SQL语句的执行原理分析及where 查询条件决定SQL效率
- 格式:docx
- 大小:16.13 KB
- 文档页数:2
SQL语句的执行原理分析及where 查询条件决定SQL效率原理:
第一步:应用程序把查询SQL语句发给服务器端执行。
我们在数据层执行SQL语句时,应用程序会连接到相应的数据库服务器,把SQL语句发送给服务器处理。
第二步:服务器解析请求的SQL语句。
1:SQL计划缓存,经常用查询分析器的朋友大概都知道这样一个事实,往往一个查询语句在第一次运行的时候需要执行特别长的时间,但是如果你马上或者在一定时间内运行同样的语句,会在很短的时间内返回查询结果。
原因:
1):服务器在接收到查询请求后,并不会马上去数据库查询,而是在数据库中的计划缓存中找是否有相对应的执行计划,如果存在,就直接调用已经编译好的执行计划,节省了执行计划的编译时间。
2):如果所查询的行已经存在于数据缓冲存储区中,就不用查询物理文件了,而是从缓存中取数据,这样从内存中取数据就会比从硬盘上读取数据快很多,提高了查询效率.数据缓冲存储区会在后面提到。
2:如果在SQL计划缓存中没有对应的执行计划,服务器首先会对用户请求的SQL语句进行语法效验,如果有语法错误,服务器会结束查询操作,并用返回相应的错误信息给调用它的应用程序。
注意:此时返回的错误信息中,只会包含基本的语法错误信息,例如select 写成selec等,错误信息中如果包含一列表中本没有的列,此时服务器是不会检查出来的,因为只是语法验证,语义是否正确放在下一步进行。
3:语法符合后,就开始验证它的语义是否正确,例如,表名,列名,存储过程等等数据库对象是否真正存在,如果发现有不存在的,就会报错给应用程序,同时结束查询。
4:接下来就是获得对象的解析锁,我们在查询一个表时,首先服务器会对这个对象加锁,这是为了保证数据的统一性,如果不加锁,此时有数据插入,但因为没有加锁的原因,查询已经将这条记录读入,而有的插入会因为事务的失败会回滚,就会形成脏读的现象。
5:接下来就是对数据库用户权限的验证,SQL语句语法,语义都正确,此时并不一定能够得到查询结果,如果数据库用户没有相应的访问权限,服务器会报出权限不足的错误给应用程序,在稍大的项目中,往往一个项目里面会包含好几个数据库连接串,这些数据库用户具有不同的权限,有的是只读权限,有的是只写权限,有的是可读可写,根据不同的操作选取不同的用户来执行,稍微不注意,无论你的SQL语句写的多么完善,完美无缺都没用。
6:解析的最后一步,就是确定最终的执行计划。当语法,语义,权限都验证后,服务器并不会马上给你返回结果,而是会针对你的SQL进行优化,选择不同的查询算法以最高效的形式返回给应用程序。例如在做表联合查询时,服务器会根据开销成本来最终决定采用hash join,merge join ,还是loop join,采用哪一个索引会更高效等等,不过它的自动化优化是有限的,要想写出高效的查询SQL还是要优化自己的SQL查询语句。
当确定好执行计划后,就会把这个执行计划保存到SQL计划缓存中,下次在有相同的执行请求时,就直接从计划缓存中取,避免重新编译执行计划。
第三步:语句执行。
服务器对SQL语句解析完成后,服务器才会知道这条语句到底表态了什么意思,接下来才会真正的执行SQL语句。
此时分两种情况:
1):如果查询语句所包含的数据行已经读取到数据缓冲存储区的话,服务器会直接从数据缓冲存储区中读取数据返回给应用程序,避免了从物理文件中读取,提高查询速度。
2):如果数据行没有在数据缓冲存储区中,则会从物理文件中读取记录返回给应用程序,同时把数据行写入数据缓冲存储区中,供下次使用。
说明:SQL执行完后会把相关结果放入SQL缓存中去, 第二次执行因为有缓存的存在,会特别快速。
执行顺序:
1. FROM 子句返回初始结果集。
2. WHERE 子句排除不满足搜索条件的行。
3. GROUP BY 子句将选定的行收集到GROUP BY 子句中各个唯一值的组中。
4. 选择列表中指定的聚合函数可以计算各组的汇总值。
5. 此外,HAVING 子句排除不满足搜索条件的行。
6. 计算所有的表达式;
7. 使用order by对结果集进行排序。
where条件执行原理及效率:
首先要了解Where 条件执行方向是从右向左的(如多条件判断下,会从最后一个条件来判断过滤数据的,依次向前推进判断)。了解了执行顺序就看下如何写where才能提高SQL性能呢!
1:注意SQL运算符(非、与、或)优先级别,级别越高放最后。
2:在同运算符内字段值数据范围越大的查询字段放最后。
坚持这两点原则理论SQL效率提高25%左右。
下面通过实际运行得到的执行时间:
合理的写法:
SELECT * from dy_info i where (i.realName='张军' and i.sexId='1') or (i.realName='张军' and i.sexId='2') and (erType='5')
执行时间: 0.047ms
SELECT * from dy_info i where i.sexId='1' and i.realName='张军'
执行时间: 0.094ms
不合理的写法:
[SQL] SELECT * from dy_info i where (i.realName='张军' and i.sexId='1') and (erType='5') or (i.realName='张军' and i.sexId='2')
执行时间: 0.172ms
SELECT * from dy_info i where i.realName='张军' and i.sexId='1'
执行时间: 0.140ms
其实在执行SQL的时候数据表数据量10000以下的话你有可能感觉不出效率的问题,但对于大数据量表时这方面还是比较重要的,所以因情况而定提倡合理的书写SQL方法。