2014年考研数学二真题与解析
- 格式:doc
- 大小:703.50 KB
- 文档页数:10
推荐:考研数字题库与资料 2014年考研数学二真题与解析
一、选择题 1—8小题.每小题4分,共32分.
1.当+→0x 时,若)(ln x 21+α
,α
1
1)cos (x -均是比x 高阶的无穷小,则α的可能取值范围是( )
(A )),(+∞2 (B )),(21 (C )),(121 (D )),(2
10
【详解】α
ααx x 221~)(ln +,是α阶无穷小,ααα2
11
21
1x x ~)cos (-是α2阶无穷小,由题意可知⎪⎩⎪⎨⎧>>121
α
α
所以α的可能取值范围是),(21,应该选(B ). 2.下列曲线有渐近线的是
(A )x x y sin += (B )x x y sin +=2
(C )x
x y 1sin
+= (D )x x y 12
sin +=
【详解】对于x
x y 1sin +=,可知1=∞→x y x lim 且01
==-∞→∞→x x y x x sin lim )(lim ,所以有斜渐近线x y =
应该选(C )
3.设函数)(x f 具有二阶导数,x f x f x g )())(()(110+-=,则在],[10上( )
(A )当0≥)('x f 时,)()(x g x f ≥ (B )当0≥)('x f 时,)()(x g x f ≤ (C )当0≥'')(x f 时,)()(x g x f ≥ (D )当0≥'')(x f 时,)()(x g x f ≤ 【分析】此题考查的曲线的凹凸性的定义及判断方法.
【详解1】如果对曲线在区间],[b a 上凹凸的定义比较熟悉的话,可以直接做出判断. 显然
x f x f x g )())(()(110+-=就是联接))(,()),(,(1100f f 两点的直线方程.故当0≥'')(x f 时,曲线是凹
的,也就是)()(x g x f ≤,应该选(D )
【详解2】如果对曲线在区间],[b a 上凹凸的定义不熟悉的话,可令
x f x f x f x g x f x F )())(()()()()(110---=-=,则010==)()(F F ,且)(")("x f x F =,故当
0≥'')(x f 时,曲线是凹的,从而010==≤)()()(F F x F ,即0≤-=)()()(x g x f x F ,也就是)()(x g x f ≤,应该选(D )
4.曲线⎩⎨⎧++=+=1
472
2t t y t x ,
上对应于1=t 的点处的曲率半径是( )
(A)
5010(B)100
10 (C)1010 (D)105 【详解】 曲线在点))(,(x f x 处的曲率公式3
21)'("y y K +=
,曲率半径K
R 1
=
. 本题中422+==t dt dy t dt dx ,,所以t t t dx dy 21242+=+=,3222122t
t t dx y d -=-
=,
对应于1=t 的点处13-==",'y y ,所以10
10113
2=
+=)'("y y K ,曲率半径10101
==
K
R . 应该选(C )
5.设函数x x f arctan )(=,若)(')(ξxf x f =,则=→2
2
x
x ξlim
( )
(A)1 (B)
32 (C)21 (D)3
1 【详解】注意(1)2
11x
x f +=
)(',(2))(arctan ,3
3310x o x x x x +-=→时. 由于)(')(ξxf x f =.所以可知x x x x f f arctan )()('==+=
211ξξ,2
2
)
(arctan arctan x x x -=ξ, 31313
33
020
2
2
=+-
-=-=→→→x
x o x x x x x x
arx x x x x x )
()(lim )
(arctan tan lim
lim
ξ
. 6.设),(y x u 在平面有界闭区域D 上连续,在D 的内部具有二阶连续偏导数,且满足
02≠∂∂∂y x u
及02
222=∂∂+∂∂y u
x u ,则( ). (A )),(y x u 的最大值点和最小值点必定都在区域D 的边界上;
(B )),(y x u 的最大值点和最小值点必定都在区域D 的内部;