =x 3-x +2 3 上移动,设点P 处的切线的倾斜角为 α,则α的取值围是( )

A .[0,π 2] B .[0,π2]∪[3 4π,π) C .[3 4 π,π) D .[π2,3 4 π] 4.已知函数f (x )=1 2x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立, 则实数m 的取值围是( ) A .m ≥32 B .m >32 C .m ≤32 D .m <32 5.函数f (x )=cos 2 x -2cos 2 x 2 的一个单调增区间是( ) A.? ????π3,2π3 B.? ???? π6 ,π2 C.? ???? 0,π3 D.? ???? -π6 ,π6 6.设f (x )在x =x 0处可导,且lim Δx →0 f x 0+3Δx -f x 0 Δx =1, 则f ′(x 0)等于( ) A .1 B .0 C .3 D.13 7.经过原点且与曲线y =x +9 x +5 相切的切线方程为( ) A .x +y =0 B .x +25y =0 C .x +y =0或x +25y =0

全国版2022高考数学一轮复习第3章导数及其应用第2讲导数的简单应用试题1理含解析

第三章 导数及其应用 第二讲 导数的简单应用 练好题·考点自测 1.[2021陕西模拟]若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞) D .[1,+∞) 2.下列说法错误的是( ) A.函数在某区间上或定义域内的极大值是唯一的 B.若x 0是可导函数y =f (x )的极值点,则一定有f'(x 0)=0 C.函数的最大值不一定是极大值,函数的最小值也不一定是极小值 D.函数f (x )=x sin x 有无数个极值点 3.[2020安徽安庆一中5月模拟]函数y =f (x )的导函数的图象如图3-2-1所示,给出下列命题: ①(0,3)为函数y =f (x )的单调递减区间; ②(5,+∞)为函数y =f (x )的单调递增区间; ③函数y =f (x )在x =0处取得极大值; ④函数y =f (x )在x =5处取得极小值. 其中正确的命题序号是( ) A.①③ B.②④ C.①④ D.②③④ 4.[2017全国卷Ⅱ,11,5分][理]若x =-2是函数f (x )=(x 2 +ax -1)e x -1 的极值点,则 f (x )的极小值为( ) A.-1 B.-2e -3 C.5e -3 D.1 5.[2021河南省名校第一次联考]已知函数f (x )=x (x -c )2 在x =2处取极大值,则c = . 6.[2021武汉市部分学校质检]设函数f (x )=ln 1+sinx 2cosx 在区间[-π4,π 4]上的最小值和最大值分别为m 和M ,则 m +M = . 拓展变式 1.[2020全国卷Ⅰ,21,12分][理]已知函数f (x )=e x +ax 2 -x. (1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥1 2x 3 +1,求a 的取值范围. 2.已知函数g (x )=1 3x 3 -a 2x 2 +2x +5. (1)若函数g (x )在(-2,-1)内单调递减,则a 的取值范围为 ;

导数及其应用单元测试(带答案)

第三章导数及其应用单元测试 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后 的括号内(本大题共12个小题,每小题5分,共60分)。 1.函数y=x+2cosx在[0,]上取得最大值时,x的值为()A.0 B.C.D. 2.函数的单调递减区间是() A.B.C.D. 3.若函数的图象的顶点在第四象限,则函数的图象是 () 4.点P在曲线 上移动,设 点P处切线倾斜角为α, 则α的取值范围是 ()A.[0,] B.0,∪[,π C.[,πD.(, 5.已知(m为常数)在上有最大值3,那么此函数在 上的最小值为() A.B.C.D. 6.函数的单调递增区间是()A. B.(0,3) C.(1,4) D. 7.已知函数时,则()

A.B. C.D. 8.设函数的导函数,则数列的前n项和是 ()A.B.C.D. 9.设f(x)=x3+ax2+5x+6在区间[1,3]上为单调函数,则实数a的取值范围为()A.[-,+∞] B.(-∞,-3) C.(-∞,-3)∪[-,+∞] D.[-,] 10.函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)<0,设a=f(0),b= f(),c= f(3),则() A .a<b<c B.c<a<b C.c<b<a D.b<c<a 11.曲线在点处的切线与坐标轴围成的三角形面积为() A.B.C.D. 12.如图所示的是函数的大致图象,则等于()A.B. C.D.

第Ⅱ卷 二、填空题:请把答案填在题中横线上(本大题共4个小题,每小题4分,共16分)。 13.设是偶函数,若曲线在点处的切线的斜率为1,则该曲线在处的切线的斜率为_________. 14.已知曲线交于点P,过P点的两条切线与x轴分别交于A,B两点,则△ABP的面积为; 15.函数在定义域内可导,其图象如图,记的导函数为, 则不等式的解集为_____________ 16.若函数f(x)=(a>0)在[1,+∞)上的最大值为,则a的值为 三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。 17.(12分)已知函数f(x)=x3-2ax2+3x(x∈R). (1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程; (2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a.

数学选修—导数及其应用(基础)

数学选修—导数及其应用 1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则 000 ()()lim h f x h f x h h →+-- 的值为( ) A .' 0()f x B .' 02()f x C .' 02()f x - D .0 2.一个物体的运动方程为2 1t t s +-=其中s 的单位是 米,t 的单位是秒,那么物体在3秒末的瞬时速度是 A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3 y x x =+的递增区间是( ) A .),0(+∞ B .)1,(-∞ C .),(+∞-∞ D .),1(+∞ 4.3 2 ()32f x ax x =++,若' (1)4f -=,则a 的值等于 A .319 B .3 16 C . 313 D .3 10 5.函数)(x f y =在一点的导数值为0是函数) (x f y =在这点取极值的( ) A .充分条件 B .必要条件 C .充要条件 D .必要非充分条件 6.函数344 +-=x x y 在区间[]2,3-上的最小值为 ( ) A .72 B .36 C .12 D .0 二、填空题 1.若 3'0(),()3f x x f x ==,则0x 的值为 _________________; 2.曲线x x y 43 -=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin x y x = 的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数552 3 --+=x x x y 的单调递增区间是___________________________。 三、解答题 1.求垂直于直线2610x y -+=并且与曲线 3235y x x =+-相切的直线方程。 2.求函数()()()y x a x b x c =---的导数。 3.求函数543 ()551f x x x x =+++在区间[]4,1-上的最大值与最小值。 4.已知函数2 3bx ax y +=,当1x =时,有极大值3; (1)求,a b 的值;(2)求函数y 的极小值。 1.函数()323922y x x x x =---<<有( ) A .极大值5,极小值27- B .极大值5,极小值11- C .极大值5,无极小值 D .极小值27-,无极大值 2.若' 0()3f x =-,则000()(3) lim h f x h f x h h →+--= A .3- B .6- C .9- D .12- 3.曲线3 ()2f x x x =+-在0p 处的切线平行于直线 41y x =-,则0p 点的坐标为( ) A .(1,0) B .(2,8) C .(1,0)和(1,4)-- D .(2,8)和(1,4)-- 4.()f x 与()g x 是定义在R 上的两个可导函数,若 ()f x ,()g x 满足''()()f x g x =,则()f x 与()g x 满足 A .()f x =()g x B .()f x -()g x 为常数函数 C .()f x =()0g x = D .()f x +()g x 为常数函数 5.函数x x y 1 42 + =单调递增区间是( ) A .),0(+∞ B .)1,(-∞ C .),2 1(+∞ D .),1(+∞ 6.函数x x y ln = 的最大值为( ) A .1 -e B .e C .2 e D .3 10 1.函数2cos y x x =+在区间[0,]2 π 上的最大值 是 。 2.函数3 ()45f x x x =++的图像在1x =处的切线在x 轴上的截距为________________。 3.函数3 2x x y -=的单调增区间为 ,单调减区间为___________________。 4.若3 2 ()(0)f x ax bx cx d a =+++>在R 增函数,则 ,,a b c 的关系式为是 。 5.函数3 2 2 (),f x x ax bx a =+++在1=x 时有极值10,那么b a ,的值分别为________。 三、解答题 1. 已知曲线12-=x y 与3 1x y +=在0x x =处的切 线互相垂直,求0x 的值。 3. 已知c bx ax x f ++=2 4 )(的图象经过点(0,1),且在1x =处的切线方程是2y x =- (1)求)(x f y =的解析式;(2)求)(x f y =的单调递增区间。

课时作业与单元检测第一章 导数及其应用第1章 1.5.11.

§1.5定积分的概念 1.5.1 曲边梯形的面积 1.5.2 汽车行驶的路程 课时目标通过求曲边梯形的面积和变速直线运动的路程,了解定积分概念建立的背景,借助于几何直观体会定积分的基本思想. 1.如果函数y=f(x)在某个区间I上的图象是一条______________的曲线,那么就把它称为区间I上的连续函数. 2.曲边梯形的面积 (1)曲边梯形:由直线________________________和曲线__________所围成的图形称为曲边梯形. (2)求曲边梯形面积的方法 把区间[a,b]分成许多小区间,进而把曲边梯形拆分为一些________________.对每个 ______________“以直代曲”,即用______的面积近似代替__________的面积,得到每个小曲边梯形面积的____________,对这些近似值____________,就得到曲边梯形面积的 __________. 3.将曲边梯形分割成若干个小曲边梯形,在每个局部小范围内实施“以直代曲”,即近似代替的目的就是减少曲边梯形面积与小矩形面积和之间的误差,而且分割得越细,误差就会越小. 4.求曲边梯形面积的步骤 (1)________,(2)____________, (3)________,(4)____________. 5.在求作变速直线运动的汽车在0≤t≤1这段时间内行驶的路程时,采取“以不变代变”的方法,把求变速直线运动的路程问题,化归为求__________________的路程问题,即将区间[0,1]等分成n个小区间,在每个小区间上,由于v(t)的变化________,可以认为汽车近似于作________________,从而求得汽车在每个小区间上行驶路程的________,再求和得s 的________,最后让n趋向于无穷大就得到s的__________.

《导数及其应用》测试卷

导数及其应用测试卷 一、单项选择题(本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是最符合题目要求的。) 1.函数()2 sin f x x =的导数是() A.2sin x B.2 2sin x C.2cos x D.sin2x 2.已知()2 1 cos 4 f x x x =+,() ' f x为() f x的导函数,则() ' f x的图像是() 3.若2 x=-是函数21 ()(1)x f x x ax e- =+-的极值点,则() f x的极小值为() A.1 - B.3 2e- - C.3 5e- D.1 4.若曲线() ln y x a =+的一条切线为y ex b =+,其中,a b为正实数,则 2 e a b + + 的取值范围是() A. 2 , 2 e e ?? ++∞ ? ?? B.[) ,e+∞ C.[) 2,+∞ D.[) 2,e 5.已知函数2x y=的图象在点) , (2 x x处的切线为l,若l也与函数x y ln =,)1,0( ∈ x的 图象相切,则 x必满足() A. 2 1 < ′对x R ∈恒成立,则下列函数在实数集内一定是增函数的为() A.() f x B.() xf x C.() x e f x D.() x xe f x 7.已知函数 211 ()2() x x f x x x a e e --+ =-++ 有唯一零点,则a=() A. 1 2 - B. 1 3C. 1 2D.1

2019-2020学年高中数学 第一章 导数及其应用 第11课时 导数在实际生活中的应用教案 苏教版选修2-2.doc

2019-2020学年高中数学第一章导数及其应用第11课时导数在实 际生活中的应用教案苏教版选修2-2 【教学目标】 1. 进一步熟练函数的最大值与最小值的求法; ⒉初步会解有关函数最大值、最小值的实际问题. 【教学重点、难点】 解有关函数(如边际函数、边际成本)最大值、最小值的实际问题. 【教学过程】 一、复习引入: 导数在实际生活中有着广泛的应用,例如,用料最省、利润最大、效率最高等最优解问题,常常可以归结为函数的最值问题,从而可用导数来解决. 利用导数求函数的最值步骤: (1)求) (x f在(,) a b内的极值; (2)将) (x f的各极值与) (a f、) (b f比较得出函数) (x f在[,] a b上的最值. 二、例题分析: 例1、在边长为60cm的正方形铁片的四角切去相等的小正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,当箱底的边长是多少时,箱子的容积最大?最大容积是多少? 例2、圆柱形金属饮料罐的容积一定时,它的高与底面半径应怎样选取,才能使所用的材料最省?

b 变式:当圆柱形金属饮料罐的表面积为定值S 时,它的高与底面半径应怎样选取,才能使其容积有最大值? 例3、一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD 的面积为定值S 时,使得湿周CD BC AB l ++=最小,这样可使水流阻力小,渗透少,求此时的高h 和下底边长b . 例4、已知电源的内阻为r ,电动势为E ,当外电阻R 多大时,才能使电功率最大?最大电功率是多少?

例5、强度分别为a ,b 的两个光源A ,B 间的距离为d ,试问:在连结两光源的线段AB 上,何处照度最小?试就a =8,b =1,d =3时回答上述问题.(照度与光的强度成正比,与光源距离的平方成反比) 例6、在经济学中,生产x 单位产品的成本称为成本函数,记为()C x ,出售x 单位产品的收益称为收益函数,记为()R x ,()()R x C x -称为利润函数,记为()P x , (1)如果632()100.00351000C x x x x -=-++,那么生产多少单位产品时,边际)(x C '最低?(边际成本:生产规模增加一个单位时成本的增加量) (2)如果()501000C x x =+,产品的单价()1000.01p x x =-,那么怎样定价可使利润最大?

最新《导数及其应用》单元测试题(理科)

《导数及其应用》单元测试题(理科) (满分150分 时间:120分钟 ) 一、选择题(本大题共8小题,共40分,只有一个答案正确) 1.函数()2 2)(x x f π=的导数是( ) (A) x x f π4)(=' (B) x x f 24)(π=' (C) x x f 2 8)(π=' (D) x x f π16)(=' 2.函数x e x x f -?=)(的一个单调递增区间是( ) (A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,0 3.已知对任意实数x ,有()() ()(f x f x g x g x -=--=,,且0x >时,()0()f x g x ''>>,,则0x <时( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 4. =-+? dx x x x )1 11(322 1 ( ) (A)8 7 2ln + (B)872ln - (C)452ln + (D)812ln + 5.曲线1 2 e x y =在点2 (4e ),处的切线与坐标轴所围三角形的面积为( ) A. 2 9e 2 B.24e C.2 2e D.2 e 6.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( ) 7.已知二次函数2 ()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有

《选修11:导数的应用:单调性与极值、最值》教案

适用学科
高中数学
适用年级
适用区域 苏教版区域
课时时长(分钟)
知识点 1、函数的单调性与极值;
2、函数中含参数的单调性与极值、
高二 2 课时
教学目标 1、 能利用导数研究函数的单调性,会用导数法求函数的单调区间。
2、了解函数在某点取得极值的必要条件与充分条件、 3、 会用导数求函数的极大值与极小值
教学重点 利用导数研究函数的单调性;函数极值的概念与求法 教学难点 用导数求函数单调区间的步骤;函数极值的求法
【知识导图】
教学过程

【教学建议】 导入是一节课必备的一个环节,是为了激发学生的学习兴趣,帮助学生尽快进入学习状
态、 导入的方法特不多,仅举两种方法: ① 情境导入,比如讲一个与本讲内容有关的生活现象; ② 温故知新,在知识体系中,从学生已有知识入手,揭示本节知识与旧知识的关系,帮学生
建立知识网络、 函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的增与减、增减的 快与慢以及函数的最大值或最小值等性质是特不重要的、通过研究函数的这些性质,我们能 够对数量的变化规律有一个基本的了解、函数的单调性与函数的导数一样都是反映函数变化 情况的,那么函数的单调性与函数的导数是否有着某种内在的联系呢?
用考导点数1求函导数函单数调判性的断步函骤数: 的单调性
(1)明确函数的定义域,并求函数的导函数; (2)若导函数时,并求对应的解集; (3)列表,确定函数的单调性; (4)下结论,写出函数的单调递增区间与单调递减区间、 注意:导函数看正负,原函数看增减。
用导数求函数极值的步骤: (1)明确函数的定义域,并求函数的导函数; (2)求方程的根; (3)检验在方程的根的左右的符号,假如在根的左侧附近为正,右侧附近为负,那么函数在这 个根处取得极大值,这个根叫做函数的极大值点;假如在根的右侧附近为正,左侧附近为负,那 么函数在这个根处取得极小值,这个根叫做函数的极小值点。

相关主题
文本预览
相关文档 最新文档